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ABSTRACT 

Let ( , I)N R be a Neutrosophic ring of a finite commutative classical ring R with non-

zero identity. Then the Neutrosophic invertible graph of ( , I)N R , denoted by ℐG(N(R, I)) and 

defined as  an undirected simple graph whose vertex set is ( , I)N R and two vertices Ia b  and 

Ic d are adjacent in ℐG(N(R, I)) if and only Ia b is different from - ( I)c d which is 

equivalent to Ic d  is different from - ( I)a b . We begin by considering some properties of the 

self and mutual additive inverse elements of finite Neutrosophic rings. We then proceed to 

determine several properties of Neutrosophic invertible graphs and we obtain an interrelation 

between classical rings, Neutrosophic rings and their Neutrosophic invertible graphs.  

KEYWORDS: Classical ring, Neutrosophic ring, Neutrosophic invertible graphs, Neutrosophic  

Isomorphism,self and additive inverse elements. 

1. INTRODUCTION

The investigation of simple undirected graphs associated to finite algebraic structures, 

namely, rings and fields which are very important in the theory of algebraic graphs. In recent 

years the interplay between Neutrosophic algebraic structure and graph structure is studied by 

few researchers. For such kind of study, researchers define a Neutrosophic graph whose 

vertices are set of elements of a Neutrosophic algebraic structure and edges are defined with 

respect to a well-defined condition on the pre-defined vertex set. Kandasami and Smarandache 

(2006) introduced the notion and structure of the Neutrosophic graphs. Also, the authors 

Kandasami and Smarandache (2006) and Kandasamy, Ilanthenral, & Smarandache (2015) 

studied the notion and structure of the Neutrosophic graphs of several finite algebraic structures 

and exhibited them with various examples. Later, Chalapathi and Kiran (2017a) introduced 

another Neutrosophic graph of a finite group and this work was specifically concerned with 

finite Neutrosophic multiplicative groups only. 
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Throughout this paper, we will write ( , I)N R be a finite Neutrosophic commutative 

ring with identity 1  and indeterminacy I . For this Neutrosophic algebraic structure, we denote 

 ( , I)S N R and  ( , I)M N R be the set of self and respectively mutual additive Neutrosophic

inverse elements. We may construct a new type of graphs associated with Neutrosophic rings. 

Our primary goal is to introduce Neutrosophic invertible graphs of finite rings and to study 

properties of these graphs. Further, we determine the diameter of Neutrosophic invertible 

graphs and introduce an isomorphic relation between classical rings, Neutrosophic rings and 

their invertible graphs. 

2. BASIC PROPERTIES OF NEUTROSOPHIC RINGS

In this section, for all terminology and notations in graph theory, classical ring theory and

Neutrosophic ring theory, we refer (Vitaly & Voloshin, 2009), (Lanski, 2004). and (Agboola, 

Akinola, & Oyebola. (2011); Agboola, Adeleke, & Akinleye, 2012) respectively. Chalapathi 

and Kiran (2017b) introduced and studied self and mutual additive inverse elements of finite 

Neutrosophic rings and illustrated them with few examples in different cases and proposed 

various results regarding the characterization of the Neutrosophic rings with identity 1 0 . We 

will restate some of the results as follows (Chalapathi & Kiran, 2017a; 2017b).  

Definition 2.1. Let  , ,R   be a finite ring. The set ( , )N R I R I   : ,a bI a b R   is

called a Neutrosophic finite ring generated by R and I , where I is the Neutrosophic element 

with the properties 2I I , 0 0I  , 2I I I  and 1I  does not exist. 

Theorem 2.2. Let R  be a finite ring with unity. Then ( )S R R if and only if  ( , I)S N R

( , I)N R . 

Theorem 2.3. Let R  be a finite Boolean ring with unity. Then ( )S R R and  ( , I)S N R

( , I)N R . 

Theorem2.4. Let R  and R  be two finite commutative rings with unity. If R R , then 

 ( , I)S N R   ( , I)S N R .

Theorem 2.5. Let R  and R  be two finite commutative rings with unity. Then R R  if and 

only if ( , I)N R  ( , I)N R . 

Theorem 2.6. Let  R  be a finite Boolean ring with unity and 1R  . Then 4 ( , I)N R
2

R

Proof. Since R  {0} if and only if ( , I)N R {0} . It is clear that R  {0} implies that 1R  . 

Suppose 2R  . Then, obviously, R 2Z . This implies that ( , I)N R
2( , I)N Z
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{0, 1, I, 1+ I} , and hence ( , I)N R 4 . It is one extremity of the inequality. For another 

extremity of the inequality, we set *IR *{ I: a R }a  , * *R R I *{ I: a,b R }a b   where *R

{0}R  . These sets imply that R , *IR and * *R R I are mutually non-empty disjoint subsets 

of ( , I)N R . Thus, ( , I)N R *IR R  * *( I)R R  , and clearly the cardinality of ( , I)N R is 

( , I)N R *IR R  * *IR R  R ( 1)R  2( 1)R 
2

R . 

Theorem 2.7.For any finite ring R with 1R  , we have ( , I)N R is the disjoint union of 

 ( , I)S N R and  ( , I)M N R .

Proof. By the definition of self and mutual additive inverse elements of the Neutrosophic ring, 

 ( , I)S N R  I :a b  2 0, 2 0a b 

and   ( , I)M N R  I :c d  2 0, 2 0c d  .

Clearly,  ( , I)S N R  ( , I)M N R  , and thus  ( , I)S N R  ( , I)M N R ( , I)N R .

3. NEUTROSOPHIC INVERTIBLE GRAPHS

In this section, we introduced Neutrosophic invertible graphs and characterized its 

structural concepts. 

Definition3.1.Let R  be a finite commutative ring with identity1 0 . A graph with its vertex 

set as ( , I)N R and two distinct vertices Ia b  and Ic d are adjacent if and only Ia b is 

different from - ( I)c d which is equivalent to Ic d  is different from - ( I)a b and we denote 

it by ℐG (N(R, I)). 

The following theorem is a consequence of the Definition [3.1].  

Theorem3.2. For each ( , I)N R {0} , there exist Neutrosophic invertible graph ℐG(N(𝑅, I)). 

Further, the aim of this section is to show how Neutrosophic algebraic representation 

of some philosophical concepts and some real world problems in the society can be modified 

to the study of algebraic Neutrosophic graphs. So, we shall investigate some important concrete 

properties of Neutrosophic invertible graphs, and also establish results of these graphs, which 

we required in the subsequent sections. 

We begin with the algebraic graph theoretical properties of ℐG (N(R, I)) , 1R  . Note 

that 1R  if and only if 4 ( , I)N R
2

R . 

Theorem 3.3. The Neutrosophic invertible graph ℐG (N(R, I)) is connected. 
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Proof. Since 0 0I   ( , I)S N R for any ( , I)N R , ( , I) 4N R  . So,    I 0 0Ia b  

I 0 0Ia b    , for any non-zero element in Ia b in  ( , I)S N R .This implies that the vertex

0 0I  is adjacent with remaining all the vertices inℐG(N(𝑅, I)).  It is clear that there is a 

pathbetween the vertices 0 0I and Ia b  inℐG(N(𝑅, I)).Hence ℐG(N(𝑅, I))is connected.

The next few results provide a characterization for all Neutrosophic rings whose 

invertible graphs are complete.  

Theorem3.4. The Neutrosophic invertible graph ℐG(N(𝑅, I)) is complete if and only if 

 ( , I)S N R ( , I)N R .

Proof. Necessity. Suppose that ℐG(N(𝑅, I))is complete. Then any two vertices Ia b and

Ic d are adjacent in ℐG(N(𝑅, I)). Consequently,

( I)+( I)a b c d  0 0I  2( I)a b  0 and 2( I) 0c d   

I, c Ia b d    ( , I)S N R .

This implies that each and every element in ( , I)N R is an element of  ( , I)S N R . This shows

that ( , I)N R  ( , I)S N R . Further, by the Theorem [4.2] (Chalapathi & Kiran, 2017b),

 ( , I)S N R is a Neutrosophic subring of ( , I)N R . So,  ( , I)S N R ( , I)N R . Hence,

 ( , I)S N R ( , I)N R .

Sufficient. Let  ( , I)S N R ( , I)N R . Then we have to prove that ℐG(N(𝑅, I)) is complete.

Suppose ℐG(N(𝑅, I)) is not complete. Then there exist at least two vertices Ia b  and Ic d 

in ( , I)N R  such that ( I)+( I)=0+0Ia b c d     . Therefore,  

I = -( I)a b c d     I, Ia b c d       ( , I)M N R

I, Ia b c d       ( , I)S N R , by the Theorem [2.7]

 ( , I) ( , I)S N R N R  , this is a contradiction to our hypothesis, and hence  ℐG(N(𝑅, I)) is

complete. 

Corollary3.5. The Neutrosophic invertible graph of ( , I)N R is complete if and only if ( , I)N R

is a finite Neutrosophic Boolean ring. 

Proof. In view of the Theorem [2.5] and Theorem [3.4], ( , I)N R is a Neutrosophic Boolean 

ring if and only if  ( , I)S N R ( , I)N R if and only ifℐG(N(𝑅, I)) is complete.

Corollary 3.6.  For 1n  , ℐG(N(𝑍2
𝑛, I)) is complete.
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Proof. Since N(𝑍2
𝑛, I)  is a Neutrosophic Boolean ring with 22 n elements; (0, 0,..., 0) ,

(1, 0,..., 0) ,..., (1, 1,..., 1) , (I, 0,..., 0) ,..., (I, I,..., I) . Clearly, it is the vertex set of the 

graphℐG(N(𝑍2
𝑛, I)), and the sum of any two vertices in ℐG(N(𝑍2

𝑛, I))is non-zero. This implies

that  2( , I)nS N Z
2( , I)nN Z . So, by the Theorem [3.4], ℐG(N(𝑍2

𝑛, I))is complete.

Example3.7. By the definition of Neutrosophic ring, the Neutrosophic ring of Gaussian 

integers 2( [ ], I)N Z i of modulo 2 is defined as 0, 1, , 1 , I ,i i I, (1 )I, 1 I, I,i i i  

(1 ) I, (1 ) I, 1 I, I,i i i i i i      (1 )I, 1 (1 )I, (1 ) (1 )Ii i i i i       . The Neutrosophic

invertible graph of 2( [ ], I)N Z i is a complete graph because  2( [ ], I)S N Z i 2( [ ], I)N Z i , but 

it is not a  Neutrosophic Boolean ring, since 2( I) ( I)i i   ,where 2 1i    and 2I I . 

The Example [3.7] explains that the completeness property of the Neutrosophic 

invertible graph depends on the  ( , I)S N R ( , I)N R , but not the Boolean property.

Theorem 3.8. The graphℐG(N(𝑅, I)) is not complete if and only if  ( , I)S N R ( , I)N R .

Proof.  Follows from the Theorem [3.4]. 

Theorem3.9. Let p be an odd prime. Then, the Neutrosophic invertible graph of a 

Neutrosophic field of order 2np is never complete. 

Proof. Let ( )x be an irreducible polynomial of degree n over the classical field 
pZ . Then, the 

Neutrosophic field of order 2np is isomorphic to 
[ ]

, I
( )

pZ x
N

x

 
  
 

. Now to show that its 

invertible graph is never complete. For this let 
1 1

I
2 2

p p
u x x

 
  ,

1 1
I

2 2

p p
v x x

 
  be 

two vertices in 
[ ]

, I
( )

pZ x
N

x

 
  
 

, then clearly, u v  Ipx px 0(mod p) .This means that u

and v are not adjacent. Hence the proof. 

Again we recall that the result 4 ( , I)N R
2

R for each 1R  . So the immediate 

results ensures that the Neutrosophic invertible graph has at least one 3 cycle when 

( , I) 4N R  . 

Theorem3.10. Let ( , I) 4N R  . Then, ℐG(N(𝑅, I)) has at least one cycle of length 3 . 

Proof. Let ( , I)N R be a finite Neutrosophic ring with 1 0 and ( , I) 4N R  . Then clearly 

( , I)N R 2( , I)N Z , and its invertible graph has a cycle 1 I (1+I) 1   of length 3 because 
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1 I0 , I ( 1 I)  0 and (1+I) 10 so in this case the result is true. 

Now consider ( , I) 4N R  . Then there exist the following two cases. 

Case. (i) Suppose  ( , I)S N R ( , I)N R . Then, by the Theorem [3.4], the result is trivial.

Case. (ii) Suppose  ( , I)S N R ( , I)N R . There is at least one element Is t in  ( , I)S N R

and Im n in  ( , I)M N R such that ( I) +s t ( I)m n 0 . It is clear that there is a cycle

0 ( I) ( I) 0s t m n     of length 3 in ℐG(N(𝑅, I)). 

In the area of graph theory, a simple graph G is bipartite if its vertex set ( )V G can be 

partitioned into two disjoint subsets 1V and 2V such that no vertices both in 1V or both   in 2V are 

connected. In 1931, the Kőnig’s theorem provided by KőnigDénes (Dénes, 1931), it describes 

the relation between bipartite graph and its odd cycles. 

Theorem 3.11. A simple graph is bipartite if and only if it does not have an odd length cycle. 

Now we are in a position to determine precisely when  ℐG(N(𝑅, I)) is bipartite or not. 

Note that ( , I)N R 2( , I)N Z if and only if the graph ℐG(N(𝑍2, I))  is isomorphic to the 

complete graph 4K of order 4 . It is clear that the following result is hold in view of the 

Theorem [3.10]. 

Theorem3.12. Every Neutrosophic invertible graph is never a bipartite graph. 

Already we proved that the graph ℐG(N(𝑅, I)) is connected for any finite Neutrosophic 

ring ( , I)N R . Therefore, ℐG(N(𝑅, I)) has a diameter. Now, we immediate compute the diameter 

of ℐG(N(𝑅, I)) for any ( , I)N R such that 4 ( , I)N R
2

R . 

Theorem 3.13.  The diameter of ℐG(N(𝑅, I)) is at most 2 . 

Proof. Let ( , I)N R  be a finite Neutrosophic ring with unity 1and indeterminacy I . Then we 

consider the following two cases for finding diameter of ℐG(N(𝑅, I)). Note that,  

diam(ℐG(N(𝑅, I))) = min  ( , )d u v : , ( , I)u v N R ,

where ( , )d u v is the length of the shortest path between the vertices u and v . 

Case. (i)Suppose  ( , I)S N R ( , I)N R . Then, by the Theorem [3.4], ℐG(N(𝑅, I)) is complete,

so in this case diam(ℐG(N(𝑅, I))) = 1. 

Case. (ii) Suppose  ( , I)S N R ( , I)N R .Then, by the Theorem [3.8],ℐG(N(𝑅, I)) is never a

complete graph. Therefore,  diam(ℐG(N(𝑅, I))) ≠ 1. This implies that  diam(ℐG(N(𝑅, I))) >
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1. So, there exist a path ( I) 0 ( I)s t m n    in ℐG(N(𝑅, I)), which is smallest. Therefore,

 I , I 2d s t m n   , this implies that  diam(ℐG(N(𝑅, I))) = 2.

From case (i) and (ii) we conclude that the diameter of ℐG(N(𝑅, I)) is at most 2 . 

4.ISOMORPHIC PROPERTIES OF NEUTROSOPHIC INVERTIBLE GRAPHS

In this section, we compute an interrelation between classical rings, their Neutrosophic 

rings and their Neutrosophic invertible graphs. Refer the definitions of isomorphism of two 

classical rings, two Neutrosophic rings and two simple graphs from (Chalapathi &Kiran,  

(2017b). 

Theorem 4.1. Let R and Rbe two finite rings with unities. Then the following implications 

holds. 

R R  ( , I) ( , I)N R N R  ℐG(N(𝑅, I)) ℐG(N(𝑅′, I)).

Proof. The implication R R  ( , I) ( , I)N R N R follows from Theorem [2.4]. To 

complete the proof, it is enough to show that the second implication of the result. For any finite 

rings R and R , suppose ( , I) ( , I)N R N R . Then by the definition of Neutrosophic 

isomorphism, there exist a bijection f from ( , I)N R onto ( , I)N R  such that R R and 

(I) If   where 2I I .Now to show that ℐG(N(𝑅, I)) ℐG(N(𝑅′, I)). For this we define a map

: ℐG(N(𝑅, I)) ℐG(N(𝑅′, I))as

(i). ( I) ( I)a b f a b    and 

(ii).  ( I, c+dI)a b   ( I), (c+dI)f a b f  .

Trivially,  is a bijection since f is bijection. Further, we claim that each edge ofℐG(N(𝑅, I)) 

with end vertices Ia b and Ic d is mapped to an edge in ℐG(N(𝑅′, I)) with end vertices

( I)f a b and ( c+dI)f . So, we have 

 I, Ia b c d  𝐸 (ℐG(N(𝑅, I))) ( I) ( I)a b c d    0  ( I) ( I)a b c d    (0)

 ( ) ( )Ia c b d    0  ( ) ( )If a c b d    0 (( )) (( )I)f a c f b d    0

( ) ( ) ( )I ( )If a f c f b f d    0    ( ) ( )I ( ) ( )If a f b f c f d    0

( I) ( I)f a b f c d    0  ( I), ( I)f a b f c d   𝐸(ℐG(N(𝑅′, I))).

Similarly we can show that  maps non-adjacent vertices in ℐG(N(𝑅, I))to non-adjacent

vertices in ℐG(N(𝑅′, I)). Thus,  is a graph isomorphism from ℐG(N(𝑅, I)) onto ℐG(N(𝑅′, I)),

and hence ℐG(N(𝑅, I)) ℐG(N(𝑅′, I)).
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By the Theorem [2.4], two classical rings are isomorphic, so their Neutrosophic rings 

are isomorphic and consequently their Neutrosophic invertible graphs are also isomorphic, but 

converse of these implication, in general, not true. The next results provide such a class. First 

we state the following results due to isomorphism of two simple graphs. The proof of the 

following results is essentially contained in Bondy and Murty (2008). 

Theorem 4.2. Two simple graphs G and Gare isomorphic if and only if their complement 

graphs G and G .  

Recall from Mullen and Panario (2013) that np
F is a field of order np  and np

Z is a com 

mutative ring of order np , where p is a prime and 1n  .  Note that np
F is not isomorphic to 

np
Z because the characteristic of np

F is p and the characteristic of np
Z is np . 

Theorem 4.3. Let 2p  be a prime. Then the Neutrosophic invertible graphs of order 2np are 

isomorphic. 

Proof. For each odd prime p , we have ( , I)np
N F is a Neutrosophic field of modulo p .

( , I)np
N Z is a Neutrosophic commutative ring of modulo np , clearly these Neutrosophic rings 

not isomorphic.  Now it remains to show that the graphsℐG (N(𝐹𝑝𝑛 , I))and ℐG (N(𝑍𝑝𝑛 , I))are 

isomorphic. For this we shall show that their complement graphs are isomorphic. By the 

definition of complement graph,  ℐG̅ (N(𝐹𝑝𝑛 , I))   2( , I)np
M N F K   1( , I)np

S N F K

2

2

1

2

np
K

 
  
 

1K  ℐG̅ (N(𝑍𝑝𝑛 , I)), so due to Theorem [4.2], we get the required result.

Corollary 4.4. For each 1n  , the Neutrosophic invertible graphs of order 22 n are isomorphic. 

Proof. Follows fromℐG(N(𝐹2𝑛 , I))   12
( , I)nS N F K 

22 n

1K  2nN  ℐG(N(𝑍2𝑛 , I)), where

2nN is totally disconnected graph of order 22 n . It is clear that
2nF ≇

2nZ and ( , I)np
N F ≇

( , I)np
N Z but their Neutrosophic invertible graphs are isomorphic. 
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