Neutrosophic Linear Space Theory

Preprint · May 2021
DOI: 10.13140/RG.2.2.27866.47942

1 author:

Rozina Ali
Cairo University
10 PUBLICATIONS 0 CITATIONS

All content following this page was uploaded by Rozina Ali on 30 May 2021.
The user has requested enhancement of the downloaded file.
Neutrosophic Linear Space Theory

Rozina Ali

Cairo University, Cairo, Egypt

Abstract: In this Lecture, we give a review about neutrosophic linear spaces and their properties.

Main Concepts

Definition

Let \((V, +, .)\) be a vector space over the field \(K\) then \((V(I), +, .)\) is called a weak neutrosophic vector space over the field \(K\), and it is called a strong neutrosophic vector space if it is a vector space over the neutrosophic field \(K(I)\).

Elements of \(V(I)\) have the form \(x + yI; x, y \in V\), i.e \(V(I)\) can be written as \(V(I) = V + VI\).

Definition

Let \(V(I)\) be a strong neutrosophic vector space over the neutrosophic field \(K(I)\) and \(W(I)\) be a non empty set of \(V(I)\) then \(W(I)\) is called a strong neutrosophic subspace if \(W(I)\) is itself a strong neutrosophic vector space.

Definition

Let \(U(I), W(I)\) be two strong neutrosophic subspaces of \(V(I)\) then we say that \(V(I)\) is a direct sum of \(U(I)\) and \(W(I)\) if and only if for each element \(x \in V(I)\) then \(x\) can be written uniquely as \(x = y + z\) such \(y \in U(I)\) and \(z \in W(I)\).

Definition

Let \(U(I), W(I)\) be two strong neutrosophic subspaces of \(V(I)\) and let \(f: V(I) \rightarrow W(I)\), we say that \(f\) is a neutrosophic vector space homomorphism if

(a) \(f(I) = I\).

(b) \(f\) is a vector space homomorphism.

We define the kernel of \(f\) by \(\text{Ker} f = \{ x \in V(I); f(x) = 0 \}\).

Definition

Let \(v_1, v_2, \ldots, v_s \in V(I)\) and \(x \in V(I)\) we say that \(x\) is a linear combination of \(\{ v_i; i = 1 \ldots s \}\) if

\[X = a_1 v_1 + \cdots + a_s v_s \] such \(a_i \in K(I)\).

The set \(\{ v_i; i = 1 \ldots s \}\) is called linearly independent if \(a_1 v_1 + \cdots + a_s v_s = 0\) implies \(a_i = 0\) for all \(i\).

Theorem

If \(\{ v_1, \ldots, v_s \}\) is a basis of \(V(I)\) and \(f: V(I) \rightarrow W(I)\) is a neutrosophic vector space homomorphism then \(\{ f(v_1), \ldots, f(v_s) \}\) is a basis of \(W(I)\).

Definition
Let $V(I) = V+VI$ be a strong/weak neutrosophic vector space, the set

$$S = \{ x + yI; x \in P, y \in Q \},$$

where P, Q are subspaces of V.

If $P = Q$ then S is called an AHS-subspace of $V(I)$.

Example

We have $V = \mathbb{R}^2$ is a vector space, $P=<(0,1)>$, $Q=<(1,0)>$, are two subspaces of V. The set

$$S = \{ x + yI; x \in P, y \in Q \}$$

is an AH-subspace of $V(I)$.

The set $L = P + PI = \{ (0, a) + (0, b)I; b \in R \}$ is an AHS-subspace of $V(I)$.

Theorem

Let $V(I) = V+VI$ be a neutrosophic weak vector space, and let $S = P + QI$ be an AHS-subspace of $V(I)$, then S is a subspace by the classical meaning.

Theorem

Let $V(I)$ be a neutrosophic strong vector space over a neutrosophic field $K(I)$, let $S=P+PI$ be an AHS-subspace. S is a subspace of $V(I)$.

Proof:

Suppose that $x = a + bI, y = c + dI \in S; a, c, b, c \in P$, we have

Let $m = x + yI \in K(I)$ be a neutrosophic scalar, we find $m \cdot x = (a + c) + (b + d)I \in S$

since $y, a + y, b + x, b \in P$, thus we get the desired result.

Definition

(a) Let V, W be two vector spaces, $L_V: V \to W$ be a linear transformation. The AHS-linear transformation can be defined as follows:

. Where L_V is the restriction of L on $V: L(V(I)) \to W(I); L(a + bI) = L_V(a) + L_V(b)I$

(b) If $S = P + QI$ is an AH-subspace of $V(I)$, $L(S) = L_V(P) + L_V(Q)I$.

(c) If $S = P + QI$ is an AH-subspace of $W(I)$, $L^{-1}(S) = L^{-1}_W(P) + L^{-1}_W(Q)I$.

(d) $AH - Ker L = Ker L_V + Ker L_Y I = \{ x + yI; x, y \in Ker L_V \}$.

Theorem

Let $W(I), V(I)$ be two neutrosophic strong/weak vector spaces, and $L: V(I) \to W(I)$ be an AHS-linear transformation, we have:

(a) $AH - Ker L$ is an AHS-subspace of $V(I)$.

(b) If $S = P + QI$ is an AH-subspace of $V(I)$, $L(S)$ is an AH-subspace of $W(I)$.

(c) If $S = P + QI$ is an AH-subspace of $W(I)$, $L^{-1}(S)$ is an AH-subspace of $V(I)$.
Let $W(I), V(I)$ be two neutrosophic strong vector spaces over a neutrosophic field $K(I)$, and $L: V(I) \to W(I)$ be an AHS-linear transformation, we have:

, for all $x, y \in V(I), m \in K(I), L(x + y) = L(x) + L(y), L(m \cdot x) = m \cdot L(x)$

Proof:

Suppose $x = a + bI, y = c + dI; a, b, c, d \in V, and m = s + tI \in K(I)$, we have

$L(x + y) = L([a + c] + [b + d]I) = L_v(a + c) + L_v(b + d)I = [L_v(a) + L_v(b)]I + [L_v(c) + L_v(d)]I = L(x) + L(y)$.

$m \cdot x = (s \cdot a) + (s \cdot b + t \cdot a + t \cdot b)I, L(m \cdot x) = L_v(s \cdot a) + L_v(s \cdot b + t \cdot a + t \cdot b)I$

$= s \cdot L_v(a) + [s \cdot L_v(b) + t \cdot L_v(a) + t \cdot L_v(b)]I = (s + tI) \cdot (L_v(a) + L_v(b))I = m \cdot L(x)$.

Theorem

Let $S = P + QI$ be an AH-subspace of a neutrosophic weak vector space $V(I)$ over a field K, suppose that X is a basis of P, and $Y = \{y_j; 1 \leq j \leq m\}$ is a basis of Q then $X \cup Y I$ is a basis of $S \times X = \{x_i; 1 \leq i \leq n\}$

Definition

Let $V(I)$ be a neutrosophic strong/weak vector space, $S = P + QI$ be an AH-subspace of $V(I)$, we define

AH-Quotient as:

$[x + P] + (y + Q)I; x, y \in V \cdot V(I)/S = V/P + (V/Q)I$

Theorem

Let $V(I)$ be a neutrosophic weak vector space over a field K, and $S = P + QI$ be an AH-subspace of $V(I)$. The AH-Quotient $V(I)/S$ is a vector space with respect to the following operations:

Addition: $[(x + P) + (y + Q)I] + [(a + P) + (b + Q)I] = (x + a + P) + (y + b + Q)I; x, y, a, b \in V$.

Multiplication by a neutrosophic scalar: $(m) \cdot [(x + P) + (y + Q)I] = (m \cdot x + P) + (m \cdot y + Q)I$

$x, y \in V and m \in K$

Example

We have $V = R^2$ is a vector space over the field R, $P = \langle(0, 1)\rangle$, $Q = \langle(1, 0)\rangle$, are two subspaces of V, $S = P + QI = \{(0, a) + (b, 0)I; a, b \in R\}$ is an AH-subspace of $V(I)$.

The AH-Quotient is $V(I)/S = \{(x, y) + P\} + [(a, b) + Q]I; x, y, a, b \in V\}.$

We clarify operations on $V(I)/S$ as follows:

are two elements in $V(I)/S, m = x = [(2, 1) + P] + [(1, 3) + Q]I, y = [(2, 5) + P] + [(1, 1) + Q]I$

3 is a scalar in R.

$3 \cdot x = [(6, 3) + P] + [(3, 9) + Q]I, x + y = [(4, 6) + P] + [(2, 4) + Q]I$
Definition

Let (R, +, \cdot) be a ring and I_k; 1 \leq k \leq n be n indeterminacies. We define \(R_n(I) = \{ a_0 + a_1 I + \cdots + a_n I_n; a_i \in R \} \) to be n-refined neutrosophic ring.

Definition

(a) Let \(R_n(I) \) be an n-refined neutrosophic ring and \(P = \sum_{i=0}^{n} P_i I_i = \{ a_0 + a_1 I + \cdots + a_n I_n; a_i \in P_i \} \), where \(P_i \) is a subset of R, we define P to be an AH-subring if \(P_i \) is a subring of R for all \(i \). AHS-subring is defined by the condition \(P_i = P_j \) for all \(i, j \).

(b) P is an AH-ideal if \(P_i \) are two sided ideals of R for all \(i \), the AHS-ideal is defined by the condition \(P_i = P_j \) for all \(i, j \).

Definition

Let \((V, +, \cdot)\) be a vector space over the field K then \((V(I), +, \cdot)\) is called a weak neutrosophic vector space over the field K, and it is called a strong neutrosophic vector space if it is a vector space over the neutrosophic field K(I).

Definition

Let \(V(I) \) be a strong neutrosophic vector space over the neutrosophic field K(I) and \(W(I) \) be a nonempty set of \(V(I) \), then \(W(I) \) is called a strong neutrosophic subspace if \(W(I) \) is itself a strong neutrosophic vector space.

Definition

Let \((K, +, \cdot)\) be a field, we say that \(K_n(I) = K + K I_1 + \cdots + K I_n = \{ a_0 + a_1 I_1 + \cdots + a_n I_n; a_i \in K \} \) is an n-refined neutrosophic field.

It is clear that \(K_n(I) \) is an n-refined neutrosophic ring but not a field in classical meaning.

Definition

Let \((V, +, \cdot)\) be a vector space over the field K. Then we say that \(V_n(I) = V + V I_1 + \cdots + V I_n = \{ x_0 + x_1 I_1 + \cdots + x_n I_n; x_i \in V \} \) is a weak n-refined neutrosophic vector space over the field K. Elements of \(V_n(I) \) are called n-refined neutrosophic vectors, elements of K are called scalars.

If we take scalars from the n-refined neutrosophic field \(K_n(I) \), we say that \(V_n(I) \) is a strong n-refined neutrosophic vector space over the n-refined neutrosophic field \(K_n(I) \). Elements of \(K_n(I) \) are called n-refined neutrosophic scalars.

Definition

Let \(V_n(I) \) be a weak n-refined neutrosophic vector space over the field K, a nonempty subset \(W_n(I) \) is called a weak n-refined neutrosophic subspace of \(V_n(I) \) if \(W_n(I) \) is a subspace of \(V_n(I) \) itself.

Definition

Let \(V_n(I) \) be a strong n-refined neutrosophic vector space over the n-refined neutrosophic field \(K_n(I) \), a nonempty subset \(W_n(I) \) is called a strong n-refined neutrosophic subspace of \(V_n(I) \) if \(W_n(I) \) is a submodule of \(V_n(I) \) itself.
Let $V(I) = V + VI$ be a strong/weak neutrosophic vector space, the set

is called an AH-subspace of $S = P + QI = \{x + yI; x \in P, y \in Q\}$, where P and Q are subspaces of V V(I).

If $P = Q$ then S is called an AHS-subspace of $V(I)$.

Definition

(a) Let V and W be two vector spaces, $L_V: V \rightarrow W$ be a linear transformation. The AHS-linear transformation can be defined as follows:

$L: V(I) \rightarrow W(I); L(a + bI) = L_V(a) + L_V(b)I$

(b) If $S = P + QI$ is an AH-subspace of $V(I)$, then $L(S) = L_V(P) + L_V(Q)I$.

Definition

Let $(V,+,.)$ be a vector space over a field K, $V_n(I)$ be the corresponding weak n-refined neutrosophic vector space over K. Consider the set $\{M_i; 0 \leq i \leq n\}$, where M_i is a subspace of V. We say:

is a weak n-refined AH-$M_n(I) = M_0 + M_1I_1 + \cdots + M_nI_n = \{m_0 + m_1I_1 + \cdots + m_nI_n; m_i \in M_i\}$ subspace of the weak n-refined vector space $V_n(I)$.

We say that $M_n(I)$ is a weak n-refined AH-subspace if $M_i = M_j$ for all i, j.

Definition

Let $(V,+,.)$ be a vector space over a field K, $V_n(I)$ be the corresponding strong n-refined neutrosophic vector space over the n-refined neutrosophic field $K_n(I)$. Consider the set $\{M_i; 0 \leq i \leq n\}$, where M_i is a subspace of V. We say:

is a strong n-refined AH-$M_n(I) = M_0 + M_1I_1 + \cdots + M_nI_n = \{m_0 + m_1I_1 + \cdots + m_nI_n; m_i \in M_i\}$ subspace of the strong n-refined vector space $V_n(I)$.

We say that $M_n(I)$ is a strong n-refined AH-subspace if $M_j = M_i$ for all i, j.

Theorem

Let $(V,+,.)$ be a vector space over a field K, $V_n(I)$ be the corresponding weak n-refined neutrosophic vector space over K, $M_n(I) = M_0 + M_1I_1 + \cdots + M_nI_n$ be a weak n-refined AH-subspace. Then

(a) $M_n(I)$ is a vector subspace of $V_n(I)$.

(b) If X_i is a bases of M_i, $X = \bigcup_{i=0}^n X_iI_i$ is a bases of $M_n(I)$.

(c) $\dim(M_n(I)) = \sum_{i=0}^n \dim(M_i)$.

Theorem

Let V be a vector space with $\dim(V) = n + 1$. Then V is isomorphic to a weak AHS-subspace of the corresponding weak n-refined neutrosophic vector space.

Proof:
Let M be any one dimensional subspace of V, $T = M + MI_1 + \cdots + MI_n$ is a weak AHS-subspace of the weak n-refined neutrosophic vector space $V_n(I)$. As a result of Theorem 3.3, we find $\dim(T) = n + 1 = \dim(V)$, thus V is isomorphic to T.

Example

Let $V = R^3$ be a vector space over the field R, $V_2(I) = \{a + bl_1 + cl_2; a, b, c \in V\}$ is the corresponding weak 3-refined neutrosophic vector space, $M = \langle (1,0,0) \rangle$ is a subspace of V.

is a weak AHS-subspace of $T = M + MI_1 + MI_2 = \{(a,0,0) + (b,0,0)l_1 + (c,0,0)l_2; a, b, c \in R\}$ $V_3(I)$ with $\dim(T) = 3$, this implies $T \cong V$.

Theorem

Let $(V,+,.)$ be a vector space over a field K, $V_n(I)$ be the corresponding strong n-refined neutrosophic vector space over the n-refined neutrosophic field $K_n(I)$, $M_n(I) = M + MI_1 + \cdots + MI_n$ be a strong n-refined AHS-subspace. Then:

(a) $M_n(I)$ is a submodule of $V_n(I)$.

(b) If Y is a bases of M, $X = \bigcup_{i=0}^n YI_i$ is a bases of $M_n(I)$.

(c) $\dim(M_n(I)) = \sum_{i=0}^n \dim(M) = n \cdot \dim(M)$.

Remark

If $V_n(I)$ is a strong n-refined neutrosophic vector space over the n-refined neutrosophic field $K_n(I)$, and

is a strong n-refined AH-subspace, then it is not supposed to be a $M_n(I) = M_0 + M_1I_1 + \cdots + M_nI_n$ submodule.

We clarify it by the following example.

Example

Let $V = R^2$ be a vector space over R, $V_2(I) = R_2^2(I) = \{(a,b) + (c,d)I_1 + (e,f)I_2; a, b, c, d, e, f \in R\}$ be the corresponding strong 2-refined neutrosophic vector space over the neutrosophic field $R_2(I)$.

are two subspaces of V, $T = M + NI_1 + NI_2$ is a strong n-refined subpace of $M = \langle 0,1 \rangle$, $N = \langle (1,0) \rangle > V_2(I)$.

$x = (0,1) + (2,0)I_1 + (1,0)I_2 \in T, r = 1 + 1.I_1 + 1.I_2 \in R_2(I)$

$+1.(0,1)I_2 + r.x = 1.(0,1) + 1.(0,1)I_1 + 1.(0,1)I_2 + 1.(2,0)I_1I_1 + 1.(2,0)I_1I_1 + 1.(1,0)I_1I_2$

$1.(2,0)I_1I_2 + 1.(2,0)I_2I_2 = 0; \text{ } 1.\in \bigg[0,1\bigg); \text{ } 1.\in \bigg[0,1\bigg); \text{ } 1.\in \bigg[0,1\bigg); \text{ } 1.\in \bigg[0,1\bigg)$

$r.x$ does not belong to T, thus T is not a submodule. $M = \langle 0,1 \rangle + (5,1)I_1 + (2,2)I_2$

Definition

Let $V_n(I)$ be a weak/strong n-refined neutrosophic vector space, $M_n(I) = M_0 + M_1I_1 + \cdots + M_nI_n$ be two weak/strong AH-subspaces of $V_n(I)$, we define: $W_n(I) = W_0 + W_1I_1 + \cdots + W_nI_n$

(a) $M_n(I) \cap W_n(I) = (M_0 \cap W_0) + (M_1 \cap W_1)I_1 + \cdots + (M_n \cap W_n)I_n$.

(b) $M_n(I) + W_n(I) = (M_0 + W_0) + (M_1 + W_1)I_1 + \cdots + (M_n + W_n)I_n$.
Theorem

Let $V_n(I)$ be a weak n-refined neutrosophic vector space, $M_n(I) = M_0 + M_1 I_1 + \cdots + M_n I_n$, be two weak AH-subspaces of $V_n(I)$. Then $W_n(I) = W_0 + W_1 I_1 + \cdots + W_n I_n$ are two weak AH-subspaces of $V_n(I), M_n(I) \cap W_n(I), M_n(I) + W_n(I)$.

Theorem

Let $V_n(I)$ be a strong n-refined neutrosophic vector space, $M_n(I) = M_0 + M_1 I_1 + \cdots + M_n I_n$, be two strong AH-subspaces of $V_n(I)$. Then $W_n(I) = W_0 + W_1 I_1 + \cdots + W_n I_n$.

(a) $M_n(I) \cap W_n(I)$ is a strong AH-subspaces of $V_n(I)$.

(b) $M_n(I) + W_n(I)$ is not supposed to be a strong AH-subspace of $V_n(I)$.

Definition

Let V,W be two vector spaces over the field K, $f_i: V \to W$; $0 \leq i \leq n + 1$ be $n + 1$ linear transformations, $V_n(I), W_n(I)$ be the corresponding weak n-refined neutrosophic vector spaces over the field K respectively. We say:

(a) $f: V_n(I) \to W_n(I); f(\sum_{i=0}^{n} a_i I_i) = f_0(a_0) + f_1(a_1)I_1 + \cdots + f_n(a_n)I_n$ is a weak AH-linear transformation.

(b) If $f_i = f_j$ for all i,j, we call f a weak AHS-linear transformation.

Definition

Let V,W be two vector spaces over the field K, $f_i: V \to W$; $0 \leq i \leq n + 1$ be $n + 1$ linear transformations, $V_n(I), W_n(I)$ be the corresponding strong n-refined neutrosophic vector spaces over the n-refined neutrosophic field $K_n(I)$ respectively. We say:

(a) $f: V_n(I) \to W_n(I); f(\sum_{i=0}^{n} a_i I_i) = f_0(a_0) + f_1(a_1)I_1 + \cdots + f_n(a_n)I_n$ is a strong AH-linear transformation.

(b) If $f_i = f_j$ for all i,j, we call f a strong AHS-linear transformation.

Definition

Let $V_n(I), W_n(I)$ be two weak/strong n-refined neutrosophic vector spaces,

be a weak/strong $f: V_n(I) \to W_n(I); f(\sum_{i=0}^{n} a_i I_i) = f_0(a_0) + f_1(a_1)I_1 + \cdots + f_n(a_n)I_n$ AH-linear transformation. We define:

(a) $AH - \text{Ker}(f) = \text{Ker}(f_0) + \text{Ker}(f_1)I_1 + \cdots + \text{Ker}(f_n)I_n$.

(b) $AH - \text{Im}(f) = \text{Im}(f_0) + \text{Im}(f_1)I_1 + \cdots + \text{Im}(f_n)I_n$.

Theorem

Let $V_n(I), W_n(I)$ be two weak n-refined neutrosophic vector spaces, be a weak AH-$f: V_n(I) \to W_n(I); f(\sum_{i=0}^{n} a_i I_i) = f_0(a_0) + f_1(a_1)I_1 + \cdots + f_n(a_n)I_n = \sum_{i=0}^{n} f_i(a_i)I_i$ linear transformation. Then:
(a) $AH - Ker(f)$ is a weak AH-subspace of $V_n(I)$.

(b) $AH - Im(f)$ is a weak AH-subspace of $W_n(I)$.

(c) If $M_n(I) = M_0 + M_1 I_1 + \cdots + M_n I_n$ is a weak AH-subspace of $V_n(I)$, $f(M_n(I))$ is a weak AH-subspace of $W_n(I)$.

Theorem

Let $V_n(I), W_n(I)$ be two strong n-refined neutrosophic vector spaces over the n-refined neutrosophic field $K_n(I)$,

be a strong AH-f: $V_n(I) \rightarrow W_n(I); f(\sum_{i=0}^n a_i I_i) = f_0(a_0) + f_1(a_1) I_1 + \cdots + f_n(a_n) I_n = \sum_{i=0}^n f_i(a_i) I_i$

linear transformation. Then:

(a) $AH - Ker(f)$ is a strong AH-subspace of $V_n(I)$.

(b) $AH - Im(f)$ is a strong AH-subspace of $W_n(I)$.

(c) If $M_n(I) = M_0 + M_1 I_1 + \cdots + M_n I_n$ is a strong AH-subspace of $V_n(I)$, $f(M_n(I))$ is a strong AH-subspace of $W_n(I)$.

Theorem

Let $V_n(I), W_n(I)$ be two weak n-refined neutrosophic vector spaces over the field K,

be a weak AH-f: $V_n(I) \rightarrow W_n(I); f(\sum_{i=0}^n a_i I_i) = f_0(a_0) + f_1(a_1) I_1 + \cdots + f_n(a_n) I_n = \sum_{i=0}^n f_i(a_i) I_i$

linear transformation. Then:

for all $x, y \in V_n(I), r \in K, f(x + y) = f(x) + f(y), f(r . x) = r . f(x)$

Theorem

Let $V_n(I), W_n(I)$ be two strong n-refined neutrosophic vector spaces over the n-refined neutrosophic field $K_n(I)$,

be a strong AH-f: $V_n(I) \rightarrow W_n(I); f(\sum_{i=0}^n a_i I_i) = f_0(a_0) + f_1(a_1) I_1 + \cdots + f_n(a_n) I_n = \sum_{i=0}^n f_i(a_i) I_i$

linear transformation. Then:

for all $x, y \in V_n(I), r \in K, f(x + y) = f(x) + f(y), f(r . x) = r . f(x)$

Theorem

Let $V_n(I), W_n(I), U_n(I)$ be three weak n-refined neutrosophic vector spaces over the field K,

$f: W_n(I) \rightarrow U_n(I); f(\sum_{i=0}^n a_i I_i) = f_0(a_0) + f_1(a_1) I_1 + \cdots + f_n(a_n) I_n = \sum_{i=0}^n f_i(a_i) I_i$

$g: V_n(I) \rightarrow W_n(I); g(\sum_{i=0}^n a_i I_i) = g_0(a_0) + g_1(a_1) I_1 + \cdots + g_n(a_n) I_n = \sum_{i=0}^n g_i(a_i) I_i$

be two weak AH-linear transformations. Then:

(a) $fog = \sum_{i=0}^n (f_iog_i)$.

(b) fog is a weak AH-linear transformation between $V_n(I), U_n(I)$.

Theorem
Let $V_n(I), W_n(I), U_n(I)$ be three strong n-refined neutrosophic vector spaces over the n-refined neutrosophic field K,

$$f: W_n(I) \to U_n(I); f(\sum_{i=0}^{n} a_i I_i) = f_0(a_0) + f_1(a_1) I_1 + \cdots + f_n(a_n) I_n = \sum_{i=0}^{n} f_i(a_i) I_i$$

$$g: V_n(I) \to W_n(I); g(\sum_{i=0}^{n} a_i I_i) = g_0(a_0) + g_1(a_1) I_1 + \cdots + g_n(a_n) I_n = \sum_{i=0}^{n} g_i(a_i) I_i$$

be two strong AH-linear transformations. Then:

(a) $fog = \sum_{i=0}^{n}(f_iog_i)$.

(b) fog is a strong AH-linear transformation between $V_n(I), U_n(I)$.

Definition

Let $(R, +, \times)$ be a ring and I_k; $1 \leq k \leq n$ be n indeterminacies. We define $R_n(I) = \{a_0 + a_1 I_1 + a_2 I_2 + \cdots + a_n I_n; a_i \in R\}$ to be n-cyclic refined neutrosophic ring.

Operations on $R_n(I)$ are defined as:

$$\sum_{i=0}^{n} x_i I_i + \sum_{i=0}^{n} y_i I_i = \sum_{i=0}^{n} (x_i + y_i) I_i; \sum_{i=0}^{n} x_i I_i \times \sum_{i=0}^{n} y_i I_i = \sum_{i=0}^{n} (x_i \times y_i) I_i I_j = \sum_{i,j=0}^{n} (x_i \times y_i) I_{i+j \text{mod} n}$$

Where \times is the multiplication on the ring R, and $x I_0 = x$, for all $x \in R$.

Definition

Let $(K, +, \times)$ be a field, we say that $K_n(I) = K + K I_1 + \cdots + K I_n = \{a_0 + a_1 I_1 + a_2 I_2 + \cdots + a_n I_n; a_i \in K\}$ is a n-cyclic refined neutrosophic field.

Definition

Let $(V, +, \times)$ be any vector space over a field K. Then we say that $V_n(I) = V + V I_1 + \cdots + V I_n = \{x_0 + x_1 I_1 + \cdots + x_n I_n; x_i \in V\}$ is a weak n-cyclic refined neutrosophic vector space over the field K. Elements of $V_n(I)$ are called n-cyclic refined neutrosophic vectors, elements of K are called scalars.

If we take scalars from the n-cyclic refined neutrosophic field $K_n(I)$, we say that $V_n(I)$ is a strong n-cyclic refined neutrosophic vector space over the n-cyclic refined neutrosophic field $K_n(I)$. Elements of $K_n(I)$ n-cyclic refined neutrosophic scalars.

Remark

Multiplication by an n-cyclic refined neutrosophic scalar $m = \sum_{i=0}^{n} m_i I_i \in k_n(I)$ is defined as:

$$\left(\sum_{i=0}^{n} m_i I_i\right) \times \left(\sum_{i=0}^{n} a_i I_i\right) = \sum_{i,j=0}^{n} (m_i a_j) I_{i+j \text{mod} n}$$

Where $a_i \in V$, $m_i \in K$, $I_i I_j = I_{i+j \text{mod} n}$.

Definition

Let $V_n(I)$ be a weak n-cyclic refined neutrosophic vector space over the n-cyclic refined neutrosophic field K; a nonempty $W_n(I)$ is called a weak n-cyclic refined neutrosophic vector subspace of $V_n(I)$ if $W_n(I)$ is a subspace of $V_n(I)$ itself.

Definition
Let $V_n(I)$ be a strong n-cyclic refined neutrosophic vector space over then-cyclic refined neutrosophic field $K_n(I)$. A nonempty subset $W_n(I)$ is called a strong n-cyclic refined neutrosophic vector submodule of $V_n(I)$ if $W_n(I)$ is a submodule of $V_n(I)$ itself.

Theorem

Let $V_n(I)$ be a weak n-cyclic refined neutrosophic vector space over the n-cyclic refined neutrosophic field K_n, $W_n(I)$ be a nonempty subset of $V_n(I)$. Then $W_n(I)$ is a weak n-cyclic refined neutrosophic subspace if only if:

for all $x, y \in W_n(I), m \in K, x + y \in W_n(I), m \times x \in W_n(I)$

proof:

it holds directly from the condition of subspace.

Definition

Let $V_n(I)$ be a weak n-cyclic refined neutrosophic vector space over the field K, x be an arbitrary element of $V_n(I)$, we say that x is a linear combination of $\{ x_1, x_2, ..., x_m \} \subseteq V_n(I)$ if $x = (a_1 \times x_1) + (a_2 \times x_2) + \cdots + (a_m \times x_m); a_i \in K(I), x_i \in V_n(I)$.

Definition

Let $V_n(I)$ be a strong n-cyclic refined neutrosophic vector space over the n-cyclic refined neutrosophic field $K_n(I)$, x be an arbitrary element of $V_n(I)$, we say that x is a linear combination of $\{ x_1, x_2, ..., x_m \} \subseteq V_n(I)$ if $x = (a_1 \times x_1) + (a_2 \times x_2) + \cdots + (a_m \times x_m); a_i \in K_n(I), x_i \in V_n(I)$.

Definition

Let $X = \{ x_1, x_2, ..., x_m \}$ be a subset of a weak n-cyclic refined neutrosophic vector space $V_n(I)$ over the field K, X is a weak linearly independent set if $\sum_{i=0}^{n} a_i \times x_i = 0$ implies $a_i = 0; a_i \in K$.

Definition

Let $X = \{ x_1, x_2, ..., x_m \}$ be a subset of a strong n-cyclic refined neutrosophic vector space $V_n(I)$ over the n-cyclic refined neutrosophic field $K_n(I)$, X is a weak linearly independent set if $\sum_{i=0}^{n} a_i \times x_i = 0$ implies $a_i = 0; a_i \in K_n(I)$.

Definition

Let $V_n(I), W_n(I)$ be two strong n-cyclic refined neutrosophic vector space over the n-cyclic refined neutrosophic field $K_n(I)$, let $f: V_n(I) \rightarrow U_n(I)$ be a well defined map. It is called a strong n-cyclic refined neutrosophic homomorphism if:

$f((a \times x) + (b \times y)) = a \times f(x) + b \times f(y)$ for all $x, y \in V_n(I), a, b \in K_n(I)$.

A weak n-cyclic refined neutrosophic homomorphism can be defined as the same.

Definition

Let $f: V_n(I) \rightarrow U_n(I)$ be a weak/strong n-cyclic refined neutrosophic homomorphism, we define:

(a) $\text{Ker}(f) = \{ x \in V_n(I); f(x) = 0 \}$.
(b) \(\text{Im}(f) = \{ y \in U_n(I); \exists x \in V_n(I) \text{and } y = f(x) \} \).

Theorem

Let \(f: V_n(I) \rightarrow U_n(I) \) be a weak n-cyclic refined neutrosophic homomorphism. Then

(a) \(\text{Ker}(f) \) is a weak n-cyclic refined neutrosophic subspace of \(V_n(I) \).

(b) \(\text{Im}(f) \) is a weak n-cyclic refined neutrosophic subspace of \(U_n(I) \).

Theorem

Let \(f: V_n(I) \rightarrow U_n(I) \) be a strong n-cyclic refined neutrosophic homomorphism. Then

(a) \(\text{Ker}(f) \) is a strong n-cyclic refined neutrosophic subspace of \(V_n(I) \).

(b) \(\text{Im}(f) \) is a strong n-cyclic refined neutrosophic subspace of \(U_n(I) \).

References

