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Abstract: Yager [1988] developed the ordered weighted averaging (OWA) operator and applied in decision making problems. Xu 

& Yager [2006] developed some geometric aggregation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) 

operator, the intuitionistic fuzzy hybrid geometric (IFHG) operator and gave an application of the IFHG operator to multiple 

attribute group decision making with intuitionistic fuzzy information. Xu [2007e] and Xu & Chen [2007a, 2007b] also developed 

some arithmetic aggregation operators for decision making problems. One important issue in the theory of ordered weighted 

averaging (OWA) operators is the determination of the associated weights. One of the first approaches, suggested in the literature 

is a special class of OWA operators having maximal Shannon entropy of the OWA weights for a given level of orness; 

algorithmically it is based on the solution of a constrained optimization problem. The MAGDM problems have investigated under 

neutrosophic fuzzy environment, and proposed an approach to handling the situations where the attribute values are characterized 

by NFSs, and the information about attribute weights completely unknown. The proposed approach first fuses all individual 

neutrosophic fuzzy decision matrices into the collective neutrosophic fuzzy decision matrix by using the NFOWA operator. Then 

the obtained attribute weights and the NFHA operator have used to get the overall neutrosophic fuzzy values of alternatives   In 

this paper, the proposed approach in this work not only can comfort the influence of unjust arguments on the decision results, but 

also avoid losing or distorting the original decision information in the process of aggregation. Thus, the proposed approach 

provides us an effective and practical way to deal with multi-person multi-attribute decision making problems, where the attribute 

values are characterized by NFSs and the information about attribute weights is partially known. The suitable alternative is 

selected through the algorithm from the given neutrosophic information in which the unknown weights are derived based upon 

normal distribution. 

 

Section 1 - Previous Literatures:  

The interval-valued intuitionistic fuzzy sets (IVIFSs), introduced by Atanassov & Gargov[1989] 

which is characterized by a membership function and a non-membership function whose values are rather 

than exact numbers, are a very useful means to describe the decision information in the process of decision 

making. Wei & Wang [2007] respectively, developed some geometric aggregation operators and applied 

them to MAGDM with interval-valued intuitionistic fuzzy information. In this work, based on the one 

important issue in the theory of ordered weighted averaging (OWA) operators suggested by O’Hagan, 

(1988) a special class of OWA operators having maximal entropy of the OWA weights for a given level of 

orness is utilized. Using the method of Lagrange multipliers.Li [1999] solved the constrained optimization 

problem of OWA operators having maximal entropy analytically and derived a polynomial equation which 

is then solved to determine the optimal weighting vector. Also MAGDM problem is investigated in which 

all the information provided by the decision-makers is presented as interval valued intuitionistic fuzzy 

decision matrices where each of its elements is characterised by interval valued intuitionistic fuzzy number 

(IVIFN).  

Park et al. [2009] proposed an ordered weighted geometric (OWG) model to aggregate all individual 

interval valued intuitionistic fuzzy decision matrices provided by the decision makers into the collective 

interval valued intuitionistic fuzzy decision matrix. In the proposed model, from the maximal entropy 

attribute weight information, an optimization model is established to determine the unknown weights. Then 
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the obtained attribute weights and the operators are used to fuse the interval valued intuitionistic fuzzy 

information in the collective interval valued intuitionistic fuzzy decision matrix to get the overall Interval 

Valued Intuitionistic Fuzzy values of the alternatives. A MAGDM model based on the maximal entropy 

weights [Li, 1999] is presented for computing the attributes weights, and a numerical illustration is given. 

Some definitions are given first;  

Definition 1.1: An OWA operator of dimension n is a mapping F: R
n
  R  that has an associated weighting 

vector W = (w1, w2,…, wn)
T
 with w1 + w2 +…+ wn = 1; 0 ≤ wi ≤ 1 for all i varying from 1 to n, and such that  

F(a1, a2,…, an) =  𝑤𝑖𝑏𝑖
𝑛
𝑖=1 where bj is the j

th
 largest element of the collection of the aggregated objects {a1, 

a2,…, an}. Yager [1988] introduced two characterizing measures associated with the weighting vector W of 

an OWA operator.  

Definition 1.2: The first one, the measure of orness of the aggregation, is defined as:Orness (W) = (1 / (n-1)) 

 (𝑛 − 𝑖)𝑤𝑖
𝑛
𝑖=1  and it characterizes the degree to which the aggregation is like an or operation. It is clear that 

orness(W)[0,1] holds for any weighting vector. 

Definition 1.3: The second one, the measure of dispersion of the aggregation, is defined as disp (W) = (-) 

 𝑤𝑖  (𝑖𝑛 𝑤𝑖
𝑛
𝑖=1 ),  and it measures the degree to which W takes into account all information in the 

aggregation. 

Definition 1.4:  The classical measure of uncertainty has been dominating the literature of information 

theory since its appearance. It is the same as the measure of dispersion up to a positive constant multiplier, 

and then HS(W) = (-)  𝑤𝑖  (𝑙𝑜𝑔2𝑤𝑖
𝑛
𝑖=1 ). This is called the Shannon entropy.  In the literature there have been 

described several classes of entropies each including the Shannon entropy as a special case. They include: 

Definition 1.5: (Entropy of degree α):Hα(also called entropies of degree α) is defined as follows:  Hα(W) = 

( 1/ (1- α)) 𝑙𝑜𝑔2( 𝑤𝑖
𝛼𝑛

𝑖=1 )for all real numbers α ≠ 1 

Definition 1.6: (Entropy of order β):Then Hβ is introduced in the following form Hα(W) = 
1

21−𝛽 ( 𝑤𝑖
𝛽 −𝑛

𝑖=1

1)for all β≠ 1. 

Definition 1.7: (Entropy of R-norm):HR defined by the following formula:HR(W) = (R / ( R-1)) ( 1- 

( 𝑤𝑖
𝑅𝑛

𝑖=1 )
1

𝑅)for all R ≠ 1.It is well known that  HR(W) = lim𝛼1 𝐻𝛼(𝑤) = lim𝛽1 𝐻𝛽(𝑤) =  

lim𝑅1 𝐻𝑅(𝑤).Hence it is clear that the actual type of aggregation performed by an OWA operator depends 

upon the form of the weighting vector.  In this paper, using the method of the α-entropy (with parameter 

value 2), β-entropy (when parameter β is 2) and the 2-norm entropy (from entropy class R-norm entropies), 

weights are determined for the aggregation process in MAGDM problems. 

Section 2-Maximalα-entropy, β-entropy and R-norm - entropies weights: 

Introduction 2.1: In this section the maximal α-entropy and R-norm entropy weights are derived when their 

parameter values equal to 2. 

Hα(W) = (-) 𝑙𝑜𝑔2( 𝑤𝑖
2𝑛

𝑖=1 )  if α = 2; 

Hβ(W) = (-2) ( 𝑤𝑖
2 − 1𝑛

𝑖=1 )  if β= 2; and 

HR(W) = (-2) ( 1- ( 𝑤𝑖
2𝑛

𝑖=1 )
1

2)  if R = 2. 

Problem 2.2: Therefore determining a special class of OWA operators having maximal entropy of the OWA 

weights for a given level of orness is based on the solution of the following mathematical programming 

problem 

Minimize  𝑤𝑖
2𝑛

𝑖=1  
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subject to (1 / (n-1))  (𝑛 − 𝑖)𝑤𝑖
𝑛
𝑖=1  = α,  0 ≤ α ≤ 1;                      

w1 + w2 +…+ wn = 1;  

0 ≤ wi ≤ 1 for all i varying from 1 to n …(1).  

The solution is based on the use of the method Kuhn-Tucker multipliers and is rather complicated; 

hence we only refer to it.  Notice that the objective function of this problem is strictly convex, which implies 

the unicity of the optimal solution. Solving this problem it could be found that the optimal solution is a 

window-type OWA operator. Thus there exists 1 ≤ k ≤ n such that k ≤ i ≤ l  wi≠ 0.  

 Without loss of generality we can assume that n ≥ 3 and 0 < α ≤ ½.  

If α = 1 /2, then w1 = …= wn = 1 / n is the optimal solution to (1). Furthermore this is the global 

optimal solution of all OWA operators of dimension n. To obtain the optimal solution for arbitrary α in (0, 

1/2 ).  

Consider the following disjoint union of intervals of (0, 1/2),  

(0, 1/2 ) =   𝐼𝑗
𝑛−1
𝑗 =1  where Ij = (

𝑗−1

3(𝑛−1)
, 

𝑗

3(𝑛−1)
),  j varies from 1 to (n-2) 

In-1 = ( 
𝑛−2

3(𝑛−2)
, ½ ). 

 Now, considering α, there uniquely exists 1 ≤ p ≤ (n-1) such that α is in IP.  

Let r = (n-p).  Then the optimal solution to (1) can be obtained as: 

wi
*
 = 0, 1 ≤ i < r;  

wr
*
 = 

6 𝑛−1 𝛼−2(𝑛−𝑟−1)

(𝑛−𝑟+1)(𝑛−𝑟+2)
  ….(2).;    Wn

*
 = 

2 2𝑛−2𝑟+1 −6(𝑛−1)𝛼

(𝑛−𝑟+1)(𝑛−𝑟+2)
 ...(3). 

wi
*
 = 

 𝑛−𝑖 

(𝑛−𝑟)
 wr

*
 + 

 𝑖−𝑟 

(𝑛−𝑟)
 wn

*
  r < i < n.        ….(4).  

Example 2.3: Let us suppose that n=5 and 0.4,   then obtaining the maximal Shannon entropy weights 

we have to solve 

 wi [ 4(0.6) + 1 – 5w1]
5
 =  (4(0.6))

4
 [ 4(0.6) -5)w1 +1 ] 

It finds that   w1
*
 = 0.1278;  w5

*
 = 

( 4 0.4 −5 𝑤1
∗+1

 4 0.4 +1−5 𝑤1
∗ =0.2884 

w2
*
 =  (𝑤1

∗)3𝑤5
∗4
 = 0.1566; w3

*
 =  (𝑤1

∗)2(𝑤5
∗)24

 = 0.1920. 

w4
*
 =  𝑤1

∗(𝑤5
∗)34

 = 0.2353and   disp (W
*
) = 1.5692. 

 Obtaining the maximalentropy weights of α-entropy, β-entropy and R-norm, it could be found that 

(0, 1/2) =  𝐼𝑗
4
𝑗 =1 where Ij =  

𝑗−1

12
,

𝑗

12
 , j=1,2,3 and  I4 = {1/4, ½).  

Since α is in I4,then r =1. 

w1
*
 = [24 (0.4) -6] / 30 = 0.1200;  w5

*
 = [18 - 24 (0.4)] / 30 = 0.2800;   

w2
*
 = (3/4)w1

*
 + (1/4) w5

*
 = 0.1600;  w3

*
 = (1/2)w1

*
 + (1/2) w5

*
 = 0.2000;   
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w4
*
 = (1/4)w1

*
 + (3/4) w5

*
 = 0.2400;  and the corresponding α-entropy, β-entropy and R-norm are 2.2109, 

1.5680 and 1.0705, respectively. 

 

Section 3 - Algorithm for MAGDM problem: 

Definition 3.1: A neutrosophic fuzzy set A on the universe of discourse X characterized by a truth 

membership function TA(x), an indeterminacy function IA(x) and a falsity membership function FA(x) is 

defined as A = { < x, TA(x), IA(x), FA(x) > : x  X }, where TA , IA ,FA :X [0. 1] and 0 TA(x)1; 0 IA(x) 

1;0 FA(x) 1, for all x  X.  

Procedures of steps for an algorithm V using IIFOWA operator 3.2:  

Step 1: Utilize the NFOWA operator to aggregate all individual neutrosophic fuzzy decision matrices R
(k)

 = 

< (Tij(k), Iij(k), Fij(k) > = ( rij
(k)

) (k varies from 1, 2,3, and 4) into a collective neutrosophic fuzzy decision 

matrix  R = (rij)m n. 

Step 2:Derive the weights by the entropy weights of α-entropy, β-entropy and R-norm by using  wr
*
 = 

6 𝑛−1 𝛼−2(𝑛−𝑟−1)

(𝑛−𝑟+1)(𝑛−𝑟+2)
  ;   Wn

*
 = 

2 2𝑛−2𝑟+1 −6(𝑛−1)𝛼

(𝑛−𝑟+1)(𝑛−𝑟+2)
 ;  . 

wi
*
 = 

 𝑛−𝑖 

(𝑛−𝑟)
 wr

*
 + 

 𝑖−𝑟 

(𝑛−𝑟)
 wn

*
  ; r ≤ i < n;  

 

Step 3: Use the NFHA operator to get the overall values rj of the alternatives Oj(j=1, 2,…..n). 

Step: 4     Using r* = (1,0,0) = (TA*, IA*, FA*), find d(r*, rj) = 

  𝑇𝐴
∗ − 𝑇𝑗𝐴

 
2

+  𝐼𝐴
∗ − 𝐼𝑗𝐴

 
2

+  𝐹𝐴
∗ − 𝐹𝑗𝐴

 
2
to calculate the distances between informational neutrosophic 

values  rj= (TjA, IjA, FjA) = (𝑇𝑗𝐴
, 𝐼𝑗𝐴

, 𝐹𝑗𝐴
 ) (j = 1, 2 ,..., n).  

Step 5: Rank the alternatives based on distances. 

Step 6: Select the best alternative.  

 

Example 3.3: Steps for the given problem. 

STEP 1: To derive a weight vector w by using entropy weights of α-entropy, β-entropy, and R-norm 

wi
*
 = 0, 1 ≤ i < r; wr

*
 = 

6 𝑛−1 𝛼−2(𝑛−𝑟−1)

(𝑛−𝑟+1)(𝑛−𝑟+2)
;  Wn

*
 = 

2 2𝑛−2𝑟+1 −6(𝑛−1)𝛼

(𝑛−𝑟+1)(𝑛−𝑟+2)
wi

*
 = 

 𝑛−𝑖 

(𝑛−𝑟)
 wr

*
 + 

 𝑖−𝑟 

(𝑛−𝑟)
 wn

*

  r < i < n.  

Assumption: n = 5; r = 1; α = 0.4;  

w1
*
= 

6 5−1  0.4 −2(5−1−1)

(5−1+1)(5−1+2)
 = 0.12;  w5

*
= 

2 2𝑥5 − 2𝑥1)+1 −6(5−1)(0.4)

(5−1+1)(5−1+2)
 = 0.28. 

w2
*
= 

 5−2 

(5−1)
w1

*
+ 

 2−1 

(5−1)
w5

*
 = (3/4) (0.12) + (1/4)(0.28) = 0.16. 

w2
*
= 

 5−3 

(5−1)
w1

*
+ 

 3−1 

(5−1)
w5

*
 = (2/4) (0.12) + (2/4)(0.28) = 0.20. 

w4
*
= 

 5−4 

(5−1)
w1

*
+ 

 4−1 

(5−1)
w5

*
 = (1/4) (0.12) + (3/4)(0.28) = 0.24. 
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Hence w1
*
 = 0.12; w2

*
 = 0.16; w3

*
 = 0.20;w4

*
 = 0.24; w5

*
 = 0.28; 

 

Step 2: Assume that the information in decision making are in neutrosophic fuzzy matrices as follows:
 

R1   =  

< 0.25,0.54,0.8 > < 0.3,0.4,0.9 >
< 0.6,0.5,0.5 > < 0.6,0.2,0.3 >

< 0.7,0.35,0.5 > < 0.9,0.2,0.8 >
< 0.2,0.4,0.9 > < 0.6,0.23,0.7 >

< 0.3,0.45,0.9 > < 0.7,0.1,0.4 >
< 0.45,0.38,0.27 > < 0.37,0.68,0.16 >

< 0.6,0.5,0.5 > < 0.4,0.2,0.9 >
< 0.6,0.25,0.3 > < 0.1,0.4,0.8 >

  

R2   =  

< 0.1,0.3,0.7 > < 0.6,0.6,0.5 >
< 0.3,0.55,0.37 > < 0.75,0.42,0.1 >

< 0.4,0.2,0.1 > < 0.3,0.7,0.6 >
< 0.32,0.67,0.56 > < 0.35,0.56,0.72 >

< 0.5,0.4,0.32 > < 0.65,0.25,0.32 >
< 0.27,0.9,0.81 > < 0.31,0.4,0.6 >

< 0.6,0.3,0.1 > < 0.75,0.25,0.55 >
< 0.75,0.65,0.55 > < 0.3,0.7,0.9 >

  

R3   =  

< 0.32,0.47,0.6 > < 0.9,0.1,0.3 >
< 0.12,0.32,0.52 > < 0.17,0.81,0.9 >

< 0.6,0.4,0.5 > < 0.3,0.5,0.7 >
< 0.5,0.3,0.1 > < 0.45,0.65,0.27 >

< 0.50,0.6,0.23 > < 0.56,0.52,0.23 >
< 0.54,0.83,0.72 > < 0.73,0.86,0.61 >

< 0.3,0.6,0.1 > < 0.57,0.52,0.55 >
< 0.5,0.52,0.4 > < 0.6,0.4,0.2 >

  

R4   =  

< 0.7,0.3,0.1 > < 0.5,0.4,0.4 >
< 0.3,0.56,0.73 > < 0.57,0.24,0.1 >

< 0.2,0.1,0.6 > < 0.7,0.9,0.6 >
< 0.23,0.76,0.65 > < 0.53,0.65,0.27 >

< 0.32,0.32,0.6 > < 0.56,0.52,0.32 >
< 0.72,0.5,0.18 > < 0.13,0.6,0.4 >

< 0.1,0.3,0.9 > < 0.57,0.52,0.55 >
< 0.55,0.56,0.78 > < 0.7,0.1,0.6 >

  

R5   =  

< 0.52,0.45,0.1 > < 0.57,0.37,0.1 >
< 0.3,0.6,0.7 > < 0.7,0.4,0.1 >

< 0.76,0.65,0.23 > < 0.57,0.52,0.55 >
< 0.3,0.7,0.6 > < 0.5,0.4,0.6 >

< 0.2,0.3,0.2 > < 0.6,0.2,0.5 >
< 0.27,0.5,0.81 > < 0.75,0.25,0.32 >

< 0.1,0.6,0.65 > < 0.3,0.9,0.7 >
< 0.32,0.67,0.56 > < 0.35,0.56,0.72 >

  

Step 3: Using the weightsw1
*
 = 0.12; w2

*
 = 0.16; w3

*
 = 0.20; w4

*
 = 0.24; w5

*
 = 0.28, the above fuzzy 

neutrosophic matrices are converted into a single matrix is as follows:  

Step 4:  Using the weights w = {0.2717, 0.2608, 0.2254, 0.2421} obtained from Poisson distribution.  

New reduced row matrix R is [ (0.4115, 0.5054, 0.5805),  (0.6048, 0.4811, 0.4611), 

                                                   (0.4538, 0.4676, 0.5207), (0.5332, 0.5570, 0.6153)] 

Step 5: 𝑑 =  
1

2
    1 − 𝑇 2 +  0 − 𝐼 2 +  0 − 𝐹 2    

d( r , r1 ) = 0.6851 = A1; d( r , r2) = 0.5478 = A2. 

d( r , r3 ) = 0.6455 = A3; d( r , r4 ) = 0.6737 = A4.. 

Step 6: A1 >A4  >A3  >A2. 

Step 7: A1 is best alternative 
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