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Abstract: By considering an entry (i.e., a number, an idea, an object, etc.) which is represented
by a known part (a) and an unknown part (bT, cI, dF) where T, I, F have their usual neutrosophic
logic meanings and a, b, c, d are real or complex numbers, Smarandache introduced the concept of
neutrosophic quadruple numbers. Using the concept of neutrosophic quadruple numbers based on a
set, Jun et al. constructed neutrosophic quadruple BCK/BCI-algebras and implicative neutrosophic
quadruple BCK-algebras. The notion of a neutrosophic quadruple BCI-positive implicative ideal is
introduced, and several properties are dealt with in this article. We establish the relationship between
neutrosophic quadruple ideal and neutrosophic quadruple BCI-positive implicative ideal. Given
nonempty subsets I and J of a BCI-algebra, conditions for the neutrosophic quadruple (I, J)-set to be
a neutrosophic quadruple BCI-positive implicative ideal are provided.
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1. Introduction

A BCK/BCI-algebra is a class of logical algebras introduced by K. Iséki (see [1,2]) and
was extensively investigated by several researchers. Neutrosophic algebraic structures in
BCK/BCI-algebras are discussed in the papers [3–10]. Smarandache introduced the notion of
neutrosophic sets with wide applications in sciences (see [11–13]), which is a more general stage
to extend the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy
set. Smarandache [14] introduced the concept of neutrosophic quadruple numbers by considering
an entry (i.e., a number, an idea, an object, etc.) which is represented by a known part (a) and an
unknown part (bT, cI, dF), where T, I, F have their usual neutrosophic logic meanings and a, b, c, d
are real or complex numbers. Using the notion of neutrosophic quadruple numbers based on a set,
Jun et al. [15] constructed neutrosophic quadruple BCK/BCI-algebras and implicative neutrosophic
quadruple BCK-algebras (see also [16]).

In this paper, we introduce the notion of a neutrosophic quadruple BCI-positive implicative
ideal, and investigate several properties. We consider relations between neutrosophic quadruple ideal
and neutrosophic quadruple BCI-positive implicative ideal. Given nonempty subsets I and J of a
BCI-algebra U, we provide conditions for the neutrosophic quadruple (I, J)-set to be a neutrosophic
quadruple BCI-positive implicative ideal.
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2. Preliminaries

A BCI-algebra is a set U with a special element 0 and a binary operation ∗ that satisfies the
following conditions:

(I) (∀p, q, r ∈ U) (((p ∗ q) ∗ (p ∗ r)) ∗ (r ∗ q) = 0),
(II) (∀p, q ∈ U) ((p ∗ (p ∗ q)) ∗ q = 0),
(III) (∀p ∈ U) (p ∗ p = 0),
(IV) (∀p, q ∈ U) (p ∗ q = 0, q ∗ p = 0 ⇒ p = q).

If a BCI-algebra U satisfies the following identity:

(V) (∀p ∈ U) (0 ∗ p = 0),

then U is called a BCK-algebra. In a BCK/BCI-algebra U, the following conditions are valid.

(∀p ∈ U) (p ∗ 0 = p) , (1)

(∀p, q, r ∈ U) (p ≤ q ⇒ p ∗ r ≤ q ∗ r, r ∗ q ≤ r ∗ p) , (2)

(∀p, q, r ∈ U) ((p ∗ q) ∗ r = (p ∗ r) ∗ q) , (3)

(∀p, q, r ∈ U) ((p ∗ r) ∗ (q ∗ r) ≤ p ∗ q) (4)

where p ≤ q if and only if p ∗ q = 0.
Any BCI-algebra U satisfies the following conditions (see [17]):

(∀p, q ∈ U)(p ∗ (p ∗ (p ∗ q)) = p ∗ q), (5)

(∀p, q ∈ U)(0 ∗ (p ∗ q) = (0 ∗ p) ∗ (0 ∗ q)), (6)

(∀p, q ∈ U)(0 ∗ (0 ∗ (p ∗ q)) = (0 ∗ q) ∗ (0 ∗ p)). (7)

By a subalgebra of a BCK/BCI-algebra U, we mean a nonempty subset S of U such that p ∗ q ∈ S
for all p, q ∈ S. We say that a subset G of a BCK/BCI-algebra U is an ideal of U if it satisfies:

0 ∈ G, (8)

(∀p ∈ U) (∀q ∈ G) (p ∗ q ∈ G ⇒ p ∈ G) . (9)

A subset G of a BCI-algebra U is called a BCI-positive implicative ideal of U (see [18,19]) if it
satisfies (8) and

(∀p, q, r ∈ U) (((p ∗ r) ∗ r) ∗ (q ∗ r) ∈ G, q ∈ G ⇒ p ∗ r ∈ G) , (10)

For further information regarding BCK/BCI-algebras and neutrosophic set theory, we refer the
reader to the books [17,20] and the site [21] respectively. We will use neutrosophic quadruple numbers
based on a set instead of real or complex numbers.

Let U be a set. A neutrosophic quadruple U-number is an ordered quadruple (a, pT, qI, rF), where
a, p, q, r ∈ U and T, I, F have their usual neutrosophic logic meanings (see [15]).

The set of all neutrosophic quadruple U-numbers which is denoted by N (U), that is,

N (U) := {(a, pT, qI, rF) | a, p, q, r ∈ U},

is called the neutrosophic quadruple set based on U. In particular, if U is a BCK/BCI-algebra, then a
neutrosophic quadruple U-number is called a neutrosophic quadruple BCK/BCI-number and N (U) is
called the neutrosophic quadruple BCK/BCI-set.

We define a binary operation � on the neutrosophic quadruple BCK/BCI-set N (U) by

(a, pT, qI, rF)� (b, uT, vI, wF) = (a ∗ b, (p ∗ u)T, (q ∗ v)I, (z ∗ w)F)
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for all (a, pT, qI, rF), (b, uT, vI, wF) ∈ N (U). Given a1, a2, a3, a4 ∈ U, the neutrosophic quadruple
BCK/BCI-number (a1, a2T, a3 I, a4F) is denoted by ã, that is,

ã = (a1, a2T, a3 I, a4F),

and the neutrosophic quadruple BCK/BCI-number (0, 0T, 0I, 0F) is denoted by 0̃, that is,

0̃ = (0, 0T, 0I, 0F),

which is called the zero neutrosophic quadruple BCK/BCI-number. Then (N (U);�, 0̃) is a
BCK/BCI-algebra (see [15]), which is called neutrosophic quadruple BCK/BCI-algebra, and it is simply
denoted by N (U).

We define an order relation “�” and the equality “=” on the neutrosophic quadruple
BCK/BCI-algebra N (U) as follows:

p̃� q̃⇔ pi ≤ qi for i = 1, 2, 3, 4,
p̃ = q̃⇔ pi = qi for i = 1, 2, 3, 4

for all p̃ = (p1, p2T, p3 I, p4F), q̃ = (q1, q2T, q3 I, q4F) ∈ N (U). It is easy to verify that “�” is an
equivalence relation on N (U).

Let U be a BCK/BCI-algebra. Given nonempty subsets I and J of U, consider the set

N (I, J) := {(a, pT, qI, rF) ∈ N (U) | a, p ∈ I & q, r ∈ J},

which is called the neutrosophic quadruple (I, J)-set.
The neutrosophic quadruple (I, J)-set N (I, J) with I = J is denoted by N (I), and it is called the

neutrosophic quadruple I-set.

3. Neutrosophic Quadruple BCI-Positive Implicative Ideals

In what follows, let U and N (U) be a BCI-algebra and a neutrosophic quadruple BCI-algebra,
respectively, unless otherwise specified.

Definition 1. Given nonempty subsets I and J of U, if N (I, J) is a BCI-positive implicative ideal of N (U),
we say N (I, J) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Example 1. Consider a BCI-algebra U = {0, 1, a} with the binary operation ∗, which is given in Table 1.

Table 1. Cayley table for the binary operation “∗”.

* 0 1 a

0 0 0 a
1 1 0 a
a a a 0

Then the neutrosophic quadruple BCI-algebra N (U) has 81 elements. If we take I = {0, a} and
J = {0, a}, then

N (I, J) = {0̃, β̃1, β̃2, β̃3, β̃4, β̃5, β̃6, β̃7, β̃8, β̃9, β̃10, β̃11, β̃12, β̃13, β̃14, β̃15}

and it is routine to check thatN (I, J) is a neutrosophic quadruple BCI-positive implicative ideal ofN (U) where

0̃ = (0, 0T, 0I, 0F), β̃1 = (0, 0T, 0I, aF), β̃2 = (0, 0T, aI, 0F), β̃3 = (0, 0T, aI, aF),
β̃4 = (0, aT, 0I, 0F), β̃5 = (0, aT, 0I, aF), β̃6 = (0, aT, aI, 0F), β̃7 = (0, aT, aI, aF),
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β̃8 = (a, 0T, 0I, 0F), β̃9 = (a, 0T, 0I, aF), β̃10 = (a, 0T, aI, 0F), β̃11 = (a, 0T, aI, aF),
β̃12 = (a, aT, 0I, 0F), β̃13 = (a, aT, 0I, aF), β̃14 = (a, aT, aI, 0F), β̃15 = (a, aT, aI, aF).

Proposition 1. Given nonempty subsets I and J of U, the neutrosophic quadruple BCI-positive implicative
ideal N (I, J) of N (U) satisfies the following assertions.

(∀ p̃, q̃, r̃ ∈ N (U))((( p̃ � r̃)� r̃)� (q̃ � r̃) ∈ N (I, J) ⇒ ( p̃ � q̃)� r̃ ∈ N (I, J)), (11)

(∀ p̃, q̃ ∈ N (U))((( p̃ � q̃)� q̃)� (0̃ � q̃) ∈ N (I, J) ⇒ p̃ � q̃ ∈ N (I, J)). (12)

Proof. Let N (I, J) be a neutrosophic quadruple BCI-positive implicative ideal of N (U) for
any nonempty subsets I and J of U. Assume that (( p̃ � r̃) � r̃) � (q̃ � r̃) ∈ N (I, J) for all
p̃, q̃, r̃ ∈ N (U). Since

((( p̃ � q̃)� r̃)� r̃)� (0̃ � r̃) = ((( p̃ � r̃)� r̃)� q̃)� ((q̃ � q̃)� r̃)

= ((( p̃ � r̃)� r̃)� q̃)� ((q̃ � r̃)� q̃)

≤ (( p̃ � r̃)� r̃)� (q̃ � r̃),

we have ((( p̃� q̃)� r̃)� r̃)� (0̃� r̃) ∈ N (I, J). SinceN (I, J) is a neutrosophic quadruple BCI-positive
implicative ideal, it follows that ( p̃ � q̃)� r̃ ∈ N (I, J)). Hence (11) is valid. If we take q̃ = 0̃ and r̃ = q̃
in (11), then we get (12).

We consider relations between neutrosophic quadruple ideal and neutrosophic quadruple
BCI-positive implicative ideal.

Theorem 1. For any nonempty subsets I and J of U, if N (I, J) is a neutrosophic quadruple BCI-positive
implicative ideal of N (U), then it is a neutrosophic quadruple ideal of N (U).

Proof. Assume that N (I, J) is a neutrosophic quadruple BCI-positive implicative ideal of N (U). Let
p̃ = (p1, p2T, p3 I, p4F) and q̃ = (q1, q2T, q3 I, q4F) be elements of N (U) such that q̃ ∈ N (I, J) and
p̃ � q̃ ∈ N (I, J). Then

(( p̃ � 0̃)� 0̃)� (q̃ � 0̃) = p̃ � q̃ ∈ N (I, J),

which implies that p̃ = p̃ � 0̃ ∈ N (I, J). Therefore N (I, J) is a neutrosophic quadruple ideal
of N (U).

The converse of Theorem 1 is not true as seen in the following example.

Example 2. Consider a BCI-algebra U = {0, 1, a} with the binary operation ∗, which is given in Table 2.

Table 2. Cayley table for the binary operation “∗”.

* 0 1 a

0 0 0 0
1 1 0 0
a a 1 0

Then the neutrosophic quadruple BCI-algebra N (U) has 81 elements. If we take I = {0} and J = {0},
then N (I, J) = {0̃} is a neutrosophic quadruple ideal of N (U). But it is not a neutrosophic quadruple
BCI-positive implicative ideal of N (U) since

(((a, aT, aI, aF)� (1, 1T, 1I, 1F))� (1, 1T, 1I, 1F))� (0̃ � (1, 1T, 1I, 1F)) = 0̃ ∈ N (I, J)
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and (a, aT, aI, aF)� (1, 1T, 1I, 1F) = (1, 1T, 1I, 1F) /∈ N (I, J).

Given nonempty subsets I and J of U, we provide conditions for the set N (I, J) to be a
neutrosophic quadruple BCI-positive implicative ideal.

Theorem 2. If I and J are BCI-positive implicative ideal of U, then N (I, J) is a neutrosophic quadruple
BCI-positive implicative ideal of N (U).

Proof. Assume that I and J are BCI-positive implicative ideal of U. Obviously 0̃ ∈ N (I, J). Let
p̃ = (p1, p2T, p3 I, p4F), q̃ = (q1, q2T, q3 I, q4F) and r̃ = (r1, r2T, r3 I, r4F) be elements of N (U)

such that q̃ ∈ N (I, J) and (( p̃ � r̃)� r̃)� (q̃ � r̃) ∈ N (I, J). Then qi ∈ I and qj ∈ J for i = 1, 2 and
j = 3, 4. Also

(( p̃ � r̃)� r̃)� (q̃ � r̃) = (((p1, p2T, p3 I, p4F)� (r1, r2T, r3 I, r4F))� (r1, r2T, r3 I, r4F))

� ((q1, q2T, q3 I, q4F)� (r1, r2T, r3 I, r4F))

= ((p1 ∗ r1, (p2 ∗ r2)T, (p3 ∗ r3)I, (p4 ∗ r4)F)� (r1, r2T, r3 I, r4F))

� (q1 ∗ r1, (q2 ∗ r2)T, (q3 ∗ r3)I, (q4 ∗ r4)F)

= (((p1 ∗ r1) ∗ r1, ((p2 ∗ r2) ∗ r2)T, ((p3 ∗ r3) ∗ r3)I, ((p4 ∗ r4) ∗ r4)F))

� (q1 ∗ r1, (q2 ∗ r2)T, (q3 ∗ r3)I, (q4 ∗ r4)F)

= (((p1 ∗ r1) ∗ r1) ∗ (q1 ∗ r1), (((p2 ∗ r2) ∗ r2) ∗ (q2 ∗ r2))T,

(((p3 ∗ r3) ∗ r3) ∗ (q3 ∗ r3))I, (((p4 ∗ r4) ∗ r4) ∗ (q4 ∗ r4))F)

∈ N (I, J),

and so ((pi ∗ ri) ∗ ri) ∗ (qi ∗ ri) ∈ I and ((pj ∗ rj) ∗ rj) ∗ (qj ∗ rj) ∈ J for i = 1, 2 and j = 3, 4. it follows
from (10) that pi ∗ ri ∈ I and pj ∗ rj ∈ J for i = 1, 2 and j = 3, 4. Hence

p̃ � r̃ = (p1, p2T, p3 I, p4F)� (r1, r2T, r3 I, r4F)

= (p1 ∗ r1, (p2 ∗ r2)T, (p3 ∗ r3)I, (p4 ∗ r4)F) ∈ N (I, J).

Therefore N (I, J) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Corollary 1. If I is a BCI-positive implicative ideal of U, then N (I) is a neutrosophic quadruple BCI-positive
implicative ideal of N (U).

Theorem 3. Let I and J be ideals of U which satisfies the following condition.

(∀p, q ∈ U)(((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ I ∩ J ⇒ p ∗ q ∈ I ∩ J). (13)

Then N (I, J) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Proof. Obviously 0̃ ∈ N (I, J). Let p̃ = (p1, p2T, p3 I, p4F), q̃ = (q1, q2T, q3 I, q4F) and r̃ = (r1, r2T, r3 I,
r4F) be elements of N (U) such that r̃ ∈ N (I, J) and (( p̃ � q̃)� q̃)� (r̃ � q̃) ∈ N (I, J). Then r1, r2 ∈ I,
r3, r4 ∈ J and

(( p̃ � q̃)� q̃)� (r̃ � q̃) = (((p1 ∗ q1) ∗ q1) ∗ (r1 ∗ q1), (((p2 ∗ q2) ∗ q2) ∗ (r2 ∗ q2))T,

(((p3 ∗ q3) ∗ q3) ∗ (r3 ∗ q3))I, (((p4 ∗ q4) ∗ q4) ∗ (r4 ∗ q4))F)

∈ N (I, J),
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that is,

((pi ∗ qi) ∗ qi) ∗ (ri ∗ qi) ∈ I and ((pj ∗ qj) ∗ qj) ∗ (rj ∗ qj) ∈ J (14)

for i = 1, 2 and j = 3, 4. Note that

(((pk ∗ qk) ∗ qk) ∗ (0 ∗ qk)) ∗ (((pk ∗ qk) ∗ qk) ∗ (rk ∗ qk))

≤ (rk ∗ qk) ∗ (0 ∗ qk) ≤ rk ∗ 0 = rk

for k = 1, 2, 3, 4 by (I), (1) and (4). Since I and J are ideals of U, it follows that

(((pi ∗ qi) ∗ qi) ∗ (0 ∗ qi)) ∗ (((pi ∗ qi) ∗ qi) ∗ (ri ∗ qi)) ∈ I,
(((pj ∗ qj) ∗ qj) ∗ (0 ∗ qj)) ∗ (((pj ∗ qj) ∗ qj) ∗ (rj ∗ qj)) ∈ J

(15)

for i = 1, 2 and j = 3, 4. Combining (14) and (15), we get

((pi ∗ qi) ∗ qi) ∗ (0 ∗ qi) ∈ I and ((pj ∗ qj) ∗ qj) ∗ (0 ∗ qj) ∈ J

for i = 1, 2 and j = 3, 4. Using (13) implies that pi ∗ qi ∈ I and pj ∗ qj ∈ J for i = 1, 2 and j = 3, 4. Thus

p̃ � q̃ = (p1, p2T, p3 I, p4F)� (q1, q2T, q3 I, q4F)

= (p1 ∗ q1, (p2 ∗ q2)T, (p3 ∗ q3)I, (p4 ∗ q4)F) ∈ N (I, J).

Therefore N (I, J) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Corollary 2. Let I be an ideal of U which satisfies the following condition.

(∀p, q ∈ U)(((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ I ⇒ p ∗ q ∈ I). (16)

Then N (I) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Theorem 4. Let I and J be ideals of U which satisfies the following condition.

(∀p, q, r ∈ U)(((p ∗ r) ∗ (q ∗ r)) ∗ r ∈ I ∩ J ⇒ (p ∗ q) ∗ r ∈ I ∩ J). (17)

Then N (I, J) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Proof. Suppose that ((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ I ∩ J for all p, q ∈ U. Then ((p ∗ q) ∗ (0 ∗ q)) ∗ q =

((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ I ∩ J, which implies from (17) and (1) that p ∗ q = (p ∗ 0) ∗ q ∈ I ∩ J. Therefore
N (I, J) is a neutrosophic quadruple BCI-positive implicative ideal of N (U) by Theorem 3.

Corollary 3. Let I be an ideal of U which satisfies the following condition.

(∀p, q, r ∈ U)(((p ∗ r) ∗ (q ∗ r)) ∗ r ∈ I ⇒ (p ∗ q) ∗ r ∈ I). (18)

Then N (I) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Theorem 5. Let I and J be subsets of U such that

0 ∈ I ∩ J, (19)

(∀p, q, r ∈ U)((((p ∗ q) ∗ q) ∗ (0 ∗ q)) ∗ r ∈ I ∩ J, r ∈ I ∩ J ⇒ p ∗ q ∈ I ∩ J). (20)

Then N (I, J) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).
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Proof. If we take q = 0 in (20) and use (1) and (III), then

(∀p, r ∈ U)(p ∗ r ∈ I ∩ J, r ∈ I ∩ J ⇒ p ∈ I ∩ J).

Hence I and J are ideals of U. Assume that ((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ I ∩ J for all p, q ∈ U. Then

(((p ∗ q) ∗ q) ∗ (0 ∗ q)) ∗ 0 = ((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ I ∩ J,

It follows from (19) and (20) that p ∗ q ∈ I ∩ J. Consequently, N (I, J) is a neutrosophic quadruple
BCI-positive implicative ideal of N (U) by Theorem 3.

Corollary 4. Let I be a subset of U such that

0 ∈ I, (21)

(∀p, q, r ∈ U)((((p ∗ q) ∗ q) ∗ (0 ∗ q)) ∗ r ∈ I, r ∈ I ⇒ p ∗ q ∈ I). (22)

Then N (I) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Theorem 6. Let I, J, G and H be ideals of U such that G ⊆ I and H ⊆ J. If G and H are BCI-positive
implicative ideals of U, then N (I, J) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Proof. Let p, q, r ∈ U be such that ((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ I ∩ J. Then

(((p ∗ (((p ∗ q) ∗ q) ∗ (0 ∗ q))) ∗ q) ∗ q) ∗ (0 ∗ q)

= (((p ∗ q) ∗ q) ∗ (0 ∗ q)) ∗ (((p ∗ q) ∗ q) ∗ (0 ∗ q))

= 0 ∈ G ∩ H,

and so (p ∗ q) ∗ (((p ∗ q) ∗ q) ∗ (0 ∗ q)) = (p ∗ (((p ∗ q) ∗ q) ∗ (0 ∗ q))) ∗ q ∈ G ∩ H ⊆ I ∩ J since G and
H are BCI-positive implicative ideals of U. Thus p ∗ q ∈ I ∩ J, and therefore N (I, J) is a neutrosophic
quadruple BCI-positive implicative ideal of N (U) by Theorem 3.

Corollary 5. Let I and G be ideals of U such that G ⊆ I. If G is a BCI-positive implicative ideal of U,
then N (I) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Theorem 7. Let I, J, G and H be ideals of U such that G ⊆ I, H ⊆ J and

(∀p, q ∈ U)(((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ G ∩ H ⇒ p ∗ q ∈ G ∩ H). (23)

Then N (I, J) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Proof. Let p, q, r ∈ U be such that r ∈ G ∩ H and ((p ∗ q) ∗ q) ∗ (r ∗ q) ∈ G ∩ H. Since

(((p ∗ q) ∗ q) ∗ (0 ∗ q)) ∗ (((p ∗ q) ∗ q) ∗ (r ∗ q)) ≤ (r ∗ q) ∗ (0 ∗ q) ≤ r ∗ 0 = r ∈ G ∩ H,

we have ((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ G ∩ H. It follows from (23) that p ∗ q ∈ G ∩ H. Hence G and H are
BCI-positive implicative ideals of U, and therefore N (I, J) is a neutrosophic quadruple BCI-positive
implicative ideal of N (U) by Theorem 6.

Corollary 6. Let I and G be ideals of U such that G ⊆ I and

(∀p, q ∈ U)(((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ G ⇒ p ∗ q ∈ G). (24)

Then N (I) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).
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Theorem 8. Let I, J, G and H be ideals of U such that G ⊆ I, H ⊆ J and

(∀p, q ∈ U)(((p ∗ r) ∗ (q ∗ r)) ∗ r ∈ G ∩ H ⇒ (p ∗ q) ∗ r ∈ G ∩ H). (25)

Then N (I, J) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

Proof. Let p, q ∈ U be such that ((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ G ∩ H. Then

((p ∗ q) ∗ (0 ∗ q)) ∗ q = ((p ∗ q) ∗ q) ∗ (0 ∗ q) ∈ G ∩ H.

It follows from (25) and (1) that p ∗ q = (p ∗ 0) ∗ q ∈ G ∩ H. Hence N (I, J) is a neutrosophic
quadruple BCI-positive implicative ideal of N (U) by Theorem 7.

Proof. If we put q = 0 and r = q in (25), then we have the condition (23). Hence N (I, J) is a
neutrosophic quadruple BCI-positive implicative ideal of N (U) by Theorem 7.

Corollary 7. Let I and G be ideals of U such that G ⊆ I and

(∀p, q ∈ U)(((p ∗ r) ∗ (q ∗ r)) ∗ r ∈ G ⇒ (p ∗ q) ∗ r ∈ G). (26)

Then N (I) is a neutrosophic quadruple BCI-positive implicative ideal of N (U).

4. Conclusions

By considering an entry (i.e., a number, an idea, an object, etc.) which is represented by a known
part (a) and an unknown part (bT, cI, dF) where T, I, F have their usual neutrosophic logic meanings
and a, b, c, d are real or complex numbers, Smarandache have introduced the concept of neutrosophic
quadruple numbers. Using the notion of neutrosophic quadruple numbers based on a set (instead of
real or complex numbers), Jun et al. have constructed neutrosophic quadruple BCK/BCI-algebras and
implicative neutrosophic quadruple BCK-algebras. In this manuscript, we have introduced the concept
of a neutrosophic quadruple BCI-positive implicative ideal, and investigated several properties.
We have discussed relations between neutrosophic quadruple ideal and neutrosophic quadruple
BCI-positive implicative ideal. Given nonempty subsets I and J of a BCI-algebra U, we have provided
conditions for the neutrosophic quadruple (I, J)-set to be a neutrosophic quadruple BCI-positive
implicative ideal. In the forthcoming research and papers, we will continue these ideas and will define
new notions in several algebraic structures.
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