Article

Neutrosophic Quadruple BCI-Positive Implicative Ideals

Young Bae Jun ${ }^{1}$, Seok-Zun Song ${ }^{2, *}$ (D) and Seon Jeong Kim ${ }^{3}$
1 Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea; skywine@gmail.com
2 Department of Mathematics, Jeju National University, Jeju 63243, Korea
3 Department of Mathematics, Natural Science of College, Gyeongsang National University, Jinju 52828, Korea; skim@gnu.ac.kr
* Correspondence: szsong@jejunu.ac.kr

Received: 4 April 2019; Accepted: 25 April 2019; Published: 28 April 2019

Abstract

By considering an entry (i.e., a number, an idea, an object, etc.) which is represented by a known part (a) and an unknown part $(b T, c I, d F)$ where T, I, F have their usual neutrosophic logic meanings and a, b, c, d are real or complex numbers, Smarandache introduced the concept of neutrosophic quadruple numbers. Using the concept of neutrosophic quadruple numbers based on a set, Jun et al. constructed neutrosophic quadruple BCK/BCI-algebras and implicative neutrosophic quadruple BCK-algebras. The notion of a neutrosophic quadruple BCI-positive implicative ideal is introduced, and several properties are dealt with in this article. We establish the relationship between neutrosophic quadruple ideal and neutrosophic quadruple BCI-positive implicative ideal. Given nonempty subsets I and J of a BCI-algebra, conditions for the neutrosophic quadruple (I, J)-set to be a neutrosophic quadruple BCI-positive implicative ideal are provided.

Keywords: neutrosophic quadruple BCK/BCI-number; neutrosophic quadruple BCK/BCI-algebra; neutrosophic quadruple (BCI-positive implicative) ideal

MSC: 06F35; 03G25; 08A72

1. Introduction

A BCK/BCI-algebra is a class of logical algebras introduced by K. Iséki (see [1,2]) and was extensively investigated by several researchers. Neutrosophic algebraic structures in BCK/BCI-algebras are discussed in the papers [3-10]. Smarandache introduced the notion of neutrosophic sets with wide applications in sciences (see [11-13]), which is a more general stage to extend the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set. Smarandache [14] introduced the concept of neutrosophic quadruple numbers by considering an entry (i.e., a number, an idea, an object, etc.) which is represented by a known part (a) and an unknown part $(b T, c I, d F)$, where T, I, F have their usual neutrosophic logic meanings and a, b, c, d are real or complex numbers. Using the notion of neutrosophic quadruple numbers based on a set, Jun et al. [15] constructed neutrosophic quadruple BCK/BCI-algebras and implicative neutrosophic quadruple BCK-algebras (see also [16]).

In this paper, we introduce the notion of a neutrosophic quadruple BCI-positive implicative ideal, and investigate several properties. We consider relations between neutrosophic quadruple ideal and neutrosophic quadruple BCI-positive implicative ideal. Given nonempty subsets I and J of a BCI-algebra U, we provide conditions for the neutrosophic quadruple (I, J)-set to be a neutrosophic quadruple BCI-positive implicative ideal.

2. Preliminaries

A BCI-algebra is a set U with a special element 0 and a binary operation $*$ that satisfies the following conditions:
(I) $\quad(\forall p, q, r \in U)(((p * q) *(p * r)) *(r * q)=0)$,
(II) $(\forall p, q \in U)((p *(p * q)) * q=0)$,
(III) $(\forall p \in U)(p * p=0)$,
(IV) $(\forall p, q \in U)(p * q=0, q * p=0 \Rightarrow p=q)$.

If a BCI-algebra U satisfies the following identity:
(V) $(\forall p \in U)(0 * p=0)$,
then U is called a BCK-algebra. In a BCK/BCI-algebra U, the following conditions are valid.

$$
\begin{align*}
& (\forall p \in U)(p * 0=p) \tag{1}\\
& (\forall p, q, r \in U)(p \leq q \Rightarrow p * r \leq q * r, r * q \leq r * p) \tag{2}\\
& (\forall p, q, r \in U)((p * q) * r=(p * r) * q) \tag{3}\\
& (\forall p, q, r \in U)((p * r) *(q * r) \leq p * q) \tag{4}
\end{align*}
$$

where $p \leq q$ if and only if $p * q=0$.
Any BCI-algebra U satisfies the following conditions (see [17]):

$$
\begin{align*}
& (\forall p, q \in U)(p *(p *(p * q))=p * q) \tag{5}\\
& (\forall p, q \in U)(0 *(p * q)=(0 * p) *(0 * q)) \tag{6}\\
& (\forall p, q \in U)(0 *(0 *(p * q))=(0 * q) *(0 * p)) \tag{7}
\end{align*}
$$

By a subalgebra of a BCK/BCI-algebra U, we mean a nonempty subset S of U such that $p * q \in S$ for all $p, q \in S$. We say that a subset G of a BCK/BCI-algebra U is an ideal of U if it satisfies:

$$
\begin{align*}
& 0 \in G \tag{8}\\
& (\forall p \in U)(\forall q \in G)(p * q \in G \Rightarrow p \in G) \tag{9}
\end{align*}
$$

A subset G of a BCI-algebra U is called a BCI-positive implicative ideal of U (see $[18,19]$) if it satisfies (8) and

$$
\begin{equation*}
(\forall p, q, r \in U)(((p * r) * r) *(q * r) \in G, q \in G \Rightarrow p * r \in G) \tag{10}
\end{equation*}
$$

For further information regarding BCK/BCI-algebras and neutrosophic set theory, we refer the reader to the books $[17,20]$ and the site $[21]$ respectively. We will use neutrosophic quadruple numbers based on a set instead of real or complex numbers.

Let U be a set. A neutrosophic quadruple U-number is an ordered quadruple ($a, p T, q I, r F$), where $a, p, q, r \in U$ and T, I, F have their usual neutrosophic logic meanings (see [15]).

The set of all neutrosophic quadruple U-numbers which is denoted by $\mathcal{N}(U)$, that is,

$$
\mathcal{N}(U):=\{(a, p T, q I, r F) \mid a, p, q, r \in U\}
$$

is called the neutrosophic quadruple set based on U. In particular, if U is a BCK/BCI-algebra, then a neutrosophic quadruple U-number is called a neutrosophic quadruple BCK/BCI-number and $\mathcal{N}(U)$ is called the neutrosophic quadruple BCK/BCI-set.

We define a binary operation \square on the neutrosophic quadruple BCK/BCI-set $\mathcal{N}(U)$ by

$$
(a, p T, q I, r F) \boxtimes(b, u T, v I, w F)=(a * b,(p * u) T,(q * v) I,(z * w) F)
$$

for all $(a, p T, q I, r F),(b, u T, v I, w F) \in \mathcal{N}(U)$. Given $a_{1}, a_{2}, a_{3}, a_{4} \in U$, the neutrosophic quadruple BCK/BCI-number $\left(a_{1}, a_{2} T, a_{3} I, a_{4} F\right)$ is denoted by \tilde{a}, that is,

$$
\tilde{a}=\left(a_{1}, a_{2} T, a_{3} I, a_{4} F\right),
$$

and the neutrosophic quadruple $\mathrm{BCK} / \mathrm{BCI}$-number $(0,0 T, 0 I, 0 F)$ is denoted by $\tilde{0}$, that is,

$$
\tilde{0}=(0,0 T, 0 I, 0 F),
$$

which is called the zero neutrosophic quadruple BCK/BCI-number. Then $(\mathcal{N}(U) ; \square, \tilde{0})$ is a BCK/BCI-algebra (see [15]), which is called neutrosophic quadruple $B C K / B C I-$ algebra, and it is simply denoted by $\mathcal{N}(U)$.

We define an order relation " \ll " and the equality " $=$ " on the neutrosophic quadruple BCK/BCI-algebra $\mathcal{N}(U)$ as follows:

$$
\begin{aligned}
& \tilde{p}<\tilde{q} \Leftrightarrow p_{i} \leq q_{i} \text { for } i=1,2,3,4, \\
& \tilde{p}=\tilde{q} \Leftrightarrow p_{i}=q_{i} \text { for } i=1,2,3,4
\end{aligned}
$$

for all $\tilde{p}=\left(p_{1}, p_{2} T, p_{3} I, p_{4} F\right), \tilde{q}=\left(q_{1}, q_{2} T, q_{3} I, q_{4} F\right) \in \mathcal{N}(U)$. It is easy to verify that " $<$ " is an equivalence relation on $\mathcal{N}(U)$.

Let U be a BCK/BCI-algebra. Given nonempty subsets I and J of U, consider the set

$$
\mathcal{N}(I, J):=\{(a, p T, q I, r F) \in \mathcal{N}(U) \mid a, p \in I \& q, r \in J\}
$$

which is called the neutrosophic quadruple (I, J)-set.
The neutrosophic quadruple (I, J)-set $\mathcal{N}(I, J)$ with $I=J$ is denoted by $\mathcal{N}(I)$, and it is called the neutrosophic quadruple I-set.

3. Neutrosophic Quadruple BCI-Positive Implicative Ideals

In what follows, let U and $\mathcal{N}(U)$ be a BCI-algebra and a neutrosophic quadruple BCI-algebra, respectively, unless otherwise specified.

Definition 1. Given nonempty subsets I and J of U, if $\mathcal{N}(I, J)$ is a BCI-positive implicative ideal of $\mathcal{N}(U)$, we say $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.

Example 1. Consider a BCI-algebra $U=\{0,1, a\}$ with the binary operation $*$, which is given in Table 1 .
Table 1. Cayley table for the binary operation " $*$ ".

$*$	$\mathbf{0}$	$\mathbf{1}$	\boldsymbol{a}
0	0	0	a
1	1	0	a
a	a	a	0

Then the neutrosophic quadruple BCI-algebra $\mathcal{N}(U)$ has 81 elements. If we take $I=\{0, a\}$ and $J=\{0, a\}$, then

$$
\mathcal{N}(I, J)=\left\{\tilde{0}, \tilde{\beta}_{1}, \tilde{\beta}_{2}, \tilde{\beta}_{3}, \tilde{\beta}_{4}, \tilde{\beta}_{5}, \tilde{\beta}_{6}, \tilde{\beta}_{7}, \tilde{\beta}_{8}, \tilde{\beta}_{9}, \tilde{\beta}_{10}, \tilde{\beta}_{11}, \tilde{\beta}_{12}, \tilde{\beta}_{13}, \tilde{\beta}_{14}, \tilde{\beta}_{15}\right\}
$$

and it is routine to check that $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$ where

$$
\begin{gathered}
\tilde{o}=(0,0 T, 0 I, 0 F), \tilde{\beta}_{1}=(0,0 T, 0 I, a F), \tilde{\beta}_{2}=(0,0 T, a I, 0 F), \tilde{\beta}_{3}=(0,0 T, a I, a F), \\
\tilde{\beta}_{4}=(0, a T, 0 I, 0 F), \tilde{\beta}_{5}=(0, a T, 0 I, a F), \tilde{\beta}_{6}=(0, a T, a I, 0 F), \tilde{\beta}_{7}=(0, a T, a I, a F),
\end{gathered}
$$

$$
\begin{aligned}
& \tilde{\beta}_{8}=(a, 0 T, 0 I, 0 F), \tilde{\beta}_{9}=(a, 0 T, 0 I, a F), \tilde{\beta}_{10}=(a, 0 T, a I, 0 F), \tilde{\beta}_{11}=(a, 0 T, a I, a F) \\
& \tilde{\beta}_{12}=(a, a T, 0 I, 0 F), \tilde{\beta}_{13}=(a, a T, 0 I, a F), \tilde{\beta}_{14}=(a, a T, a I, 0 F), \tilde{\beta}_{15}=(a, a T, a I, a F) .
\end{aligned}
$$

Proposition 1. Given nonempty subsets I and J of U, the neutrosophic quadruple BCI-positive implicative ideal $\mathcal{N}(I, J)$ of $\mathcal{N}(U)$ satisfies the following assertions.

$$
\begin{align*}
& (\forall \tilde{p}, \tilde{q}, \tilde{r} \in \mathcal{N}(U))(((\tilde{p} \boxtimes \tilde{r}) \boxtimes \tilde{r}) \boxtimes(\tilde{q} \boxtimes \tilde{r}) \in \mathcal{N}(I, J) \Rightarrow(\tilde{p} \boxtimes \tilde{q}) \boxtimes \tilde{r} \in \mathcal{N}(I, J)), \tag{11}\\
& (\forall \tilde{p}, \tilde{q} \in \mathcal{N}(U))(((\tilde{p} \boxtimes \tilde{q}) \boxtimes \tilde{q}) \boxtimes(\tilde{0} \boxtimes \tilde{q}) \in \mathcal{N}(I, J) \Rightarrow \tilde{p} \boxtimes \tilde{q} \in \mathcal{N}(I, J)) . \tag{12}
\end{align*}
$$

Proof. Let $\mathcal{N}(I, J)$ be a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$ for any nonempty subsets I and J of U. Assume that $((\tilde{p} \boxtimes \tilde{r}) \boxtimes \tilde{r}) \boxtimes(\tilde{q} \boxtimes \tilde{r}) \in \mathcal{N}(I, J)$ for all $\tilde{p}, \tilde{q}, \tilde{r} \in \mathcal{N}(U)$. Since

$$
\begin{aligned}
& \leq((\tilde{p} \boxminus \tilde{r}) \boxtimes \tilde{r}) \boxtimes(\tilde{q} \boxtimes \tilde{r}),
\end{aligned}
$$

we have $(((\tilde{p} \boxtimes \tilde{q}) \boxtimes \tilde{r}) \boxtimes \tilde{r}) \boxtimes(\tilde{0} \boxtimes \tilde{r}) \in \mathcal{N}(I, J)$. Since $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal, it follows that $(\tilde{p} \boxtimes \tilde{q}) \boxtimes \tilde{r} \in \mathcal{N}(I, J))$. Hence (11) is valid. If we take $\tilde{q}=\tilde{0}$ and $\tilde{r}=\tilde{q}$ in (11), then we get (12).

We consider relations between neutrosophic quadruple ideal and neutrosophic quadruple BCI-positive implicative ideal.

Theorem 1. For any nonempty subsets I and J of U, if $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$, then it is a neutrosophic quadruple ideal of $\mathcal{N}(U)$.

Proof. Assume that $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$. Let $\tilde{p}=\left(p_{1}, p_{2} T, p_{3} I, p_{4} F\right)$ and $\tilde{q}=\left(q_{1}, q_{2} T, q_{3} I, q_{4} F\right)$ be elements of $\mathcal{N}(U)$ such that $\tilde{q} \in \mathcal{N}(I, J)$ and $\tilde{p} \boxtimes \tilde{q} \in \mathcal{N}(I, J)$. Then

$$
((\tilde{p} \boxtimes \tilde{0}) \boxtimes \tilde{0}) \boxtimes(\tilde{q} \boxtimes \tilde{0})=\tilde{p} \boxtimes \tilde{q} \in \mathcal{N}(I, J)
$$

which implies that $\tilde{p}=\tilde{p} \square \tilde{0} \in \mathcal{N}(I, J)$. Therefore $\mathcal{N}(I, J)$ is a neutrosophic quadruple ideal of $\mathcal{N}(U)$.

The converse of Theorem 1 is not true as seen in the following example.
Example 2. Consider a BCI-algebra $U=\{0,1, a\}$ with the binary operation $*$, which is given in Table 2.
Table 2. Cayley table for the binary operation " $*$ ".

$*$	$\mathbf{0}$	$\mathbf{1}$	\boldsymbol{a}
0	0	0	0
1	1	0	0
a	a	1	0

Then the neutrosophic quadruple BCI-algebra $\mathcal{N}(U)$ has 81 elements. If we take $I=\{0\}$ and $J=\{0\}$, then $\mathcal{N}(I, J)=\{\tilde{0}\}$ is a neutrosophic quadruple ideal of $\mathcal{N}(U)$. But it is not a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$ since

$$
(((a, a T, a I, a F) \boxtimes(1,1 T, 1 I, 1 F)) \boxtimes(1,1 T, 1 I, 1 F)) \boxtimes(\tilde{0} \boxtimes(1,1 T, 1 I, 1 F))=\tilde{0} \in \mathcal{N}(I, J)
$$

and $(a, a T, a I, a F) \boxtimes(1,1 T, 1 I, 1 F)=(1,1 T, 1 I, 1 F) \notin \mathcal{N}(I, J)$.
Given nonempty subsets I and J of U, we provide conditions for the set $\mathcal{N}(I, J)$ to be a neutrosophic quadruple BCI-positive implicative ideal.

Theorem 2. If I and J are BCI-positive implicative ideal of U, then $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.

Proof. Assume that I and J are BCI-positive implicative ideal of U. Obviously $\tilde{0} \in \mathcal{N}(I, J)$. Let $\tilde{p}=\left(p_{1}, p_{2} T, p_{3} I, p_{4} F\right), \tilde{q}=\left(q_{1}, q_{2} T, q_{3} I, q_{4} F\right)$ and $\tilde{r}=\left(r_{1}, r_{2} T, r_{3} I, r_{4} F\right)$ be elements of $\mathcal{N}(U)$ such that $\tilde{q} \in \mathcal{N}(I, J)$ and $((\tilde{p} \boxtimes \tilde{r}) \boxtimes \tilde{r}) \boxtimes(\tilde{q} \boxtimes \tilde{r}) \in \mathcal{N}(I, J)$. Then $q_{i} \in I$ and $q_{j} \in J$ for $i=1,2$ and $j=3$, 4. Also

$$
\begin{aligned}
&((\tilde{p} \boxtimes \tilde{r}) \boxtimes \tilde{r}) \boxtimes(\tilde{q} \boxtimes \tilde{r})=\left(\left(\left(p_{1}, p_{2} T, p_{3} I, p_{4} F\right) \boxtimes\left(r_{1}, r_{2} T, r_{3} I, r_{4} F\right)\right) \downarrow\left(r_{1}, r_{2} T, r_{3} I, r_{4} F\right)\right) \\
& \bullet\left(\left(q_{1}, q_{2} T, q_{3} I, q_{4} F\right) \boxtimes\left(r_{1}, r_{2} T, r_{3} I, r_{4} F\right)\right) \\
&=\left(\left(p_{1} * r_{1},\left(p_{2} * r_{2}\right) T,\left(p_{3} * r_{3}\right) I,\left(p_{4} * r_{4}\right) F\right) \boxtimes\left(r_{1}, r_{2} T, r_{3} I, r_{4} F\right)\right) \\
& \bullet\left(q_{1} * r_{1},\left(q_{2} * r_{2}\right) T,\left(q_{3} * r_{3}\right) I,\left(q_{4} * r_{4}\right) F\right) \\
&=\left(\left(\left(p_{1} * r_{1}\right) * r_{1},\left(\left(p_{2} * r_{2}\right) * r_{2}\right) T,\left(\left(p_{3} * r_{3}\right) * r_{3}\right) I,\left(\left(p_{4} * r_{4}\right) * r_{4}\right) F\right)\right) \\
& \bullet\left(q_{1} * r_{1},\left(q_{2} * r_{2}\right) T,\left(q_{3} * r_{3}\right) I,\left(q_{4} * r_{4}\right) F\right) \\
&=\left(\left(\left(p_{1} * r_{1}\right) * r_{1}\right) *\left(q_{1} * r_{1}\right),\left(\left(\left(p_{2} * r_{2}\right) * r_{2}\right) *\left(q_{2} * r_{2}\right)\right) T,\right. \\
&\left.\left(\left(\left(p_{3} * r_{3}\right) * r_{3}\right) *\left(q_{3} * r_{3}\right)\right) I,\left(\left(\left(p_{4} * r_{4}\right) * r_{4}\right) *\left(q_{4} * r_{4}\right)\right) F\right) \\
& \in \mathcal{N}(I, J),
\end{aligned}
$$

and so $\left(\left(p_{i} * r_{i}\right) * r_{i}\right) *\left(q_{i} * r_{i}\right) \in I$ and $\left(\left(p_{j} * r_{j}\right) * r_{j}\right) *\left(q_{j} * r_{j}\right) \in J$ for $i=1,2$ and $j=3$, 4. it follows from (10) that $p_{i} * r_{i} \in I$ and $p_{j} * r_{j} \in J$ for $i=1,2$ and $j=3,4$. Hence

$$
\begin{aligned}
\tilde{p} \bullet \tilde{r} & =\left(p_{1}, p_{2} T, p_{3} I, p_{4} F\right) \boxtimes\left(r_{1}, r_{2} T, r_{3} I, r_{4} F\right) \\
& =\left(p_{1} * r_{1},\left(p_{2} * r_{2}\right) T,\left(p_{3} * r_{3}\right) I,\left(p_{4} * r_{4}\right) F\right) \in \mathcal{N}(I, J) .
\end{aligned}
$$

Therefore $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.
Corollary 1. If I is a BCI-positive implicative ideal of U, then $\mathcal{N}(I)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.

Theorem 3. Let I and J be ideals of U which satisfies the following condition.

$$
\begin{equation*}
(\forall p, q \in U)(((p * q) * q) *(0 * q) \in I \cap J \Rightarrow p * q \in I \cap J) \tag{13}
\end{equation*}
$$

Then $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.
Proof. Obviously $\tilde{0} \in \mathcal{N}(I, J)$. Let $\tilde{p}=\left(p_{1}, p_{2} T, p_{3} I, p_{4} F\right), \tilde{q}=\left(q_{1}, q_{2} T, q_{3} I, q_{4} F\right)$ and $\tilde{r}=\left(r_{1}, r_{2} T, r_{3} I\right.$, $\left.r_{4} F\right)$ be elements of $\mathcal{N}(U)$ such that $\tilde{r} \in \mathcal{N}(I, J)$ and $((\tilde{p} \boxtimes \tilde{q}) \boxtimes \tilde{q}) \boxtimes(\tilde{r} \boxtimes \tilde{q}) \in \mathcal{N}(I, J)$. Then $r_{1}, r_{2} \in I$, $r_{3}, r_{4} \in J$ and

$$
\begin{aligned}
&((\tilde{p} \boxminus \tilde{q}) \boxtimes \tilde{q}) \boxtimes(\tilde{r} \boxminus \tilde{q})=\left(\left(\left(p_{1} * q_{1}\right) * q_{1}\right) *\left(r_{1} * q_{1}\right),\left(\left(\left(p_{2} * q_{2}\right) * q_{2}\right) *\left(r_{2} * q_{2}\right)\right) T,\right. \\
&\left.\left(\left(\left(p_{3} * q_{3}\right) * q_{3}\right) *\left(r_{3} * q_{3}\right)\right) I,\left(\left(\left(p_{4} * q_{4}\right) * q_{4}\right) *\left(r_{4} * q_{4}\right)\right) F\right) \\
& \in \mathcal{N}(I, J),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left(\left(p_{i} * q_{i}\right) * q_{i}\right) *\left(r_{i} * q_{i}\right) \in I \text { and }\left(\left(p_{j} * q_{j}\right) * q_{j}\right) *\left(r_{j} * q_{j}\right) \in J \tag{14}
\end{equation*}
$$

for $i=1,2$ and $j=3,4$. Note that

$$
\begin{aligned}
& \left(\left(\left(p_{k} * q_{k}\right) * q_{k}\right) *\left(0 * q_{k}\right)\right) *\left(\left(\left(p_{k} * q_{k}\right) * q_{k}\right) *\left(r_{k} * q_{k}\right)\right) \\
& \leq\left(r_{k} * q_{k}\right) *\left(0 * q_{k}\right) \leq r_{k} * 0=r_{k}
\end{aligned}
$$

for $k=1,2,3,4$ by (I), (1) and (4). Since I and J are ideals of U, it follows that

$$
\begin{align*}
& \left(\left(\left(p_{i} * q_{i}\right) * q_{i}\right) *\left(0 * q_{i}\right)\right) *\left(\left(\left(p_{i} * q_{i}\right) * q_{i}\right) *\left(r_{i} * q_{i}\right)\right) \in I, \\
& \left(\left(\left(p_{j} * q_{j}\right) * q_{j}\right) *\left(0 * q_{j}\right)\right) *\left(\left(\left(p_{j} * q_{j}\right) * q_{j}\right) *\left(r_{j} * q_{j}\right)\right) \in J \tag{15}
\end{align*}
$$

for $i=1,2$ and $j=3,4$. Combining (14) and (15), we get

$$
\left(\left(p_{i} * q_{i}\right) * q_{i}\right) *\left(0 * q_{i}\right) \in I \text { and }\left(\left(p_{j} * q_{j}\right) * q_{j}\right) *\left(0 * q_{j}\right) \in J
$$

for $i=1,2$ and $j=3,4$. Using (13) implies that $p_{i} * q_{i} \in I$ and $p_{j} * q_{j} \in J$ for $i=1,2$ and $j=3,4$. Thus

$$
\begin{aligned}
\tilde{p} \boxtimes \tilde{q} & =\left(p_{1}, p_{2} T, p_{3} I, p_{4} F\right) \boxtimes\left(q_{1}, q_{2} T, q_{3} I, q_{4} F\right) \\
& =\left(p_{1} * q_{1},\left(p_{2} * q_{2}\right) T,\left(p_{3} * q_{3}\right) I,\left(p_{4} * q_{4}\right) F\right) \in \mathcal{N}(I, J)
\end{aligned}
$$

Therefore $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.
Corollary 2. Let I be an ideal of U which satisfies the following condition.

$$
\begin{equation*}
(\forall p, q \in U)(((p * q) * q) *(0 * q) \in I \Rightarrow p * q \in I) \tag{16}
\end{equation*}
$$

Then $\mathcal{N}(I)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.
Theorem 4. Let I and J be ideals of U which satisfies the following condition.

$$
\begin{equation*}
(\forall p, q, r \in U)(((p * r) *(q * r)) * r \in I \cap J \Rightarrow(p * q) * r \in I \cap J) \tag{17}
\end{equation*}
$$

Then $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.
Proof. Suppose that $((p * q) * q) *(0 * q) \in I \cap J$ for all $p, q \in U$. Then $((p * q) *(0 * q)) * q=$ $((p * q) * q) *(0 * q) \in I \cap J$, which implies from (17) and (1) that $p * q=(p * 0) * q \in I \cap J$. Therefore $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$ by Theorem 3.

Corollary 3. Let I be an ideal of U which satisfies the following condition.

$$
\begin{equation*}
(\forall p, q, r \in U)(((p * r) *(q * r)) * r \in I \Rightarrow(p * q) * r \in I) \tag{18}
\end{equation*}
$$

Then $\mathcal{N}(I)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.
Theorem 5. Let I and J be subsets of U such that

$$
\begin{align*}
& 0 \in I \cap J \tag{19}\\
& (\forall p, q, r \in U)((((p * q) * q) *(0 * q)) * r \in I \cap J, r \in I \cap J \Rightarrow p * q \in I \cap J) \tag{20}
\end{align*}
$$

Then $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.

Proof. If we take $q=0$ in (20) and use (1) and (III), then

$$
(\forall p, r \in U)(p * r \in I \cap J, r \in I \cap J \Rightarrow p \in I \cap J)
$$

Hence I and J are ideals of U. Assume that $((p * q) * q) *(0 * q) \in I \cap J$ for all $p, q \in U$. Then

$$
(((p * q) * q) *(0 * q)) * 0=((p * q) * q) *(0 * q) \in I \cap J
$$

It follows from (19) and (20) that $p * q \in I \cap J$. Consequently, $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$ by Theorem 3.

Corollary 4. Let I be a subset of U such that

$$
\begin{align*}
& 0 \in I \tag{21}\\
& (\forall p, q, r \in U)((((p * q) * q) *(0 * q)) * r \in I, r \in I \Rightarrow p * q \in I) \tag{22}
\end{align*}
$$

Then $\mathcal{N}(I)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.
Theorem 6. Let I, J, G and H be ideals of U such that $G \subseteq I$ and $H \subseteq J$. If G and H are BCI-positive implicative ideals of U, then $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.

Proof. Let $p, q, r \in U$ be such that $((p * q) * q) *(0 * q) \in I \cap J$. Then

$$
\begin{aligned}
& (((p *(((p * q) * q) *(0 * q))) * q) * q) *(0 * q) \\
& =(((p * q) * q) *(0 * q)) *(((p * q) * q) *(0 * q)) \\
& =0 \in G \cap H
\end{aligned}
$$

and so $(p * q) *(((p * q) * q) *(0 * q))=(p *(((p * q) * q) *(0 * q))) * q \in G \cap H \subseteq I \cap J$ since G and H are BCI-positive implicative ideals of U. Thus $p * q \in I \cap J$, and therefore $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$ by Theorem 3.

Corollary 5. Let I and G be ideals of U such that $G \subseteq I$. If G is a BCI-positive implicative ideal of U, then $\mathcal{N}(I)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.

Theorem 7. Let I, J, G and H be ideals of U such that $G \subseteq I, H \subseteq J$ and

$$
\begin{equation*}
(\forall p, q \in U)(((p * q) * q) *(0 * q) \in G \cap H \Rightarrow p * q \in G \cap H) \tag{23}
\end{equation*}
$$

Then $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.
Proof. Let $p, q, r \in U$ be such that $r \in G \cap H$ and $((p * q) * q) *(r * q) \in G \cap H$. Since

$$
(((p * q) * q) *(0 * q)) *(((p * q) * q) *(r * q)) \leq(r * q) *(0 * q) \leq r * 0=r \in G \cap H
$$

we have $((p * q) * q) *(0 * q) \in G \cap H$. It follows from (23) that $p * q \in G \cap H$. Hence G and H are BCI-positive implicative ideals of U, and therefore $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$ by Theorem 6.

Corollary 6. Let I and G be ideals of U such that $G \subseteq I$ and

$$
\begin{equation*}
(\forall p, q \in U)(((p * q) * q) *(0 * q) \in G \Rightarrow p * q \in G) \tag{24}
\end{equation*}
$$

Then $\mathcal{N}(I)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.

Theorem 8. Let I, J, G and H be ideals of U such that $G \subseteq I, H \subseteq J$ and

$$
\begin{equation*}
(\forall p, q \in U)(((p * r) *(q * r)) * r \in G \cap H \Rightarrow(p * q) * r \in G \cap H) \tag{25}
\end{equation*}
$$

Then $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.
Proof. Let $p, q \in U$ be such that $((p * q) * q) *(0 * q) \in G \cap H$. Then

$$
((p * q) *(0 * q)) * q=((p * q) * q) *(0 * q) \in G \cap H
$$

It follows from (25) and (1) that $p * q=(p * 0) * q \in G \cap H$. Hence $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$ by Theorem 7 .

Proof. If we put $q=0$ and $r=q$ in (25), then we have the condition (23). Hence $\mathcal{N}(I, J)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$ by Theorem 7.

Corollary 7. Let I and G be ideals of U such that $G \subseteq I$ and

$$
\begin{equation*}
(\forall p, q \in U)(((p * r) *(q * r)) * r \in G \Rightarrow(p * q) * r \in G) \tag{26}
\end{equation*}
$$

Then $\mathcal{N}(I)$ is a neutrosophic quadruple BCI-positive implicative ideal of $\mathcal{N}(U)$.

4. Conclusions

By considering an entry (i.e., a number, an idea, an object, etc.) which is represented by a known part (a) and an unknown part $(b T, c I, d F)$ where T, I, F have their usual neutrosophic logic meanings and a, b, c, d are real or complex numbers, Smarandache have introduced the concept of neutrosophic quadruple numbers. Using the notion of neutrosophic quadruple numbers based on a set (instead of real or complex numbers), Jun et al. have constructed neutrosophic quadruple BCK/BCI-algebras and implicative neutrosophic quadruple BCK-algebras. In this manuscript, we have introduced the concept of a neutrosophic quadruple BCI-positive implicative ideal, and investigated several properties. We have discussed relations between neutrosophic quadruple ideal and neutrosophic quadruple BCI-positive implicative ideal. Given nonempty subsets I and J of a BCI-algebra U, we have provided conditions for the neutrosophic quadruple (I, J)-set to be a neutrosophic quadruple BCI-positive implicative ideal. In the forthcoming research and papers, we will continue these ideas and will define new notions in several algebraic structures.

Author Contributions: These authors contributed equally to this work. All authors have read and approved the final manuscript for submission.
Funding: The second author, Seok-Zun Song, was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1D1A1B02006812).
Acknowledgments: We would like to thank anonymous reviewers for their very careful reading and valuable comments and suggestions.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Iséki, K. On BCI-algebras. Math. Semin. Notes 1980, 8, 125-130.
2. Iséki, K.; Tanaka, S. An introduction to the theory of BCK-algebras. Math. Jpn. 1978, 23, 1-26.
3. Borumand Saeid, A.; Jun, Y.B. Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points. Ann. Fuzzy Math. Inform. 2017, 14, 87-97. [CrossRef]
4. Jun, Y.B. Neutrosophic subalgebras of several types in BCK/BCI-algebras. Ann. Fuzzy Math. Inform. 2017, 14, 75-86.
5. Jun, Y.B.; Kim, S.J.; Smarandache, F. Interval neutrosophic sets with applications in BCK/BCI-algebra. Axioms 2018, 7, 23. [CrossRef]
6. Jun, Y.B.; Smarandache, F.; Bordbar, H. Neutrosophic \mathcal{N}-structures applied to BCK/BCI-algebras. Information 2017, 8, 128. [CrossRef]
7. Jun, Y.B.; Smarandache, F.; Song, S.Z.; Khan, M. Neutrosophic positive implicative \mathcal{N}-ideals in BCK/BCI-algebras. Axioms 2018, 7, 3. [CrossRef]
8. Khan, M.; Anis, S.; Smarandache, F.; Jun, Y.B. Neutrosophic \mathcal{N}-structures and their applications in semigroups. Ann. Fuzzy Math. Inform. 2017, 14, 583-598.
9. Öztürk, M.A.; Jun, Y.B. Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points. J. Int. Math. Virtual Inst. 2018, 8, 1-17.
10. Song, S.Z.; Smarandache, F.; Jun, Y.B. Neutrosophic commutative \mathcal{N}-ideals in BCK-algebras. Information 2017, 8, 130. [CrossRef]
11. Smarandache, F. Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information \& Learning; American Research Press: Rehoboth, DE, USA, 1998; 105p. Available online: http://fs.gallup.unm.edu/ eBook-neutrosophics6.pdf (accessed on 27 March 2019).
12. Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability; American Reserch Press: Rehoboth, NM, USA, 1999.
13. Smarandache, F. Neutrosophic set-A generalization of the intuitionistic fuzzy set. Int. J. Pure Appl. Math. 2005, 24, 287-297.
14. Smarandache, F. Neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, and the multiplication of neutrosophic quadruple numbers. Neutrosophic Sets Syst. 2015, 10, 96-98.
15. Jun, Y.B.; Song, S.Z.; Smarandache, F.; Bordbar, H. Neutrosophic quadruple BCK/BCI-algebras. Axioms 2018, 7, 41. [CrossRef]
16. Muhiuddin, G.; Al-Kenani, A.N.; Roh, E.H.; Jun, Y.B. Implicative neutrosophic quadruple BCK-algebras and ideals. Symmetry 2019, 11, 277. [CrossRef]
17. Huang, Y. BCI-Algebra; Science Press: Beijing, China, 2006.
18. Liu, Y.L.; Xu, Y.; Meng, J. BCI-implicative ideals of BCI-algebras. Inform. Sci. 2007, 177, 4987-4996. [CrossRef]
19. Liu, Y.L.; Zhang, X.H. Characterization of weakly positive implicative BCI-algebras. J. Hanzhong Teach. Coll. 1994, 1, 4-8.
20. Meng, J.; Jun, Y.B. BCK-Algebras; Kyungmoonsa Co.: Seoul, Korea, 1994.
21. Neutrosophy, Neutrosophic and Applications. Availiable online: http://fs.gallup.unm.edu/neutrosophy. htm (accessed on 27 March 2019)
