Neutrosophic Semi α -Baire Spaces

 R. Vijayalakshmi*, A. Savitha Mary** S. Anjalmose**
 * Department of Mathematics, Arignar Anna Government Arts College, Namakkal-2, Tamilnadu, India.Email:viji_lakshmi80@rediffmail.com
 ** Department of Mathematics, St. Joseph's College of Arts &Science(Autonomous), Manjakuppam, Cuddalore-607001, Tamilnadu, India. Email: savitha.mary139@gmail.com, ansalmose@gmail.com

Abstract

In this paper, we introduced the concept of Neutrosophic Semi α -Baire space and some of its characterizations of Neutrosophic Semi α -Baire spaces are also studied. Here we have included several examples to illustrate the concepts.

Keywords: Neutrosophic semi α -open set, Neutrosophic semi α -nowhere dense set, Neutrosophic semi α -first category, Neutrosophic semi α -second category and Neutrosophic semi α -Baire spaces

1. Introduction and Preliminaries

The fuzzy set was introduced by L.A. Zadeh [15] in 1965, where each element had a degree of membership. The intuitionstic fuzzy set (Ifs for short) on a universe X was introduced by K. Atanassov [2, 3,4] in 1983 as a generalization of fuzzy set, where besides the degree of membership and the degree of nonmembership of each element. The idea of "neutrosophic set" was first given by Smarandache [8,10]. Neutrosophic operations have been investigated by A.A.Salama at el. [1]. A.A.Salama and S.A.Alblowi presented the concept of Neutrosophic Topological Spaces[12].In 2000 G.B. Navalagi presented the idea of semi α -open sets in topological spaces[9].The concept of Neutrosophic semi α -open sets was given by Qays Haten Imran and Smarandache in 2017[11].The concept of Baire space in fuzzy setting was introduced and studied by G.Thangaraj and S. Anjalmose [14].The idea of neutrosophic Baire spaces are introduced by R. Dhavaseelan, S. Jafari , R. Narmada Devi, Md. Hanif [7].

Definition 1.1. [7] A neutrosophic topology (NT) on a nonempty set X is a family T of neutrosophic sets in X satisfying the following axioms:

(i) 0_N , $1_N \in T$,

(ii) $G_1 \cap G_2 \in T$ for any $G_1, G_2 \in T$.

(iii) $\bigcup G_i$ for arbitrary family $\{G_i | i \in \Lambda \}$.

In this case the ordered pair (X, T) or simply X is called a neutrosophic Topological Space (briefly NTS) and each Neutrosophic set in T is called a neutrosophic open set (briefly NOS). The complement A of a NOS A in X is called a neutrosophic closed set (briefly NCS) in X.

Definition 1.2. [7] Let A be a neutrosophic set in a neutrosophic topological space X. Then

Nint(A) = $\cup \{G \mid G \text{ is neutrosophic open set in } X \text{ and } G \subseteq A \}$ is called the neutrosophic interior of A; Ncl(A) = $\cap \{G \mid G \text{ is neutrosophic closed set in } X \text{ and } G \supseteq A \}$ is called the neutrosophic closure of A.

Definition 1.3:[11] A neutrosophic set A in a neutrosophic topological space X is said to a neutrosophic Semi Open set (NSOS) if $A \subseteq Ncl(N \text{ int}(A))$ and neutrosophic Semi Closed set (NSCS) if $N \text{ int}(Ncl(A)) \subseteq A$.

Definition 1.4:[11] Let A be a neutrosophic set in a neutrosophic topological space X. Then

NSint(A) = $\cup \{G \mid G \text{ is neutrosophic semi open set in } X \text{ and } G \subseteq A \}$ is called the neutrosophic interior of A;

NScl(A) = $\cap \{G \mid G \text{ is neutrosophic semi closed set in } X \text{ and } G \supseteq A \}$ is called the neutrosophic closure of A;

Result: 1.1: Let A be a neutrosophic set in a neutrosophic topological space X. Then

 $NScl(A) = A \cup N int(Ncl(A))$ $NSint(A) = A \cap Ncl(N int(A))$

Definition 1.7: [11] A neutrosophic set A in a neutrosophic topological space X is said to a Neutrosophic α -Open set(N α OS) if $A \subseteq Nint(Ncl(Nint(A)))$ and Neutrosophic α -Closed set (N α CS) if $Ncl(Nint(Ncl(A))) \supseteq A$

Definition 1.8:[11] Let A be a neutrosophic set in a neutrosophic topological space X. Then

Naint(A) = $\bigcup \{G \mid G \text{ is neutrosophic } \alpha - \text{open set in } X \text{ and } G \subseteq A \}$ is called the neutrosophic interior of A;

Nacl(A) = $\cap \{G \mid G \text{ is neutrosophic } \alpha - closed \text{ set in } X \text{ and } G \supseteq A \}$ is called the neutrosophic closure of A;

Result: 1.2 Let A be a neutrosophic set in a neutrosophic topological space X. Then

 $N\alpha cl(A) = A \cup Ncl(Nint(Ncl(A)))$ $N\alpha int(A) = A \cap Nint(Ncl(Nint(A)))$

Definition 1.9:[11] A neutrosophic subset A in a neutrosophic topological space (X,T) is said to a Neutrosophic Semi- α -Open set(NS α -OS) if there exist a NS α -OS B in T such that B \subseteq A \subseteq Ncl(B) or equivalently if $A \subseteq Ncl(N\alpha int(A))$ and Neutrosophic α -Closed set (NS α CS) if Nint(N α cl(A)) $\supseteq A$.

Definition 1.10:[11] Let A be a neutrosophic set in a neutrosophic topological space X. Then

 $NS\alpha int(A) = \bigcup \{G \mid G \text{ is neutrosophic semi } \alpha - open \text{ set in } X \text{ and } G \subseteq A \}$ is called the neutrosophic interior of A;

NS α cl(A) = $\cap \{G \mid G \text{ is neutrosophic semi } \alpha - closed \text{ set in } X \text{ and } G \supseteq A \}$ is called the neutrosophic closure of A;

Result: 1.3 Let A be a neutrosophic set in a neutrosophic topological space X. Then

 $NS\alpha cl(A) = A \cup Nint(Ncl(Nint(Ncl(A))))$ $NS\alpha int(A) = A \cap Ncl(Nint(Ncl(Nint(A))))$

2. Neutrosophic Semi α -nowhere dense sets

Definition 2.1.: A Neutrosophic set A in Neutrosophic topological space (X; T) is called Neutrosophic semi nowhere dense if there exists no non-zero Neutrosophic semi open set B in (X; T) such that $B \subset NScl(A)$. That is NS int(NScl(A)) = 0_N

Definition 2.2: Let (X, T) be a neutrosophic topological space. A neutrosophic set A in (X, T) is called Neutrosophic semi first category if $A = \bigcup_{i=1}^{\infty} A_i$ where A_i's are neutrosophic semi nowhere dense sets in (X, T). Any other neutrosophic set in (X, T) is said to be of neutrosophic semi second category.

Definition 2.3: A neutrosophic set A in neutrosophic topological space (X, T) is called neutrosophic α -dense if there exists no neutrosophic α -Closed set B in (X, T) such that $A \subset B \subset 1_N$. That is $N\alpha cl(A) = 1_N$

Definition 2.4 A Neutrosophic set A in Neutrosophic topological space (X, T) is called Neutrosophic α -nowhere dense if there exists no non-zero Neutrosophic α -open set B in (X, T) such that $B \subset N\alpha cl(A)$.

That is $N\alpha$ int($N\alpha cl(A)$) = 0_N

Definition 2.5 A neutrosophic set A in neutrosophic topological space (X, T) is called Neutrosophic Semi α nowhere dense if there exists no non-zero neutrosophic semi α - open set B in (X, T) such that $B \subset NSacl(A)$.
That is $NSaint(NSacl(A)) = 0_N$.

Example 2.1: Let $X = \{x\}$. Define the Neutrosophic set A, B, C and D on X as follows:

 $A = \langle x, 0.5, 0.5, 0.4 \rangle$; $B = \langle x, 0.4, 0.6, 0.8 \rangle$; $C = \langle x, 0.4, 0.5, 0.8 \rangle$ and $D = \langle x, 0.5, 0.6, 0.4 \rangle$ Then the families $T = \{0_N, 1_N, A, B, C, D\}$ is neutrosophic topology on X. Thus (X, T) is a Neutrosophic topological space. Now the sets $\overline{B}, \overline{D}$, are neutrosophic semi α -nowhere dense set

Definition 2.6 A neutrosophic set A in a neutrosophic topological space (X,T) is called neutrosophic Semi- α -dense if there exists no fuzzy Semi- α -closed set B in (X,T) such that $A \subset B \subset 1_N$. That is NS α cl(A) =1_N.

Example 2.2: Let $X = \{x\}$. Define the Neutrosophic set A, B, C and D on X as follows:

 $A = \langle x, 0.5, 0.5, 0.4 \rangle$; $B = \langle x, 0.4, 0.6, 0.8 \rangle$; $C = \langle x, 0.4, 0.5, 0.8 \rangle$ and $D = \langle x, 0.5, 0.6, 0.4 \rangle$ Then the families $T = \{0_N, 1_N, A, B, C, D\}$ is neutrosophic topology on X. Thus (X, T) is a Neutrosophic topological space. Now the sets B, D are neutrosophic semi α -dense set.

Proposition 2.1. If A is a Neutrosophic semi nowhere dense set in (X, T), then \overline{A} is a Neutrosophic semi α - dense set in (X, T)

Definition 2.7. Let (X, T) be a neutrosophic topological space. A neutrosophic set A in (X, T) is called

neutrosophic Semi α -first category set if $A = \bigcup_{i=1}^{\infty} A_i$, where A_i 's are neutrosophic Semi α - nowhere dense sets in (X, T). A neutrosophic set which is not Semi α -first category is called a neutrosophic Semi α -second category set in (X, T).

Example 2.3: Let X = {a, b}. Define the Neutrosophic set A, B and C on X as follows: $A = \left\langle x, \left(\frac{a}{0.2}, \frac{b}{0.4}\right), \left(\frac{a}{0.2}, \frac{b}{0.4}\right), \left(\frac{a}{0.5}, \frac{b}{0.6}\right) \right\rangle B = \left\langle x, \left(\frac{a}{0.6}, \frac{b}{0.2}\right), \left(\frac{a}{0.6}, \frac{b}{0.2}\right), \left(\frac{a}{0.3}, \frac{b}{0.4}\right) \right\rangle$

$$C = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.4}\right), \left(\frac{a}{0.3}, \frac{b}{0.4}\right), \left(\frac{a}{0.4}, \frac{b}{0.4}\right) \right\rangle$$

Then the families $T = \{0_N, 1_N, A, B, A \cup B\}$ is neutrosophic topology on X. Thus (X, T) is a Neutrosophic topological space. Now the sets $\overline{B}, \overline{A \cup B}$ are Neutrosophic α -nowhere dense sets in (X, T) and $(\overline{B}) \cup (\overline{A \cup B}) = \overline{B}, \overline{B}$ is neutrosophic Semi α -first category set.

Proposition 2.2. Let (X, T) be a neutrosophic topological space. If A is a neutrosophic α -dense set in (X, T), then A is neutrosophic semi α -dense in (X, T).

Proof: Let (X, T) be a neutrosophic topological space. If A is a neutrosophic α -dense implies that N α cl(A) = 1_N. That is $A \cup Ncl(Nint(Ncl(A))) = 1_N$. Clearly $Ncl(Nint(Ncl(A))) = 1_N$. Now $Nint(Ncl(Nint(Ncl(A)))) = Nint(1_N) = 1_N$. So $\cup Nint(Ncl(Nint(Ncl(A)))) = A \cup 1_N = 1_N$. This implies $NS\alpha cl(A) = 1_N$. Hence A is Neutrosophic semi α -dense in (X, T).

Proposition 2.3. Let (X, T) be a neutrosophic topological space. If A is a neutrosophic semi-dense set in (X, T), then A is neutrosophic semi α -dense in (X, T).

Proof: Let (X, T) be a neutrosophic topological space. If A is a neutrosophic semi dense implies that NScl(A) = 1_N . That is $A \cup (Nint(Ncl(A))) = 1_N$. Clearly $(Ncl(A)) = 1_N$. Now $Nint(Ncl(Nint(Ncl(A)))) = Nint(1_N) = 1_N$. So $A \cup Nint(Ncl(Nint(Ncl(A)))) = A \cup 1_N = 1_N$. This implies $NSacl(A) = 1_N$. Hence A is Neutrosophic semi α -dense in (X, T).

Proposition 2.4. Let (X, T) be a neutrosophic topological space. If A is a neutrosophic α - nowhere dense set in (X, T), then A is neutrosophic semi α - nowhere dense in (X, T) only if $A \subseteq B$ where B is not open.

Proof: Let (X, T) be a neutrosophic topological space. If A is a neutrosophic α - nowhere dense, there exist no neutrosophic α - open set $B \neq 0$ such that $B \subset N\alpha cl(A)$. Since B is not neutrosophic α - open $N\alpha int(B) \neq B$. So $Ncl(N\alpha int(B)) \neq Ncl(B)$. Clearly $B \not\subset Ncl(B)$. Therefore $B \not\subset Ncl(N\alpha int(B))$. This implies B is not neutrosophic semi α - open. Now $B \subset N\alpha cl(A)$ gives $A \cup Ncl\left(Nint(Ncl(A))\right) \supset B$. That is either $A \supset B$ or $Ncl\left(Nint(Ncl(A))\right) \supset B$. Suppose that $Ncl\left(Nint(Ncl(A))\right) \supset B$ then $A \subseteq B$. Since B is not α -open $Nint(Ncl\left(Nint(Ncl(A))\right) \supset Nint(B) \supset B$. So $Nint(Ncl\left(Nint(Ncl(A))\right) \supset B$. A \cup $Nint(Ncl\left(Nint(Ncl(A))\right) \supset A \cup B = B$. This implies $NS\alpha cl(A) \supset B$. Hence A is neutrosophic semi α - nowhere dense in (X, T).

Proposition 2.5: If A is a neutrosophic semi-nowhere dense set in a neutrosophic topological space (X, T) then $NSaint(A) = 0_N$

Proof: Let A be a Neutrosophic semi-nowhere dense set in (X, T). Then, we have NSint (NScl (A)) = 0_N .

Now $A \subseteq NScl(A)$ we have $NSint(A) \subseteq NSint(NScl(A)) = 0_N$. Hence $NSint(A) = 0_N$. That is $A \cap Ncl(Nint(A)) = 0_N$. This implies $Ncl(Nint(A)) = 0_N$. So we have $A \cap Ncl(Nint(Ncl(Nint(A)))) = 0_N$.

Hence $NSaint(A) = 0_N$

Proposition 2.6: If A is a neutrosophic α -nowhere dense set in a neutrosophic topological space (X, T) then $NS\alpha int(A) = 0_N$

Proof: Let A be a neutrosophic α -nowhere dense set in (X, T). Then, we have N α int (N α cl (A)) = 0_N.

Now $A \subseteq N\alpha cl(A)$ we have $N\alpha int(A) \subseteq N\alpha int(N\alpha cl(A))=0_N$. Hence $N\alpha int(A)=0_N$.

That is $A \cap Nint(Ncl(Nint(A))) = 0_N$. This implies $Nint(Ncl(Nint(A))) = 0_N$.

So we have $A \cap Ncl(Nint(Ncl(Nint(A)))) = 0_N$. Hence $NSaint(A) = 0_N$

Proposition 2.7:[1] For any neutrosophic subset A of a neutrosophic topological space (X, T), then

(i) Nint(NSaint(A)) = NSaint(Nint(A)) = Nint(A)(ii) Naint(NSaint(A)) = NSaint(aNint(A)) = Naint(A)

Proposition 2.8 Let (X, T) be a neutrosophic topological space. If A is a neutrosophic semi α -nowhere dense set and neutrosophic α -closed set in (X, T), then A is a neutrosophic α -nowhere dense set in (X, T).

Proof: Let A be a neutrosophic semi α -nowhere dense set in (X, T), then by proposition (2.6), $NS\alpha int(A) = 0_N$. Now $N\alpha int(NS\alpha int(A)) = N\alpha int(0_N) = 0_N$. By proposition (2.7), for a neutrosophic subset A

 $N\alpha int(NS\alpha int(A)) = NS\alpha int(N\alpha int(A)) = N\alpha int(A)$, this implies $N\alpha int(A) = 0_N$. Here A is neutrosophic α -closed set and so $N\alpha cl(A) = A \Rightarrow N\alpha int(N\alpha cl(A)) = N\alpha int(A) = 0_N$

Hence A is a neutrosophic α -nowhere dense set in (X, T).

Proposition 2.9: Let (X, T) be a neutrosophic topological space. If A is a neutrosophic semi α -nowhere dense set and neutrosophic closed set in (X, T), then A is a neutrosophic nowhere dense set in (X, T).

Proof: Let A be a neutrosophic semi α -nowhere dense set in (X, T), then by proposition (2.6), $NS\alpha int(A) = 0_N$. Now $Nint(NS\alpha int(A)) = Nint(0_N) = 0_N$. By proposition (2.7), for a neutrosophic subset A

Naint(NSaint(A)) = NSaint(Nint(A)) = Nint(A), this implies $Nint(A) = 0_N$. Here A is neutrosophic closed set and so $Ncl(A) = A \Rightarrow Nint(Ncl(A)) = Nint(A) = 0_N$

Hence A is a neutrosophic nowhere dense set in (X, T).

3. Neutrosophic Semi *α*-Baire space

Motivated by the concept of neutrosophic Baire space introduced in [9] we shall now define:

Definition 3.1. Let (X, T) be a neutrosophic topological space. Then (X, T) is called a Neutrosophic Semi α -Baire space if $NS\alpha \operatorname{int}\left(\bigcup_{i=1}^{\infty} A_i\right) = 0_N$, where A*i*'s are neutrosophic semi α - nowhere dense sets in (X,T).

Example 3.1: Let $X = \{a, b\}$. Define the Neutrosophic set A, B,C and D on X as follows:

$$A = \left\langle x, \left(\frac{a}{0.5}, \frac{b}{0.2}\right), \left(\frac{a}{0.5}, \frac{b}{0.2}\right), \left(\frac{a}{0.3}, \frac{b}{0.4}\right) \right\rangle, B = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.4}\right), \left(\frac{a}{0.3}, \frac{b}{0.4}\right), \left(\frac{a}{0.6}, \frac{b}{0.5}\right) \right\rangle, C = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.4}\right), \left(\frac{a}{0.3}, \frac{b}{0.4}\right), \left(\frac{a}{0.5}, \frac{b}{0.2}\right) \right\rangle, D = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.4}\right), \left(\frac{a}{0.5}, \frac{b}{0.4}\right), \left(\frac{a}{0.5}, \frac{b}{0.2}\right) \right\rangle$$

Then the family $T = \{0_N, 1_N, A, B, A \cup B\}$ is neutrosophic topology on X. Thus (X, T) is a Neutrosophic topological space. Now the sets $\overline{A}, \overline{A \cup B}$ are Neutrosophic semi α -nowhere dense sets in (X, T) and $NS\alpha \operatorname{int}[(\overline{A}) \cup (\overline{A \cup B})] = NS\alpha \operatorname{int}(D) = 0_N$, Hence the neutrosophic topological space (X,T) is neutrosophic semi α -Baire space.

Proposition 3.2:

Every neutrosophic Baire space is neutrosophic semi α -Baire space.

Example 3.2

Let $X = \{a, b\}$. Define the Neutrosophic set A, B and C on X as follows:

$$A = \left\langle x, \left(\frac{a}{0.2}, \frac{b}{0.4}\right), \left(\frac{a}{0.2}, \frac{b}{0.4}\right), \left(\frac{a}{0.5}, \frac{b}{0.6}\right) \right\rangle, B = \left\langle x, \left(\frac{a}{0.6}, \frac{b}{0.2}\right), \left(\frac{a}{0.6}, \frac{b}{0.2}\right), \left(\frac{a}{0.3}, \frac{b}{0.4}\right) \right\rangle, C = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.4}\right), \left(\frac{a}{0.3}, \frac{b}{0.4}\right), \left(\frac{a}{0.4}, \frac{b}{0.4}\right) \right\rangle,$$

Then the family $T = \{0_N, 1_N, A, B, A \cup B\}$ is neutrosophic topology on X. Thus (X, T) is a Neutrosophic topological space. Now the sets $\overline{B}, \overline{A \cup B}$ are Neutrosophic nowhere dense and Neutrosophic semi α -nowhere dense sets in (X, T).

Here $N \operatorname{int}[(\overline{B}) \cup (\overline{A \cup B})] = N \operatorname{int}(\overline{A \cup B}) = 0_N$. Hence the neutrosophic topological space (X,T) is Neutrosophic Baire space.

But $NS\alpha \operatorname{int}[(\overline{B}) \cup (\overline{A \cup B})] = NS\alpha \operatorname{int}(\overline{A \cup B}) = 0_N$ So the neutrosophic topological space (X,T) is Neutrosophic semi α -Baire space

Proposition 3.3: Every neutrosophic semi α -Baire space in not to be a neutrosophic Baire space.

Consider the **example 3.1**:

The sets $A, A \cup B$ are Neutrosophic nowhere dense sets in (X, T), But

$$N \operatorname{int}[(A) \cup (A \cup B)] = N \operatorname{int}(D) \neq 0_N.$$

Hence the neutrosophic topological space (X, T) is not neutrosophic Baire space.

Proposition 3.4: Every neutrosophic semi α -Baire space in not to be a neutrosophic Baire space.

Consider the **example 3.1**:

The sets $\overline{A}, \overline{A \cup B}$ are Neutrosophic semi nowhere dense sets in (X, T), But

$$NS \operatorname{int}[(\overline{A}) \cup (\overline{A \cup B})] = NS \operatorname{int}(D) \neq 0_N.$$

Hence the neutrosophic topological space (X, T) is not neutrosophic Semi Baire space

References

[1] S. A. Alblowi, A. A. Salama and Mohmed Eisa, New Concepts of Neutrosophic Sets, International Journal of Mathematics and Computer Applications Research (IJMCAR), Vol. 3, Issue 3, Oct (2013) 95-102.

[2] K. Atanassov, intuitionistic fuzzy sets, in V.Sgurev, ed., Vii ITKRS Session, Sofia(June 1983 central Sci. and Techn. Library, Bulg. Academy of Sciences(1984)).

[3] K. Atanassov, intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986)87-96.

[4] K. Atanassov, Review and new result on intuitionistic fuzzy sets, preprint IM-MFAIS-1-88, Sofia, 1988.

[5] C.L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968)182-1 90.

[6] Dogan Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems.
88(1997)81-89. [6] Reza Saadati, Jin HanPark, On the intuitionistic fuzzy topological space, Chaos, Solitons and Fractals 27(2006)331-344.

[7] R. Dhavaseelan, 2S. Jafari ,3R. Narmada Devi, 4Md. Hanif Page, Neutrosophic Baire Spaces, Neutrosophic Sets and Systems, Vol. 16, 2017

[8] Florentin Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA(2002), <u>smarand@unm.edu</u>

[9]G.B.Navalagi. Definition bank in general topology. Topology Atlas Preprint #449, 2000.

[10] F. Smarandache. A Unifying Field in Logics:Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press,

[11]Qays Haten Imran, F.Samarandache,Riad K. Al-Hamido and Dhavaseelan,On Neutrosophic Semi Alpha Open Sets,NSS,18/2017(37-42)

[12]A.A. Salama and S.A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces, ISORJ. Mathematics, Vol.(3), Issue(3), (2012) pp-31-35.

[13]A.A. Salama and S.A. Alblowi, "Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces," Journal Computer Sci. Engineering, Vol. (2) No. (7) (2012)pp 129-132.

[14] G.Thangaraj and S.Anjalmose, On Fuzzy Baire space, J. Fuzzy Math. Vol.21 (3), (2013) 667-676.

[15] L.A. Zadeh, Fuzzy Sets, Inform and Control 8(1965)338-353