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ABSTRACT

In this paper we introduce the concepts of neutrosophic upper and neutrosophic lower semi-continuous

multifunctions and study some of their basic properties.
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1 INTRODUCTION

There is no doubt that the theory of multifunctions plays an important role in functional

analysis and fixed point theory. It also has a wide range of applications in economic theory,

decision theory, non-cooperative games, artificial intelligence, medicine and information sci-

ences. Inspired by the research works of Smarandache (1999; 2001; 2007), we introduce

and study the notions of neutrosophic upper and neutrosophic lower semi-continuous mul-

tifunctions in this paper. Further, we present some characterizations and properties of such

notions.
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2 PRELIMINARIES

Throughout this paper, by (X, τ) or simply by X we will mean a topological space in the

classical sense, and (Y, τ1) or simply Y will stand for a neutrosophic topological space as

defined by Salama and Alblowi (2012).

Definition 1. Smarandache (1999, 2001, 2007) Let X be a non-empty fixed set. A neutro-

sophic set A is an object having the form A =< x, µA(x), σA(x), γA(x) >, where µA(x), σA(x)

and γA(x) are represent the degree of member ship function, the degree of indeterminacy, and

the degree of non-membership, respectively of each element x ∈ X to the set A.

Definition 2. (Salama & Alblowi, 2012) A neutrosophic topology on a nonempty set X is

a family τ of neutrosophic subsets of X which satisfies the following three conditions:

1. 0, 1 ∈ τ ,

2. If g, h ∈ τ , their g ∧ h ∈ τ ,

3. If fi ∈ τ for each i ∈ I, then ∨i∈Ifi ∈ τ .

The pair (X, τ) is called a neutrosophic topological space.

Definition 3. Members of τ are called neutrosophic open sets, denoted by NO(X), and com-

plement of neutrosophic open sets are called neutrosophic closed sets, where the complement

of a neutrosophic set A, denoted by Ac, is 1− A.

Neutrosophic sets in Y will be denoted by λ, γ, δ, ρ, etc., and although subsets of X will

be denoted by A,B, U, V , etc. A neutrosophic point in Y with support y ∈ Y and value

α(0 < α ≤ 1) is denoted by yα. A neutrosophic set λ in Y is said to be quasi-coincident

(q-coincident) with a neutrosophic set µ, denoted by λqµ, if and only if there exists y ∈ Y
such that λ(y)+µ(y) > 1. A neutrosophic set λ of Y is called a neutrosophic neighbourhood

of a fuzy point yα in Y if there exists a neutrosophic open set µ in Y such that yα ∈ µ ≤ λ.

The intersection of all neutrosophic closed sets of Y containing λ is called the neutrosophic

closure of λ and is denoted by Cl(λ). The union of all neutrosophic open sets contained

in λ is called the neutrosophic interior of λ and is denoted by Int(λ). The family of all

open sets of a topological space X is denoted by O(X) and O(X, x) denoted the family

{A ∈ O(X)|x ∈ A}, where x is a point of X.

Definition 4. Let (X, τ) be a topological space in the classical sense and (Y, τ1) be an neu-

trosophic topological space. F : (X, τ)→ (Y, τ1) is called a neutrosophic multifunction if and

only if for each x ∈ X,F (x) is a neutrosophic set in Y .
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Definition 5. For a neutrosophic multifunction F : (X, τ) → (Y, τ1), the upper inverse

F+(λ) and lower inverse F−(λ) of a neutrosophic set λ in Y are defined as follows:

F+(λ) = {x ∈ X|F (x) ≤ λ} and F−(λ) = {x ∈ X|F (x)qλ}.

Lemma 1. For a neutrosophic multifunction F : (X, τ) → (Y, τ1), we have F−(1 − λ) =

X − F+(λ), for any neutrosophic set λ in Y .

3 NEUTROSOPHIC SEMICONTINUOUS MULTI–

FUNCTIONS

Definition 6. A neutrosophic multifunction F : (X, τ)→ (Y, τ1) is said to be

1. neutrosophic upper semicontinuous at a point x ∈ X if for each λ ∈ NO(Y ) containing

F (x) (therefore, F (x) ≤ λ), there exists U ∈ O(X, x) such that F (U) ≤ λ (therefore

U ⊂ F+(λ)).

2. neutrosophic lower semicontinuous at a point x ∈ X if for each λ ∈ NO(Y ) with

F (x)qλ, there exists U ∈ O(X, x) such that U ⊆ F−(λ).

3. neutrosophic upper semicontinuous (neutrosophic lower semicontinuous) if it is neutro-

sophic upper semicontinuous (neutrosophic lower semicontinuous) at each point x ∈ X.

Theorem 1. The following assertions are equivalent for a neutrosophic multifunction F :

(X, τ)→ (Y, τ1):

1. F is neutrosophic upper semicontinuous;

2. For each point x of X and each neutrosophic neighbourhood λ of F (x), F+(λ) is a

neighbourhood of x;

3. For each point x of X and each neutrosophic neighbourhood λ of F (x), there exists a

neighbourhood U of x such that F (U) ≤ λ;

4. F+(λ) ∈ O(X) for oeach λ ∈ NO(Y );

5. F−(δ) is a closed set in X for each neutrosophic closed set δ of Y ;

6. Cl(F−(µ)) ⊆ F−(Cl(µ)) for each neutrosophic set µ of Y .

Proof. (1)⇒(2) Let x ∈ X and µ be a neutrosophic neighbourhood of F (x). Then there

exists λ ∈ NO(Y ) such that F (x) ≤ λ ≤ µ, By (1), there exists U ∈ O(X, x) such that

F (U) ≤ λ. Therefore x ∈ U ⊆ F+(µ) and hence F+(µ) is a neighbourhood of x.

(2)⇒(3) Let x ∈ X and λ be a neutrosophic neighbourhood of F (x). Put U = F+(λ). Then
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by (2), U is neighbourhood of x and F (U) =
∨
x∈U

F (x) ≤ λ.

(3)⇒(4) Let λ ∈ NO(Y ), we want to show that F+(λ) ∈ O(X). So let x ∈ F+(λ).

Then there exists a neighbourhood G of x such that F (G) ≤ λ. Therefore for some U ∈
O(X, x), U ⊆ G and F (U) ≤ λ. Therefore we get x ∈ U ⊆ F+(λ) and hence F+(λ) ∈ O(X).

(4)⇒(5) Let δ be a neutrosophic closed set in Y . So, we have X\F−(δ) = F+(1−δ) ∈ O(X)

and hence F−(δ) is closed set in X.

(5)⇒(6) Let µ be any neutrosophic set in Y . Since Cl(µ) is neutrosophic closed set in Y ,

F−(Cl(µ)) is closed set in X and F−(µ) ⊆ F−(Cl(µ)). Therefore, we obtain Cl(F−(µ)) ⊆
F−(Cl(µ)).

(6)⇒(1) Let x ∈ X and λ ∈ NO(Y ) with F (x) ≤ λ. Now F−(1−λ) = {x ∈ X|F (x)q(1−λ)}.
So, for x not belongs to F−(1−λ). Then, we must have F (x)~(1−λ) and this implies F (x) ≤
1− (1− λ) = λ which is true. Therefore x /∈ F−(1− λ) by (6), x /∈ Cl(F−(1− λ)) and there

exists U ∈ O(X, x) such that U∩F−(1−λ) = ∅. Therefore, we obtain F (U) =
∨
x∈U

F (x) ≤ λ.

This proves F is neutrosophic upper semicontinuous.

Theorem 2. The following statements are equivalent for a neutrosophic multifunction F :

(X, τ)→ (Y, τ1):

1. F is neutrosophic lower semicontinuous;

2. For each λ ∈ NO(Y ) and each x ∈ F−(λ), there exists U ∈ O(X, x) such that U ⊆
F−(λ);

3. F−(λ) ∈ O(X) for every λ ∈ NO(Y ).

4. F+(δ) is a closed set in X for every neutrosophic closed set δ of Y ;

5. Cl(F+(µ)) ⊆ F+(Cl(µ)) for every neutrosophic set µ of Y ;

6. F (Cl(A)) ≤ Cl(F (A)) for every subset A of X;

Proof. (1)⇒(2) Let λ ∈ NO(Y ) and x ∈ F−(λ) with F (x)qλ. Then by properties–1, there

exists U ∈ O(X, x) such that U ⊆ F−(λ).

(2)⇒(3) Let λ ∈ NO(Y ) adn x ∈ F−(λ). Then by (2), there exists U ∈ O(X, x) such

that U ⊆ F−(λ). Therefore, we have x ∈ U ⊆ Cl Int(U) ⊆ Cl Int(F−(λ)) and hence

F−(λ) ∈ O(X).

(3)⇒(4) Let δ be a neutrosophic closed in Y . So we have X\F+(δ) = F−(1 − δ) ∈ O(X)

and hence F+(δ) is closed set in X.

(4)⇒(5) Let µ be any neutrosophic set in Y . Since Cl(µ) is neutrosophic closed set in Y ,

then by (4), we have F+(Cl(µ)) is closed set in X and F+(µ) ⊆ F+(Cl(µ)). Therefore, we

obtain Cl(F+(µ)) ⊆ F+(Cl(µ)).

(5)⇒(6) Let A be any subset of X. By (5), Cl(A) ⊆ ClF+(F (A)) ⊆ F+(Cl(F (A))).
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Therefore we obtain Cl(A) ⊆ F+(ClF (A)). This implies that F (Cl(A)) ≤ ClF (A).

(6)⇒(5) Let µ be any neutrosophic set in Y . By (6), F (ClF+(µ)) ≤ Cl(F (F+(µ))) and

hence Cl(F+(µ)) ⊆ F+(Cl(F (F+(µ)))) ⊆ F+(Cl(µ)). Therefore Cl(F+(µ)) ⊆ F+(Cl(µ)).

(5)⇒(1) Let x ∈ X and λ ∈ NO(Y ) with F (x)qλ. Now, F+(1−λ) = {x ∈ X|F (x) ≤ 1−λ}.
So, for x not belongs to F+(1−λ), then we have F (x) � 1−λ and this implies that F (x)qλ.

Therefore, x /∈ F+(1−λ). Since 1−λ is neutrosophic closed set in Y , by (5), x /∈ Cl(F+(1−λ))

and there exists U ∈ O(X, x) such that ∅ = U ∩ F+(1 − λ) = U ∩ (X\F−(λ)). Therefore,

we obtain U ⊆ F−(λ). This proves F is neutrosophic lower semicontinuous.

Definition 7. For a given neutrosophic multifunction F : (X, τ) → (Y, τ1), a neutrosophic

multifunction Cl(F ) : (X, τ)→ (Y, τ1) is defined as (ClF )(x) = ClF (x) for each x ∈ X.

We use ClF and the following Lemma to obtain a characterization of lower neutrosophic

semicontinuous multifunction.

Lemma 2. If F : (X, τ)→ (Y, τ1) is a neutrosophic multifunction, then (ClF )−(λ) = F−(λ)

for each λ ∈ NO(Y ).

Proof. Let λ ∈ NO(Y ) and x ∈ (ClF )−(λ). This means that (ClF )(x)qλ. Since λ ∈
NO(Y ), we have F (x)qλ and hence x ∈ F−(λ). Therefore (ClF )−(λ) ⊆ F−(λ)−−− (∗).

Conversely, let x ∈ F−(λ) since λ ∈ NO(Y ) then F (x)qλ ⊆ (ClF )(x)qλ and hence

x ∈ (ClF )−(λ). Therefore F−(λ) ⊆ (ClF )−(λ)−−−−(∗∗).
From (∗) and (∗∗), we get (ClF )−(λ) = F−(λ).

Theorem 3. A neutrosophic multifunction F : (X, τ)→ (Y, τ1) is neutrosophic lower semi-

continuous if and only if ClF : (X, τ)→ (Y, τ1) is neutrosophic lower semicontinuous.

Proof. Suppose F is neutrosophic lower semicontinuous. Let λ ∈ NO(Y ) and F (x)qλ. This

means that x ∈ F−(λ). Then there exists U ∈ O(X, x) such that U ⊆ F−(λ). Therefore, we

have x ∈ U ⊆ Int(U) ⊆ IntF−(λ) and hence F−(λ) ∈ O(X). Then by Lemma 2, we have

U ⊆ F−(λ) = (ClF )−(λ) and (ClF )−(λ) ∈ O(X), and hence (ClF )(x)qλ. Therefore ClF is

fuzy lower semicontinuous. Conversely, suppose ClF is neutrosophic lower semicontinuous.

If for each λ ∈ NO(Y ) with (ClF )(x)qλ and x ∈ (ClF )−(λ) then there exists U ∈ O(X, x)

such that U ⊆ (ClF )−(λ). By Lemma 2 and Theorem 2, we have U ⊆ (ClF−(λ)) = F−(λ)

and F−(λ) ∈ O(X). Therefore F is neutrosophic lower semicontinuous.

Definition 8. Given a family {Fi : (X, τ)→ (Y, σ) : i ∈ I} of neutrosophic multifunctions,

we define the union ∨
i∈I
Fi and the intersection ∧

i∈I
Fi as follows: ∨

i∈I
Fi : (X, τ) → (Y, σ),

( ∨
i∈I
Fi)(x) = ∨

i∈I
Fi(x) and ∧

i∈I
Fi : (X, τ)→ (Y, σ), ( ∧

i∈I
Fi)(x) = ∧

i∈I
Fi(x).

Theorem 4. If Fi : X → Y are neutrosophic upper semi-continuous multifunctions for

i = 1, 2, ..., n, then
n
∨
i∈I
Fi is a neutrosophic upper semi-continuous multifunction.
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Proof. Let A be a neutrosophic open set of Y . We will show that (
n
∨
i∈I
Fi)

+(A) = {x ∈ X :

n
∨
i∈I
Fi(x) ⊂ A} is open in X. Let x ∈ (

n
∨
i∈I
Fi)

+(A). Then Fi(x) ⊂ A for i = 1, 2, ..., n. Since

Fi : X → Y is neutrosophic upper semi-continuous multifunction for i = 1, 2, ..., n, then

there exists an open set Ux containing x such that for all z ∈ Ux, Fi(z) ⊂ A. Let U =
n
∪
i∈I
Ux.

Then U ⊂ (
n
∨
i∈I
Fi)

+(A). Thus, (
n
∨
i∈I
Fi)

+(A) is open and hence
n
∨
i∈I
Fi is a neutrosophic upper

semi-continuous multifunction.

Lemma 3. Let {Ai}i∈I be a family of neutrosophic sets in a neutrosophic topological space

X. Then a neutrosophic point x is quasi-coincident with ∨Ai if and only if there exists an

i0 ∈ I such that xqAi0.

Theorem 5. If Fi : X → Y are neutrosophic lower semi-continuous multifunctions for

i = 1, 2, ..., n, then
n
∨
i∈I
Fi is a neutrosophic lower semi-continuous multifunction.

Proof. Let A be a neutrosophic open set of Y . We will show that (
n
∨
i∈I
Fi)
−(A) = {x ∈ X :

(
n
∨
i∈I
Fi)(x)qA} is open in X. Let x ∈ (

n
∨
i∈I
Fi)
−(A). Then (

n
∨
i∈I
Fi)(x)qA and hence Fi0(x)qA

for an i0. Since Fi : X → Y is neutrosophic lower semi-continuous multifunction, there

exists an open set Ux containing x such that for all z ∈ U , Fi0(z)qA. Then (
n
∨
i∈I
Fi)(z)qA and

hence U ⊂ (
n
∨
i∈I
Fi)
−(A). Thus, (

n
∨
i∈I
Fi)
−(A) is open and hence

n
∨
i∈I
Fi is a neutrosophic lower

semi-continuous multifunction.

Theorem 6. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction and {Ui : i ∈ I} be an

open cover for X. Then the following are equivalent:

1. Fi = F|Ui
is a neutrosophic lower semi-continuous multifunction for all i ∈ I,

2. F is neutrosophic lower semi-continuous.

Proof. (1)⇒ (2): Let x ∈ X and A be a neutrosophic open set in Y with x ∈ F−(A). Since

{Ui : i ∈ I} is an open cover for X, then x ∈ Ui0 for an i0 ∈ I. We have F (x) = Fi0(x) and

hence x ∈ F−i0 (A). Since F|Ui0 is neutrosophic lower semi-continuous, there exists an open

set B = G ∩ Ui0 in Ui0 such that x ∈ B and F−(A) ∩ Ui0 = F|Ui
(A) ⊃ B = G ∩ Ui0, where

G is open in X. We have x ∈ B = G∩Ui0 ⊂ F−|Ui0
(A) = F−(A)∩Ui0 ⊂ F−(A). Hence, F is

neutrosophic lower semi-continuous.

(2) ⇒ (1): Let x ∈ X and x ∈ Ui. Let A be a neutrosophic open set in Y with Fi(x)qA.

Since F is lower semi-continuous and F (x) = Fi(x), there exists an open set U containing

x such that U ⊂ F−(A). Take B = Ui ∩ U . Then B is open in Ui containing x. We have

B ⊂ F−i(A). Thus Fi is a neutrosophic lower semi-continuous.

Theorem 7. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction and {Ui : i ∈ I} be an

open cover for X. Then the following are equivalent:
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1. Fi = F|Ui
is a neutrosophic upper semi-continuous multifunction for all i ∈ I,

2. F is neutrosophic upper semi-continuous.

Proof. It is similar to that of Theorem 6.

Remark 8. A subset A of a topological space (X, τ) can be considered as a neutrosophic set

with characteristic function defined by

A(x) =

{
1 if x ∈ A

0 if x /∈ A.

Let (Y, σ) be a neutrosophic topological space. The neutrosophic sets of the form A×B with

A ∈ τ and B ∈ σ form a basis for the product neutrosophic topology τ × σ on X × Y , where

for any (x, y) ∈ X × Y , (A×B)(x, y) = min{A(x), B(y)}.

Definition 9. For a neutrosophic multifunction F : (X, τ)→ (Y, σ), the neutrosophic graph

multifunction GF : X → X × Y of F is defined by GF (x) = x1 × F (x) for every x ∈ X.

Theorem 9. If the neutrosophic graph multifunction GF of a neutrosophic multifunction

F : (X, τ) → (Y, σ) is neutrosophic lower semi-continuous, then F is neutrosophic lower

semi-continuous.

Proof. Suppose that GF is neutrosophic lower semi-continuous and x ∈ X. Let A be a

neutrosophic open set in Y such that F (x)qA. Then there exists y ∈ Y such that (F (x))(y)+

A(y) > 1. Then (GF (x))(x, y) + (X ×A)(x, y) = (F (x))(y) +A(y) > 1. Hence, GF (x)q(X ×
A). SinceGF is neutrosophic lower semi-continuous, there exists an open setB inX such that

x ∈ B and GF (b)q(X×A) for all b ∈ B. Let there exists b0 ∈ B such that F (b0)qA. Then for

all y ∈ Y , (F (b0))(y)+A(y) < 1. For any (a, c) ∈ X×Y , we have (GF (b0))(a, c) ⊂ (F (b0))(c)

and (X × A)(a, c) ⊂ A(c). Since for all y ∈ Y , (F (b0))(y) + A(y) < 1, (GF (b0))(a, c) +

(X × A)(a, c) < 1. Thus, GF (b0)q(X × A), where b0 ∈ B. This is a contradiction since

GF (b)q(X × A) for all b ∈ B. Hence, F is neutrosophic lower semi-continuous.

Theorem 10. If the neutrosophic graph multifunction GF of a neutrosophic multifunction

F : X → Y is neutrosophic upper semi-continuous, then F is neutrosophic upper semi-

continuous.

Proof. Suppose that GF is neutrosophic upper semi-continuous and let x ∈ X. Let A be

neutrosophic open in Y with F (x) ⊂ A. Then GF (x) ⊂ X × A. Since GF is neutrosophic

upper semi-continuous, there exists an open set B containing x such that GF (B) ⊂ X × A.

For any b ∈ B and y ∈ Y , we have (F (b))(y) = (GF (b))(b, y) ⊂ (X ×A)(b, y) = A(y). Then

(F (b))(y) ⊂ A(y) for all y ∈ Y . Thus, F (b) ⊂ A for any b ∈ B. Hence, F is neutrosophic

upper semi-continuous.
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Theorem 11. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction. Then the following

are equivalent:

1. F is neutrosophic lower semi-continuous,

2. For any x ∈ X and any net (xi)i∈I converging to x in X and each neutrosophic open

set B in Y with x ∈ F−(B), the net (xi)i∈I is eventually in F−(B).

Proof. (1) ⇒ (2): Let (xi) be a net converging to x in X and B be any neutrosophic open

set in Y with x ∈ F−(B). Since F is neutrosophic lower semi-continuous, there exists an

open set A ⊂ X containing x such that A ⊂ F−(B). Since xi → x, there exists an index

i0 ∈ I such that xi ∈ A for every i ≥ i0. We have xi ∈ A ⊂ F−(B) for all i ≥ i0. Hence,

(xi)i∈I is eventually in F−(B).

(2)⇒ (1): Suppose that F is not neutrosophic lower semi-continuous. There exists a point

x and a neutrosophic open set A with x ∈ F−(A) such that B * F−(A) for any open set

B ⊂ X containing x. Let xi ∈ B and xi /∈ F−(A) for each open set B ⊂ X containing x.

Then the neighborhood net (xi) converges to x but (xi)i∈I is not eventually in F−(A). This

is a contradiction.

Theorem 12. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction. Then the following

are equivalent:

1. F is neutrosophic upper semi-continuous,

2. For any x ∈ X and any net (xi) converging to x in X and any neutrosophic open set

B in Y with x ∈ F+(B), the net (xi) is eventually in F+(B).

Proof. The proof is similar to that of Theorem 11.

Theorem 13. The set of all points of X at which a neutrosophic multifunction F : (X, τ)→
(Y, σ) is not neutrosophic upper semi-continuous is identical with the union of the frontier

of the upper inverse image of neutrosophic open sets containing F (x).

Proof. Suppose F is not neutrosophic upper semi-continuous at x ∈ X. Then there exists

a neutrosophic open set A in Y containing F (x) such that A ∩ (X\F+(B)) 6= ∅ for every

open set A containing x. We have x ∈ Cl(X\F+(B)) = X\ Int(F+(B)) and x ∈ F+(B).

Thus, x ∈ Fr(F+(B)). Conversely, let B be a neutrosophic open set in Y containing F (x)

with x ∈ Fr(F+(B)). Suppose that F is neutrosophic upper semi-continuous at x. There

exists an open set A containing x such that A ⊂ F+(B). We have x ∈ Int(F+(B)). This is

a contradiction. Thus, F is not neutrosophic upper semi-continuous at x.

Theorem 14. The set of all points of X at which a neutrosophic multifunction F : (X, τ)→
(Y, σ) is not neutrosophic lower semi-continuous is identical with the union of the frontier

of the lower inverse image of neutrosophic closed sets which are quasi-coincident with F (x).

Florentin Smarandache, Surapati Pramanik (Editors)

352



Proof. It is similar to that of Theorem 13.

Definition 10. A neutrosophic set λ of a neutrosophic topological space Y is said to be

neutrosophic compact relative to Y if every cover {λα}α∈∆ of λ by neutrosophic open sets of

Y has a finite subcover {λi}ni=1 of λ.

Definition 11. A neutrosophic set λ of a neutrosophic topological space Y is said to be

neutrosophic Lindelof relative to Y if every cover {λα}α∈∆ of λ by neutrosophic open sets of

Y has a countable subcover {λn}n∈N of λ.

Definition 12. A neutrosophic topological space Y is said to be neutrosophic compact if χY

(characteristic function of Y ) is neutrosophic compact relative to Y .

Definition 13. A neutrosophic topological space Y is said to be neutrosophic Lindelof if χY

(characteristic function of Y ) is neutrosophic Lindelof relative to Y .

Definition 14. A neutrosophic multifunction F : (X, τ) → (Y, τ1) is said to be punctually

neutrosophic compact (resp. punctually neutrosophic Lindelof) if for each x ∈ X,F (x) is

neutrosophic compact (resp. neutrosophic Lindelof).

Theorem 15. Let the neutrosophic multifunction F : (X, τ) → (Y, τ1) be a neutrosophic

upper semicontinuous and F is punctually neutrosophic compact. If A is compact relative to

X, then F (A) is neutrosophic compact relative to Y .

Proof. Let {λα|α ∈ ∆} be any cover of F (Z) by neutrosophic copen sets of Y . We claim

that F (A) is neutrosophic compact relative to Y . For each x ∈ A, there exists a finite subset

∆(x) of ∆ such that F (x) ≤ ∪{λα|α ∈ ∆(x)}. Put λ(x) = ∪{λα|α ∈ ∆(x)}. Then F (x) ≤
λ(x) ∈ NO(Y ) and there exists U(x) ∈ O(X, x) such that F (U(x)) ≤ λ(x). Since {U(x)|x ∈
A} is an open cover of A there exists a finite number of A, say, x1, x2, .., xn such that

A ⊆ ∪{U(xi)|i = 1, 2, .., n}. Therefore we obtain F (A) ≤ F (
n
∪
i=1

U(xi)) ≤
n
∪
i=1

F (U(xi)) ≤
n
∪
i=1

λ(xi) ≤
n
∪
i=1

( ∪
α∈∆(xi)

λα). This shows that F (A) is neutrosophic compact relative to Y .

Theorem 16. Let the neutrosophic multifunction F : (X, τ) → (Y, τ1) be a neutrosophic

upper semicontinuous and F is punctually neutrosophic Lindelof. If A is Lindelof relative to

X, then F (A) is neutrosophic Lindelof relative to Y .

Proof. The proof is similar to that of Theorem 15
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