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NEUTROSOPHIC SET IN INK-ALGEBRA

M. KAVIYARASU, K. INDHIRA 1, AND V. M. CHANDRASEKARAN

ABSTRACT. The notion of neutrosophic INK-Algebra, neutrosophic INK-filter,
neutrosophic near INK-filter, neutrosophic ideal and neutrosophic INK-ideal of
INK-algebra are introduced, and several properties are investigated. Condition
for neutrosophic sets to be neutrosophic INK-filter, neutrosophic near INK-filter,
neutrosophic ideal and neutrosophic INK-ideal of INK-algebra are provided. Re-
lation between neutrosophic sub algebra and neutrosophic INK-ideal are con-
sidered.

1. INTRODUCTION

In 1965 Zadeh introduced the fuzzy set theory, then so many researchers ap-
plied fuzzy set in BCI/BCK-algebras. Also, Atanassov introduced the intuitionis-
tic fuzzy set on the universal set X as generalization of fuzzy set in 1986. Kavi-
yarasu, Indhira and Chandrasekaran introduced a new algebraic structure called
INK-algebra and also, they applied fuzzy set, intuitionistic fuzzy set, Translation
and interval-valued concepts in INK-algebras, see [1–11].

In this paper, the notions of neutrosophic INK-subalgebras, neutrosophic near
INK-filters, neutrosophic INK-filters, neutrosophic ideals, and neutrosophic INK-
ideals of INK-algebras are introduced, and several properties are investigated.

1corresponding author
2010 Mathematics Subject Classification. 03G25,03B52, 03B60.
Key words and phrases. INK-algebra, neutrosophic INK-subalgebra, neutrosophic ideal, neu-

trosophic INK-ideal, neutrosophic INK-filter, neutrosophic near INK-filter.
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Conditions for neutrosophic sets to be neutrosophic INK-subalgebras, neutro-
sophic near INK-filters, neutrosophic INK-filters, neutrosophic ideals, and neu-
trosophic INK-ideals of INK-algebras are provided.

2. PRELIMINARIES

Before we begin our study, we will give the definition and useful properties of
INK-algebras.

Definition 2.1. An algebra (X, ∗, 0) is called a INK-algebra if you meet the ensuing
conditions for every x, y, z ∈ X.
INK-1: ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0 .

INK-2: ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0 .

INK-3: x ∗ 0 = x .

INK-4: x ∗ y = 0 and y ∗ x = 0 imply x = y .

Definition 2.2. A non-empty subset S of a INK-algebra (X, ∗, 0) is said to be a
subalgebra of X,if x ∗ y ∈ S, whenever x, y ∈ X.

Definition 2.3. Let (X, ∗, 0) be a INK-algebra. A nonempty subset I of X is called
an ideal of X if it satisfies

(i) 0 ∈ I ,
(ii) x ∗ y ∈ I and y ∈ I imply x ∈ I for all x, y ∈ X. Any ideal I has the

property that y ∈ I and x ≤ y imply x ∈ I.

Definition 2.4. let I be a non-empty subset of a INK-algebra X. Then I is called a
INK-ideal of X, if

(i) 0 ∈ I .
(ii) ((z ∗ x) ∗ (z ∗ y)) ∈ I and y ∈ I imply x ∈ I for all x, y, z ∈ X.

Definition 2.5. A nonempty subset S of a INK-algebra (X, ∗, 0) is called a near
INK-filter of X if

(i) The constant 0 of X is in S,
(ii) y ∈ S ⇒ x ∗ y ∈ S for all x, y ∈ X.

Definition 2.6. A nonempty subset S of a INK-algebra (X, ∗, 0) is called a INK-
filter of X if
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(i) The constant 0 of X is in S,
(ii) x ∗ y ∈ S, x ∈ S ⇒ y ∈ S for all x, y ∈ X.

3. NEUTROSOPHIC SET IN INK-ALGEBRA

In this section we applied neutrosophic set in INK-algebra.

Definition 3.1. A neutrosophic set ∧ in a nonempty set X is a structure of the
form ∧ = {(x, λT (x), λI(x), λF (x)) |x ∈ X}, where λT : X → [0, 1], is a truth
membership function λI : X → [0, 1] is a indeterminate membership function and
λF : X → [0, 1] is a false membership function.

Definition 3.2. A neutrosophic set ∧ in X is called a neutrosophic INK-subalgebra
of X if it satisfies the following condition, for all x, y, z ∈ X

(i) λT (x ∗ y) ≥ min {λT (x), λT (y)}
(ii) λI(x ∗ y) ≤ max {λI(x), λI(y)}

(iii) λF (x ∗ y) ≥ min {λF (x), λF (y)}.

Definition 3.3. A neutrosophic set ∧ in X is called a neutrosophic near INK-filter
of X if it satisfies the following condition, for all x, y ∈ X.

(i) λT (0) ≥ λT (x), λI(0) ≤ λI(x), and λF (0) ≥ λF (x)

(ii) λT (x ∗ y) ≥ λT (x)

(iii) λI(x ∗ y) ≤ λI(x)

(iv) λF (x ∗ y) ≥ λF (x).

Definition 3.4. A neutrosophic set ∧ in X is called a neutrosophic INK-filter of X
if it satisfies the following condition, for all x, y ∈ X.

(i) λT (0) ≥ λT (x), λI(0) ≤ λI(x), and λF (0) ≥ λF (x).
(ii) λT (y) ≥ min {λT (x ∗ y), λT (x)}

(iii) λI(y) ≤ max {λI(x ∗ y), λI(x)}
(iv) λF (y) ≥ min {λF (x ∗ y), λF (x)}.

Definition 3.5. A neutrosophic set ∧ in X is called a neutrosophic ideal of X if it
satisfies the following condition, for all x, y ∈ X.

(i) λT (0) ≥ λT (x), λI(0) ≤ λI(x), and λF (0) ≥ λF (x)

(ii) λT (x) ≥ min {λT (x ∗ y), λT (y)}
(iii) λI(x) ≤ max {λI(x ∗ y), λI(y)}
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(iv) λF (x) ≥ min {λF (x ∗ y), λF (y)}.

Definition 3.6. A neutrosophic set ∧ in X is called a neutrosophic INK-ideal of X
if it satisfies the following condition, for all x, y ∈ X.

(i) λT (0) ≥ λT (x), λI(0) ≤ λI(x), and λF (0) ≥ λF (x)

(ii) λT (x) ≥ min {λT ((z ∗ x) ∗ (z ∗ y)), λT (y)}
(iii) λI(x) ≤ max {λI((z ∗ x) ∗ (z ∗ y)), λI(y)}
(iv) λF (x) ≥ min {λF ((z ∗ x) ∗ (z ∗ y)), λF (y)}.

Example 1. let X = {0, 1, a, b} be a INK-algebra with a fixed element 0 and a
binary operation ∗ defined by the following Cayley table

∗ 0 1 a b
0 0 0 a a
1 1 0 a a
a a a 0 0
b b a 1 0

We define a neutrosophic ∧ in X as follows

Theorem 3.1. Every neutrosophic INK-subalgebra of X satisfies the conditions
λT (0) ≥ λT (x), λI(0) ≤ λI(x), and λF (0) ≥ λF (x)

Proof. Assume that ∧ is neutrosophic INK-subalgebra of X. Then for all x ∈ X.
λT (0) = λT (x ∗ y) ≥ min {λT (x), λT (x)} = λT (x)

λI(0) = λI(x ∗ y) ≤ max {λI(x), λI(x)} = λI(x)

λF (0) = λF (x ∗ y) ≥ min {λF (x), λF (x)} = λF (x). �

Theorem 3.2. A neutrosophic set ∧ in X is constant if and only if it is a neutro-
sophic INK-ideal of X.

Proof. Assume that ∧ is constant for all x ∈ X.
λT (x) = λT (0), λI(x) = λI(0), and λF (x) = λF (0). Next for all x, y, z ∈ X.
λT (x) = λT (0) = min {λT (0), λT (0)} = min {λT ((z ∗ x) ∗ (z ∗ y)), λT (y)}
λI(x) = λI(0) = max {λI(0), λI(0)} = max {λI((z ∗ x) ∗ (z ∗ y)), λI(y)}
λF (x) = λF (0) = min {λF (0), λF (0)} = min {λF ((z ∗ x) ∗ (z ∗ y)), λF (y)}
Hence,∧ is a neutrosophic INK-ideal of X. conversely, assume that ∧ is a neutro-
sophic INK-ideal of X. For any x ∈ X we have,
λT (x) ≥ min {λT ((x ∗ x) ∗ (x ∗ 0)), λT (0)}
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≥ min {λT (0 ∗ x), λT (y)} ≥ min {λT (0), λT (y)} ≥ λT (0),
λI(x) ≤ max {λI((x ∗ x) ∗ (x ∗ 0)), λI(0)}
≤ max {λI(0 ∗ x), λI(y)} ≤ max {λI(0), λI(y)} ≤ λI(0),
λF (x) ≥ min {λF ((x ∗ x) ∗ (x ∗ 0)), λF (0)}
≥ min {λF (0 ∗ x), λF (y)} ≥ min {λF (0), λF (y)} ≥ λF (0). �

Theorem 3.3. A neutrosophic set ∧ in X is a neutrosophic INK-ideal if and only if
it is a neutrosophic INK-ideal of X.

Proof. Assume that ∧ is neutrosophic INK-ideal for all X. The ∧ is satisfies the
condition λT (0) ≥ λT (x), λI(0) ≤ λI(x) and λF (0) ≥ λF (x) by the theorem 3.2
we we have ∧ constant, then for all x ∈ X.
λT (x) = λT (0), λI(x) = λI(0), and λF (x) = λF (0), thus
λT (x) ≥ min {λT ((z ∗ x) ∗ (z ∗ y)), λT (y)}
put z = 0 and 0 ∗ x = x

≥ min {λT ((0 ∗ x) ∗ (0 ∗ y)), λT (y)}
≥ min {λT (x ∗ y), λT (y)} ,
λI(x) ≤ max {λI((z ∗ x) ∗ (z ∗ y)), λI(y)}
put z = 0 and 0 ∗ x = x

≤ max {λI((0 ∗ x) ∗ (0 ∗ y)), λI(y)}
≤ max {λI(x ∗ y), λI(y)} ,
λF (x) ≥ min {λF ((z ∗ x) ∗ (z ∗ y)), λF (y)}
put z = 0 and 0 ∗ x = x

≥ min {λF ((0 ∗ x) ∗ (0 ∗ y)), λF (y)}
≥ min {λF (x ∗ y), λF (y)} .
Therefore ∧ is a neutrosophic ideal of X .
Conversely, ∧ is a neutrosophic INK-ideal of X . �

Theorem 3.4. Every neutrosophic INK-ideal of X is a neutrosophic INK-filter, if
0 ∗ x = x.

Proof. Assume that ∧ is neutrosophic INK-ideal of X . The ∧ is satisfies the
condition λT (0) ≥ λT (x), λI(0) ≤ λI(x) and λF (0) ≥ λF (x). Let x ∈ X.
λT (y) ≥ min {λT ((z ∗ x) ∗ (z ∗ y)), λT (x)}
put z = 0 and 0 ∗ x = x

≥ min {λT ((0 ∗ x) ∗ (0 ∗ y)), λT (x)}
≥ min {λT (x ∗ y), λT (x)} ,
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λI(y) ≤ max {λI((z ∗ x) ∗ (z ∗ y)), λI(x)}
put z = 0 and 0 ∗ x = x

≤ max {λI((0 ∗ x) ∗ (0 ∗ y)), λI(x)}
≤ max {λI(x ∗ y), λI(x)} ,
λF (y) ≥ min {λF ((z ∗ x) ∗ (z ∗ y)), λF (x)}
put z = 0 and 0 ∗ x = x

≥ min {λF ((0 ∗ x) ∗ (0 ∗ y)), λF (x)}
≥ min {λF (x ∗ y), λF (x)} .
Hence, ∧ is a neutrosophic INK-filter of X . �

Theorem 3.5. Every neutrosophic INK-filter of X is a neutrosophic near INK-filter,
if 0 ∗ x = x.

Proof. Assume that ∧ is neutrosophic INK-filter of X . The ∧ is satisfies the
condition λT (0) ≥ λT (x), λI(0) ≤ λI(x) and λF (0) ≥ λF (x). Let x ∈ X.
λT (x ∗ y) ≥ min {λT (y ∗ (x ∗ y)), λT (y)}
= min {λT (0), λT (y)} = λT (y).
λI(x ∗ y) ≤ max {λI(y ∗ (x ∗ y)), λI(y)}
= max {λI(0), λI(y)} = λI(y).
λF (x ∗ y) ≥ min {λF (y ∗ (x ∗ y)), λF (y)}
= min {λF (0), λF (y)} = λF (y).
Hence, ∧ is a neutrosophic near INK-filter of X . �

Theorem 3.6. Every neutrosophic near INK-filter of X is a neutrosophic near INK-
subalgebra.

Proof. Assume that ∧ is neutrosophic INK-filter of X.
λT (x ∗ y) ≥ λT (y) ≥ min {λT (x), λT (y)}
λI(x ∗ y) ≤ λI(y) ≤ max {λI(x), λI(y)}
λF (x ∗ y) ≥ λF (y) ≥ min {λF (x), λF (y)}
Hence, ∧ a neutrosophic near INK-subalgebra of X. �

Theorem 3.7. If ∧ is a neutrosophic INK-subalgebra of X satisfies the following
condition
x ∗ y 6= 0⇒ (λT (x) ≥ λT (y), λI(x) ≤ λI(y), λF (x) ≥ λF (y)).
Then ∧ is a neutrosophic near INK-filter of X .
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Proof. Assume that ∧ is neutrosophic INK-subalgebra of X (3.7) satisfying the
condition by the Theorem 3.2, we have ∧ satisfies the condition λT (0) ≥ λT (x),

λI(0) ≤ λI(x) and λF (0) ≥ λF (x). Let x, y, z ∈ X.

Case 1: x ∗ y = 0. Then
λT (x ∗ y) = λT (0) ≥ λT (y),

λI(x ∗ y) = λI(0) ≤ λI(y),

λF (x ∗ y) = λF (0) ≥ λF (y).

Case 2: x ∗ y 6= 0. Then
λT (x ∗ y) ≥ min {λT (x), λT (y)} = λT (y),

λI(x ∗ y) ≤ max {λI(x), λT (y)} = λI(y),

λF (x ∗ y) ≥ min {λF (x), λT (y)} = λF (y).

Then ∧ is a neutrosophic near INK-filter of X .

�

Theorem 3.8. If ∧ is a neutrosophic near INK-filter of X satisfies the following
condition λT = λI = λF . Then ∧ is a neutrosophic near INK-filter of X.

Proof. Assume that ∧ is neutrosophic near INK-filter of X satisfies the following
condition λT = λI = λF . Then ∧ satisfies the condition
λT (0) ≥ λT (x), λI(0) ≤ λI(x) and λF (0) ≥ λF (x). Let x, y ∈ X. Then
min {λT (x ∗ y), λT (x)} ≥ min {λT (y), λT (x)}
= min {λT (y), λT (x)} ≤ λT (y),

max {λI(x ∗ y), λI(x)} ≤ max {λI(y), λI(x)}
= max {λI(y), λI(x)} ≤ λI(y),

min {λF (x ∗ y), λF (x)} ≥ min {λF (y), λF (x)}
= min {λF (y), λF (x)} ≤ λF (y),

Hence, ∧ is a neutrosophic near INK-filter of X. �
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