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Abstract. The notion of a neutrosophic subalgebra of a BE-algebra is introduced and consider characterizations

of a neutrosophic subalgebra and a neutrosophic filter. We defined the notion of a neutrosophic mighty filter of

a BE-algebra, and investigated some properties of it. We provide conditions for a neutrosophic filter to be a

neutrosophic mighty filter.

1. Introduction

In 2007, Kim and Kim [6] introduced the notion of a BE-algebra, and investigated several properties. In [1],

Ahn and So introduced the notion of ideals in BE-algebras. They gave several descriptions of ideals in BE-

algebras. Y. B. Jun et. al [4] introduced the notions of hesitant fuzzy subalgebras and hesitant fuzzy filters of

BE-algebras and investigated their relations and properties. J. S. Han et. al [3] defined the notion of hesitant

fuzzy implicative filter of a BE-algebra, and considered some properties of it.

Zadeh [11] introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As a general-

ization of fuzzy sets, Atanassov [2] introduced the degree of nonmembership/falsehood (f) in 1986 and defined

the intuitionistic fuzzy set. Smarandache introduced the degree of indeterminacy/neutrality (i) as independent

component in 1995 (published in 1998) and defined the neutrosophic set on three components (t, i, f) = (truth,

indeterminacy, falsehood). In 2015, neutrosophic set theory is applied to BE-algebra, and the notion of neutro-

sophic filter is introduced [9]. A new definition of neutrosopic filter is established and some basic properties are

presented [12].

In this paper, we introduce the notion of a neutrosophic subalgebra of a BE-algebra and consider characteri-

zations of a neutrosophic subalgebra and a neutrosophic filter. We defined the notion of a neutrosophic mighty

filter of a BE-algebra, and investigated some properties of it. We provide conditions for a neutrosophic filter to

be a neutrosophic mighty filter.

2. Preliminaries

By a BE-algebra ([6]) we mean a system (X; ∗, 1) of type (2, 0) which the following axioms hold:

(BE1) (∀x ∈ X) (x ∗ x = 1),
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(BE2) (∀x ∈ X) (x ∗ 1 = 1),

(BE3) (∀x ∈ X) (1 ∗ x = x),

(BE4) (∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z) (exchange).

We introduce a relation “ ≤ ” on X by x ≤ y if and only if x ∗ y = 1.

A BE-algebra (X; ∗, 1) is said to be transitive if it satisfies: for any x, y, z ∈ X, y ∗ z ≤ (x ∗ y) ∗ (x ∗ z). A
BE-algebra (X; ∗, 1) is said to be self distributive if it satisfies: for any x, y, z ∈ X, x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).
Note that every self distributive BE-algebra is transitive, but the converse is not true in general ([6]).

Every self distributive BE-algebra (X; ∗, 1) satisfies the following properties:

(2.1) (∀x, y, z ∈ X) (x ≤ y ⇒ z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z),
(2.2) (∀x, y ∈ X) (x ∗ (x ∗ y) = x ∗ y),
(2.3) (∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)),

Definition 2.1. Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset of X. Then F is a filter of X

([6]) if

(F1) 1 ∈ F ;

(F2) (∀x, y ∈ X)(x ∗ y, x ∈ F ⇒ y ∈ F ).

F is a mighty filter ([8]) of X if it satisfies (F1) and

(F3) (∀x, y, z ∈ X)(z ∗ (y ∗ x), z ∈ F ⇒ ((x ∗ y) ∗ y) ∗ x ∈ F ).

Theorem 2.2. ([8]) A filter F of a BE-algebra X is mighty if and only if

(2.4) (∀x, y ∈ X)(y ∗ x ∈ F ⇒ ((x ∗ y) ∗ y) ∗ x ∈ F ).

Definition 2.3. Let X be a space of points (objects) with generic elements in X denoted by x. A simple valued

neutrosophic set A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership

function IA(x), and a falsity-membership function FA(x). Then a simple valued neutrosopic set A can be denoted

by

A := {⟨x, TA(x), IA(x), FA(x)⟩|x ∈ X},

where TA(x), IA(x), FA(x) ∈ [0, 1] for each point x in X. Therefore the sum of TA(x), IA(x), and FA(x) satisfies

the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

For convenience, “simple valued neutrosophic set” is abbreviated to “neutrosophic set” later.

Definition 2.4. ([10]) A neutrosophic set A is contained in the other neutrosophic B, denoted by A ⊆ B, if and

only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), and FA(x) ≥ FB(x) for any x ∈ X. Two neutrosophic sets A and B are

equal, written as A = B, if and only if A ⊆ B and B ⊆ A.

Definition 2.5. ([12]) Let A be a neutrosophic set in a BE-algebra X and α, β, γ ∈ [0, 1] with 0 ≤ α+ β+ γ ≤ 3

and an (α, β, γ)-level set of X denoted by A(α,β,γ) is defined as

A(α,β,γ) = {x ∈ X|TA(x) ≥ α, IA(x) ≤ β, FA(x) ≤ γ}.
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3. Neutrosophic subalgebras in BE-algebras

Definition 3.1. A neutrosophic set A in a BE-algebra X is called a neutrosophic subalgebra of X if it satisfies:

(NSS) min{TA(x), TA(y)} ≤ TA(x∗y),max{IA(x), IA(y)} ≥ IA(x∗y), and max{FA(x), FA(y)} ≥ FA(x∗y), for
any x, y ∈ X.

Example 3.2. Let X := {1, a, b, c} be a BE-algebra ([4]) with the following table:

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 1 a 1

Define a neutrosophic set A in X as follows:

TA(x) =

{
0.83, if x ∈ {1, a}
0.13, otherwise,

IA(x) =

{
0.15, if x ∈ {1, a}
0.82, otherwise,

FA(x) =

{
0.15, if x ∈ {1, a}
0.82, otherwise.

It is easy to check that A is a neutrosophic subalgebra of X.

Definition 3.3. ([12]) A neutrosophic set A in a BE-algebra X is called a neutrosophic filter of X if it satisfies:

(NSF1) TA(x) ≤ TA(1), IA(x) ≥ IA(1), and FA(x) ≥ FA(1), for any x ∈ X;

(NSF2) min{TA(x), TA(x∗y)} ≤ TA(y),max{IA(x), IA(x∗y)} ≥ IA(y), and max{FA(x), FA(x∗y)} ≥ FA(y), for

any x, y ∈ X.

Proposition 3.4. Every neutrosophic filter of a BE-algebra X is a neutrosophic subalgebra of X.

Proof. Let A be a neutrosophic filter of X. For any x, y ∈ X, we have min{TA(x), TA(y)} ≤ min{TA(1), TA(y)} =

min{TA(y ∗ (x ∗ y)), TA(y)} ≤ TA(x ∗ y), max{IA(x), IA(y)} ≥ max{IA(1), IA(y)} = max{IA(y ∗ (x ∗ y)), IA(y)} ≥
IA(x ∗ y), and max{FA(x), FA(y)} ≥ max{FA(1), FA(y)} = max{FA(y ∗ (x ∗ y)), FA(y)} ≥ FA(x ∗ y). Hence A is

a neutrosophic subalgebra of X. □

The converse of Proposition 3.4 may not be true in general (see Example 3.5).

Example 3.5. Let X := {1, a, b} be a BE-algebra with the following table:

∗ 1 a b

1 1 a b

a 1 1 a

b 1 1 1
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Define a neutrosophic set A inX as follows: TA = {(1, 0.83), (a, 0.13), (b, 0.16)}, IA = {(1, 0.15), (a, 0.15), (b, 0.82)},
and FA = {(1, 0.15), (a, 0.15), (b, 0.82)}. It is easy to check that A is a neutrosophic subalgebra of X. But it is not

a neutrosophic filter of X, since min{TA(b ∗ a), TA(b)} = min{TA(1), TA(b)} = 0.16 ≰ 0.13 = TA(a).

Theorem 3.6. Let A be a neutrosophic set in a BE-algebra X and let α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3.

Then A is a neutrosophic subalgebra of X if and only if all of (α, β, γ)-level set A(α,β,γ) are subalgebras of X when

A(α,β,γ) ̸= ∅.

Proof. Assume that A is a neutrosophic subalgebra of X. Let α, β, γ ∈ [0, 1] be such that 0 ≤ α+ β + γ ≤ 3 and

A(α,β,γ) ̸= ∅. Let x, y ∈ A(α,β,γ). Then TA(x) ≥ α, TA(y) ≥ α, IA(x) ≤ β, IA(y) ≤ β and FA(x) ≤ γ, FA(y) ≤ γ.

Using (NSS), we have α ≤ min{TA(x), TA(y)} ≤ TA(x ∗ y), β ≥ max{IA(x), IA(y)} ≥ IA(x ∗ y), and γ ≥
max{FA(x), FA(y)} ≥ FA(x ∗ y). Hence x ∗ y ∈ A(α,β,γ). Therefore A(α,β,γ) is a subalgebra of X.

Conversely, all of (α, β, γ)-level set A(α,β,γ) are subalgebras of X when A(α,β,γ) ̸= ∅. Assume that there exist

at, bt, ai, bi ∈ X and af , bf ∈ X such that min{TA(at), TA(bt)} > TA(at ∗ bt),max{IA(ai), IA(bi)} < IA(ai ∗ bi),
and max{FA(af ), FA(bf )} < FA(af ∗ bf ). Then min{TA(at), TA(bt)} ≥ tα1 > TA(at ∗ bt),max{IA(ai), IA(bi)} ≤
tα2 < IA(ai ∗ bi), and max{FA(af ), FA(bf )} ≤ tα3 < FA(af ∗ bf ) for some tα1 ∈ (0, 1], and tα2 , tα3 ∈ [0, 1).

Hence at, bt, ai, bi, af , bf ∈ A(tα1 ,tα2 ,tα3 ), but at ∗ bt, ai ∗ bi, af ∗ bf /∈ A(tα1 ,tα2 ,tα3 ), which is a contradiction. Hence

min{TA(x), TA(y)} ≤ TA(x ∗ y),max{IA(x), IA(y)} ≥ IA(x ∗ y), and max{FA(x), FA(y)} ≥ FA(x ∗ y) for any

x, y ∈ X. Therefore A is a neutrosophic subalgebra of X. □

Since [0, 1] is a completely distributive lattice with respect to the usual ordering, we have the following theorem.

Theorem 3.7. If {Ai|i ∈ N} is a family of neutrosopic subalgebras of a BE-algebra X, then ({Ai|i ∈ N},⊆)

forms a complete distributive lattice.

Proposition 3.8. If A is a neutrosopic subalgebra of a BE-algebra X, then TA(x) ≤ TA(1), IA(x) ≥ IA(1), and

FA(x) ≥ FA(1) for all x ∈ X.

Proof. Straightforward. □

Theorem 3.9. Let A be a neutrosophic subalgebra of a BE-algebra X. If there exists a sequence {an} in X

such that limn→∞ TA(an) = 1, limn→∞ IA(an) = 0, and limn→∞ FA(an) = 0, then TA(1) = 1, IA(1) = 0, and

FA(1) = 0.

Proof. By Proposition 3.8, we have TA(x) ≤ TA(1), IA(x) ≥ IA(1), and FA(x) ≥ FA(1) for all x ∈ X. Hence

we have TA(an) ≤ TA(1), IA(an) ≥ IA(1), and FA(an) ≥ FA(1) for every positive integer n. Therefore 1 =

limn→∞ TA(an) ≤ TA(1) ≤ 1, 0 = limn→∞ IA(an) ≥ IA(1) ≥ 0, and 0 = limn→∞ FA(an) ≥ FA(1) ≥ 0. Thus we

have TA(1) = 1, TA(1) = 0, and FA(1) = 0. □

Proposition 3.10. If every neutrosophic subalgebra A of a BE-algebra X satisfies the condition

(3.1) TA(x ∗ y) ≥ TA(x), IA(x ∗ y) ≤ IA(x), FA(x ∗ y) ≤ FA(x), for any x, y ∈ X,

then TA, IA, and FA are constant functions.
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Proof. It follows from (3.1) that TA(x) = TA(1 ∗ x) ≥ TA(1), IA(x) = IA(1 ∗ x) ≤ IA(1), and FA(x) = FA(1 ∗ x) ≤
FA(1) for any x ∈ X. By Proposition 3.8, we have TA(x) = TA(1), IA(x) = IA(1), and FA(x) = FA(1) for any

x ∈ X. Hence TA, IA, and FA are constant functions. □

Proposition 3.11. Let A be a neutrosophic filter of a BE-algebra X. Then

(i) min{TA(x ∗ (y ∗ z)), TA(y)} ≤ TA(x ∗ z),max{IA(x ∗ (y ∗ z)), IA(y)} ≥ IA(x ∗ z), and max{FA(x ∗ (y ∗
z)), FA(y)} ≥ FA(x ∗ z) for any x, y ∈ X.

(ii) TA(a) ≤ TA((a ∗ x) ∗ x), IA(a) ≥ IA((a ∗ x) ∗ x), and FA(a) ≥ FA((a ∗ x) ∗ x) for any a, x ∈ X.

Proof. (i) Using (BE4) and (NSF2), we have TA(x ∗ z) ≥ min{TA(y ∗ (x ∗ z)), TA(y)} = min{TA(x ∗ (y ∗
z)), TA(y)}, IA(x ∗ z) ≤ max{IA(y ∗ (x ∗ z)), IA(y)} = max{IA(x ∗ (y ∗ z)), IA(y)}, and FA(x ∗ z) ≤ max{FA(y ∗
(x ∗ z)), FA(y)} = max{FA(x ∗ (y ∗ z)), FA(y)} for any x, y ∈ X.

(ii) Taking y := (a ∗ x) ∗ x and x := a in (NSF2), we have TA((a ∗ x) ∗ x) ≥ min{TA(a ∗ ((a ∗ x) ∗ x)), TA(a)} =

min{TA((a∗x)∗ (a∗x)), TA(a)} = min{TA(1), TA(a)} = TA(a), IA((a∗x)∗x) ≤ max{IA(a∗ ((a∗x)∗x)), IA(a)} =

max{IA((a ∗ x) ∗ (a ∗ x)), IA(a)} = max{IA(1), IA(a)} = IA(a), and FA((a ∗ x) ∗ x) ≤ max{FA(a ∗ ((a ∗ x) ∗
x)), FA(a)} = max{FA((a ∗ x) ∗ (a ∗ x)), FA(a)} = max{FA(1), FA(a)} = FA(a) for any a, x ∈ X.

□
Theorem 3.12. ([12]) Let A be a neutrosophic set in a BE-algebra. Then A is a neutrosophic filter of X if and

only if it satisfies (NSF1) and

(3.2) if x ≤ y ∗ z for any x, y ∈ X, then min{TA(x), TA(y)} ≤ TA(z),max{IA(x), IA(y)} ≥ IA(z), and

max{FA(x), FA(y)} ≥ FA(z).

Theorem 3.13. If every neutrosophic set of a BE-algebra X satisfies (NSF1) and Proposition 3.11(i), then it is

a neutrosophic filter of X.

Proof. Taking x := 1 in Proposition 3.11(i) and using (BE3), we get TA(z) = TA(1 ∗ z) ≥ min{TA(1 ∗ (y ∗
z)), TA(y)} = min{TA(y ∗ z), TA(y)}, IA(z) = IA(1 ∗ z) ≤ max{IA(1 ∗ (y ∗ z)), TA(y)} = max{IA(y ∗ z), IA(y)},
and FA(z) = FA(1 ∗ z) ≤ max{FA(1 ∗ (y ∗ z)), FA(y)} = max{FA(y ∗ z), FA(y)} for any y, z ∈ X. Hence A is a

neutrosophic filter of X. □

Corollary 3.14. Let A be a neutrosophic set of a BE-algebra X. Then A is a neutrosophic filter of X if and

only if it satisfies (NSF1) and Proposition 3.11(i).

Theorem 3.15. Let A be a neutrosophic set of a BE-algebra X. Then A is a neutrosophic filter of X if and

only if it satisfies the following conditions:

(i) TA(y ∗ x) ≥ TA(x), IA(y ∗ x) ≤ IA(x), and FA(y ∗ x) ≤ FA(x);

(ii) TA((a∗(b∗x))∗x) ≥ min{TA(a), TA(b)}, IA((a∗(b∗x))∗x) ≤ max{IA(a), IA(b)}, and FA((a∗(b∗x))∗x) ≤
max{FA(a), FA(b)} for any a, b, x ∈ X.

Proof. Assume that A is a neutrosophic filter of X. Using (NSF2), we have TA(y ∗ x) ≥ min{TA(x ∗ (y ∗
x)), TA(x)} = min{TA(1), TA(x)} = TA(x), IA(y ∗ x) ≤ max{IA(x ∗ (y ∗ x)), IA(x)} = max{IA(1), IA(x)} = IA(x),

and FA(y ∗ x) ≤ max{FA(x ∗ (y ∗ x)), FA(x)} = max{FA(1), FA(x)} = FA(x), for any x, y ∈ X. It follows
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from Proposition 3.11 that TA((a ∗ (b ∗ x)) ∗ x) ≥ min{TA((a ∗ (b ∗ x)) ∗ (b ∗ x)), TA(b)} ≥ min{TA(a), TA(b)},
IA((a ∗ (b ∗ x)) ∗ x) ≤ max{IA((a ∗ (b ∗ x)) ∗ (b ∗ x)), IA(b)} ≤ max{IA(a), IA(b)}, and FA((a ∗ (b ∗ x)) ∗ x) ≤
max{FA((a ∗ (b ∗ x)) ∗ (b ∗ x)), FA(b)} ≤ max{FA(a), FA(b)} for any x, a, b ∈ X.

Conversely, assume that A is a neutrosophic set of X satisfying conditions (i) and (ii). Taking y := x in (i),

we have TA(1) = TA(x ∗ x) ≥ TA(x), IA(1) = IA(x ∗ x) ≤ IA(x) and FA(1) = FA(x ∗ x) ≤ FA(x) for any x ∈ X.

Using (ii), we get TA(y) = TA(1 ∗ y) = TA(((x ∗ y) ∗ (x ∗ y)) ∗ y) ≥ min{TA(x ∗ y), TA(x)}, IA(y) = IA(1 ∗ y) =
IA(((x∗y)∗(x∗y))∗y) ≤ max{IA(x∗y), IA(x)}, FA(y) = FA(1∗y) = FA(((x∗y)∗(x∗y))∗y) ≤ max{FA(x∗y), FA(x)}
for any x, y ∈ X. Hence A is a neutrosophic filter of X. □

4. Neutrosophic mighty filters in BE-algebras

Definition 4.1. A neutrosophic set A in a BE-algebra X is called a neutrosophic mighty filter of X if it satisfies

(NSF1) and

(NSF3) min{TA(z ∗ (y ∗ x)), TA(z)} ≤ TA(((x ∗ y) ∗ y) ∗ x)),max{IA(z ∗ (y ∗ x)), IA(z)} ≥ IA(((x ∗ y) ∗ y) ∗ x), and
max{FA(z ∗ (y ∗ x)), FA(z)} ≥ FA(((x ∗ y) ∗ y) ∗ x) for any x, y, z ∈ X.

Example 4.2. Let X := {1, a, b, c, d, 0} be a BE-algebra ([8]) with the following table:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 b c b c

b 1 a 1 b a d

c 1 a 1 1 a a

d 1 1 1 b 1 b

0 1 1 1 1 1 1

Define a neutrosophic set A in X as follows:

TA(x) =

{
0.83, if x ∈ {1, b, c}
0.12, otherwise,

IA(x) =

{
0.14, if x ∈ {1, b, c}
0.81, otherwise,

FA(x) =

{
0.14, if x ∈ {1, b, c}
0.81, otherwise.

It is easy to check that A is a neutrosophic mighty filter of X.

Proposition 4.3. Every neutrosophic mighty filter of a BE-algebra X is a neutrosophic filter of X.

Proof. Let A be a neutrosophic mighty filter ofX. Putting y := 1 in (NSF3), we obtain min{TA(z∗(1∗x)), TA(z)} =

min{TA(z ∗ x), TA(z)} ≤ TA(((x ∗ 1) ∗ 1) ∗ x) = TA(x),max{IA(z ∗ (1 ∗ x)), IA(z)} = max{IA(z ∗ x), IA(z)} ≥
IA(((x∗1)∗1)∗x) = IA(x), and max{FA(z∗(1∗x)), FA(z)} = max{FA(z∗x), FA(z)} ≥ FA(((x∗1)∗1)∗x) = FA(x)

for any x, y, z ∈ X. Hence A is a neutrosophic filter of X. □

The converse of Proposition 4.3 may be not true in general (see Example 4.4).
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Example 4.4. Let X := {1, a, b, c, d} be a BE-algebra ([5]) with the following table:

∗ 1 a b c d

1 1 a b c d

a 1 1 b c d

b 1 a 1 c c

c 1 1 b 1 b

d 1 1 1 1 1

Define a neutrosophic set A in X as follows:

TA(x) =

{
0.84, if x = 1

0.11, otherwise,

IA(x) =

{
0.13, if x = 1

0.81, otherwise,

FA(x) =

{
0.13, if x = 1

0.81, otherwise.

Then A is a neutrosophic filter of X, but not a neutrosophic mighty filter of X, since min{TA(1∗ (c∗a)), TA(1)} =

TA(1) = 0.84 ≰ TA(((a ∗ c) ∗ c) ∗ a) = TA(a) = 0.11.

Theorem 4.5. Any neutrosophic filter A of a BE-algebra X is mighty if and only if it satisfies the following

conditions:

(4.1) TA(y ∗ x) ≤ TA(((x ∗ y) ∗ y) ∗ x), IA(y ∗ x) ≥ IA(((x ∗ y) ∗ y) ∗ x), and FA(y ∗ x) ≥ FA(((x ∗ y) ∗ y) ∗ x) for
any x, y ∈ X.

Proof. Suppose that a neutrosophic filter A of a BE-algebra X satisfies the condition (4.1). Using (NSF2) and

(4.1), we have min{TA(z ∗ (y ∗ x)), TA(z)} ≤ TA(y ∗ x) ≤ TA(((x ∗ y) ∗ y) ∗ x),max{IA(z ∗ (y ∗ x)), IA(z)} ≥
IA(y ∗ x) ≥ IA(((x ∗ y) ∗ y) ∗ x), and max{FA(z ∗ (y ∗ x)), FA(z)} ≥ FA(y ∗ x) ≥ FA(((x ∗ y) ∗ y) ∗ x) for any

x, y ∈ X. Hence A is a neutrosophic mighty filter of X.

Conversely, assume that the neutrosophic filter A of X is mighty. Setting z := 1 in (NSF3), we have min{TA(1∗
(y ∗ x)), TA(1)} = TA(y ∗ x) ≤ TA(((x ∗ y) ∗ y) ∗ x),max{IA(1 ∗ (y ∗ x)), IA(1)} = IA(y ∗ x) ≥ IA(((x ∗ y) ∗ y) ∗ x),
and max{FA(1 ∗ (y ∗ x)), FA(1)} = FA(y ∗ x) ≥ FA(((x ∗ y) ∗ y) ∗ x) for any x, y ∈ X. Hence (4.1) holds. □

Proposition 4.6. Let A be a neutrosophic mighty filter of a BE-algebra X. Denote that XT := {x ∈ X|TA(x) =
TA(1)}, XI := {x ∈ X|IA(x) = IA(1)}, and XF := {x ∈ X|FA(x) = FA(1)}. Then XT , XI , and XF are mighty

filters of X.

Proof. Clearly, 1 ∈ XT , XI , XF . Let z ∗ (y ∗ x), z ∈ XT . Then TA(z ∗ (y ∗ x)) = TA(1), TA(z) = TA(1). Hence

min{TA(z ∗ (y ∗ x)), TA(z)} = TA(1) ≤ TA(((x ∗ y) ∗ y) ∗ x) and so TA((x ∗ y) ∗ y) ∗ x) = TA(1). Therefore

((x ∗ y) ∗ y) ∗ x ∈ XT . Thus XT is a mighty filter of X. Similarly, XI , XF are mighty filters of X. □

Theorem 4.7. Let A,B be neutrosophic filters of a transitive BE-algebra X such that A ⊆ B and TA(1) =

TB(1), IA(1) = IB(1), FA(1) = FB(1). If A is mighty, then B is mighty.
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Proof. Let x, y ∈ X. Since A is a neutrosophic mighty filter of a BE-algebra X, by (4.1) and A⊆B we have

TA(1) = TA(y∗((y∗x)∗x)) ≤ TA(((((y∗x)∗x)∗y)∗y)∗((y∗x)∗x)) ≤ TB(((((y∗x)∗x)∗y)∗y)∗((y∗x)∗x)). Since
TA(1) = TB(1), we get TB((y ∗ x) ∗ ((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x)) = TB(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ ((y ∗ x) ∗ x)) = TB(1).

It follows from (NSF1) and (NSF2) that

TB(y ∗ x) =min{TB(1), TB(y ∗ x)}

=min{TB((y ∗ x) ∗ (((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x)), TB(y ∗ x)}

≤TB(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x).

(4.2)

Since X is transitive, we get

[((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x]∗[((x ∗ y) ∗ y) ∗ x]

≥ ((x ∗ y) ∗ y) ∗ ((((y ∗ x) ∗ x) ∗ y) ∗ y)

≥ (((y ∗ x) ∗ x) ∗ y) ∗ (x ∗ y)

≥ x ∗ ((y ∗ x) ∗ x)

= (y ∗ x) ∗ (x ∗ x)

= (y ∗ x) ∗ 1 = 1.

It follows from Theorem 3.12 that min{TB(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x), TB(1)} = TB(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x) ≤
TB(((x∗y)∗y)∗x). Using (4.2), we have TB(y ∗x) ≤ TB(((((y ∗x)∗x)∗y)∗y)∗x) ≤ TB(((x∗y)∗y)∗x). Therefore
TB(y∗x) ≤ TB(((x∗y)∗y)∗x). Similarly, we have IB(y∗x) ≥ TB(((x∗y)∗y)∗x) and FB(y∗x) ≥ FB(((x∗y)∗y)∗x).
By Theorem 4.5, B is a neutrosophic mighty filter of X. □

Theorem 4.8. Let A be a neutrosophic set in a BE-algebra X and let α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3.

Then A is a neutrosophic mighty filter of X if and only if all of (α, β, γ)-level set A(α,β,γ) are mighty filters of X

when A(α,β,γ) ̸= ∅.

Proof. Assume that A is a neutrosophic mighty filter of X. Let α, β, γ ∈ [0, 1] be such that 0 ≤ α + β + γ ≤ 3

and A(α,β,γ) ̸= ∅. Let z ∗ (y ∗ x), z ∈ A(α,β,γ). Then TA(z ∗ (y ∗ x)) ≥ α, TA(z) ≥ α, IA(z ∗ (y ∗ x)) ≤ β, IA(z) ≤ β,

and FA(z ∗ (y ∗ x)) ≤ γ, FA(z) ≤ γ. By Definition 4.1, we have TA(1) ≥ TA(((x ∗ y) ∗ y) ∗ x) ≥ min{TA(z ∗ (y ∗
x)), TA(z)} ≥ α, IA(1) ≤ IA(((x∗y)∗y)∗x) ≤ max{IA(z ∗ (y ∗x)), IA(z)} ≤ β, and FA(1) ≤ FA(((x∗y)∗y)∗x) ≤
max{FA(z ∗ (y ∗ x)), FA(z)} ≤ γ. Hence 1, ((x ∗ y) ∗ y) ∗ x ∈ A(α,β,γ). Therefore A(α,β,γ) are mighty filters of X.

Conversely, suppose that there exist a, b, c ∈ X such that TA(a) > TA(1), IA(b) < IA(1), and FA(c) < FA(1).

Then there exist at ∈ (0, 1] and bt, ct ∈ [0, 1) such that TA(a) ≥ at > TA(1), IA(b) ≤ bt < IA(1) and FA(c) ≤
ct < FA(1). Hence 1 /∈ A(at,bt,ct), which is a contradiction. Therefore TA(x) ≤ TA(1), IA(x) ≥ IA(1) and

FA(x) ≥ FA(1) for all x ∈ X. Assume that there exist at, bt, ct, ai, bi, ci ∈ X and af , bf , cf ∈ X such that

TA(((at ∗ bt) ∗ bt) ∗ at) < min{TA(ct ∗ (bt ∗ at)), TA(ct)}, IA(((ai ∗ bi) ∗ bi) ∗ ai) > max{IA(ci ∗ (bi ∗ ai)), IA(ci)}, and
FA(((af ∗ bf ) ∗ bf ) ∗af ) > max{FA(cf ∗ (bf ∗af )), FA(cf )}. Then there exist st ∈ (0, 1] and si, sf ∈ [0, 1) such that

TA(((at∗bt)∗bt)∗at) < st ≤ min{TA(ct∗(bt∗at)), TA(ct)}, IA(((ai∗bi)∗bi)∗ai) > si ≥ max{IA(ci∗(bi∗ai)), IA(ci)},
and FA(((af ∗bf )∗bf )∗af ) > sf ≥ max{FA(cf ∗(bf ∗af )), FA(cf )}. Hence ct∗(bt∗at), ct, ci∗(bi∗ai), ci ∈ A(st,si,sf )

and cf ∗(bf ∗af ), cf ∈ A(st,si,sf ) but ((at∗bt)∗bt)∗at, ((ai∗bi)∗bi)∗ai /∈ A(st,si,sf ), and ((af ∗bf )∗bf )∗af /∈ A(st,si,sf ),
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which is a contradiction. Therefore min{TA(z∗(y∗x)), TA(z)} ≤ TA(((x∗y)∗y)∗x)),max{IA(z∗(y∗x)), IA(z)} ≥
IA(((x ∗ y) ∗ y) ∗ x)), and max{FA(z ∗ (y ∗ x)), FA(z)} ≥ FA(((x ∗ y) ∗ y) ∗ x)) for any x, y, z ∈ X. Thus A is a

neutrosophic mighty filter of X □
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