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NEUTROSOPHIC SETS IN UP-ALGEBRAS BY MEANS
OF INTERVAL-VALUED FUZZY SETS

Metawee Songsaeng and Aiyared Iampan

ABSTRACT. In this paper, we introduce the notion of interval-valued neu-
trosophic UP-subalgebras (resp., interval-valued neutrosophic near UP-filters,
interval-valued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals,
and interval-valued neutrosophic strong UP-ideals) of UP-algebras, proved
some results, and their generalizations. Furthermore, we discuss the relations
between interval-valued neutrosophic UP-subalgebras (resp., interval-valued
neutrosophic near UP-filters, interval-valued neutrosophic UP-filters, interval-
valued neutrosophic UP-ideals, and interval-valued neutrosophic strong UP-
ideals) and their level subsets.

1. Introduction and Preliminaries

Among many algebraic structures, algebras of logic form important class of al-
gebras. Examples of these are BCK-algebras [8], BCI-algebras [9], B-algebras [21],
UP-algebras [5] and others. They are strong connected with logic. For example,
BCT-algebras introduced by Iséki [9] in 1966 have connections with BCI-logic be-
ing the BCl-system in combinatory logic which has application in the language of
functional programming. BCK and BCl-algebras are two classes of logical algebras.
They were introduced by Imai and Iséki [8, 9] in 1966 and have been extensively
investigated by many researchers. It is known that the class of BCK-algebras is a
proper subclass of the class of BCI-algebras.
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The branch of the logical algebra, a UP-algebra was introduced by Iampan [5],
and it is known that the class of KU-algebras is a proper subclass of the class of UP-
algebras. Later Somjanta et al. [26] studied fuzzy UP-subalgebras, fuzzy UP-ideals
and fuzzy UP-filters of UP-algebras. Guntasow et al. [4] studied fuzzy translations
of a fuzzy set in UP-algebras. Kesorn et al. [13] studied intuitionistic fuzzy sets
in UP-algebras. Kaijae et al. [12] studied anti-fuzzy UP-ideals and anti-fuzzy UP-
subalgebras. Tanamoon et al. [30] studied Q-fuzzy sets in UP-algebras. Sripaeng
et al. [28] studied anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-
algebras. Dokkhamdang et al. [3] studied Generalized fuzzy sets in UP-algebras.
Songsaeng and Iampan [27] studied N-fuzzy UP-algebras and its level subsets.

A fuzzy set f in a nonempty set S is a function from S to the closed interval
[0,1]. The concept of a fuzzy set in a nonempty set was first considered by Zadeh
[32]. The fuzzy set theories developed by Zadeh and others have found many ap-
plications in the domain of mathematics and elsewhere. Zadeh [33] was introduced
an interval-value fuzzy sets. An interval-valued fuzzy set is defined by an interval-
valued membership function. Wang et al. [31] introduced the concept of interval-
valued neutrosophic sets. The interval-valued neutrosophic set is an instance of
neutrosophic set which can be used in real scientific and engineering applications.
Jun et al. [10] introduced the notion of interval-valued neutrosophic sets with ap-
plications in BCK/BCl-algebra, they also introduced the notion of interval-valued
neutrosophic length of an interval-valued neutrosophic set, and investigate their
properties and relations. In 2018-2019, Muhiuddin et al. [15, 16, 17, 18, 19, 20]
applied the notion of neutrosophic sets to semigroups, BCK/BCl-algebras.

In this paper, we apply the concept of interval-valued neutrosophic sets to UP-
algebras. We introduce the notion of interval-valued neutrosophic UP-subalgebras
(resp., interval-valued neutrosophic near UP-filters, interval-valued neutrosophic
UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued neutrosophic
strong UP-ideals) in UP-algebras, proved some results, and their generalizations.
Furthermore, we discuss the relations between interval-valued neutrosophic UP-
subalgebras (resp., interval-valued neutrosophic near UP-filters, interval-valued
neutrosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued
neutrosophic strong UP-ideals) and their level subsets.

Before we begin our study, we will give the definition of a UP-algebra.

DEFINITION 1.1. ([5]) An algebra X = (X,-,0) of type (2,0) is called a UP-
algebra, where X is a nonempty set, - is a binary operation on X, and 0 is a fixed
element of X (i.e., a nullary operation) if it satisfies the following axioms: for any
z,y,2 € X,

(UP-1): (y-2)- ((z-y) - (x2) =0,
(UP-2): 0z =z,

(UP-3): z-0=0, and

(UP-4): z-y=0and y-2z =0 imply z = y.

From [5], the binary relation < on a UP-algebra X = (X, -, 0) defined as follows:
(Vo,y e X)(z <yez-y=0).
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ExAMPLE 1.1. [23] Let X be a universal set and let Q € P(X), where P(X)
means the power set of X. Let Po(X) = {4 € P(X) | Q C A}. Define a binary
operation - on Pq(X) by putting A- B = BN (A“UQ) for all A, B € Po(X), where
A€ means the complement of a subset A. Then (Pq(X),-,Q) is a UP-algebra and
we shall call it the generalized power UP-algebra of type 1 with respect to ). Let
PUX) ={A € P(X) | ACQ}. Define a binary operation * on P(X) by putting
AxB=DBU(A°NQ) for all A,B € P%(X). Then (P?(X),*,Q) is a UP-algebra
and we shall call it the generalized power UP-algebra of type 2 with respect to 2. In
particular, (P(X),-,0) is a UP-algebra and we shall call it the power UP-algebra of
type 1, and (P(X), *, X) is a UP-algebra and we shall call it the power UP-algebra
of type 2

ExaMPLE 1.2. ([3]) Let N be the set of all natural numbers with two binary
operations o and e defined by

oy ifx<y,
xoy—{ 0 otherwise

and
_Jy fx>yoraxz=0,
rey= { 0 otherwise.

Then (N, 0,0) and (N, e,0) are UP-algebras.

For more examples of UP-algebras, see [1, 2, 6, 22, 23, 24, 25].
In a UP-algebra X = (X,-,0), the following assertions are valid (see [5, 6]).

(1.1) (Vx € X)(z -z =0),

(1.2) (Va,y,z€ X)(xz-y=0,y-2=0=x-2=0),

(1.3) Vz,y,ze X)(xz-y=0=(2-2)-(z-y) =0),

(1.4) Ve,y,ze X)(xz-y=0=(y-2) - (z-2)=0),

(1.5) (Vo,y € X)(z- (y-x) =0),

(1.6) Vr,ye X)((y-z) - a=0& 2=y 1),

(L.7) (Vo,y € X)(z- (y-y) =0),

(1.8) (Va,z,y,2 € X)((z- (y-2) - (x-((a-y)-(a-2))) =0),
(1.9) (Va,z,y,z € X)((((a-2) - (a-y))-2) ((x-y)-2) =0),
(1.10) (Vo,y,z € X)(((z-y) - 2)- (y-2) =0),

(1.11) Vz,y,ze X)(z-y=0=2x-(z-y) =0),

(1.12) (Vo,y,2 € X)(((z-y) - 2) - (x- (y-2)) = 0), and
(1.13) (Va,z,y,z2 € X)(((x-y) -2) - (y- (a-2)) =0).

DEFINITION 1.2. ([5, 26, 4, 7]) A nonempty subset S of a UP-algebra X =
(X,-,0) is called
(1) a UP-subalgebra of X if (Va,y € S)(x -y € 5).
(2) a near UP-filter of X if it satisfies the following properties:
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(i) the constant 0 of X is in S, and
(ii)) Vz,ye X)(yeS=>xz-yeb9).
(3) a UP-filter of X if it satisfies the following properties:
(i) the constant 0 of X is in S, and
(ii)) Ve,ye X)(z-ye S,z e S=yebs).
(4) a UP-ideal of X if it satisfies the following properties:
(i) the constant 0 of X is in S, and
(ii) Vz,y,z€ X)(z-(y-2) € S,yeS=>x-2€59).
(5) a strong UP-ideal (renamed from a strongly UP-ideal) of X if it satisfies
the following properties:
(i) the constant 0 of X is in S, and
(ii) (Vx,y,2€ X)(z-y)-(z-2) € S,ye S=z€58).

Guntasow et al. [4] proved that the notion of UP-subalgebras is a generalization
of near UP-filters, near UP-filters is a generalization of UP-filters, UP-filters is a
generalization of UP-ideals, and UP-ideals is a generalization of strong UP-ideals.
Moreover, they also proved that a UP-algebra X is the only one strong UP-ideal
of itself.

In 1965, the concept of a fuzzy set in a nonempty set was first considered by
Zadeh [32] as the following definition.

DEFINITION 1.3. A fuzzy set (briefly, FS) in a nonempty set X (or a fuzzy
subset of X) is defined to be a function A : X — [0,1], where [0,1] is the unit
segment of the real line. Denote by [0,1]% the collection of all fuzzy sets in X.
Define a binary relation < on [0, 1]% as follows:

(1.14) (VA 1€ [0,115) A < & (o € X)(A() < pu(a)).

DEFINITION 1.4. ([26]) Let A be a fuzzy set in a nonempty set X. The com-
plement of A\, denoted by A, is defined by
(1.15) (Vo € X)(\C(z) =1 — A(x)).

DEFINITION 1.5. ([14]) Let {); | i € J} be a family of fuzzy sets in a nonempty
set X. We define the join and the meet of {\; | i € J}, denoted by V;cs\; and
Aie g \i, respectively, as follows:

(1.16) (Vo € X)((Viesi)(x) = ?1615{)\1'(55)})7
(1.17) (Vo € X)((NiesAi)(z) = ligg{)\i(x)})

In particular, if A and p be fuzzy sets in X, we have the join and meet of A and p
as follows:

(L18) (Ve € X)((AV p)(@) = max{A(@), u(2)}),
(1.19) (va € X)((A A p)(@) = minfA(2), u(x)}),

respectively.
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An interval number we mean a close subinterval @ = [a™,a™] of [0, 1], where
0 < a” < at < 1. The interval number @ = [a~,a™] with a= = a™ is denoted by
a. Denote by [[0, 1]] the set of all interval numbers.

DEFINITION 1.6. ([11]) Let {a; | i € J} be a family of interval numbers. We
define the refined infimum and the refined supremum of {a; | i € J}, denoted by
rinf;e y@; and rsup,¢ ;a,, respectively, as follows:

. . ~ — . 7 . +
(1.20) rinfies{@:} = [inf{a;"}, mf{ai"},
(1.21) rsup;e ;{@;} = [sup{a; },sup{a;"}].
ieJ i€J

In particular, if a; and ay are interval numbers, we define the refined minimum
and the refined mazimum of a; and as, denoted by rmin{a;, as} and rmax{a, as},
respectively, as follows:

(1.22) rmin{ay,d»} = [min{ay,a; },min{a;,ad }],

(1.23) rmax{dy, s} = [max{aj,ay }, max{a], a5 }].

DEFINITION 1.7. ([11]) Let a; and ag be interval numbers. We define the
symbols “>7, “<” “=" in case of a; and ay as follows:

(1.24) @y = ap < aj >a; and af > af,

and similarly we may have a; < @ and a; = ao. To say a; > as (resp., a1 < ds)
we mean a; = ag and @ # as (resp., @1 = a2 and a; # as).

DEFINITION 1.8. ([33]) Let @ be an interval number. The complement of a,
denoted by a®, is defined by the interval number

(1.25) a“=[1-a",1—a"].
In the [[0, 1]], the following assertions are valid (see [29]).

(1.26)

(va € [[0,1]])((@%)" = a),

(1.27)

(Va € [[0,1]])(rmax{a,a} = @ and rmin{a,a} = a),

(1.28)

(Vay,aq € [[0,1]])(rmax{ay, a2} = rmax{as, a1} and rmin{a, a2} = rmin{as, a1 }),
(1.29)

(Vay,aq € [[0,1]])(rmax{a,as} > a1 and as = rmin{ay, as}),

(1.30)

(Vai,as € [[0,1]])(a1 = a2 < af < afs),

(1.31)

(Vaq, ag, as, aq € [[0,1]])(G1 = ag2,as = G4 = rmin{as, as} > rmin{as, a4}),
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(1.32)

(Vay, dg, as € [[0,1]])(a) = dg, a3 = Gy < rmin{ay, as} = o),
(1.33)

(Vay, as, a3, aq € [[0,1]])(a1 = a2,a3 = a4 = rmax{a, as} = rmax{as, aqs}),
(1.34)

(Vay, dg, as € [[0,1]])(ag = a1, as = a3 < ag = rmax{a,, as}),
(1.35)

(Vaq,as € [[0,1]])(a1 = a2 < rmin{ay, as} = ag),
(1.36)

(Vay, ay € [[0,1]])(a1 = as < rmax{a,,ds} = a1),
(1.37)

(Vay,as € [[0,1]])(rmin{a$, a$'} = rmax{a;, a2 }°),
(1.38)

(Vay, ay € [[0,1])) (rmax{a{, a$’} = rmin{a;, a»}°),
(1.39)

(Vay, ag,as € [[0,1]]) (@1 < rmax{ay,az} < af = rmin{ag,as'’}),
(1.40)

(Vay, dg, as € [[0,1]])(a; = rmax{dy, as} < af < rmin{a$,as’}),
(1.41)

(Vay, dg, as € [[0,1]]) (a1 < rmin{ag, a3} < a¢ = rmax{a$,as’}), and
(1.42)

(Vay, az,as € [[0,1]])(a1 = rmin{ay, a3} < a¥ < rmax{a$’, a$'}).
In 1975, Zadeh [33] introduced interval-valued fuzzy set as the following defi-
nition.

DEFINITION 1.9. An interval-valued fuzzy set (briefly, an IVFS) in a nonempty
set X is an arbitrary function A : X — [[0,1]]. Let IVFS(X) stands for the set
of all IVFS in X. For every A € IVFS(X) and x € X, A(z) = [A™ (z), At (2)] is
called the degree of membership of an element x to A, where A~, A" are fuzzy sets
in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively.
For simplicity, we denote A = [A~, A™].

DEFINITION 1.10. ([11]) Let A and B be interval-valued fuzzy sets in a nonempty
set X. We define the symbols “C”, “2” “=” in case of A and B as follows:
(1.43) (Vz € X)(A C B< A(z) <X B(z)),
and similarly we may have A O B and A = B.

DEFINITION 1.11. ([33]) Let A be an interval-valued fuzzy set in a nonempty
set X. The complement of A, denoted by A is defined as follows: A% (z) = A(z)¢
for all x € X, that is,

(1.44) (Vo € X)(A%(z) = [1 — At (x),1 — A~ (2))).
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We note that AY (z) =1 — A*(z) and ACT (x)=1— A" (x) for all z € X.

DEFINITION 1.12. ([33]) Let {A; | i € J} be a family of interval-valued fuzzy
sets in a nonempty set X. We define the intersection and the union of {A; | i € J},
denoted by N;esA; and U;c s A;, respectively, as follows:

(1.45) (Vz € X)((NiesAi)(z) = rinfic ; {Ai(2)}),
(1.46) (Vo € X)((ViesAi)(x) = rsup;e ;{Ai(2)}).
We note that
(Ve € X)((NiesAi)™ (2) = (Nies A7) (2) = inf{A7 (2)})

and

(V2 € X)((Nies At (2) = (Nies AT ) (2) = }gg{AT(x)})-
Similarly,

(Vo € X)((UiesAi)™ (x) = (Vies A7 )(z) = fgg{AZ(l‘)})
and

(Vo € X)((UiesAi)* () = (Vies AT ) (2) = 31611;{14?(%)})-

In particular, if A; and A, are interval-valued fuzzy sets in X, we have the inter-
section and the union of A; and A, as follows:

(1.47) (Vo € X)((A1 N A2)(x) = rmin{A;(x), Az(x)}),
(1.48) (Vo € X)((A1 U Ag)(x) = rmax{A4;(x), A2(x)}).

2. Interval-Valued Neutrosophic Sets in UP-Algebras

In 2005, the concept of an interval-valued neutrosophic set was first considered
by Wang et al. [31] as the following definition.

An interval-valued neutrosophic set (briefly, IVNS) in a nonempty set X is a
structure of the form:

A= A{(z, Ap(2), A1(z), Ap(2)) | z € X},

where Ap, A;, and Ap are interval-valued fuzzy sets in X, which are called a
truth membership function, an indeterminacy membership function and a falsity
membership function, respectively.

For our convenience, we will denote an IVNS as

A = (X, Ar, A1, Ap) = (X, A p) = {(z, Ar(z), Ar(2), Ap(z)) [z € X}

Now, we introduce the notions of interval-valued neutrosophic UP-subalgebras,
interval-valued neutrosophic near UP-filters, interval-valued neutrosophic UP-filters,
interval-valued neutrosophic UP-ideals, and interval-valued neutrosophic strong

UP-ideals of UP-algebras, provide the necessary examples, investigate their prop-
erties, and prove their generalizations.

In what follows, let X denote a UP-algebra (X, -, 0) unless otherwise specified.
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DEFINITION 2.1. An IVNS A in X is called an interval-valued neutrosophic
UP-subalgebra of X if it holds the following conditions:

(2.1) (Va,y € X)(Az (2 - y) = rmin{Ar(z), Ar(y)}),
(2.2) (Va,y € X)(Ar(z - y) < rmax{A;(z), Ar(y)}),
(2.3) (Va,y € X)(Ap(z-y) = rmin{Ap(z), Ar(y)}).

ProprosITION 2.1. If A is an interval-valued neutrosophic UP-subalgebra of X,
then

(2.4) (Vo € X)(Ar(0) = Ar(z)),
(2.5) (Vz € X)(A;(0) = Af(z)),
(2.6) (Ve € X)(Ar(0) = Ap(x)).
PrROOF. Let A be an interval-valued neutrosophic UP-subalgebra of X. By

(1.1), we have
= rmin{Ar(x), Ar(z)} = Ar(x),
(Ve e X)| Ar(0)=Ar(x-z) Zrmin{A;(x), Ar(x)} = Ar(z),
= rmin{Ar(z), Ar(z)} = Ar(x)
O

ExAMPLE 2.1. Let X = {0, 1,2,3} be a UP-algebra with a fixed element 0 and
a binary operation - defined by the following Cayley table:

Jo 1 2 3
0[0 1 2 3
1{0 00 2
2/0 1 0 3
310 0 00

We define an IVNS A in X as follows:
0 1 2 3
AT == 5
([0.9, 1] [0.2,0.5] [0.3,0.4] [0.3,0.4])
A — 0 1 2 3
r= [0,0.3] [0.7,0.8] [0.2,0.3] [0.8,0.9] )’

0 1 2 3
Ap = ([0.7, 1] [0.1,0.3] [0.5,0.7] [0.6,0.7])'

Then A is an interval-valued neutrosophic UP-subalgebra of X.

DEFINITION 2.2. An IVNS A in X is called an interval-valued neutrosophic
near UP-filter of X if it holds the following conditions: (2.4), (2.5), (2.6), and

(2.7) (Va,y € X)(Ar(z - y) = Ar(y)),
(2.8) (Va,y € X)(Ar(z - y) < Ar(y)),
(2.9) (Va,y € X)(Ap(x - y) = Ap(y)).
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EXAMPLE 2.2. Let X = {0,1,2,3} be a UP-algebra with a fixed element 0 and
a binary operation - defined by the following Cayley table:

|01 2 3
0[0 1 2 3
100 20
2/0 1 0 3
310 120

We define an IVNS A in X as follows:

0 1 2 3
Ar = <[0.9, 1] [0.6,0.8] [0.5,0.6] [0.4,0.6])’
0 1 2 3
A= <[0,0.1] [0.1,0.3] [0.3,0.4] [0.5,0.8])’

A — 0 1 2 3
£ [0.8,0.9] [0.6,0.8] [0.5,0.7] [0.4,0.6] /
Then A is an interval-valued neutrosophic near UP-filter of X.

DEFINITION 2.3. An IVNS A in X is called an interval-valued neutrosophic
UP-filter of X if it holds the following conditions: (2.4), (2.5), (2.6), and

(2.10) (Va,y € X)(Ar(y) = rmin{Ar(z - y), Ar(z)}),
(2.11) (Vo,y € X)(Ar(y) 2 rmax{Ar(z-y), Ar(x)}),
(2.12) (Vz,y € X)(Ar(y) = rmin{Ar(x - y), Ar(z)}).

ExaMPLE 2.3. Let X = {0, 1, 2,3} be a UP-algebra with a fixed element 0 and
a binary operation - defined by the following Cayley table:

-]0 1 2 3
0[0 1 2 3
1/0 0 3 3
200 1.0 0
3]0 1.2 0

We define an IVNS A in X as follows:
0 1 2 3
Ap = ,
([0.9, 1] [0.5,0.8] [0.3,0.6] [0.3,0.6])
A — 0 1 2 3
r= [0,0.1] [0.2,0.3] [0.6,0.8] [0.6,0.8] )’

0 1 2 3
Ar = <[O.8,0.9] 0.4,0.5] [0.3,0.4] [0.3,0.4])'

Then A is an interval-valued neutrosophic UP-filter of X.
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DEFINITION 2.4. An IVNS A in X is called an interval-valued neutrosophic
UP-ideal of X if it holds the following conditions: (2.4), (2.5), (2.6), and

(2.13) (Va,y,2z € X)(Ar(z - 2) = rmin{Ar(z - (y - 2)), Ar(z)}),
(2.14) (Va,y,z € X)(Ar(z - z) <rmax{A;(z - (y- 2)), Ar(z)}),
(2.15) (Ve,y,z € X)(Ap(z - 2z) = rmin{Ap(z - (y - 2)), Ar(z)}).

ExaMPLE 2.4. Let X = {0, 1,2,3} be a UP-algebra with a fixed element 0 and
a binary operation - defined by the following Cayley table:

-]0 1 2 3
0[0 1 2 3
10 0 2 3
200 0 0 0
3]0 0 2 0

We define an IVNS A in X as follows:
0 1 2 3
AT - 3
<[0.9, 1] [0.7,0.9] [0.6,0.8] [0.6,0.9])
s - 0 1 2 3
r= [0.1,0.3] [0.3,0.5] [0.4,0.7] [0.3,0.6] )’

0 1 2 3
Ar = ([0.8,0.9] 0.5,0.9] [0.4,0.6] [0.5,0.8])'

Then A is an interval-valued neutrosophic UP-ideal of X.

DEFINITION 2.5. An IVNS A in X is called an interval-valued neutrosophic
strong UP-ideal of X if it holds the following conditions: (2.4), (2.5), (2.6), and

(2.16) (Va,y,2 € X)(Ar(z) = rmin{Ar((z - y) - (2 - 2)), Ar(y)}),
(2.17) (Va,y,z € X)(Ar(z) 2 rmax{A;((z - y) - (z - 2)), A1(y)}),
(2.18) (Vx,y,z € X)(Ap(z) = rmin{Ap((z-y) - (z-z)), Ar(y)}).

EXAMPLE 2.5. Let X = {0,1,2,3} be a UP-algebra with a fixed element 0 and
a binary operation - defined by the following Cayley table:

-0 1 2 3
0
0
0
310

We define an IVNS A in X as follows:
Ar(xz) =10.7,0.9]
(Vz € X) | Ar(x)=10.3,0.5]
Ap(x) =10.5,0.9]

N = O
_ o O =
O W W Ww

2
1
0
2

Then A is an interval-valued neutrosophic strong UP-ideal of X.
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DEFINITION 2.6. An IVNS A in a nonempty set X is said to be constant if A
is a constant function from X to [[0,1]]3. That is, Az, A;, and Ap are constant
functions from X to [[0, 1]].

THEOREM 2.1. An IVNS A in X is constant if and only if it is an interval-
valued neutrosophic strong UP-ideal of X.

PROOF. Assume that an IVNS A is constant in X. Then Ap(z) = Ar(0),
Ar(z) = Ar(0), and Ap(z) = Ap(0) for all € X. Then for all z € X, Ap(0) >
Ap(z), Ar(0) X As(x), and Ap(0) = Ap(x), and for all z,y,z € X,

rmin{Ar((z - y) - (2 - z)), Ar(y)} = rmin{A7(0), A7 (0)}
((1.27)) = Ar(0)
= Ar(z),
rmax{A;((z-y) - (z - x)), Ar(y)} = rmax{A;(0), A;(0)}
((1.27)) = A;(0)
= As(2),
rmin{Ar((z-y) - (z-2)), Ar(y)} = rmin{Ar(0), Ar(0)}
((1.27)) = Ar(0)
= Ap(x).

Hence, A is an interval-valued neutrosophic strong UP-ideal of X.

Conversely, assume that A is an interval-valued neutrosophic strong UP-ideal
of X. Then for all x € X,

Ap(z) = rmin{Ar((z - 0) - (z - z)), Ar(0)}
((UP-3)) =rmin{A7(0- (z-z)), Ar(0)}
((UP-2)) =rmin{Ar(z - z), Ar(0)}
((L.1)) = rmin{Ar(0), Ar(0)}
((1.27)) = Ar(0)

= Ar(z),

Ar(z) 2 rmax{A;((z-0) - (z-x)), A;(0)}
((UP-3)) =rmax{A;(0- (z-z)),A;(0)}
((UP-2)) =rmax{A(z-z),A;(0)}
((1.1)) = rmax{A;(0), 4;(0)}
((1.27)) = A;(0)

j AI($)7
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Ap(x) = rmin{Ar((z-0) - (- x)), Ap(0)}

((UP-3)) =rmin{Ar(0- (z-x)), Ap(0)}
((UP-2)) =rmin{Ap(z - z), Ar(0)}
((1.1)) = rmin{Ar(0), Ar(0)}
((1.27)) = Ar(0)

= Ap(x)
Thus Ar(0) = Ar(z), A;(0) = As(x), and Ap(0) = Ap(z) for all z € X. Hence,
A is constant. O

THEOREM 2.2. FEwvery interval-valued neutrosophic strong UP-ideal of X is an
interval-valued neutrosophic UP-ideal.

PROOF. Assume that A is an interval-valued neutrosophic strong UP-ideal of
X. Then for all z € X, A7(0) = Ar(x), Ar(0) = A;(x), and Ap(0) = Ap(z). Let
xz,y,z € X. Then
(2 (2 2))), Ar(y)}
((1.5)) = rmin{ A ( -0), Ar(y)}
((UP-3)) = rmin{Ar(0), Ar(y)}

=
Ar(x - 2z) 2 rmax{A;
((1.5)) = rmax{A;
((UP-3))
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=< rmax{Ar
Ap(z-2z) = rmin{Ap(
((1.5)) = rmin{Ap(
((UP-3)) = rmin{Ap(
= Ar(y)
= rmin{Ar(z-(y-2)),Ar(y)}.

Hence, A is an interval-valued neutrosophic UP-ideal of X. (|
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The following example show that the converse of Theorem 2.2 is not true.

EXAMPLE 2.6. From Example 2.4, we have A is an interval-valued neutrosophic
UP-ideal of X. Since Ar(1) =1[0.7,0.9] % [0.9,1] = rmin{Ar((2-0)-(2-1)), A7(0)},
we have A is not an interval-valued neutrosophic strong UP-ideal of X.

THEOREM 2.3. FEvery interval-valued neutrosophic UP-ideal of X is an interval-
valued neutrosophic UP-filter.
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PROOF. Assume that A is an interval-valued neutrosophic UP-ideal of X.
Then for all z € X, Ar(0) = Arp(x), Ar(0) = As(z), and Ap(0) > Ap(z). Let
z,y € X. Then

((UP-2)) Ar(y) = Ar(0-y)
= rmin{Ar(0- (z-vy)), Ar(z)}
((UP-2)) = rmin{Ar(z - y), Ar(2)},
((UP-2)) Ar(y) = Ar(0-y)
<rmax{A;(0- (z-y)), Ar(x)}
((UP-2)) =rmax{A;(z-y), Ar(z)},
((UP-2)) Ap(y) = Ar(0-y)
= rmin{Ap(0- (z-y)), Ar(z)}
((UP-2)) =mmin{Ar(z-y), Ar(z)}.
Hence, A is an interval-valued neutrosophic UP-filter of X. O

The following example show that the converse of Theorem 2.3 is not true.

ExXAMPLE 2.7. From Example 2.3, we have A is an interval-valued neutrosophic
UP-filter of X. Since A;(3-2) = [0.6,0.8] £ [0.2,0.3] = rmax{A;(3-(1-2)), A;(1)},
we have A is not an interval-valued neutrosophic UP-ideal of X.

THEOREM 2.4. FEvery interval-valued neutrosophic UP-filter of X is an interval-
valued neutrosophic near UP-filter.

PROOF. Assume that A is an interval-valued neutrosophic UP-filter of X.
Then for all z € X, Ar(0) = Ap(x), Ar(0) = As(z), and Ap(0) = Ap(x). Let
z,y € X. Then

Ar(z-y) = rmin{Ar(y - (z - y)), Ar(y)}
((1.5)) = rmin{Ar(0), Ar(y)}
= Ar(y),
Ap(z-y) 2rmax{A;(y - (z-y)), Ar(y)}
((1.5)) = rmax{A;(0), A;(y)}
= Ar(y),
Ap(z-y) = rmin{Ap(y - (z - y)), Ar(y)}
((1.5)) = min{Ar(0), Ap(y)}
= Ar(y).

Hence, A is an interval-valued neutrosophic near UP-filter of X. ]

The following example show that the converse of Theorem 2.4 is not true.

ExaMPLE 2.8. From Example 2.2, we have A is an interval-valued neutrosophic
near UP-filter of X. Since Ar(3) = [0.4,0.6] 7 [0.6,0.8] = rmin{Ar(1-3), Ar(1)},
we have A is not an interval-valued neutrosophic UP-filter of X.
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THEOREM 2.5. Every interval-valued neutrosophic near UP-filter of X is an
interval-valued neutrosophic UP-subalgebra.

PRrROOF. Assume that A is an interval-valued neutrosophic near UP-filter of
X. Then for all z € X, Ar(0) = Ar(x), Ar(0) = A;(x), and Ap(0) = Ap(z). Let
z,y € X. By (1.29), we have

= Ar(y)},
Ar(z-y) 2 Ar(y) X rmax{Ar(z), Ar(y)},
- A

rmin{Ap(z), Ar(y)}.

Hence, A is an interval-valued neutrosophic UP-subalgebra of X. O

~—

The following example show that the converse of Theorem 2.5 is not true.

EXAMPLE 2.9. From Example 2.1, we have A is an interval-valued neutrosophic
UP-subalgebra of X. Since Ap(1-3) = [0.5,0.7] £ [0.6,0.8] = Ap(3), we have A is
not an interval-valued neutrosophic near UP-filter of X.

By Theorems 2.2, 2.3, 2.4, and 2.5 and Examples 2.6, 2.7, 2.8, and 2.9, we
have that the notion of interval-valued neutrosophic UP-subalgebras is a gener-
alization of interval-valued neutrosophic near UP-filters, interval-valued neutro-
sophic near UP-filters is a generalization of interval-valued neutrosophic UP-filters,
interval-valued neutrosophic UP-filters is a generalization of interval-valued neu-
trosophic UP-ideals, and interval-valued neutrosophic UP-ideals is a generalization
of interval-valued neutrosophic strong UP-ideals. Moreover, by Theorem 2.1, we
obtain that interval-valued neutrosophic strong UP-ideals and constant interval-
valued neutrosophic set coincide.

THEOREM 2.6. If A is an interval-valued neutrosophic UP-subalgebra of X
satisfying the following condition:

Ar(z) = Ar(y)
(2.19) Vez,ye X) |z-y#0= < Ar(z) 2 Ar(y) ,

Ap(z) = Ar(y)
then A is an interval-valued neutrosophic near UP-filter of X.

PRrROOF. Assume that A is an interval-valued neutrosophic UP-subalgebra of X
satisfying the condition (2.19). By Theorem 2.1, we have A satisfies the conditions
(2.4), (2.5), and (2.6). Next, let z,y € X.

Case 1: z-y = 0. Then

((24)) Ar(z - y) = Ar(0) = Ar(y),
Ap(z-y) = A7(0) X As(y),
Ap(z-y) = Ar(0) = Arp(y).
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Case 2: z -y # 0. By (2.19), it follows that

((2.1)) Ar(z - y) = rmin{Ar(z), Ar(y)}

((1.35)) = Ar(y),

((2:2) Ap(z-y) 2 rmax{A;(z), A7 (y)}

((1.36)) = Ai(y),

((2:3)) Ap(z-y) = imin{Ar(z), Ar(y)}

((1.35)) = Ar(y).

Hence, A is an interval-valued neutrosophic near UP-filter of X. (]

THEOREM 2.7. If A is an interval-valued neutrosophic near UP-filter of X
satisfying the following condition:

(2.20) Ap=Ar=Ap,
then A is an interval-valued neutrosophic UP-filter of X.

PROOF. Assume that A is an interval-valued neutrosophic near UP-filter of X
satisfying the condition (2.20). Then A satisfies the conditions (2.4), (2.5), and
(2.6). Next, let z,y € X. Then

((2.20)) rmin{Ar(z - y), Ar(x)} = rmin{A4;(z - y), Ar(z)}
((2.8)) = rmin{A;(y), Ar(z)}
((2:20)) — rmin{Ar (y), Ar(2)}
= Ar(y),
((2.20)) rmax{A;(z-y), Ar(z)} = rmax{Ar(z-y), Ar(x)}
((2.7)) = rmax{Ar(y), Ar(z)}
((2.20)) = rmax{A;(y), Ar(z)}
= Ar(y),
((2.20)) rmin{Ar(z-y), Ar(z)} = rmin{A;(z - y), Ar(z)}
((2.8)) = rmin{A;(y), Ar(z)}
((2.20)) = rmin{Ap(y), Ar(z)}
= Ar(y).
Hence, A is an interval-valued neutrosophic UP-filter of X. (]

THEOREM 2.8. If A is an interval-valued neutrosophic UP-filter of X satisfying
the following condition:

Ar(y - (z-2)) = Ar(z - (y - 2))
(2.21) (Vz,y,z€ X) | Arly-(z-2))=Ar(z-(y-2)) |,
Ap(y-(z-2)) = Ap(z - (y- 2))

then A is an interval-valued neutrosophic UP-ideal of X .
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PROOF. Assume that A is an interval-valued neutrosophic UP-filter of X sat-
isfying the condition (2.21). Then A satisfies the conditions (2.4), (2.5), and (2.6).
Next, let z,y,z € X. Then

((2.10)) Ap(z - 2) = rmin{Az(y - (z - 2)), Ar(y)}

((2.21) for Ar) = rmin{Ar(z - (y - 2)), Ar(y)},

((2.11)) Ar(z - 2) 2 rmax{A;(y - (z-2)), Ar(y)}

((2.21) for Ap) =rmax{A;(z- (y-2)), A1(y)},

((2.12)) Ap(w-2) = mmin{Ap(y - (v - 2)), Ar(y)}

((2.21) for Ap) = mmin{Ap(z - (y- 2)), Ar(y)}.

Hence, A is an interval-valued neutrosophic UP-ideal of X. (|

THEOREM 2.9. If A is an IVNS in X satisfying the following condition:

Ar(z) = rmin{Ar(z), Ar(y)}
(2.22) (Vz,y,ze X) | z<a-y= < Ar(z) S tmax{A;(z), Ar(y)} ,
)

Ap(z) = min{Ap(z), Ar(y)}
then A is an interval-valued neutrosophic UP-subalgebra of X.

PROOF. Assume that A is an IVNS in X satisfying the condition (2.22). Let
x,y € X. By (1.1), we have (z-y) - (x-y) =0, that is, -y < x - y. It follows from
(2.22) that

Ar(z -y) = rmin{Ar(z), Ar(y)},

Ag(z - y) < tmax{A[(x), Ar(y)},
Ap(z - y) = rmin{Ar(z), Ar(y)}.

Hence, A is an interval-valued neutrosophic UP-subalgebra of X. (]
THEOREM 2.10. If A is an IVNS in X satisfying the following condition:

Ar(z) = Ar(y)
(2.23) Ve,y,zeX) | z<z-y= < Ar(z) 2 Ar(y) ,

Ap(z) = Ap(y)
then A is an interval-valued neutrosophic near UP-filter of X.

PROOF. Assume that A is an IVNS in X satisfying the condition (2.23). Let
z € X. By (UP-2) and (1.1), we have 0 (z - x) = 0, that is, 0 < z - z. Tt follows
from (2.23) that Ar(0) = Ar(x), Ar(0) = Ar(z), and Ap(0) = Ap(x). Next, let
z,y € X. By (1.1), we have (z-y) - (z-y) =0, that is, -y < z - y. It follows from
(2.23) that Ap(z-y) = Ar(y), Ar(z-y) < Ar(y), and Ap(x-y) = Ar(y). Hence,
A is an interval-valued neutrosophic near UP-filter of X. U
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THEOREM 2.11. If A is an IVNS in X satisfying the following condition:
Ar(y) = rmin{Ar(2), Ar(z)}
(2.24) (Vz,y,z€ X) | z2<oz-y= ¢ Ar(y) 2 rmax{A4;(z), A;(x)} ,
Ap(y) = rmin{Ap(z), Ap(z)}

then A is an interval-valued neutrosophic UP-filter of X.

PROOF. Assume that A is an IVNS in X satisfying the condition (2.24). Let
x € X. By (UP-3), we have z - (x - 0) = 0, that is, x < z - 0. It follows from (2.24)
and (1.27) that

A7 (0) = rmin{Ap(z), Ar(z)} = Ar(z),
Ar(0) X rmax{A;(x), Ar(z)} = Ar(x),
Ap(0) = rmin{Ar(z), Ar(z)} = Ap(x)
Next, let 2,y € X. By (1.1), we have (x -y) - (z-y) =0, that is, -y < z-y. It

follows from (2.24) that
= rmin{Ar(z - y), Ar(z)},
Ar(y) = rmax{A;(z - y), Ar(x)},
= rmin{Ar(z-y), Ar(x)}.
Hence, A is an interval-valued neutrosophic UP-filter of X. O
THEOREM 2.12. If A is an IVNS in X satisfying the following condition:
(2.25)
Ar(z - z) = rmin{Ar(a), Ar(y)}
Va,z,y,z€ X) |a<z-(y-2)= ¢ Ar(z - 2) X tmax{A;(a), A;(y)} ,
Ap(z - z) = min{Ap(a), Ar(y)}
then A is an interval-valued neutrosophic UP-ideal of X .
PROOF. Assume that A is an IVNS in X satisfying the condition (2.25). Let

x € X. By (UP-3), we have - (0 (x-0)) = 0, that is, < 0- (- 0). It follows
from (2.25) and (1.27) that

((UP-2)) A7 (0) = A7(0-0) = rmin{Ar(z), A (2)} = Ar(2),

((UP-2)) Ar(0) = Ar(0-0) = rmax{A;(z), Ar(z)} = Ar (),

((UP-2)) Ap(0) = Ap(0-0) > rmin{Ap(z), Ap(z)} = Ap(z)

Next, let z,y,z € X. By (1.1), we have (z - (y-2)) - (z - (y-2)) = 0, that is
(y z) <x-(y-z). It follows from (2.25) that

Ap(z - z) = rmin{Ar(z - (y - 2)), Ar(y)},
Ap(z - z) 2rmax{Ar(z - (y-2)), A1(y)},
Ap(z - 2z) = min{Ap(z - (y - 2)), Ar(y)}-

Hence, A is an interval-valued neutrosophic UP-ideal of X. U
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For any ﬁxed interval numbers a*,a=,b%, b=, ét, & e [[0,1]] such that at -
=,bt = b,¢" = ¢ and a nonempty subset G of X, the IVNS AG[ e ;] =
(X AG[ .1, AG[ ], AZ[S 1) in X, where AG[ 1, AG[ .1, and A[S ] are IVFSs in
X which are given as follows:

AGIE () = { |

otherwise,

- ifz e,
*  otherwise,

{5+ if 2 € G,

c otherwise.

LEMMA 2.1. If the constant 0 of X is in a nonempty subset G of X, then the
IVNS AG[ZJ +’(ff] in X satisfies the conditions (2.4), (2.5), and (2.6).

PROOF. If 0 € G, then AG[27](0) = a*, AF[](0) = b~, and AF[Z')(0) = &*.
Thus

AGET)0) = a* = AG (@)
(Ve € X) | AF[1(0) =b" = AT, ](2)
AG[E)(0) = ¢t = AG[E (=)
Hence, AG[ZJ;?;?] satisfies the conditions (2.4), (2.5), and (2.6). O

LEMMA 2.2. If the IVNS AG[a Z+ ~_] in X satisfies the condition (2.4) (resp.,

(2.5), (2.6)), then the constant 0 ofX is in a nonempty subset G of X.

PROOF. Assume that the IVNS AG[ b+’§i] in X satisfies the condition (2.4).
Then A$ [g,](O) = AG [g,](ac) for all x € X. Since G is nonempty, there exists
g € G. Thus AG[27](g) = a* and so AZ[Z7](0) = A[Z"](g) = a* = AF[27](0),
that is, Ag[gt](O) =a"'. Hence, 0 € G. O

THEOREM 2.13. The IVNS AG[a ’b+’ft] in X is an interval-valued neutro-

sophic UP-subalgebra of X if and only zf a nonempty subset G of X is a UP-
subalgebra of X.
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PROOF. Assume that AG[a Z . f_] is an interval-valued neutrosophic UP-subalgebra
of X. Let z,y € G. Then AG[~ |(z ) =at = AG[gf](y) Thus

((2.1)) AG[E ) (@ - y) = rmin{ AZ[2 ) (@), AF[Z ) ()}
=rmin{at,a"}
((1.27)) =a"

and so AG[ “J(x-y)=a". Thus z-y € G. Hence, G is a UP-subalgebra of X.

Conversely, assume that G is a UP-subalgebra of X. Let z,y € X.
Case 1: z,y € G. Then

AgE }<x>=a+=A%[2f}<y>7
AGE Y(2) = b = AFL ) (y),
AG[E (@) = & = AG[E ) (y).

Since G is a UP-subalgebra of X, we have z -y € G and so AG[ Nz -y) =
dﬂA?[g;](m ) =b", and AG[g,] x-y)=¢c". By (1.27), it follows that
AGE ) (x-y) = at = at = minfa*,a*} = min{AF[Z"](2), AZ[S "] ()},
AGE (@ y) =b" =57 =mmax{b, b~} = rmax{AF[2,](x), A2 10},
AGE (@ y) =" = &" =min{et, et} = rmin{AF[Z)(2), AFZ ) ()}
Case 2: t € G or y ¢ G. Then

AG[T)(2) = a or AG[)(y) =a,
AG Y(2) = b or AFL, ](y) = b,
AG[E (@) =& or AG[)(y) =&

By (1.27), it follows that
rmin{ AF[2"](x), AF[S
rmax{AF[}_]

rmin{Ag [gt]

+

Ny} =rmin{a",a"} =a",
@), A2 ](y)} = rmax{b*, b+ } = b,
2), AGE ()} = rminfe e} =&

Therefore,
AG[E (@ y) = & = min{AG[Z)(x), AZ[Z])(3)},
AR (@) < bt = rmax{AF[L, )(2), A2, )()},
AGIE )z y) = & = min{AG[E]](2), AF[Z ) ()}

at p— &t
Hence, AG[ZJ% +’Zf] is an interval-valued neutrosophic UP-subalgebra of X. 0

)
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THEOREM 2.14. The IVNS AG[ b+’i] in X is an interval-valued neutro-

sophic near UP-filter of X if and only zf a nonempty subset G of X is a near
UP-filter of X.

PrROOF. Assume that AG[ b + f_] is an interval-valued neutrosophic near UP-
filter of X. Since A“ [a b +’i] satisfies the condition (2.4), it follows from Lemma

2.2 that 0 € G. Next, let € X and y € G. Then AS[Z"](y) =a*. By (2.7)
AGE (- y) = AZ[ ) = at = AGE (2 - y)
and so AG[ “J(z-y)=a". Thus z -y € G. Hence, G is a near UP-filter of X.

Conversely, assume that G is a near UP-filter of X. Since 0 € G, it follows
from Lemma 2.1 that AG[ZJ:%;Z] satisfies the conditions (2.4), (2.5), and (2.6).
Next, let z,y € X.

Case 1: y € G. Then AF[2](y) = a*, AG[,|(y) = b, and AG[éi](y) =
¢T. Since G is a near UP-filter of X, we have z -y € G and so AG[ Nz -y) =
~+,A?[5+]( y) = b, and AG[ J(z-y) =¢c*t. Thus

AG[E (- y) =at = at = AF[)(y),
AFE Y -y) = b~ < b = AFL (y),
AG[E (@ y) =& =t = AG[ET ().

Case 2: y ¢ G. Then Ag[gt](y) = dﬂA?[?](y) =bt, and Ag[gt](y) =c .

b+
Thus
at o ot
AF[E )= y) = a” = AF[F (),
AT (- y) 207 = AP (),
&t ~ &t
AFE )@ y) =& = AR ]()-
Hence, AG[ZJ;?;?] is an interval-valued neutrosophic near UP-filter of X. O
o+

THEOREM 2.15. The IVNS AG[ _ b+ ~_] in X is an interval-valued neutro-

sophic UP-filter of X if and only if a nonempty subset G of X is a UP-filter of
X.

PROOF. Assume that AG[ ’E +’f7] is an interval-valued neutrosophic UP-filter
of X. Since AG[a :gfﬁ] satisfies the condition (2.4), it follows from Lemma 2.2

that 0 € G. Next let z,y € X be such that z -y € G and x € G. Then
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A (2 y) = at = AG[Z](x). Thus

((2.10)) AG[E)(y) = rmin{ AF[2")(x - y), AZ[2T) ()}
=rmin{a",a"}
((1.27)) =at

gt
= AF[E)(y)
and so AG [gf](y) =a". Thus y € G. Hence, G is a UP-filter of X.

Conversely, assume that G is a UP-filter of X. Since 0 € G, it follows from
Lemma 2.1 that AG[ZJ:%;?:] satisfies the conditions (2.4), (2.5), and (2.6). Next,

let z,y € X.
Case 1: z-y € G and z € G. Then

AG[E )z - y) = at = AZ[E)(x),
AGE Y(x-y) = b = AG[, (@),
AGE (@ - y) = & = AG[E ().

Since G is a UP-filter of X, we have y € G and so A% [gt](y) =at, A¢ [g;](y) =b,
and AZ[Z"(y) = &*. By (1.27), it follows that

AC[AT)(y) = at = at = min{at,at} = min{ AZ[7 ] (x - y), AG
AF

: 25},

P =b" <b” =mmax{b",b"} = rmax{AF 2, )(z - ), AF[Z, ) (=)},
AG[E)(y) = ¢ = ¢t =rmin{e", ¢} = min{AG[ (2 - ), AF[E ()}
Case 2: -y ¢ G or x € G. Then

AS[E (x-y) =a or AG[E ](x)

+
+

AG (@ y) = b or AF[L, ](2) = b,
AGE (@ -y) =& or AG[E |(a) =&

By (1.27), it follows that
rmin{ AZ[27](z - y), AG[2
rmax{A§ [, |(x - y), AS[L, ()} = rmax{b*,b*} = b+,

rmin{Ag[gt](aﬂ ), Ag[ét](m)} =rmin{¢",¢"} =¢".

t](x)} =rmin{a",a"}=a",

Therefore,
AGETN(y) = & = min{ A2 )(x - y), AG[2)(2)},
AFL(y) = 0F = mmax{AS[L|(x - y), AT L ) ()},
AG[E () = & = min{AG[E ) (x - y), AT (@)}
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Hence, AG[ng;Zt] is an interval-valued neutrosophic UP-filter of X. O

THEOREM 2.16. The IVNS AG[ at Z+ (f_] in X is an interval-valued neutro-
sophic UP-ideal of X if and only if a nonempty subset G of X s a UP-ideal of
X.

PROOF. Assume that AG[ is an interval-valued neutrosophic UP-ideal

v

of X. Since AG[a g;i] satisfies the condition (2.4), it follows from Lemma 2.2

that 0 € G. Next, let = ,Y,2 € X be such that - (y-2) € G and y € G. Then
AG[E (x - (y-2)) = " = AS[2"|(y). Thus

((2.13)) AGE (@ 2) = emin{ AZ [ ] (2 - (y - 2)), AZL 1)}
=rmin{a®,a"
((1.27)) =a

and so AG[ J(x-z)=a". Thus z -z € G. Hence, G is a UP-ideal of X.

Conversely, assume that G is a UP-ideal of X. Since 0 € G, it follows from
Lemma 2.1 that AG[ZJ:Z;Z] satisfies the conditions (2.4), (2.5), and (2.6). Next,

let z,y,z € X.
Case 1: z-(y-2) € G and y € G. Then

AG[E (@ (y - 2)) = at = AG[E (),
AFE (@ (y-2) =b" = AF2.](y),
AGE Nz (y - 2)) = &t = AG[ ) (y).

Since G is a UP-ideal of X, we have z - z € G and so AG[ Jz-z)=at AG[ RCE
z)=b", and AG[ “J(x-z) =¢éT. By (1.27), it follows that

Ag[gi,](x z)=a" = a" =rmin{at,at} = rmin{AS[2 ]( “(y-2)),A g[gt](y)},
AFE (@ 2) =b" < b = rmax{b™,b"} = max{A§[", (- (y - 2)), AT 2, ) ()}
AGE (@ 2) = & = & =min{et, 6t} = min{AF [ ] (@ - (v - 2)), AFE )}

Case 2: - (y-2) € Gory ¢ G. Then

- (y-2) =a or AZ[](y)

A7 —a,
AGE (@ (y-2)) = b or AL I(y) = b,
A (2 (y-2) =& or AG[E](y) = &
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By (1.27), it follows that
. a1 & e ~— ~
rmin{AZ (3 ](z - (y - 2)), AF[3-](y)} = rmin{a”,a"} = a”,
mmax{AZ[2 (@ - (y - 2)), AGL, )(y)} = rmax(b*, b} = b+,

G
I
min{AGE |(z - (y- 2)), AZE |(y)} = mminfe, &) = &

Therefore,
gt ~— . at gt
AZE )@ - 2) = 6 = min{AF[[2)(x - (y - 2)), A1)},
AT (@ 2) <0t = max{AF 2, )(z - (y - 2)), AT [, 1)},
&t ~ . &t &t
AR ) (- 2) = & = min{ AR )(x - (y - 2)), AF[- 1)}
Hence, AG[aJr’B_’Ef] is an interval-valued neutrosophic UP-ideal of X. g

a=,b+.e

THEOREM 2.17. The IVNS AG[Zig;Zt] in X is an interval-valued neutro-
sophic strong UP-ideal of X if and only if a nonempty subset G of X is a strong
UP-ideal of X .

at,b,et
a—,bt+,é-

UP-ideal of X. By Theorem 2.1, we have A%

PROOF. Assume that AY] ] is an interval-valued neutrosophic strong
atp et
a— b+,
is constant. Since G is nonempty, we have A% [gf](m) =at for all € X. Thus
G = X. Hence, G is a strong UP-ideal of X.

] is constant, that is, A [gt]

Conversely, assume that G is a strong UP-ideal of X. Then G = X, so

(va e X) | ASE,)(x) = b

AGE () = &

Thus Ag[gf],A?[g;], and AG[Z'] are constant, that is, AG[Ztg;i} is constant.

At et
By Theorem 2.1, we have AG[ZJZ +’§7] is an interval-valued neutrosophic strong

UP-ideal of X. O

3. Level Subsets of Interval-Valued Neutrosophic Sets

In this section, we discuss the relationships among interval-valued neutro-
sophic UP-subalgebras (resp., interval-valued neutrosophic near UP-filters, interval-
valued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals, interval-
valued neutrosophic strong UP-ideals) of UP-algebras and their level subsets.
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DEFINITION 3.1. Let A be an IVFS in a nonempty set X. For any a € [[0, 1]],
the sets

(3.1) U(A;a) = {z € X | A(z) = a},
(3.2) L(A;a) ={z € X | A(z) = a},
(3.3) E(Ajd) ={z € X | Alz) = a}

are called an upper a-level subset, a lower a-level subset, and an equal a-level subset
of A, respectively.

THEOREM 3.1. An IVNS A in X is an interval-valued neutrosophic UP-subalgebra
of X if and only if for all a,b,¢ € [[0,1]], the sets U(Ar;a), L(Ar;b), and U(AFp;¢)
are either empty or UP-subalgebras of X .

PROOF. Assume that A is an interval-valued neutrosophic UP-subalgebra of
X. Let a,b,é € [[0,1]] be such that U(Ar;a), L(Ar;b), and U(Ap; ¢) are nonempty.

Let x,y € U(Ap;a). Then Ap(z) = @ and Ar(y) > a. Since A is an interval-
valued neutrosophic UP-subalgebra of X and by (1.32), we have

Ar(z - y) = rmin{Ar(x), Ar(y)} = a.

Thus z -y € U(Ar;a). }
Let z,y € L(As;b). Then Aj(z) < b and A;(y)
valued neutrosophic UP-subalgebra of X and by (1.3

Ar(z -y) < rmax{A;(z), A;(y)} < b.

Thus z -y € L(Az;b).
Let 2,y € U(Ap;¢). Then Ap(x) = ¢ and Ap(y) = ¢. Since A is an interval-
valued neutrosophic UP-subalgebra of X and by (1.32), we have

)
Ap(z-y) = rmin{Ap(z), Ar(y)} = .

Thus z -y € U(Ap; ). }
Hence, U(Ar;a), L(Ar;b), and U(Af;é) are UP-subalgebras of X.

Conversely, assume that for all @, b, ¢ € [[0,1]], the sets U(Ar;a), L(Ar; l~)), and
U(Afr;¢) are either empty or UP-subalgebras of X.

Let x,y € X. By (1.29), we have Ap(x) = rmin{Ar(z), Ar(y)} and Ar(y) =
rmin{Ap(z), Ar(y)}. Thus x,y € U(Ap;rmin{Ar(x), Ar(y)}). By assumption,
we have U(Ar;rmin{Ar(z), Ar(y)}) is a UP-subalgebra of X. Then z -y €
U(Ar;tmin{Ar(z), Ar(y)}). Thus Ar(z - y) = rmin{Ar(z), Ar(y)}.

Let z,y € X. By (1.29), we have A;(zx) =< rmax{A;(x), Asr(y)} and Ar(y) =
rmax{As(z), Ar(y)}. Thus z,y € L(Ar;rmax{A;(z), Ar(y)}). By assumption, we
have L(Ar;rmax{A;(z), A;(y)}) is a UP-subalgebra of X. Then
x-y € L(Ar;rmax{Ar(x), Ar(y)}). Thus As(x-y) < rmax{A;(z), Ar(y)}.

Let x,y € X. By (1.29), we have Ap(z) = rmin{Ap(z), Ar(y)} and Ap(y) =
rmin{Ar(z), Ar(y)}. Thus z,y € U(Ap;rmin{Ar(z), Ar(y)}). By assumption,
we have U(Ap;rmin{Ap(z), Ar(y)}) is a UP-subalgebra of X. Then x -y €
U(Ap;rmin{Ap(z), Ap(y)}). Thus Ap(z -y) = rmin{Ap(z), Ar(y)}.

Hence, A is an interval-valued neutrosophic UP-subalgebra of X. U
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THEOREM 3.2. An IVNS A in X is an interval-valued neutrosophic near UP-
filter of X if and only if for all a,b,¢ € [[0,1]], the sets U(Ar;a), L(Ar;b), and
U(Ap;¢) are either empty or near UP-filters of X.

PROOF. Assume that A is an interval-valued neutrosophic near UP-filter of X.
Let a, b, ¢ € [[0, 1]] be such that UEAT;&),L(AI;b), and U(Ap;¢) are nonempty.

Let x € U(Ar;a),y € L(Ap;b),z € U(Ap;¢). Since A is an interval-valued
neutrosophic near UP-filter of X, we have

Ar(0) = Ap(x) = @, A7(0) 2 Ar(y) 2 b, Ap(0) = Ap(z) = ¢
Thus 0 € U(Ar;a),0 € L(Az;b), and 0 € U(Ar;

a
Let x € X and y € U(Ar;a). Then Ar(y) =
neutrosophic near UP-filter of X, we have

Ar(z-y) = Ar(y) = a.

).
a. Since A is an interval-valued

Thus z -y € U(Ar;a). ) )
Let x € X and y € L(Ar;b). Then A;(y) = b. Since A is an interval-valued
neutrosophic near UP-filter of X, we have

Ag(w-y) = Ar(y) <.

Thus -y € L(Az;b).
Let z € X and y € U(Ap;¢). Then Ap(y) = ¢. Since A is an interval-valued
neutrosophic near UP-filter of X, we have

Ap(z-y) = Ap(y) = ¢.

Thus z -y € U(Ap; ¢). )
Hence, U(Ar;a), L(Ar;b), and U(Af;¢) are near UP-filters of X.

Conversely, assume that for all @, b, ¢ € [[0,1]], the sets U(Ar;a), L(Ar; b), and
U(AF;¢) are either empty or near UP-filters of X.

Let x € X. Then x € U(Ar; Ar(x)) # 0,2 € L(Ar; Ar(x)) # 0, and = €
U(Ar; Ap(x)) # 0. By assumption, we have U(Ap; Ap(x)), L(Ar; Ar(z)), and
U(Ar; Ap(x)) are near UP-filters of X. Then 0 € U(Ar; Ar(z)),0 € L(Ar; Ar(x)),
and 0 € U(Ap; Ap(z)). Thus Ar(0) = Ar(x), Ar(0) = Ar(x), and Ar(0) = Ap(z).

Let z,y € X. Then y € U(Ar;Ar(y)) # (0. By assumption, we have
U(Ar; Ar(y)) is a near UP-filter of X. Then z-y € U(Ar; Ar(y)). Thus Ar(z-y) =
Ar(y).

Let z,y € X. Theny € L(Ar; A;(y)) # 0. By assumption, we have L(Ar; Ar(y))
is a near UP-filter of X. Then = -y € L(As; Ar(y)). Thus A;(x -y) < Ar(y).

Let z,y € X. Then y € U(Ar;Ar(y)) # 0. By assumption, we have
U(Ar; Ar(y)) is a near UP-filter of X. Then z-y € U(Ap; Ar(y)). Thus Ap(z-y) =
Ar(y).

Hence, A is an interval-valued neutrosophic near UP-filter of X. (]

THEOREM 3.3. An IVNS A in X is an interval-valued neutrosophic UP-filter
of X if and only if for all a,b,¢ € [|0,1]], the sets U(Ar;a), L(Ar;b), and U(AFp;¢)
are either empty or UP-filters of X.
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PROOF. Assume that A is an interval-valued neutrosophic UP-filter of X. Let
a, b,ée [[0,1]] be such that U(Ar;a), L(Ar; b), and U(Ap;¢) are nonempty.

Let © € U(Ar;a),y € L(Ar;b),z € U(Ap;é). Since A is an interval-valued
neutrosophic UP-filter of X, we have

Ar(0) = Ar() = @, Ar(0) X As(y) b, Ap(0) = Ap(2) = &
Thus 0 € U(Ar;a),0 € L(Al;l;), and 0 € U(Ar;a).
Let z,y € X be such that z - y,z € U(Ar;a). Then Ar(z-y) = a and
Ar(z) > a. Since A is an interval-valued neutrosophic UP-filter of X, we have

Ar(y) = rmin{Ar(z - y), Ar(z)} = a.

Thus y € U(Ar;a). ) ) )
Let z,y € X be such that z-y,z € L(Ar;b). Then Ar(x-y) <band Ar(z) <b.
Since A is an interval-valued neutrosophic UP-filter of X, we have

Ar(y) < rmax{A;(z - y), Ar(z)} < b.

Thus y € L(Az;b).
Let ,y € X be such that z-y, 2 € U(Ap;¢). Then Ap(z-y) = ¢and Ap(z) = ¢C.
Since A is an interval-valued neutrosophic UP-filter of X, we have

Ap(y) = rmin{Ap(z-y), Ar(x)} = ¢

Thus y € U(AF; ¢). )
Hence, U(Ar;a), L(Ar;b), and U(Ap;¢é) are UP-filters of X.

Conversely, assume that for all @, b, ¢ € [[0,1]], the sets U(Ar;a), L(Ar; 5), and
U(AF;¢) are either empty or UP-filters of X.

Let z € X. Then 2 € U(Ar; Ar(z)) # 0,z € L(Ar; Af(x)) # 0, and x €
U(Ar; Ar(x)) # 0. By assumption, we have U(Ar; Ar(x)), L(Ar; Ar(x)), and
U(Ap; Ap(x)) are UP-filters of X. Then 0 € U(Ar; Ar(x)),0 € L(Ar; Ar(x)), and
0 € U(Ap; Ap(x)). Thus Ar(0) = Ar(z), Ar(0) X Ar(z), and Ap(0) = Ap(x).

Let z,y € X. By (1.29), we have Ar(z -y) = rmin{Ar(z - y), Ar(z)} and
Ap(z) = rmin{Ar(z - y), Ar(x)}. Thus = -y,x € U(Ap;rmin{Ar(z - y), Ar(z)}).
By assumption, we have U(Ag;rmin{Ar(z - y), Ar(z)}) is a UP-filter of X. Then
y € U(Ar;rmin{Ar(z - y), Ar(z)}). Thus Ar(y) = rmin{Ar(z - y), Ar(z)}.

Let z,y € X. By (1.29), we have A;(z - y) =< rmax{A;(z - y),A;(x)} and
Ar(z) = rmax{Ar(x - y),Ar(z)}. Thus z-y,x € L(Ar;rmax{A4;(z - y), Ar(x)}).
By assumption, we have L(Ar;rmax{As(x - y), A;(z)}) is a UP-filter of X. Then
y € L(Ap;rmax{A;(z - y), Ar(z)}). Thus A;(y) < rmax{A;(z-y), Ar(x)}.

Let z,y € X. By (1.29), we have Ap(z -y) = rmin{Apr(z - y), Ap(x)} and
Ap(x) = tmin{Ap(x - y), Ap(z)}. Thus z-y,x € U(Ap;tmin{Ar(z - y), Ar(x)}).
By assumption, we have U(Ap;rmin{Ar(z - y), Ar(z)}) is a UP-filter of X. Then
y € U(Ap;rmin{Ap(z - y), Arp(z)}). Thus Ap(y) = rmin{Ar(z-y), Ar(z)}.

Hence, A is an interval-valued neutrosophic UP-filter of X.
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THEOREM 3.4. An IVNS A in X is an interval-valued neutrosophic UP-ideal
of X if and only if for all a,b,¢ € [[0,1]], the sets U(Ar;a), L(Ar;b), and U(AF;¢)
are either empty or UP-ideals of X.

PROOF. Assume that A is an interval-valued neutrosophic UP-ideal of X. Let

a,b,é e [[0,1]] be such that U(AT;fL),L(AI; 5), and U(Ap;¢) are nonempty.

Let z € U(Ar;a),y € L(Ar;b),z € U(AF;¢). Since A is an interval-valued
neutrosophic UP-ideal of X, we have

Ar(0) = Arp(z) = a, Ar(0) = As(y) =

b,

Thus 0 € U(Ag;a),0 € L(Az;b), and 0 € U(Ar; a).
Let x,y,z € X be such that z - (y - ),y € U(Ap;a). Then Ap(z- (y-2)) = a
and A7 (y) = a. Since A is an interval-valued neutrosophic UP-ideal of X, we have

Ap(z - z) = tmin{Ar(z - (y - 2)), Ar(y)} = a.

Thus z - z € U(Ar;a). } )
Let z,y,2 € X be such that z - (y - 2),y € L(Ar;b). Then Aj(z-(y-2)) 2 b
and A;(y) < b. Since A is an interval-valued neutrosophic UP-ideal of X, we have

Ap(z - 2) < tmax{A;(z- (y - 2)), Ar(y)} < b.

Thus z - z € L(Az;b).
Let x,y,z € X be such that x - (y - 2),y € U(Ap;¢é). Then Ap(x - (y-2)) = ¢
and Ap(y) = ¢. Since A is an interval-valued neutrosophic UP-ideal of X, we have

Ap(x-2z) =min{Ap(z- (y - 2)),Ar(y)} = ¢

Thus z - z € U(Ap; €). )
Hence, U(Ar;a), L(Ar;b), and U(Ap;¢é) are UP-ideals of X.

Conversely, assume that for all @, b, & € [[0,1]], the sets U(Ar;a), L(Az;b), and
U(Ap;¢) are either empty or UP-ideals of X.

Let z € X. Then z € U(Ar; Ar(z)) # 0,z € L(Ar; Af(x)) # 0, and = €
U(Ar; Ar(z)) # 0. By assumption, we have U(Ar; Ar(z)), L(Ar; Af(x)), and
U(Ap; Ap(x)) are UP-ideals of X. Then 0 € U(Ar; Ar(x)),0 € L(Ar; Ar(x)), and
0e U(AF,AF({E)) Thus AT(O) t AT(ZL'),A[(O) j A[(l’), and AF(O) t AF(Z’)

Let z,y € X. By (1.29), we have Ap(z - (y-2)) = rmin{Ar(x - (y - 2)), Ar(y)}
and Ap(y) > rmin{Ar(z- (y- 2)), Ar(y)}. Thus z - (y - 2),y € U(Ap;rmin{Ap(z -
(y-2)),Ar(y)}). By assumption, we have U(Ap;rmin{Ar(z - (y- 2)), Ar(y)}) is a
UP-ideal of X. Then z -z € U(Ar;rmin{Ar(z- (y- 2)), Ar(y)}). Thus Ar(z-2) =
mmin{Ar(z - (y - ), Ar(y)}

Let z,y € X. By (1.29), we have A;(z- (y - 2)) < rmax{A;(z - (y - 2)), Ar(y)}
and Ar(y) < rmax{A;(z- (y-2)),Ar(y)}. Thus z- (y- z),y € L(Ar;rmax{A;(x -
(y-2)),Ar(y)}). By assumption, we have L(Ar;rmax{A;(z- (y-2)), Ar(x)}) is a
UP-ideal of X. Then z -z € L(Ar;tmax{A;(z- (y-2)),Ar(y)}). Thus A;(z-2) <
mmax{Ar(z - (y - 2)), Ar(y)}.

Let 2,y € X. By (1.29), we have Ap(z - (y-2)) = rmin{Ap(xz - (y- 2)), Ar(y)}
and Ap(y) = rmin{Ar(x - (y-2)),Ar(y)}. Thus z- (y - 2),y € U(Ap;rmin{Ap(x -

Ap(0) = Ap(z) = &
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(y - 2)),Ar(y)}). By assumption, we have U(Ap;rmin{Ar(z - (y - 2)), Ar(y)})
is a UP-ideal of X. Then z -z € U(Ap;rmin{Ap(z - (v - 2)), Ar(y)}). Thus
Ar(z - 2z) = rmin{Ar(z - (y - 2)), Ar(y)}-

Hence, A is an interval-valued neutrosophic UP-ideal of X. (]

THEOREM 3.5. An IVNS A in X is an interval-valued neutrosophic strong
UP-ideal if and only if for all a,b,¢é € [[0,1]], the sets E(Ar; Ar(0)), E(Ar; Ar(0)),
and E(Ap; Ar(0)) are strong UP-ideals of X.

PRrROOF. Assume that A is an interval-valued neutrosophic strong UP-ideal of
X. By Theorem 2.1, we have A is constant, that is, Ar, A, Ap are constant. Thus

Ap(z) = Ar(0)
(Vz e X) | Ar(z) = A;(0)
Ap(z) = Ap(0)
Hence, E(A7r; Ar(0)) = X, E(Ar; A7(0)) = X, and E(Ar; Ar(0)) = X and so
E(Ar; Ar(0)), E(A5; A7(0)), and E(Ap; Ar(0)) are strong UP-ideals of X.

Conversely, assume that E(Ar; Ar(0)), E(Ar; Ar(0)), and E(Ap; Ap(0)) are
strong UP-ideals of X. Then E(Ar; Ar(0)) = X, E(Ar; Ar(0)) = X, and
E(Ap; Ar(0)) = X and so

(Ve e X) | Ar(z) = Ar(0)

Ap(z) = Ap(0)
Thus Ar, A;, Ap are constant, that is, A is constant. By Theorem 2.1, we have A
is an interval-valued neutrosophic strong UP-ideal of X. (]

4. Conclusions and Future Work

In this paper, we have introduced the notions of interval-valued neutrosophic
UP-subalgebras, interval-valued neutrosophic near UP-filters, interval-valued neu-
trosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued
neutrosophic strong UP-ideals of UP-algebras and investigated some of their im-
portant properties. Then, we get the diagram of generalization of IVNSs in UP-
algebras as shown in Figure 1.

In our future study, we will apply this notions/results to other type of IVNSs in
UP-algebras. Also, we will study the soft set theory of interval-valued neutrosophic
UP-subalgebras, interval-valued neutrosophic near UP-filters, interval-valued neu-
trosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued
neutrosophic strong UP-ideals.
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