JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4866, ISSN (o) 2303-4947 www.imvibl.org /JOURNALS / JOURNAL J. Int. Math. Virtual Inst., Vol. **10**(1)(2020), 93-122 DOI: 10.7251/JIMVI2001093S

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

NEUTROSOPHIC SETS IN UP-ALGEBRAS BY MEANS OF INTERVAL-VALUED FUZZY SETS

Metawee Songsaeng and Aiyared Iampan

ABSTRACT. In this paper, we introduce the notion of interval-valued neutrosophic UP-subalgebras (resp., interval-valued neutrosophic near UP-filters, interval-valued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued neutrosophic strong UP-ideals) of UP-algebras, proved some results, and their generalizations. Furthermore, we discuss the relations between interval-valued neutrosophic UP-subalgebras (resp., interval-valued neutrosophic near UP-filters, interval-valued neutrosophic UP-filters, intervalvalued neutrosophic UP-ideals, and interval-valued neutrosophic strong UPideals) and their level subsets.

1. Introduction and Preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Examples of these are BCK-algebras [8], BCI-algebras [9], B-algebras [21], UP-algebras [5] and others. They are strong connected with logic. For example, BCI-algebras introduced by Iséki [9] in 1966 have connections with BCI-logic being the BCI-system in combinatory logic which has application in the language of functional programming. BCK and BCI-algebras are two classes of logical algebras. They were introduced by Imai and Iséki [8, 9] in 1966 and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

²⁰¹⁰ Mathematics Subject Classification. 03G25, 03B52, 03B60.

Key words and phrases. UP-algebra, interval-valued neutrosophic UP-subalgebra, interval-valued neutrosophic near UP-filter, interval-valued neutrosophic UP-filter, interval-valued neutrosophic strong UP-ideal.

This work was supported by the Unit of Excellence, University of Phayao.

The branch of the logical algebra, a UP-algebra was introduced by Iampan [5], and it is known that the class of KU-algebras is a proper subclass of the class of UPalgebras. Later Somjanta et al. [26] studied fuzzy UP-subalgebras, fuzzy UP-ideals and fuzzy UP-filters of UP-algebras. Guntasow et al. [4] studied fuzzy translations of a fuzzy set in UP-algebras. Kesorn et al. [13] studied intuitionistic fuzzy sets in UP-algebras. Kaijae et al. [12] studied anti-fuzzy UP-ideals and anti-fuzzy UPsubalgebras. Tanamoon et al. [30] studied Q-fuzzy sets in UP-algebras. Sripaeng et al. [28] studied anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UPalgebras. Dokkhamdang et al. [3] studied Generalized fuzzy sets in UP-algebras. Songsaeng and Iampan [27] studied \mathcal{N} -fuzzy UP-algebras and its level subsets.

A fuzzy set f in a nonempty set S is a function from S to the closed interval [0, 1]. The concept of a fuzzy set in a nonempty set was first considered by Zadeh [32]. The fuzzy set theories developed by Zadeh and others have found many applications in the domain of mathematics and elsewhere. Zadeh [33] was introduced an interval-value fuzzy sets. An interval-valued fuzzy set is defined by an interval-valued membership function. Wang et al. [31] introduced the concept of interval-valued neutrosophic sets. The interval-valued neutrosophic set is an instance of neutrosophic set which can be used in real scientific and engineering applications. Jun et al. [10] introduced the notion of interval-valued neutrosophic sets with applications in BCK/BCI-algebra, they also introduced the notion of interval-valued neutrosophic set, and investigate their properties and relations. In 2018-2019, Muhiuddin et al. [15, 16, 17, 18, 19, 20] applied the notion of neutrosophic sets to semigroups, BCK/BCI-algebras.

In this paper, we apply the concept of interval-valued neutrosophic sets to UPalgebras. We introduce the notion of interval-valued neutrosophic UP-subalgebras (resp., interval-valued neutrosophic near UP-filters, interval-valued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued neutrosophic strong UP-ideals) in UP-algebras, proved some results, and their generalizations. Furthermore, we discuss the relations between interval-valued neutrosophic UPsubalgebras (resp., interval-valued neutrosophic near UP-filters, interval-valued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued neutrosophic Strong UP-ideals) and their level subsets.

Before we begin our study, we will give the definition of a UP-algebra.

DEFINITION 1.1. ([5]) An algebra $X = (X, \cdot, 0)$ of type (2,0) is called a *UP-algebra*, where X is a nonempty set, \cdot is a binary operation on X, and 0 is a fixed element of X (i.e., a nullary operation) if it satisfies the following axioms: for any $x, y, z \in X$,

(UP-1): $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0$, (UP-2): $0 \cdot x = x$, (UP-3): $x \cdot 0 = 0$, and (UP-4): $x \cdot y = 0$ and $y \cdot x = 0$ imply x = y.

From [5], the binary relation \leq on a UP-algebra $X = (X, \cdot, 0)$ defined as follows:

$$(\forall x, y \in X)(x \leqslant y \Leftrightarrow x \cdot y = 0).$$

EXAMPLE 1.1. [23] Let X be a universal set and let $\Omega \in \mathcal{P}(X)$, where $\mathcal{P}(X)$ means the power set of X. Let $\mathcal{P}_{\Omega}(X) = \{A \in \mathcal{P}(X) \mid \Omega \subseteq A\}$. Define a binary operation \cdot on $\mathcal{P}_{\Omega}(X)$ by putting $A \cdot B = B \cap (A^C \cup \Omega)$ for all $A, B \in \mathcal{P}_{\Omega}(X)$, where A^C means the complement of a subset A. Then $(\mathcal{P}_{\Omega}(X), \cdot, \Omega)$ is a UP-algebra and we shall call it the generalized power UP-algebra of type 1 with respect to Ω . Let $\mathcal{P}^{\Omega}(X) = \{A \in \mathcal{P}(X) \mid A \subseteq \Omega\}$. Define a binary operation * on $\mathcal{P}^{\Omega}(X)$ by putting $A * B = B \cup (A^C \cap \Omega)$ for all $A, B \in \mathcal{P}^{\Omega}(X)$. Then $(\mathcal{P}^{\Omega}(X), *, \Omega)$ is a UP-algebra and we shall call it the generalized power UP-algebra of type 2 with respect to Ω . In particular, $(\mathcal{P}(X), \cdot, \emptyset)$ is a UP-algebra and we shall call it the power UP-algebra of type 1, and $(\mathcal{P}(X), *, X)$ is a UP-algebra and we shall call it the power UP-algebra of type 2.

EXAMPLE 1.2. ([3]) Let \mathbb{N} be the set of all natural numbers with two binary operations \circ and \bullet defined by

$$x \circ y = \begin{cases} y & \text{if } x < y, \\ 0 & \text{otherwise} \end{cases}$$

and

$$x \bullet y = \begin{cases} y & \text{if } x > y \text{ or } x = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then $(\mathbb{N}, \circ, 0)$ and $(\mathbb{N}, \bullet, 0)$ are UP-algebras.

For more examples of UP-algebras, see [1, 2, 6, 22, 23, 24, 25].

In a UP-algebra $X = (X, \cdot, 0)$, the following assertions are valid (see [5, 6]).

- (1.1) $(\forall x \in X)(x \cdot x = 0),$
- (1.2) $(\forall x, y, z \in X)(x \cdot y = 0, y \cdot z = 0 \Rightarrow x \cdot z = 0),$
- (1.3) $(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow (z \cdot x) \cdot (z \cdot y) = 0),$
- (1.4) $(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow (y \cdot z) \cdot (x \cdot z) = 0),$
- (1.5) $(\forall x, y \in X)(x \cdot (y \cdot x) = 0),$
- (1.6) $(\forall x, y \in X)((y \cdot x) \cdot x = 0 \Leftrightarrow x = y \cdot x),$
- (1.7) $(\forall x, y \in X)(x \cdot (y \cdot y) = 0),$
- (1.8) $(\forall a, x, y, z \in X)((x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0),$
- (1.9) $(\forall a, x, y, z \in X)((((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0),$
- (1.10) $(\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot (y \cdot z) = 0),$
- (1.11) $(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow x \cdot (z \cdot y) = 0),$
- (1.12) $(\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot (x \cdot (y \cdot z)) = 0)$, and
- (1.13) $(\forall a, x, y, z \in X)(((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0).$

DEFINITION 1.2. ([5, 26, 4, 7]) A nonempty subset S of a UP-algebra $X = (X, \cdot, 0)$ is called

- (1) a UP-subalgebra of X if $(\forall x, y \in S)(x \cdot y \in S)$.
- (2) a near UP-filter of X if it satisfies the following properties:

SONGSAENG AND IAMPAN

(i) the constant 0 of X is in S, and

- (ii) $(\forall x, y \in X)(y \in S \Rightarrow x \cdot y \in S).$
- (3) a UP-filter of X if it satisfies the following properties:
 - (i) the constant 0 of X is in S, and
 - (ii) $(\forall x, y \in X)(x \cdot y \in S, x \in S \Rightarrow y \in S).$
- (4) a UP-ideal of X if it satisfies the following properties:(i) the constant 0 of X is in S, and
 - (ii) $(\forall x, y, z \in X)(x \cdot (y \cdot z) \in S, y \in S \Rightarrow x \cdot z \in S).$
- (5) a strong UP-ideal (renamed from a strongly UP-ideal) of X if it satisfies the following properties:
 - (i) the constant 0 of X is in S, and
 - (ii) $(\forall x, y, z \in X)((z \cdot y) \cdot (z \cdot x) \in S, y \in S \Rightarrow x \in S).$

Guntasow et al. [4] proved that the notion of UP-subalgebras is a generalization of near UP-filters, near UP-filters is a generalization of UP-filters, UP-filters is a generalization of UP-ideals, and UP-ideals is a generalization of strong UP-ideals. Moreover, they also proved that a UP-algebra X is the only one strong UP-ideal of itself.

In 1965, the concept of a fuzzy set in a nonempty set was first considered by Zadeh [**32**] as the following definition.

DEFINITION 1.3. A fuzzy set (briefly, FS) in a nonempty set X (or a fuzzy subset of X) is defined to be a function $\lambda : X \to [0,1]$, where [0,1] is the unit segment of the real line. Denote by $[0,1]^X$ the collection of all fuzzy sets in X. Define a binary relation \leq on $[0,1]^X$ as follows:

(1.14)
$$(\forall \lambda, \mu \in [0, 1]^X) (\lambda \leqslant \mu \Leftrightarrow (\forall x \in X) (\lambda(x) \leqslant \mu(x))).$$

DEFINITION 1.4. ([26]) Let λ be a fuzzy set in a nonempty set X. The complement of λ , denoted by λ^C , is defined by

(1.15)
$$(\forall x \in X)(\lambda^C(x) = 1 - \lambda(x)).$$

DEFINITION 1.5. ([14]) Let $\{\lambda_i \mid i \in J\}$ be a family of fuzzy sets in a nonempty set X. We define the *join* and the *meet* of $\{\lambda_i \mid i \in J\}$, denoted by $\bigvee_{i \in J} \lambda_i$ and $\wedge_{i \in J} \lambda_i$, respectively, as follows:

(1.16)
$$(\forall x \in X)((\lor_{i \in J} \lambda_i)(x) = \sup_{i \in J} \{\lambda_i(x)\}),$$

(1.17)
$$(\forall x \in X)((\wedge_{i \in J} \lambda_i)(x) = \inf_{i \in J} \{\lambda_i(x)\}).$$

In particular, if λ and μ be fuzzy sets in X, we have the join and meet of λ and μ as follows:

(1.18)
$$(\forall x \in X)((\lambda \lor \mu)(x) = \max\{\lambda(x), \mu(x)\}),$$

(1.19)
$$(\forall x \in X)((\lambda \land \mu)(x) = \min\{\lambda(x), \mu(x)\}).$$

respectively.

An interval number we mean a close subinterval $\tilde{a} = [a^-, a^+]$ of [0, 1], where $0 \leq a^- \leq a^+ \leq 1$. The interval number $\tilde{a} = [a^-, a^+]$ with $a^- = a^+$ is denoted by **a**. Denote by [[0, 1]] the set of all interval numbers.

DEFINITION 1.6. ([11]) Let $\{\tilde{a}_i \mid i \in J\}$ be a family of interval numbers. We define the *refined infimum* and the *refined supremum* of $\{\tilde{a}_i \mid i \in J\}$, denoted by $\operatorname{rinf}_{i \in J} \tilde{a}_i$ and $\operatorname{rsup}_{i \in J} \tilde{a}_i$, respectively, as follows:

(1.20)
$$\operatorname{rinf}_{i \in J}\{\tilde{a}_i\} = [\inf_{i \in J}\{a_i^-\}, \inf_{i \in J}\{a_i^+\}],$$

(1.21)
$$\operatorname{rsup}_{i \in J} \{ \tilde{a}_i \} = [\sup_{i \in J} \{ a_i^- \}, \sup_{i \in J} \{ a_i^+ \}].$$

In particular, if \tilde{a}_1 and \tilde{a}_2 are interval numbers, we define the *refined minimum* and the *refined maximum* of \tilde{a}_1 and \tilde{a}_2 , denoted by $\min\{\tilde{a}_1, \tilde{a}_2\}$ and $\max\{\tilde{a}_1, \tilde{a}_2\}$, respectively, as follows:

(1.22)
$$\operatorname{rmin}\{\tilde{a}_1, \tilde{a}_2\} = [\min\{a_1^-, a_2^-\}, \min\{a_1^+, a_2^+\}],$$

(1.23)
$$\operatorname{rmax}\{\tilde{a}_1, \tilde{a}_2\} = [\max\{a_1^-, a_2^-\}, \max\{a_1^+, a_2^+\}]$$

DEFINITION 1.7. ([11]) Let \tilde{a}_1 and \tilde{a}_2 be interval numbers. We define the symbols " \succeq ", " \preceq ", "=" in case of \tilde{a}_1 and \tilde{a}_2 as follows:

(1.24)
$$\tilde{a}_1 \succeq \tilde{a}_2 \Leftrightarrow a_1^- \ge a_2^- \text{ and } a_1^+ \ge a_2^+,$$

and similarly we may have $\tilde{a}_1 \leq \tilde{a}_2$ and $\tilde{a}_1 = \tilde{a}_2$. To say $\tilde{a}_1 \succ \tilde{a}_2$ (resp., $\tilde{a}_1 \prec \tilde{a}_2$) we mean $\tilde{a}_1 \succeq \tilde{a}_2$ and $\tilde{a}_1 \neq \tilde{a}_2$ (resp., $\tilde{a}_1 \leq \tilde{a}_2$ and $\tilde{a}_1 \neq \tilde{a}_2$).

DEFINITION 1.8. ([33]) Let \tilde{a} be an interval number. The complement of \tilde{a} , denoted by \tilde{a}^C , is defined by the interval number

(1.25)
$$\tilde{a}^C = [1 - a^+, 1 - a^-].$$

In the [[0, 1]], the following assertions are valid (see [29]).

 $\begin{array}{l} (1.26) \\ (\forall \tilde{a} \in [[0,1]])((\tilde{a}^{C})^{C} = \tilde{a}), \\ (1.27) \\ (\forall \tilde{a} \in [[0,1]])(\max\{\tilde{a},\tilde{a}\} = \tilde{a} \text{ and } \min\{\tilde{a},\tilde{a}\} = \tilde{a}), \\ (1.28) \\ (\forall \tilde{a}_{1},\tilde{a}_{2} \in [[0,1]])(\max\{\tilde{a}_{1},\tilde{a}_{2}\} = \max\{\tilde{a}_{2},\tilde{a}_{1}\} \text{ and } \min\{\tilde{a}_{1},\tilde{a}_{2}\} = \min\{\tilde{a}_{2},\tilde{a}_{1}\}), \\ (1.29) \\ (\forall \tilde{a}_{1},\tilde{a}_{2} \in [[0,1]])(\max\{\tilde{a}_{1},\tilde{a}_{2}\} \succeq \tilde{a}_{1} \text{ and } \tilde{a}_{2} \succeq \min\{\tilde{a}_{1},\tilde{a}_{2}\}), \\ (1.30) \\ (\forall \tilde{a}_{1},\tilde{a}_{2} \in [[0,1]])(\tilde{a}_{1} \succeq \tilde{a}_{2} \Leftrightarrow \tilde{a}_{1}^{C} \preceq \tilde{a}_{2}^{C}), \\ (1.31) \\ (\forall \tilde{a}_{1},\tilde{a}_{2},\tilde{a}_{3},\tilde{a}_{4} \in [[0,1]])(\tilde{a}_{1} \succeq \tilde{a}_{2},\tilde{a}_{3} \succeq \tilde{a}_{4} \Rightarrow \min\{\tilde{a}_{1},\tilde{a}_{3}\} \succeq \min\{\tilde{a}_{2},\tilde{a}_{4}\}), \end{array}$

98

(1.32) $(\forall \tilde{a}_1, \tilde{a}_2, \tilde{a}_3 \in [[0, 1]])(\tilde{a}_1 \succeq \tilde{a}_2, \tilde{a}_3 \succeq \tilde{a}_2 \Leftrightarrow \operatorname{rmin}\{\tilde{a}_1, \tilde{a}_3\} \succeq \tilde{a}_2),$ (1.33) $(\forall \tilde{a}_1, \tilde{a}_2, \tilde{a}_3, \tilde{a}_4 \in [[0, 1]])(\tilde{a}_1 \succeq \tilde{a}_2, \tilde{a}_3 \succeq \tilde{a}_4 \Rightarrow \operatorname{rmax}\{\tilde{a}_1, \tilde{a}_3\} \succeq \operatorname{rmax}\{\tilde{a}_2, \tilde{a}_4\}),$ (1.34) $(\forall \tilde{a}_1, \tilde{a}_2, \tilde{a}_3 \in [[0, 1]]) (\tilde{a}_2 \succeq \tilde{a}_1, \tilde{a}_2 \succeq \tilde{a}_3 \Leftrightarrow \tilde{a}_2 \succeq \operatorname{rmax}\{\tilde{a}_1, \tilde{a}_3\}),$ (1.35) $(\forall \tilde{a}_1, \tilde{a}_2 \in [[0, 1]])(\tilde{a}_1 \succeq \tilde{a}_2 \Leftrightarrow \min\{\tilde{a}_1, \tilde{a}_2\} = \tilde{a}_2),$ (1.36) $(\forall \tilde{a}_1, \tilde{a}_2 \in [[0, 1]])(\tilde{a}_1 \succeq \tilde{a}_2 \Leftrightarrow \operatorname{rmax}\{\tilde{a}_1, \tilde{a}_2\} = \tilde{a}_1),$ (1.37) $(\forall \tilde{a}_1, \tilde{a}_2 \in [[0, 1]])(\min\{\tilde{a}_1^C, \tilde{a}_2^C\} = \max\{\tilde{a}_1, \tilde{a}_2\}^C),$ (1.38) $(\forall \tilde{a}_1, \tilde{a}_2 \in [[0, 1]])(\operatorname{rmax}\{\tilde{a}_1^C, \tilde{a}_2^C\} = \operatorname{rmin}\{\tilde{a}_1, \tilde{a}_2\}^C),$ (1.39) $(\forall \tilde{a}_1, \tilde{a}_2, \tilde{a}_3 \in [[0, 1]])(\tilde{a}_1 \preceq \operatorname{rmax}\{\tilde{a}_2, \tilde{a}_3\} \Leftrightarrow \tilde{a}_1^C \succeq \operatorname{rmin}\{\tilde{a}_2^C, \tilde{a}_3^C\}),$ (1.40) $(\forall \tilde{a}_1, \tilde{a}_2, \tilde{a}_3 \in [[0, 1]])(\tilde{a}_1 \succeq \operatorname{rmax}\{\tilde{a}_2, \tilde{a}_3\} \Leftrightarrow \tilde{a}_1^C \preceq \operatorname{rmin}\{\tilde{a}_2^C, \tilde{a}_2^C\}).$ (1.41) $(\forall \tilde{a}_1, \tilde{a}_2, \tilde{a}_3 \in [[0, 1]])(\tilde{a}_1 \preceq \min\{\tilde{a}_2, \tilde{a}_3\} \Leftrightarrow \tilde{a}_1^C \succeq \max\{\tilde{a}_2^C, \tilde{a}_3^C\}), \text{ and }$ (1.42) $(\forall \tilde{a}_1, \tilde{a}_2, \tilde{a}_3 \in [[0, 1]])(\tilde{a}_1 \succeq \operatorname{rmin}\{\tilde{a}_2, \tilde{a}_3\} \Leftrightarrow \tilde{a}_1^C \preceq \operatorname{rmax}\{\tilde{a}_2^C, \tilde{a}_3^C\}).$

In 1975, Zadeh $[\mathbf{33}]$ introduced interval-valued fuzzy set as the following definition.

DEFINITION 1.9. An interval-valued fuzzy set (briefly, an IVFS) in a nonempty set X is an arbitrary function $A: X \to [[0,1]]$. Let IVFS(X) stands for the set of all IVFS in X. For every $A \in IVFS(X)$ and $x \in X, A(x) = [A^-(x), A^+(x)]$ is called the *degree of membership* of an element x to A, where A^-, A^+ are fuzzy sets in X which are called a *lower fuzzy set* and an *upper fuzzy set* in X, respectively. For simplicity, we denote $A = [A^-, A^+]$.

DEFINITION 1.10. ([11]) Let A and B be interval-valued fuzzy sets in a nonempty set X. We define the symbols " \subseteq ", " \supseteq ", "=" in case of A and B as follows:

(1.43) $(\forall x \in X)(A \subseteq B \Leftrightarrow A(x) \preceq B(x)),$

and similarly we may have $A \supseteq B$ and A = B.

DEFINITION 1.11. ([33]) Let A be an interval-valued fuzzy set in a nonempty set X. The *complement of* A, denoted by A^C , is defined as follows: $A^C(x) = A(x)^C$ for all $x \in X$, that is,

(1.44)
$$(\forall x \in X)(A^C(x) = [1 - A^+(x), 1 - A^-(x)]).$$

We note that $A^{C^{-}}(x) = 1 - A^{+}(x)$ and $A^{C^{+}}(x) = 1 - A^{-}(x)$ for all $x \in X$.

DEFINITION 1.12. ([**33**]) Let $\{A_i \mid i \in J\}$ be a family of interval-valued fuzzy sets in a nonempty set X. We define the *intersection* and the *union* of $\{A_i \mid i \in J\}$, denoted by $\bigcap_{i \in J} A_i$ and $\bigcup_{i \in J} A_i$, respectively, as follows:

(1.45)
$$(\forall x \in X)((\cap_{i \in J} A_i)(x) = \operatorname{rinf}_{i \in J} \{A_i(x)\}),$$

(1.46)
$$(\forall x \in X)((\cup_{i \in J} A_i)(x) = \operatorname{rsup}_{i \in J} \{A_i(x)\})$$

We note that

$$(\forall x \in X)((\cap_{i \in J} A_i)^-(x) = (\wedge_{i \in J} A_i^-)(x) = \inf_{i \in J} \{A_i^-(x)\})$$

and

$$(\forall x \in X)((\cap_{i \in J} A_i)^+(x) = (\wedge_{i \in J} A_i^+)(x) = \inf_{i \in J} \{A_i^+(x)\}).$$

Similarly,

$$(\forall x \in X)((\cup_{i \in J} A_i)^-(x) = (\vee_{i \in J} A_i^-)(x) = \sup_{i \in J} \{A_i^-(x)\})$$

and

$$(\forall x \in X)((\cup_{i \in J} A_i)^+(x) = (\vee_{i \in J} A_i^+)(x) = \sup_{i \in J} \{A_i^+(x)\}).$$

In particular, if A_1 and A_2 are interval-valued fuzzy sets in X, we have the intersection and the union of A_1 and A_2 as follows:

(1.47)
$$(\forall x \in X)((A_1 \cap A_2)(x) = \min\{A_1(x), A_2(x)\})$$

(1.48) $(\forall x \in X)((A_1 \cup A_2)(x) = \operatorname{rmax}\{A_1(x), A_2(x)\}).$

2. Interval-Valued Neutrosophic Sets in UP-Algebras

In 2005, the concept of an interval-valued neutrosophic set was first considered by Wang et al. [31] as the following definition.

An *interval-valued neutrosophic set* (briefly, IVNS) in a nonempty set X is a structure of the form:

$$\mathbf{A} := \{ (x, A_T(x), A_I(x), A_F(x)) \mid x \in X \},\$$

where A_T, A_I , and A_F are interval-valued fuzzy sets in X, which are called a truth membership function, an indeterminacy membership function and a falsity membership function, respectively.

For our convenience, we will denote an IVNS as

$$\mathbf{A} = (X, A_T, A_I, A_F) = (X, A_{T,I,F}) = \{ (x, A_T(x), A_I(x), A_F(x)) \mid x \in X \}.$$

Now, we introduce the notions of interval-valued neutrosophic UP-subalgebras, interval-valued neutrosophic near UP-filters, interval-valued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued neutrosophic strong UP-ideals of UP-algebras, provide the necessary examples, investigate their properties, and prove their generalizations.

In what follows, let X denote a UP-algebra $(X, \cdot, 0)$ unless otherwise specified.

DEFINITION 2.1. An IVNS **A** in X is called an *interval-valued neutrosophic* UP-subalgebra of X if it holds the following conditions:

(2.1) $(\forall x, y \in X)(A_T(x \cdot y) \succeq \min\{A_T(x), A_T(y)\}),$

(2.2)
$$(\forall x, y \in X)(A_I(x \cdot y) \preceq \operatorname{rmax}\{A_I(x), A_I(y)\})$$

(2.3) $(\forall x, y \in X)(A_F(x \cdot y) \succeq \min\{A_F(x), A_F(y)\}).$

Proposition 2.1. If ${\bf A}$ is an interval-valued neutrosophic UP-subalgebra of X, then

(2.4)
$$(\forall x \in X)(A_T(0) \succeq A_T(x)),$$

(2.5)
$$(\forall x \in X)(A_I(0) \preceq A_I(x)),$$

(2.6) $(\forall x \in X)(A_F(0) \succeq A_F(x)).$

PROOF. Let **A** be an interval-valued neutrosophic UP-subalgebra of X. By (1.1), we have

$$(\forall x \in X) \begin{pmatrix} A_T(0) = A_T(x \cdot x) \succeq \min\{A_T(x), A_T(x)\} = A_T(x), \\ A_I(0) = A_I(x \cdot x) \preceq \min\{A_I(x), A_I(x)\} = A_I(x), \\ A_F(0) = A_F(x \cdot x) \succeq \min\{A_F(x), A_F(x)\} = A_F(x) \end{pmatrix}.$$

EXAMPLE 2.1. Let $X = \{0, 1, 2, 3\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

We define an IVNS ${\bf A}$ in X as follows:

$$\begin{split} A_T &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0.9,1] & [0.2,0.5] & [0.3,0.4] & [0.3,0.4] \end{pmatrix}, \\ A_I &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0,0.3] & [0.7,0.8] & [0.2,0.3] & [0.8,0.9] \end{pmatrix}, \\ A_F &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0.7,1] & [0.1,0.3] & [0.5,0.7] & [0.6,0.7] \end{pmatrix}. \end{split}$$

Then \mathbf{A} is an interval-valued neutrosophic UP-subalgebra of X.

DEFINITION 2.2. An IVNS **A** in X is called an *interval-valued neutrosophic* near UP-filter of X if it holds the following conditions: (2.4), (2.5), (2.6), and

(2.7) $(\forall x, y \in X)(A_T(x \cdot y) \succeq A_T(y)),$

(2.8)
$$(\forall x, y \in X)(A_I(x \cdot y) \preceq A_I(y)),$$

(2.9) $(\forall x, y \in X)(A_F(x \cdot y) \succeq A_F(y)).$

EXAMPLE 2.2. Let $X = \{0, 1, 2, 3\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3
0	0	1	2	3
1	0	0	2	0
2	0	1	0	3
3	0	1	2	0

We define an IVNS \mathbf{A} in X as follows:

$$\begin{split} A_T &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0.9,1] & [0.6,0.8] & [0.5,0.6] & [0.4,0.6] \end{pmatrix}, \\ A_I &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0,0.1] & [0.1,0.3] & [0.3,0.4] & [0.5,0.8] \end{pmatrix}, \\ A_F &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0.8,0.9] & [0.6,0.8] & [0.5,0.7] & [0.4,0.6] \end{pmatrix}. \end{split}$$

Then \mathbf{A} is an interval-valued neutrosophic near UP-filter of X.

DEFINITION 2.3. An IVNS **A** in X is called an *interval-valued neutrosophic* UP-filter of X if it holds the following conditions: (2.4), (2.5), (2.6), and

(2.10) $(\forall x, y \in X)(A_T(y) \succeq \min\{A_T(x \cdot y), A_T(x)\}),$

(2.11)
$$(\forall x, y \in X)(A_I(y) \preceq \operatorname{rmax}\{A_I(x \cdot y), A_I(x)\}),$$

(2.12)
$$(\forall x, y \in X)(A_F(y) \succeq \min\{A_F(x \cdot y), A_F(x)\}).$$

EXAMPLE 2.3. Let $X = \{0, 1, 2, 3\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

	0	1	2	3
0	0	1	2	3
1	0	0	3	3
2	0	1	0	0
3	0	1	2	0

We define an IVNS \mathbf{A} in X as follows:

$$\begin{split} A_T &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0.9,1] & [0.5,0.8] & [0.3,0.6] & [0.3,0.6] \end{pmatrix}, \\ A_I &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0,0.1] & [0.2,0.3] & [0.6,0.8] & [0.6,0.8] \end{pmatrix}, \\ A_F &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0.8,0.9] & [0.4,0.5] & [0.3,0.4] & [0.3,0.4] \end{pmatrix}. \end{split}$$

Then \mathbf{A} is an interval-valued neutrosophic UP-filter of X.

DEFINITION 2.4. An IVNS **A** in X is called an *interval-valued neutrosophic* UP-*ideal* of X if it holds the following conditions: (2.4), (2.5), (2.6), and

- (2.13) $(\forall x, y, z \in X) (A_T(x \cdot z) \succeq \min\{A_T(x \cdot (y \cdot z)), A_T(x)\}),$
- (2.14) $(\forall x, y, z \in X) (A_I(x \cdot z) \preceq \operatorname{rmax} \{A_I(x \cdot (y \cdot z)), A_I(x)\}),$
- (2.15) $(\forall x, y, z \in X) (A_F(x \cdot z) \succeq \min\{A_F(x \cdot (y \cdot z)), A_F(x)\}).$

EXAMPLE 2.4. Let $X = \{0, 1, 2, 3\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

We define an IVNS \mathbf{A} in X as follows:

$$\begin{split} A_T &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0.9,1] & [0.7,0.9] & [0.6,0.8] & [0.6,0.9] \end{pmatrix}, \\ A_I &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0.1,0.3] & [0.3,0.5] & [0.4,0.7] & [0.3,0.6] \end{pmatrix}, \\ A_F &= \begin{pmatrix} 0 & 1 & 2 & 3 \\ [0.8,0.9] & [0.5,0.9] & [0.4,0.6] & [0.5,0.8] \end{pmatrix}. \end{split}$$

Then \mathbf{A} is an interval-valued neutrosophic UP-ideal of X.

DEFINITION 2.5. An IVNS **A** in X is called an *interval-valued neutrosophic* strong UP-ideal of X if it holds the following conditions: (2.4), (2.5), (2.6), and

 $(2.16) \qquad (\forall x, y, z \in X) (A_T(x) \succeq \min\{A_T((z \cdot y) \cdot (z \cdot x)), A_T(y)\}),$

$$(2.17) \qquad (\forall x, y, z \in X)(A_I(x) \preceq \operatorname{rmax}\{A_I((z \cdot y) \cdot (z \cdot x)), A_I(y)\})$$

$$(2.18) \qquad (\forall x, y, z \in X)(A_F(x) \succeq \min\{A_F((z \cdot y) \cdot (z \cdot x)), A_F(y)\}).$$

EXAMPLE 2.5. Let $X = \{0, 1, 2, 3\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

·	0	1	2	3
0	0	1	2	3
1	0	0	1	3
2	0	0	0	3
3	0	1	2	0

We define an IVNS \mathbf{A} in X as follows:

$$(\forall x \in X) \begin{pmatrix} A_T(x) = [0.7, 0.9] \\ A_I(x) = [0.3, 0.5] \\ A_F(x) = [0.5, 0.9] \end{pmatrix}.$$

Then \mathbf{A} is an interval-valued neutrosophic strong UP-ideal of X.

DEFINITION 2.6. An IVNS **A** in a nonempty set X is said to be *constant* if **A** is a constant function from X to $[[0,1]]^3$. That is, A_T, A_I , and A_F are constant functions from X to [[0,1]].

THEOREM 2.1. An IVNS **A** in X is constant if and only if it is an intervalvalued neutrosophic strong UP-ideal of X.

PROOF. Assume that an IVNS **A** is constant in X. Then $A_T(x) = A_T(0)$, $A_I(x) = A_I(0)$, and $A_F(x) = A_F(0)$ for all $x \in X$. Then for all $x \in X, A_T(0) \succeq A_T(x), A_T(0) \preceq A_I(x)$, and $A_F(0) \succeq A_F(x)$, and for all $x, y, z \in X$,

$$\operatorname{rmin}\{A_{T}((z \cdot y) \cdot (z \cdot x)), A_{T}(y)\} = \operatorname{rmin}\{A_{T}(0), A_{T}(0)\}$$

$$((1.27)) = A_{T}(0)$$

$$= A_{T}(x),$$

$$\operatorname{rmax}\{A_{I}((z \cdot y) \cdot (z \cdot x)), A_{I}(y)\} = \operatorname{rmax}\{A_{I}(0), A_{I}(0)\}$$

$$((1.27)) = A_{I}(0)$$

$$= A_{I}(x),$$

$$\operatorname{rmin}\{A_{F}((z \cdot y) \cdot (z \cdot x)), A_{F}(y)\} = \operatorname{rmin}\{A_{F}(0), A_{F}(0)\}$$

$$((1.27)) = A_{F}(0)$$

$$= A_{F}(x).$$

Hence, \mathbf{A} is an interval-valued neutrosophic strong UP-ideal of X.

Conversely, assume that **A** is an interval-valued neutrosophic strong UP-ideal of X. Then for all $x \in X$,

$$A_{T}(x) \succeq \min\{A_{T}((x \cdot 0) \cdot (x \cdot x)), A_{T}(0)\}$$
((UP-3))
((UP-2))
((1.1))
((1.27))

$$A_{T}(x) \succeq \min\{A_{T}(0 \cdot (x \cdot x)), A_{T}(0)\}$$

$$= \min\{A_{T}(x \cdot x), A_{T}(0)\}$$

$$= \min\{A_{T}(0), A_{T}(0)\}$$

$$\succeq A_{T}(x),$$

$$A_{I}(x) \leq \max\{A_{I}((x \cdot 0) \cdot (x \cdot x)), A_{I}(0)\}$$
((UP-3))
((UP-2))
((1.1))
((1.27))

$$A_{I}(x) \leq \max\{A_{I}(x \cdot x), A_{I}(0)\}$$

$$= \max\{A_{I}(x \cdot x), A_{I}(0)\}$$

$$= \max\{A_{I}(0), A_{I}(0)\}$$

$$\leq A_{I}(x),$$

SONGSAENG AND IAMPAN

$$A_{F}(x) \succeq \min\{A_{F}((x \cdot 0) \cdot (x \cdot x)), A_{F}(0)\}$$
((UP-3))
((UP-2))
((1.1))

$$= \min\{A_{F}(0 \cdot (x \cdot x)), A_{F}(0)\}$$

$$= \min\{A_{F}(x \cdot x), A_{F}(0)\}$$
((1.27))

$$= A_{F}(0)$$

$$((1.27)) \qquad \qquad = A_F(0)$$
$$\simeq A_F(x).$$

Thus $A_T(0) = A_T(x), A_I(0) = A_I(x)$, and $A_F(0) = A_F(x)$ for all $x \in X$. Hence, **A** is constant.

THEOREM 2.2. Every interval-valued neutrosophic strong UP-ideal of X is an interval-valued neutrosophic UP-ideal.

PROOF. Assume that **A** is an interval-valued neutrosophic strong UP-ideal of X. Then for all $x \in X$, $A_T(0) \succeq A_T(x)$, $A_T(0) \preceq A_I(x)$, and $A_F(0) \succeq A_F(x)$. Let $x, y, z \in X$. Then

$$(1.5)) \qquad A_T(x \cdot z) \succeq \min\{A_T((z \cdot y) \cdot (z \cdot (x \cdot z))), A_T(y)\} \\ = \min\{A_T((z \cdot y) \cdot 0), A_T(y)\} \\ = \min\{A_T(0), A_T(y)\} \\ = A_T(y) \\ \succeq \min\{A_T(x \cdot (y \cdot z)), A_T(y)\}, \\ A_I(x \cdot z) \preceq \max\{A_I((z \cdot y) \cdot (z \cdot (x \cdot z))), A_I(y)\} \end{cases}$$

((1.5)) =
$$\max\{A_I((z \cdot y) \cdot 0), A_I(y)\}$$

((UP-3))
$$= \max\{A_I(0), A_I(y)\}$$

$$= A_{I}(y)$$

$$\preceq \operatorname{rmax}\{A_{T}(x \cdot (y \cdot z)), A_{T}(y)\},$$

$$A_{F}(x \cdot z) \succeq \operatorname{rmin}\{A_{F}((z \cdot y) \cdot (z \cdot (x \cdot z))), A_{F}(y)\}$$

$$((1.5)) = \operatorname{rmin}\{A_{F}((z \cdot y) \cdot 0), A_{F}(y)\}$$

$$((UP-3)) = \operatorname{rmin}\{A_{F}(0), A_{F}(y)\}$$

$$= A_{F}(y)$$

Hence, \mathbf{A} is an interval-valued neutrosophic UP-ideal of X.

The following example show that the converse of Theorem 2.2 is not true.

 $\succeq \min\{A_F(x \cdot (y \cdot z)), A_F(y)\}.$

EXAMPLE 2.6. From Example 2.4, we have **A** is an interval-valued neutrosophic UP-ideal of X. Since $A_T(1) = [0.7, 0.9] \not\geq [0.9, 1] = \min\{A_T((2 \cdot 0) \cdot (2 \cdot 1)), A_T(0)\}$, we have **A** is not an interval-valued neutrosophic strong UP-ideal of X.

THEOREM 2.3. Every interval-valued neutrosophic UP-ideal of X is an intervalvalued neutrosophic UP-filter.

PROOF. Assume that \mathbf{A} is an interval-valued neutrosophic UP-ideal of X. Then for all $x \in X, A_T(0) \succeq A_T(x), A_T(0) \preceq A_I(x)$, and $A_F(0) \succeq A_F(x)$. Let $x, y \in X$. Then ((IID 0)) $A(\alpha) = A(0, \alpha)$

$$A_T(y) = A_T(0 \cdot y)$$

$$\succeq \min\{A_T(0 \cdot (x \cdot y)), A_T(x)\}$$

$$= \min\{A_T(x \cdot y), A_T(x)\},$$

$$((UP-2)) = \min\{A_T(x \cdot y), A_T(x)\}$$

$$((\text{UP-2})) \qquad \qquad A_I(y) = A_I(0 \cdot y)$$

$$(\text{(UP-2)}) \qquad \qquad \leq \operatorname{rmax}\{A_I(0 \cdot (x \cdot y)), A_I(x)\} \\ = \operatorname{rmax}\{A_I(x \cdot y), A_I(x)\},$$

$$((\text{UP-2})) \qquad \qquad A_F(y) = A_F(0 \cdot y)$$

$$(\text{UP-2})) \succeq \min\{A_F(0 \cdot (x \cdot y)), A_F(x)\}\$$
$$= \min\{A_F(x \cdot y), A_F(x)\}.$$

Hence, \mathbf{A} is an interval-valued neutrosophic UP-filter of X.

The following example show that the converse of Theorem 2.3 is not true.

EXAMPLE 2.7. From Example 2.3, we have A is an interval-valued neutrosophic UP-filter of X. Since $A_I(3 \cdot 2) = [0.6, 0.8] \not\leq [0.2, 0.3] = \operatorname{rmax}\{A_I(3 \cdot (1 \cdot 2)), A_I(1)\},\$ we have \mathbf{A} is not an interval-valued neutrosophic UP-ideal of X.

THEOREM 2.4. Every interval-valued neutrosophic UP-filter of X is an intervalvalued neutrosophic near UP-filter.

PROOF. Assume that \mathbf{A} is an interval-valued neutrosophic UP-filter of X. Then for all $x \in X, A_T(0) \succeq A_T(x), A_T(0) \preceq A_I(x)$, and $A_F(0) \succeq A_F(x)$. Let $x, y \in X$. Then

((1.5))
$$A_T(x \cdot y) \succeq \min\{A_T(y \cdot (x \cdot y)), A_T(y)\}$$
$$= \min\{A_T(0), A_T(y)\}$$
$$= A_T(y),$$

$$((1.5)) \qquad A_I(x \cdot y) \preceq \max\{A_I(y \cdot (x \cdot y)), A_I(y)\}$$
$$= \max\{A_I(0), A_I(y)\}$$

$$= A_{I}(y),$$

$$A_{F}(x \cdot y) \succeq \min\{A_{F}(y \cdot (x \cdot y)), A_{F}(y)\}$$

$$= \min\{A_{F}(0), A_{F}(y)\}$$

$$= A_{F}(y).$$

Hence, \mathbf{A} is an interval-valued neutrosophic near UP-filter of X.

The following example show that the converse of Theorem 2.4 is not true.

EXAMPLE 2.8. From Example 2.2, we have A is an interval-valued neutrosophic near UP-filter of X. Since $A_F(3) = [0.4, 0.6] \not\geq [0.6, 0.8] = \min\{A_F(1 \cdot 3), A_F(1)\},\$ we have \mathbf{A} is not an interval-valued neutrosophic UP-filter of X.

THEOREM 2.5. Every interval-valued neutrosophic near UP-filter of X is an interval-valued neutrosophic UP-subalgebra.

PROOF. Assume that A is an interval-valued neutrosophic near UP-filter of X. Then for all $x \in X, A_T(0) \succeq A_T(x), A_T(0) \preceq A_I(x)$, and $A_F(0) \succeq A_F(x)$. Let $x, y \in X$. By (1.29), we have

$$A_T(x \cdot y) \succeq A_T(y) \succeq \min\{A_T(x), A_T(y)\}, A_I(x \cdot y) \preceq A_I(y) \preceq \max\{A_I(x), A_I(y)\}, A_F(x \cdot y) \succeq A_F(y) \succeq \min\{A_F(x), A_F(y)\}.$$

Hence, \mathbf{A} is an interval-valued neutrosophic UP-subalgebra of X.

The following example show that the converse of Theorem 2.5 is not true.

EXAMPLE 2.9. From Example 2.1, we have A is an interval-valued neutrosophic UP-subalgebra of X. Since $A_F(1 \cdot 3) = [0.5, 0.7] \not\geq [0.6, 0.8] = A_F(3)$, we have A is not an interval-valued neutrosophic near UP-filter of X.

By Theorems 2.2, 2.3, 2.4, and 2.5 and Examples 2.6, 2.7, 2.8, and 2.9, we have that the notion of interval-valued neutrosophic UP-subalgebras is a generalization of interval-valued neutrosophic near UP-filters, interval-valued neutrosophic near UP-filters is a generalization of interval-valued neutrosophic UP-filters, interval-valued neutrosophic UP-filters is a generalization of interval-valued neutrosophic UP-ideals, and interval-valued neutrosophic UP-ideals is a generalization of interval-valued neutrosophic strong UP-ideals. Moreover, by Theorem 2.1, we obtain that interval-valued neutrosophic strong UP-ideals and constant intervalvalued neutrosophic set coincide.

THEOREM 2.6. If A is an interval-valued neutrosophic UP-subalgebra of Xsatisfying the following condition:

(2.19)
$$(\forall x, y \in X) \left(x \cdot y \neq 0 \Rightarrow \begin{cases} A_T(x) \succeq A_T(y) \\ A_I(x) \preceq A_I(y) \\ A_F(x) \succeq A_F(y) \end{cases} \right),$$

then \mathbf{A} is an interval-valued neutrosophic near UP-filter of X.

PROOF. Assume that \mathbf{A} is an interval-valued neutrosophic UP-subalgebra of Xsatisfying the condition (2.19). By Theorem 2.1, we have **A** satisfies the conditions (2.4), (2.5), and (2.6). Next, let $x, y \in X$.

Case 1: $x \cdot y = 0$. Then

$$((2.5)) A_I(x \cdot y) = A_I(0) \preceq A_I(y),$$

 $A_F(x \cdot y) = A_F(0) \succeq A_F(y).$ ((2.6))

Case 2: $x \cdot y \neq 0$. By (2.19), it follows that

$$((2.1)) A_T(x \cdot y) \succeq \min\{A_T(x), A_T(y)\}$$

$$((1.35)) = A_T(y),$$

$$((1.36)) \qquad \qquad = A_I(y),$$

 $A_F(x \cdot y) \succeq \min\{A_F(x), A_F(y)\}$ ((2.3))

$$((1.35)) = A_F(y).$$

Hence, \mathbf{A} is an interval-valued neutrosophic near UP-filter of X.

THEOREM 2.7. If A is an interval-valued neutrosophic near UP-filter of X satisfying the following condition:

then \mathbf{A} is an interval-valued neutrosophic UP-filter of X.

PROOF. Assume that **A** is an interval-valued neutrosophic near UP-filter of Xsatisfying the condition (2.20). Then A satisfies the conditions (2.4), (2.5), and (2.6). Next, let $x, y \in X$. Then

((2.20))
$$\min\{A_T(x \cdot y), A_T(x)\} = \min\{A_I(x \cdot y), A_T(x)\}$$

$$((2.8)) \qquad \qquad \preceq \min\{A_I(y), A_T(x)\}$$

((2.20))
$$= \min\{A_T(y), A_T(x)\}$$

$$\leq A_T(y),$$

((2.20))
$$\operatorname{rmax}\{A_{I}(x \cdot y), A_{I}(x)\} = \operatorname{rmax}\{A_{T}(x \cdot y), A_{I}(x)\}$$

$$((2.7)) \qquad \succeq \operatorname{rmax}\{A_T(y), A_I(x)\}$$

$$((2.20)) = \operatorname{rmax}\{A_{I}(y), A_{I}(x)\}\$$

$$\succeq A_I(y),$$

$$((2.20)) \qquad \operatorname{rmin}\{A_F(x \cdot y), A_F(x)\} = \operatorname{rmin}\{A_I(x \cdot y), A_F(x)\} \\ ((2.8)) \qquad \prec \operatorname{rmin}\{A_I(y), A_F(x)\}\}$$

· () (

$$((2.0)) = \min\{A_F(y), A_F(x)\}$$

$$((2.20)) \qquad \qquad = \min\{\Pi_F(g), \Pi_F(x)\}$$
$$\prec \Lambda_F(y)$$

Hence, \mathbf{A} is an interval-valued neutrosophic UP-filter of X.

$$\supseteq A_F(y).$$

THEOREM 2.8. If A is an interval-valued neutrosophic UP-filter of X satisfying the following condition:

(2.21)
$$(\forall x, y, z \in X) \begin{pmatrix} A_T(y \cdot (x \cdot z)) = A_T(x \cdot (y \cdot z)) \\ A_I(y \cdot (x \cdot z)) = A_I(x \cdot (y \cdot z)) \\ A_F(y \cdot (x \cdot z)) = A_F(x \cdot (y \cdot z)) \end{pmatrix},$$

then \mathbf{A} is an interval-valued neutrosophic UP-ideal of X.

PROOF. Assume that **A** is an interval-valued neutrosophic UP-filter of X satisfying the condition (2.21). Then **A** satisfies the conditions (2.4), (2.5), and (2.6). Next, let $x, y, z \in X$. Then

((2.10))	$A_T(x \cdot z) \succeq \min\{A_T(y \cdot (x \cdot z)), A_T(y)\}$
$((2.21) \text{ for } A_T)$	$= \operatorname{rmin}\{A_T(x \cdot (y \cdot z)), A_T(y)\},\$
((2.11))	$A_I(x \cdot z) \preceq \operatorname{rmax}\{A_I(y \cdot (x \cdot z)), A_I(y)\}$
$((2.21) \text{ for } A_I)$	$= \operatorname{rmax}\{A_I(x \cdot (y \cdot z)), A_I(y)\},\$
((2.12))	$A_F(x \cdot z) \succeq \min\{A_F(y \cdot (x \cdot z)), A_F(y)\}$
$((2.21) \text{ for } A_F)$	$= \min\{A_F(x \cdot (y \cdot z)), A_F(y)\}.$

Hence, \mathbf{A} is an interval-valued neutrosophic UP-ideal of X.

THEOREM 2.9. If \mathbf{A} is an IVNS in X satisfying the following condition:

(2.22)
$$(\forall x, y, z \in X) \left(z \leqslant x \cdot y \Rightarrow \begin{cases} A_T(z) \succeq \min\{A_T(x), A_T(y)\} \\ A_I(z) \preceq \max\{A_I(x), A_I(y)\} \\ A_F(z) \succeq \min\{A_F(x), A_F(y)\} \end{cases} \right),$$

then \mathbf{A} is an interval-valued neutrosophic UP-subalgebra of X.

PROOF. Assume that **A** is an IVNS in X satisfying the condition (2.22). Let $x, y \in X$. By (1.1), we have $(x \cdot y) \cdot (x \cdot y) = 0$, that is, $x \cdot y \leq x \cdot y$. It follows from (2.22) that

$$A_T(x \cdot y) \succeq \min\{A_T(x), A_T(y)\},\$$

$$A_I(x \cdot y) \preceq \max\{A_I(x), A_I(y)\},\$$

$$A_F(x \cdot y) \succeq \min\{A_F(x), A_F(y)\}.$$

Hence, \mathbf{A} is an interval-valued neutrosophic UP-subalgebra of X.

THEOREM 2.10. If A is an IVNS in X satisfying the following condition:

(2.23)
$$(\forall x, y, z \in X) \left(z \leqslant x \cdot y \Rightarrow \begin{cases} A_T(z) \succeq A_T(y) \\ A_I(z) \preceq A_I(y) \\ A_F(z) \succeq A_F(y) \end{cases} \right),$$

then \mathbf{A} is an interval-valued neutrosophic near UP-filter of X.

PROOF. Assume that **A** is an IVNS in X satisfying the condition (2.23). Let $x \in X$. By (UP-2) and (1.1), we have $0 \cdot (x \cdot x) = 0$, that is, $0 \leq x \cdot x$. It follows from (2.23) that $A_T(0) \succeq A_T(x), A_I(0) \preceq A_I(x)$, and $A_F(0) \succeq A_F(x)$. Next, let $x, y \in X$. By (1.1), we have $(x \cdot y) \cdot (x \cdot y) = 0$, that is, $x \cdot y \leq x \cdot y$. It follows from (2.23) that $A_T(x \cdot y) \succeq A_T(y), A_I(x \cdot y) \preceq A_I(y)$, and $A_F(x \cdot y) \succeq A_F(y)$. Hence, **A** is an interval-valued neutrosophic near UP-filter of X.

108

THEOREM 2.11. If \mathbf{A} is an IVNS in X satisfying the following condition:

$$(2.24) \qquad (\forall x, y, z \in X) \left(z \leqslant x \cdot y \Rightarrow \begin{cases} A_T(y) \succeq \min\{A_T(z), A_T(x)\} \\ A_I(y) \preceq \max\{A_I(z), A_I(x)\} \\ A_F(y) \succeq \min\{A_F(z), A_F(x)\} \end{cases} \right),$$

then \mathbf{A} is an interval-valued neutrosophic UP-filter of X.

PROOF. Assume that **A** is an IVNS in X satisfying the condition (2.24). Let $x \in X$. By (UP-3), we have $x \cdot (x \cdot 0) = 0$, that is, $x \leq x \cdot 0$. It follows from (2.24) and (1.27) that

$$A_T(0) \succeq \min\{A_T(x), A_T(x)\} = A_T(x),$$

$$A_I(0) \preceq \max\{A_I(x), A_I(x)\} = A_I(x),$$

$$A_F(0) \succeq \min\{A_F(x), A_F(x)\} = A_F(x).$$

Next, let $x, y \in X$. By (1.1), we have $(x \cdot y) \cdot (x \cdot y) = 0$, that is, $x \cdot y \leq x \cdot y$. It follows from (2.24) that

$$A_T(y) \succeq \min\{A_T(x \cdot y), A_T(x)\},\$$

$$A_I(y) \preceq \max\{A_I(x \cdot y), A_I(x)\},\$$

$$A_F(y) \succeq \min\{A_F(x \cdot y), A_F(x)\}.$$

Hence, \mathbf{A} is an interval-valued neutrosophic UP-filter of X.

THEOREM 2.12. If **A** is an IVNS in X satisfying the following condition: (2.25)

$$(\forall a, x, y, z \in X) \left(a \leqslant x \cdot (y \cdot z) \Rightarrow \begin{cases} A_T(x \cdot z) \succeq \min\{A_T(a), A_T(y)\} \\ A_I(x \cdot z) \preceq \max\{A_I(a), A_I(y)\} \\ A_F(x \cdot z) \succeq \min\{A_F(a), A_F(y)\} \end{cases} \right)$$

then \mathbf{A} is an interval-valued neutrosophic UP-ideal of X.

PROOF. Assume that **A** is an IVNS in X satisfying the condition (2.25). Let $x \in X$. By (UP-3), we have $x \cdot (0 \cdot (x \cdot 0)) = 0$, that is, $x \leq 0 \cdot (x \cdot 0)$. It follows from (2.25) and (1.27) that

((UP-2))
$$A_T(0) = A_T(0 \cdot 0) \succeq \min\{A_T(x), A_T(x)\} = A_T(x),$$

((UP-2))
$$A_I(0) = A_I(0 \cdot 0) \preceq \max\{A_I(x), A_I(x)\} = A_I(x),$$

((UP-2))
$$A_F(0) = A_F(0 \cdot 0) \succeq \min\{A_F(x), A_F(x)\} = A_F(x).$$

Next, let $x, y, z \in X$. By (1.1), we have $(x \cdot (y \cdot z)) \cdot (x \cdot (y \cdot z)) = 0$, that is, $x \cdot (y \cdot z) \leq x \cdot (y \cdot z)$. It follows from (2.25) that

$$A_T(x \cdot z) \succeq \min\{A_T(x \cdot (y \cdot z)), A_T(y)\}, A_I(x \cdot z) \preceq \max\{A_I(x \cdot (y \cdot z)), A_I(y)\}, A_F(x \cdot z) \succeq \min\{A_F(x \cdot (y \cdot z)), A_F(y)\}.$$

Hence, \mathbf{A} is an interval-valued neutrosophic UP-ideal of X.

,

For any fixed interval numbers $\tilde{a}^+, \tilde{a}^-, \tilde{b}^+, \tilde{b}^-, \tilde{c}^+, \tilde{c}^- \in [[0,1]]$ such that $\tilde{a}^+ \succ \tilde{a}^-, \tilde{b}^+ \succ \tilde{b}^-, \tilde{c}^+ \succ \tilde{c}^-$ and a nonempty subset G of X, the IVNS $\mathbf{A}^G[^{\tilde{a}^+, \tilde{b}^-, \tilde{c}^+}_{\tilde{a}^-, \tilde{b}^+, \tilde{c}^-}] = (X, A^G_T[^{\tilde{a}^+}_{\tilde{a}^-}], A^G_T[^{\tilde{b}^-}_{\tilde{b}^+}], A^G_F[^{\tilde{c}^+}_{\tilde{c}^-}])$ in X, where $A^G_T[^{\tilde{a}^+}_{\tilde{a}^-}], A^G_T[^{\tilde{b}^-}_{\tilde{b}^+}]$, and $A^G_F[^{\tilde{c}^+}_{\tilde{c}^-}]$ are IVFSs in X which are given as follows:

$$\begin{aligned} A_T^G[\tilde{a}^+](x) &= \begin{cases} \tilde{a}^+ & \text{if } x \in G, \\ \tilde{a}^- & \text{otherwise,} \end{cases} \\ A_I^G[\tilde{b}^-](x) &= \begin{cases} \tilde{b}^- & \text{if } x \in G, \\ \tilde{b}^+ & \text{otherwise,} \end{cases} \\ A_F^G[\tilde{c}^+](x) &= \begin{cases} \tilde{c}^+ & \text{if } x \in G, \\ \tilde{c}^- & \text{otherwise.} \end{cases} \end{aligned}$$

LEMMA 2.1. If the constant 0 of X is in a nonempty subset G of X, then the IVNS $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}]$ in X satisfies the conditions (2.4), (2.5), and (2.6).

PROOF. If $0 \in G$, then $A_T^G[\tilde{a}^+](0) = \tilde{a}^+, A_I^G[\tilde{b}^-](0) = \tilde{b}^-$, and $A_F^G[\tilde{c}^+](0) = \tilde{c}^+$. Thus

$$(\forall x \in X) \begin{pmatrix} A_T^G[\tilde{a}^+](0) = \tilde{a}^+ \succeq A_T^G[\tilde{a}^+](x) \\ A_I^G[\tilde{b}^+](0) = \tilde{b}^- \preceq A_I^G[\tilde{b}^+](x) \\ A_F^G[\tilde{c}^+](0) = \tilde{c}^+ \succeq A_F^G[\tilde{c}^+](x) \end{pmatrix}$$

Hence, $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{c}^{+}}]$ satisfies the conditions (2.4), (2.5), and (2.6).

LEMMA 2.2. If the IVNS $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{b}^{-},\tilde{c}^{+}}]$ in X satisfies the condition (2.4) (resp., (2.5), (2.6)), then the constant 0 of X is in a nonempty subset G of X.

PROOF. Assume that the IVNS $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}]$ in X satisfies the condition (2.4). Then $A^{G}_{T}[_{\tilde{a}^{-}}](0) \succeq A^{G}_{T}[_{\tilde{a}^{-}}](x)$ for all $x \in X$. Since G is nonempty, there exists $g \in G$. Thus $A^{G}_{T}[_{\tilde{a}^{-}}](g) = \tilde{a}^{+}$ and so $A^{G}_{T}[_{\tilde{a}^{-}}](0) \succeq A^{G}_{T}[_{\tilde{a}^{-}}](g) = \tilde{a}^{+} \succeq A^{G}_{T}[_{\tilde{a}^{-}}](0)$, that is, $A^{G}_{T}[_{\tilde{a}^{-}}](0) = \tilde{a}^{+}$. Hence, $0 \in G$.

THEOREM 2.13. The IVNS $\mathbf{A}^{G[\tilde{a}^{+},\tilde{b}^{-},\tilde{c}^{+}]}_{[\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}]}$ in X is an interval-valued neutrosophic UP-subalgebra of X if and only if a nonempty subset G of X is a UPsubalgebra of X.

110

PROOF. Assume that $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+}}]$ is an interval-valued neutrosophic UP-subalgebra of X. Let $x, y \in G$. Then $A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}](x) = \tilde{a}^{+} = A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}](y)$. Thus

$$((2.1)) A_T^G[_{\tilde{a}^-}](x \cdot y) \succeq \min\{A_T^G[_{\tilde{a}^-}](x), A_T^G[_{\tilde{a}^-}](y)\}$$

$$= \min\{\tilde{a}^+, \tilde{a}^+\} \\ = \tilde{a}^+$$

((1.27))

 $\succeq A_T^G[\tilde{a}^+](x \cdot y)$

and so $A_T^G[\tilde{a}^+](x \cdot y) = \tilde{a}^+$. Thus $x \cdot y \in G$. Hence, G is a UP-subalgebra of X.

Conversely, assume that G is a UP-subalgebra of X. Let $x, y \in X$. Case 1: $x, y \in G$. Then

$$\begin{split} &A_T^G[{\tilde{a}^+ \atop {\tilde{a}^-}}](x) = \tilde{a}^+ = A_T^G[{\tilde{a}^- \atop {\tilde{a}^-}}](y), \\ &A_I^G[{\tilde{b}^- \atop {\tilde{b}^+}}](x) = \tilde{b}^- = A_I^G[{\tilde{b}^- \atop {\tilde{b}^+}}](y), \\ &A_F^G[{\tilde{c}^+ \atop {\tilde{c}^-}}](x) = \tilde{c}^+ = A_F^G[{\tilde{c}^- \atop {\tilde{c}^-}}](y). \end{split}$$

Since G is a UP-subalgebra of X, we have $x \cdot y \in G$ and so $A_T^G[\tilde{a}^+](x \cdot y) = C$ $\tilde{a}^+, A_I^G[_{\tilde{b}^+}^{\tilde{b}^-}](x \cdot y) = \tilde{b}^-, \text{ and } A_F^G[_{\tilde{c}^-}^{\tilde{c}^+}](x \cdot y) = \tilde{c}^+.$ By (1.27), it follows that

$$\begin{aligned} A_{T}^{G}[\tilde{a}^{+}](x \cdot y) &= \tilde{a}^{+} \succeq \tilde{a}^{+} = \operatorname{rmin}\{\tilde{a}^{+}, \tilde{a}^{+}\} = \operatorname{rmin}\{A_{T}^{G}[\tilde{a}^{+}](x), A_{T}^{G}[\tilde{a}^{+}](y)\}, \\ A_{I}^{G}[\tilde{b}^{-}](x \cdot y) &= \tilde{b}^{-} \preceq \tilde{b}^{-} = \operatorname{rmax}\{\tilde{b}^{-}, \tilde{b}^{-}\} = \operatorname{rmax}\{A_{I}^{G}[\tilde{b}^{+}](x), A_{I}^{G}[\tilde{b}^{+}](y)\}, \\ A_{F}^{G}[\tilde{c}^{-}](x \cdot y) &= \tilde{c}^{+} \succeq \tilde{c}^{+} = \operatorname{rmin}\{\tilde{c}^{+}, \tilde{c}^{+}\} = \operatorname{rmin}\{A_{F}^{G}[\tilde{c}^{-}](x), A_{F}^{G}[\tilde{c}^{-}](y)\}. \end{aligned}$$
Case 2: $x \notin G$ or $y \notin G$. Then

$$\begin{split} A_{T}^{G}[\tilde{a}^{-}](x) &= \tilde{a}^{-} \text{ or } A_{T}^{G}[\tilde{a}^{+}](y) = \tilde{a}^{-}, \\ A_{I}^{G}[\tilde{b}^{-}](x) &= \tilde{b}^{+} \text{ or } A_{I}^{G}[\tilde{b}^{-}](y) = \tilde{b}^{+}, \\ A_{F}^{G}[\tilde{c}^{-}](x) &= \tilde{c}^{-} \text{ or } A_{F}^{G}[\tilde{c}^{-}](y) = \tilde{c}^{-}. \end{split}$$

By (1.27), it follows that

$$\min\{A_T^G[\tilde{a}^+](x), A_T^G[\tilde{a}^+](y)\} = \min\{\tilde{a}^-, \tilde{a}^-\} = \tilde{a}^-, \\ \max\{A_I^G[\tilde{b}^+](x), A_I^G[\tilde{b}^-](y)\} = \max\{\tilde{b}^+, \tilde{b}^+\} = \tilde{b}^+, \\ \min\{A_F^G[\tilde{c}^+](x), A_F^G[\tilde{c}^+](y)\} = \min\{\tilde{c}^-, \tilde{c}^-\} = \tilde{c}^-.$$

Therefore,

$$\begin{aligned} A_{T}^{G}[\tilde{a}^{+}](x \cdot y) \succeq \tilde{a}^{-} &= \operatorname{rmin}\{A_{T}^{G}[\tilde{a}^{+}](x), A_{T}^{G}[\tilde{a}^{+}](y)\}, \\ A_{I}^{G}[\tilde{b}^{-}](x \cdot y) \preceq \tilde{b}^{+} &= \operatorname{rmax}\{A_{I}^{G}[\tilde{b}^{-}](x), A_{I}^{G}[\tilde{b}^{+}](y)\}, \\ A_{F}^{G}[\tilde{c}^{-}](x \cdot y) \succeq \tilde{c}^{-} &= \operatorname{rmin}\{A_{F}^{G}[\tilde{c}^{+}](x), A_{F}^{G}[\tilde{c}^{-}](y)\}. \end{aligned}$$

Hence, $\mathbf{A}^G[_{\tilde{a}^-, \tilde{b}^+, \tilde{c}^-}^{\tilde{a}^+, \tilde{b}^-, \tilde{c}^+}]$ is an interval-valued neutrosophic UP-subalgebra of X. THEOREM 2.14. The IVNS $\mathbf{A}^{G[\tilde{a}^{+}, \tilde{b}^{-}, \tilde{c}^{+}]}_{[\tilde{a}^{-}, \tilde{b}^{+}, \tilde{c}^{-}]}$ in X is an interval-valued neutrosophic near UP-filter of X if and only if a nonempty subset G of X is a near UP-filter of X.

PROOF. Assume that $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{b}^{-},\tilde{c}^{+}}]$ is an interval-valued neutrosophic near UPfilter of X. Since $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{b}^{-},\tilde{c}^{+}}]$ satisfies the condition (2.4), it follows from Lemma 2.2 that $0 \in G$. Next, let $x \in X$ and $y \in G$. Then $A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}](y) = \tilde{a}^{+}$. By (2.7)

$$A_T^G[\tilde{a}^+](x \cdot y) \succeq A_T^G[\tilde{a}^+](y) = \tilde{a}^+ \succeq A_T^G[\tilde{a}^+](x \cdot y)$$

and so $A_T^G[\tilde{a}^+](x \cdot y) = \tilde{a}^+$. Thus $x \cdot y \in G$. Hence, G is a near UP-filter of X.

Conversely, assume that G is a near UP-filter of X. Since $0 \in G$, it follows from Lemma 2.1 that $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{b}^{-},\tilde{c}^{+}}]$ satisfies the conditions (2.4), (2.5), and (2.6). Next, let $x, y \in X$.

Case 1: $y \in G$. Then $A_T^G[\tilde{a}^+](y) = \tilde{a}^+, A_I^G[\tilde{b}^+](y) = \tilde{b}^-$, and $A_F^G[\tilde{c}^+](y) = \tilde{c}^+$. Since G is a near UP-filter of X, we have $x \cdot y \in G$ and so $A_T^G[\tilde{a}^+](x \cdot y) = \tilde{a}^+, A_I^G[\tilde{b}^+](x \cdot y) = \tilde{b}^-$, and $A_F^G[\tilde{c}^+](x \cdot y) = \tilde{c}^+$. Thus

$$\begin{split} A_T^G[\tilde{a}^+](x \cdot y) &= \tilde{a}^+ \succeq \tilde{a}^+ = A_T^G[\tilde{a}^+](y), \\ A_I^G[\tilde{b}^+](x \cdot y) &= \tilde{b}^- \preceq \tilde{b}^- = A_I^G[\tilde{b}^+](y), \\ A_F^G[\tilde{c}^+](x \cdot y) &= \tilde{c}^+ \succeq \tilde{c}^+ = A_F^G[\tilde{c}^+](y). \end{split}$$

Case 2: $y \notin G$. Then $A_T^G[\tilde{a}^+](y) = \tilde{a}^-, A_I^G[\tilde{b}^-](y) = \tilde{b}^+$, and $A_F^G[\tilde{c}^+](y) = \tilde{c}^-$. Thus

$$\begin{split} A_T^G[\tilde{a}^+](x \cdot y) \succeq \tilde{a}^- &= A_T^G[\tilde{a}^+](y), \\ A_I^G[\tilde{b}^-](x \cdot y) \preceq \tilde{b}^+ &= A_I^G[\tilde{b}^-](y), \\ A_F^G[\tilde{c}^+](x \cdot y) \succeq \tilde{c}^- &= A_F^G[\tilde{c}^+](y). \end{split}$$

Hence, $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{c}^{+}}]$ is an interval-valued neutrosophic near UP-filter of X. \Box

THEOREM 2.15. The IVNS $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}]$ in X is an interval-valued neutrosophic UP-filter of X if and only if a nonempty subset G of X is a UP-filter of X.

PROOF. Assume that $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{b}^{-},\tilde{c}^{+}}]$ is an interval-valued neutrosophic UP-filter of X. Since $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{b}^{-},\tilde{c}^{+}}]$ satisfies the condition (2.4), it follows from Lemma 2.2 that $0 \in G$. Next, let $x, y \in X$ be such that $x \cdot y \in G$ and $x \in G$. Then

$$A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}](x \cdot y) = \tilde{a}^{+} = A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}](x). \text{ Thus}$$

$$((2.10)) \qquad A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}](y) \succeq \min\{A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}](x \cdot y), A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}](x)\}$$

$$= \min\{\tilde{a}^{+}, \tilde{a}^{+}\}$$

$$((1.27)) = \tilde{a}^+$$

$$\succeq A_T^G[^{\tilde{a}^+}_{\tilde{a}^-}](y)$$

and so $A_T^G[\tilde{a}^+](y) = \tilde{a}^+$. Thus $y \in G$. Hence, G is a UP-filter of X.

Conversely, assume that G is a UP-filter of X. Since $0 \in G$, it follows from Lemma 2.1 that $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}]$ satisfies the conditions (2.4), (2.5), and (2.6). Next, let $x, y \in X$.

Case 1: $x \cdot y \in G$ and $x \in G$. Then

$$\begin{aligned} A_T^G[\tilde{a}^+](x \cdot y) &= \tilde{a}^+ = A_T^G[\tilde{a}^+](x), \\ A_I^G[\tilde{b}^+](x \cdot y) &= \tilde{b}^- = A_I^G[\tilde{b}^+](x), \\ A_F^G[\tilde{c}^+](x \cdot y) &= \tilde{c}^+ = A_F^G[\tilde{c}^+](x). \end{aligned}$$

Since G is a UP-filter of X, we have $y \in G$ and so $A_T^G[\tilde{a}^+](y) = \tilde{a}^+, A_I^G[\tilde{b}^+](y) = \tilde{b}^-$, and $A_F^G[\tilde{c}^+](y) = \tilde{c}^+$. By (1.27), it follows that

$$\begin{aligned} A_T^G[\tilde{a}^+](y) &= \tilde{a}^+ \succeq \tilde{a}^+ = \operatorname{rmin}\{\tilde{a}^+, \tilde{a}^+\} = \operatorname{rmin}\{A_T^G[\tilde{a}^+](x \cdot y), A_T^G[\tilde{a}^+](x)\}, \\ A_I^G[\tilde{b}^-](y) &= \tilde{b}^- \preceq \tilde{b}^- = \operatorname{rmax}\{\tilde{b}^-, \tilde{b}^-\} = \operatorname{rmax}\{A_I^G[\tilde{b}^-](x \cdot y), A_I^G[\tilde{b}^+](x)\}, \\ A_F^G[\tilde{c}^+](y) &= \tilde{c}^+ \succeq \tilde{c}^+ = \operatorname{rmin}\{\tilde{c}^+, \tilde{c}^+\} = \operatorname{rmin}\{A_F^G[\tilde{c}^+](x \cdot y), A_F^G[\tilde{c}^-](x)\}. \end{aligned}$$

Case 2: $x \cdot y \notin G$ or $x \notin G$. Then

$$A_{T}^{G}[\tilde{a}^{+}](x \cdot y) = \tilde{a}^{-} \text{ or } A_{T}^{G}[\tilde{a}^{+}](x) = \tilde{a}^{-},$$

$$A_{I}^{G}[\tilde{b}^{-}](x \cdot y) = \tilde{b}^{+} \text{ or } A_{I}^{G}[\tilde{b}^{-}](x) = \tilde{b}^{+},$$

$$A_{F}^{G}[\tilde{c}^{+}](x \cdot y) = \tilde{c}^{-} \text{ or } A_{F}^{G}[\tilde{c}^{-}](x) = \tilde{c}^{-}.$$

By (1.27), it follows that

$$\operatorname{rmin} \{ A_T^G[\tilde{a}^+](x \cdot y), A_T^G[\tilde{a}^+](x) \} = \operatorname{rmin} \{ \tilde{a}^-, \tilde{a}^- \} = \tilde{a}^-, \\ \operatorname{rmax} \{ A_I^G[\tilde{b}^-](x \cdot y), A_I^G[\tilde{b}^-](x) \} = \operatorname{rmax} \{ \tilde{b}^+, \tilde{b}^+ \} = \tilde{b}^+, \\ \operatorname{rmin} \{ A_F^G[\tilde{c}^+](x \cdot y), A_F^G[\tilde{c}^+](x) \} = \operatorname{rmin} \{ \tilde{c}^-, \tilde{c}^- \} = \tilde{c}^-.$$

Therefore,

$$\begin{aligned} A_T^G[\tilde{a}^{+}](y) \succeq \tilde{a}^{-} &= \operatorname{rmin}\{A_T^G[\tilde{a}^{+}](x \cdot y), A_T^G[\tilde{a}^{+}](x)\}, \\ A_I^G[\tilde{b}^{-}](y) \preceq \tilde{b}^{+} &= \operatorname{rmax}\{A_I^G[\tilde{b}^{-}](x \cdot y), A_I^G[\tilde{b}^{-}](x)\}, \\ A_F^G[\tilde{c}^{-}](y) \succeq \tilde{c}^{-} &= \operatorname{rmin}\{A_F^G[\tilde{c}^{-}](x \cdot y), A_F^G[\tilde{c}^{-}](x)\}. \end{aligned}$$

Hence, $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{c}^{+}}]$ is an interval-valued neutrosophic UP-filter of X.

THEOREM 2.16. The IVNS $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+}}]$ in X is an interval-valued neutrosophic UP-ideal of X if and only if a nonempty subset G of X is a UP-ideal of X.

PROOF. Assume that $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{b}^{-},\tilde{c}^{+}}]$ is an interval-valued neutrosophic UP-ideal of X. Since $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{b}^{-},\tilde{c}^{+}}]$ satisfies the condition (2.4), it follows from Lemma 2.2 that $0 \in G$. Next, let $x, y, z \in X$ be such that $x \cdot (y \cdot z) \in G$ and $y \in G$. Then $A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}](x \cdot (y \cdot z)) = \tilde{a}^{+} = A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}](y)$. Thus

$$((2.13)) A_{T}^{G[\tilde{a}^{+}]}(x \cdot z) \succeq \min\{A_{T[\tilde{a}^{-}]}^{G[\tilde{a}^{+}]}(x \cdot (y \cdot z)), A_{T}^{G[\tilde{a}^{+}]}(y)\} = \min\{\tilde{a}^{+}, \tilde{a}^{+}\} ((1.27)) = \tilde{a}^{+}$$

$$\succeq A_T^G[\tilde{a}^+](x \cdot z)$$

and so $A_T^G[\tilde{a}^+](x \cdot z) = \tilde{a}^+$. Thus $x \cdot z \in G$. Hence, G is a UP-ideal of X.

Conversely, assume that G is a UP-ideal of X. Since $0 \in G$, it follows from Lemma 2.1 that $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{b}^{-},\tilde{c}^{+}}]$ satisfies the conditions (2.4), (2.5), and (2.6). Next, let $x, y, z \in X$.

Case 1: $x \cdot (y \cdot z) \in G$ and $y \in G$. Then

$$\begin{aligned} A_T^G[\tilde{a}^+](x \cdot (y \cdot z)) &= \tilde{a}^+ = A_T^G[\tilde{a}^+](y), \\ A_I^G[\tilde{b}^-](x \cdot (y \cdot z)) &= \tilde{b}^- = A_I^G[\tilde{b}^-](y), \\ A_F^G[\tilde{b}^+](x \cdot (y \cdot z)) &= \tilde{c}^+ = A_F^G[\tilde{b}^+](y). \end{aligned}$$

Since G is a UP-ideal of X, we have $x \cdot z \in G$ and so $A_T^G[\tilde{a}^+](x \cdot z) = \tilde{a}^+, A_I^G[\tilde{b}^+](x \cdot z) = \tilde{b}^-$, and $A_F^G[\tilde{c}^+](x \cdot z) = \tilde{c}^+$. By (1.27), it follows that

$$\begin{aligned} A_T^G[\tilde{a}^+](x \cdot z) &= \tilde{a}^+ \succeq \tilde{a}^+ = \min\{\tilde{a}^+, \tilde{a}^+\} = \min\{A_T^G[\tilde{a}^-](x \cdot (y \cdot z)), A_T^G[\tilde{a}^+](y)\}, \\ A_I^G[\tilde{b}^-](x \cdot z) &= \tilde{b}^- \preceq \tilde{b}^- = \max\{\tilde{b}^-, \tilde{b}^-\} = \max\{A_I^G[\tilde{b}^-](x \cdot (y \cdot z)), A_I^G[\tilde{b}^+](y)\}, \\ A_F^G[\tilde{c}^+](x \cdot z) &= \tilde{c}^+ \succeq \tilde{c}^+ = \min\{\tilde{c}^+, \tilde{c}^+\} = \min\{A_F^G[\tilde{c}^-](x \cdot (y \cdot z)), A_F^G[\tilde{c}^-](y)\}. \end{aligned}$$

Case 2: $x \cdot (y \cdot z) \notin G$ or $y \notin G$. Then

$$\begin{split} A_T^G[{}^{\tilde{a}^+}_{\tilde{a}^-}](x\cdot(y\cdot z)) &= \tilde{a}^- \text{ or } A_T^G[{}^{\tilde{a}^+}_{\tilde{a}^-}](y) = \tilde{a}^-, \\ A_I^G[{}^{\tilde{b}^-}_{\tilde{b}^+}](x\cdot(y\cdot z)) &= \tilde{b}^+ \text{ or } A_I^G[{}^{\tilde{b}^-}_{\tilde{b}^+}](y) = \tilde{b}^+, \\ A_F^G[{}^{\tilde{c}^+}_{\tilde{c}^-}](x\cdot(y\cdot z)) &= \tilde{c}^- \text{ or } A_F^G[{}^{\tilde{c}^+}_{\tilde{c}^-}](y) = \tilde{c}^-. \end{split}$$

114

By (1.27), it follows that

$$\min\{A_T^G[\tilde{a}^+](x \cdot (y \cdot z)), A_T^G[\tilde{a}^+](y)\} = \min\{\tilde{a}^-, \tilde{a}^-\} = \tilde{a}^-, \\ \max\{A_I^G[\tilde{b}^+](x \cdot (y \cdot z)), A_I^G[\tilde{b}^+](y)\} = \max\{\tilde{b}^+, \tilde{b}^+\} = \tilde{b}^+, \\ \min\{A_F^G[\tilde{c}^+](x \cdot (y \cdot z)), A_F^G[\tilde{c}^+](y)\} = \min\{\tilde{c}^-, \tilde{c}^-\} = \tilde{c}^-.$$

Therefore,

$$\begin{split} A_{T}^{G}[\tilde{a}^{+}](x \cdot z) \succeq \tilde{a}^{-} &= \min\{A_{T}^{G}[\tilde{a}^{+}](x \cdot (y \cdot z)), A_{T}^{G}[\tilde{a}^{+}](y)\}, \\ A_{I}^{G}[\tilde{b}^{-}](x \cdot z) \preceq \tilde{b}^{+} &= \max\{A_{I}^{G}[\tilde{b}^{-}](x \cdot (y \cdot z)), A_{I}^{G}[\tilde{b}^{-}](y)\}, \\ A_{F}^{G}[\tilde{c}^{-}](x \cdot z) \succeq \tilde{c}^{-} &= \min\{A_{F}^{G}[\tilde{c}^{-}](x \cdot (y \cdot z)), A_{F}^{G}[\tilde{c}^{-}](y)\}. \end{split}$$

Hence, $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+},\tilde{c}^{+}}]$ is an interval-valued neutrosophic UP-ideal of X.

THEOREM 2.17. The IVNS $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+}}]$ in X is an interval-valued neutrosophic strong UP-ideal of X if and only if a nonempty subset G of X is a strong UP-ideal of X.

PROOF. Assume that $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+}}]$ is an interval-valued neutrosophic strong UP-ideal of X. By Theorem 2.1, we have $\mathbf{A}^{G}[_{\tilde{a}^{-},\tilde{b}^{+},\tilde{c}^{-}}^{\tilde{a}^{+}}]$ is constant, that is, $A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}]$ is constant, that is, $A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}]$ is constant. Since G is nonempty, we have $A_{T}^{G}[_{\tilde{a}^{-}}^{\tilde{a}^{+}}](x) = \tilde{a}^{+}$ for all $x \in X$. Thus G = X. Hence, G is a strong UP-ideal of X.

Conversely, assume that G is a strong UP-ideal of X. Then G = X, so

$$(\forall x \in X) \begin{pmatrix} A_T^G[\tilde{a}^+](x) = \tilde{a}^+ \\ A_I^G[\tilde{b}^+](x) = \tilde{b}^- \\ A_F^G[\tilde{c}^+](x) = \tilde{c}^+ \end{pmatrix}.$$

Thus $A_T^G[\tilde{a}^+]$, $A_I^G[\tilde{b}^+]$, and $A_F^G[\tilde{c}^+]$ are constant, that is, $\mathbf{A}^G[\tilde{a}^+, \tilde{b}^-, \tilde{c}^+]$ is constant. By Theorem 2.1, we have $\mathbf{A}^G[\tilde{a}^+, \tilde{b}^-, \tilde{c}^+]$ is an interval-valued neutrosophic strong UP-ideal of X.

3. Level Subsets of Interval-Valued Neutrosophic Sets

In this section, we discuss the relationships among interval-valued neutrosophic UP-subalgebras (resp., interval-valued neutrosophic near UP-filters, intervalvalued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals, intervalvalued neutrosophic strong UP-ideals) of UP-algebras and their level subsets. DEFINITION 3.1. Let A be an IVFS in a nonempty set X. For any $\tilde{a} \in [[0, 1]]$, the sets

- (3.1) $U(A;\tilde{a}) = \{x \in X \mid A(x) \succeq \tilde{a}\},\$
- $L(A;\tilde{a}) = \{x \in X \mid A(x) \preceq \tilde{a}\},\$
- $(3.3) E(A; \tilde{a}) = \{x \in X \mid A(x) = \tilde{a}\}$

are called an upper \tilde{a} -level subset, a lower \tilde{a} -level subset, and an equal \tilde{a} -level subset of A, respectively.

THEOREM 3.1. An IVNS **A** in X is an interval-valued neutrosophic UP-subalgebra of X if and only if for all $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$, the sets $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are either empty or UP-subalgebras of X.

PROOF. Assume that **A** is an interval-valued neutrosophic UP-subalgebra of X. Let $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$ be such that $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are nonempty.

Let $x, y \in U(A_T; \tilde{a})$. Then $A_T(x) \succeq \tilde{a}$ and $A_T(y) \succeq \tilde{a}$. Since **A** is an intervalvalued neutrosophic UP-subalgebra of X and by (1.32), we have

$$A_T(x \cdot y) \succeq \min\{A_T(x), A_T(y)\} \succeq \tilde{a}$$

Thus $x \cdot y \in U(A_T; \tilde{a})$.

Let $x, y \in L(A_I; \tilde{b})$. Then $A_I(x) \preceq \tilde{b}$ and $A_I(y) \preceq \tilde{b}$. Since **A** is an intervalvalued neutrosophic UP-subalgebra of X and by (1.34), we have

$$A_I(x \cdot y) \preceq \operatorname{rmax}\{A_I(x), A_I(y)\} \preceq b.$$

Thus $x \cdot y \in L(A_I; \tilde{b})$.

Let $x, y \in U(A_F; \tilde{c})$. Then $A_F(x) \succeq \tilde{c}$ and $A_F(y) \succeq \tilde{c}$. Since **A** is an intervalvalued neutrosophic UP-subalgebra of X and by (1.32), we have

$$A_F(x \cdot y) \succeq \min\{A_F(x), A_F(y)\} \succeq \tilde{c}$$

Thus $x \cdot y \in U(A_F; \tilde{c})$.

Hence, $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are UP-subalgebras of X.

Conversely, assume that for all $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$, the sets $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are either empty or UP-subalgebras of X.

Let $x, y \in X$. By (1.29), we have $A_T(x) \succeq \min\{A_T(x), A_T(y)\}$ and $A_T(y) \succeq \min\{A_T(x), A_T(y)\}$. Thus $x, y \in U(A_T; \min\{A_T(x), A_T(y)\})$. By assumption, we have $U(A_T; \min\{A_T(x), A_T(y)\})$ is a UP-subalgebra of X. Then $x \cdot y \in U(A_T; \min\{A_T(x), A_T(y)\})$. Thus $A_T(x \cdot y) \succeq \min\{A_T(x), A_T(y)\}$.

Let $x, y \in X$. By (1.29), we have $A_I(x) \preceq \operatorname{rmax}\{A_I(x), A_I(y)\}$ and $A_I(y) \preceq \operatorname{rmax}\{A_I(x), A_I(y)\}$. Thus $x, y \in L(A_I; \operatorname{rmax}\{A_I(x), A_I(y)\})$. By assumption, we have $L(A_I; \operatorname{rmax}\{A_I(x), A_I(y)\})$ is a UP-subalgebra of X. Then

 $x \cdot y \in L(A_I; \operatorname{rmax}\{A_I(x), A_I(y)\})$. Thus $A_I(x \cdot y) \preceq \operatorname{rmax}\{A_I(x), A_I(y)\}$.

Let $x, y \in X$. By (1.29), we have $A_F(x) \succeq \min\{A_F(x), A_F(y)\}$ and $A_F(y) \succeq \min\{A_F(x), A_F(y)\}$. Thus $x, y \in U(A_F; \min\{A_F(x), A_F(y)\})$. By assumption, we have $U(A_F; \min\{A_F(x), A_F(y)\})$ is a UP-subalgebra of X. Then $x \cdot y \in U(A_F; \min\{A_F(x), A_F(y)\})$. Thus $A_F(x \cdot y) \succeq \min\{A_F(x), A_F(y)\}$.

Hence, \mathbf{A} is an interval-valued neutrosophic UP-subalgebra of X.

THEOREM 3.2. An IVNS **A** in X is an interval-valued neutrosophic near UPfilter of X if and only if for all $\tilde{a}, \tilde{b}, \tilde{c} \in [[0,1]]$, the sets $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are either empty or near UP-filters of X.

PROOF. Assume that **A** is an interval-valued neutrosophic near UP-filter of X. Let $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$ be such that $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are nonempty.

Let $x \in U(A_T; \tilde{a}), y \in L(A_I; \tilde{b}), z \in U(A_F; \tilde{c})$. Since **A** is an interval-valued neutrosophic near UP-filter of X, we have

$$A_T(0) \succeq A_T(x) \succeq \tilde{a}, \ A_I(0) \preceq A_I(y) \preceq \tilde{b}, \ A_F(0) \succeq A_F(z) \succeq \tilde{c}.$$

Thus $0 \in U(A_T; \tilde{a}), 0 \in L(A_I; \tilde{b})$, and $0 \in U(A_T; \tilde{a})$.

Let $x \in X$ and $y \in U(A_T; \tilde{a})$. Then $A_T(y) \succeq \tilde{a}$. Since **A** is an interval-valued neutrosophic near UP-filter of X, we have

$$A_T(x \cdot y) \succeq A_T(y) \succeq \tilde{a}.$$

Thus $x \cdot y \in U(A_T; \tilde{a})$.

Let $x \in X$ and $y \in L(A_I; \tilde{b})$. Then $A_I(y) \preceq \tilde{b}$. Since **A** is an interval-valued neutrosophic near UP-filter of X, we have

$$A_I(x \cdot y) \preceq A_I(y) \preceq b$$

Thus $x \cdot y \in L(A_I; \tilde{b})$.

Let $x \in X$ and $y \in U(A_F; \tilde{c})$. Then $A_F(y) \succeq \tilde{c}$. Since **A** is an interval-valued neutrosophic near UP-filter of X, we have

$$A_F(x \cdot y) \succeq A_F(y) \succeq \tilde{c}.$$

Thus $x \cdot y \in U(A_F; \tilde{c})$.

Hence, $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are near UP-filters of X.

Conversely, assume that for all $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$, the sets $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are either empty or near UP-filters of X.

Let $x \in X$. Then $x \in U(A_T; A_T(x)) \neq \emptyset$, $x \in L(A_I; A_I(x)) \neq \emptyset$, and $x \in U(A_T; A_T(x)) \neq \emptyset$. By assumption, we have $U(A_T; A_T(x)), L(A_I; A_I(x))$, and $U(A_F; A_F(x))$ are near UP-filters of X. Then $0 \in U(A_T; A_T(x)), 0 \in L(A_I; A_I(x))$, and $0 \in U(A_F; A_F(x))$. Thus $A_T(0) \succeq A_T(x), A_I(0) \preceq A_I(x)$, and $A_F(0) \succeq A_F(x)$.

Let $x, y \in X$. Then $y \in U(A_T; A_T(y)) \neq \emptyset$. By assumption, we have $U(A_T; A_T(y))$ is a near UP-filter of X. Then $x \cdot y \in U(A_T; A_T(y))$. Thus $A_T(x \cdot y) \succeq A_T(y)$.

Let $x, y \in X$. Then $y \in L(A_I; A_I(y)) \neq \emptyset$. By assumption, we have $L(A_I; A_I(y))$ is a near UP-filter of X. Then $x \cdot y \in L(A_I; A_I(y))$. Thus $A_I(x \cdot y) \preceq A_I(y)$.

Let $x, y \in X$. Then $y \in U(A_F; A_F(y)) \neq \emptyset$. By assumption, we have $U(A_F; A_F(y))$ is a near UP-filter of X. Then $x \cdot y \in U(A_F; A_F(y))$. Thus $A_F(x \cdot y) \succeq A_F(y)$.

Hence, \mathbf{A} is an interval-valued neutrosophic near UP-filter of X.

THEOREM 3.3. An IVNS **A** in X is an interval-valued neutrosophic UP-filter of X if and only if for all $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$, the sets $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are either empty or UP-filters of X. PROOF. Assume that **A** is an interval-valued neutrosophic UP-filter of X. Let $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$ be such that $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are nonempty.

Let $x \in U(A_T; \tilde{a}), y \in L(A_I; \tilde{b}), z \in U(A_F; \tilde{c})$. Since **A** is an interval-valued neutrosophic UP-filter of X, we have

$$A_T(0) \succeq A_T(x) \succeq \tilde{a}, \ A_I(0) \preceq A_I(y) \preceq b, \ A_F(0) \succeq A_F(z) \succeq \tilde{c}.$$

Thus $0 \in U(A_T; \tilde{a}), 0 \in L(A_I; \tilde{b})$, and $0 \in U(A_T; \tilde{a})$.

Let $x, y \in X$ be such that $x \cdot y, x \in U(A_T; \tilde{a})$. Then $A_T(x \cdot y) \succeq \tilde{a}$ and $A_T(x) \succeq \tilde{a}$. Since **A** is an interval-valued neutrosophic UP-filter of X, we have

$$A_T(y) \succeq \min\{A_T(x \cdot y), A_T(x)\} \succeq \tilde{a}$$

Thus $y \in U(A_T; \tilde{a})$.

Let $x, y \in X$ be such that $x \cdot y, x \in L(A_I; \tilde{b})$. Then $A_I(x \cdot y) \preceq \tilde{b}$ and $A_I(x) \preceq \tilde{b}$. Since **A** is an interval-valued neutrosophic UP-filter of X, we have

$$A_I(y) \preceq \operatorname{rmax}\{A_I(x \cdot y), A_I(x)\} \preceq \tilde{b}.$$

Thus $y \in L(A_I; \tilde{b})$.

Let $x, y \in X$ be such that $x \cdot y, x \in U(A_F; \tilde{c})$. Then $A_F(x \cdot y) \succeq \tilde{c}$ and $A_F(x) \succeq \tilde{c}$. Since **A** is an interval-valued neutrosophic UP-filter of X, we have

$$A_F(y) \succeq \min\{A_F(x \cdot y), A_F(x)\} \succeq \tilde{c}.$$

Thus $y \in U(A_F; \tilde{c})$.

Hence, $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are UP-filters of X.

Conversely, assume that for all $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$, the sets $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are either empty or UP-filters of X.

Let $x \in X$. Then $x \in U(A_T; A_T(x)) \neq \emptyset$, $x \in L(A_I; A_I(x)) \neq \emptyset$, and $x \in U(A_T; A_T(x)) \neq \emptyset$. By assumption, we have $U(A_T; A_T(x)), L(A_I; A_I(x))$, and $U(A_F; A_F(x))$ are UP-filters of X. Then $0 \in U(A_T; A_T(x)), 0 \in L(A_I; A_I(x))$, and $0 \in U(A_F; A_F(x))$. Thus $A_T(0) \succeq A_T(x), A_I(0) \preceq A_I(x)$, and $A_F(0) \succeq A_F(x)$.

Let $x, y \in X$. By (1.29), we have $A_T(x \cdot y) \succeq \min\{A_T(x \cdot y), A_T(x)\}$ and $A_T(x) \succeq \min\{A_T(x \cdot y), A_T(x)\}$. Thus $x \cdot y, x \in U(A_T; \min\{A_T(x \cdot y), A_T(x)\})$. By assumption, we have $U(A_T; \min\{A_T(x \cdot y), A_T(x)\})$ is a UP-filter of X. Then $y \in U(A_T; \min\{A_T(x \cdot y), A_T(x)\})$. Thus $A_T(y) \succeq \min\{A_T(x \cdot y), A_T(x)\}$.

Let $x, y \in X$. By (1.29), we have $A_I(x \cdot y) \preceq \max\{A_I(x \cdot y), A_I(x)\}$ and $A_I(x) \preceq \max\{A_I(x \cdot y), A_I(x)\}$. Thus $x \cdot y, x \in L(A_I; \max\{A_I(x \cdot y), A_I(x)\})$. By assumption, we have $L(A_I; \max\{A_I(x \cdot y), A_I(x)\})$ is a UP-filter of X. Then $y \in L(A_I; \max\{A_I(x \cdot y), A_I(x)\})$. Thus $A_I(y) \preceq \max\{A_I(x \cdot y), A_I(x)\}$.

Let $x, y \in X$. By (1.29), we have $A_F(x \cdot y) \succeq \min\{A_F(x \cdot y), A_F(x)\}$ and $A_F(x) \succeq \min\{A_F(x \cdot y), A_F(x)\}$. Thus $x \cdot y, x \in U(A_F; \min\{A_F(x \cdot y), A_F(x)\})$. By assumption, we have $U(A_F; \min\{A_F(x \cdot y), A_F(x)\})$ is a UP-filter of X. Then $y \in U(A_F; \min\{A_F(x \cdot y), A_F(x)\})$. Thus $A_F(y) \succeq \min\{A_F(x \cdot y), A_F(x)\}$.

Hence, \mathbf{A} is an interval-valued neutrosophic UP-filter of X.

THEOREM 3.4. An IVNS **A** in X is an interval-valued neutrosophic UP-ideal of X if and only if for all $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$, the sets $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are either empty or UP-ideals of X.

PROOF. Assume that **A** is an interval-valued neutrosophic UP-ideal of X. Let $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$ be such that $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are nonempty.

Let $x \in U(A_T; \tilde{a}), y \in L(A_I; \tilde{b}), z \in U(A_F; \tilde{c})$. Since **A** is an interval-valued neutrosophic UP-ideal of X, we have

$$A_T(0) \succeq A_T(x) \succeq \tilde{a}, \ A_I(0) \preceq A_I(y) \preceq \tilde{b}, \ A_F(0) \succeq A_F(z) \succeq \tilde{c}.$$

Thus $0 \in U(A_T; \tilde{a}), 0 \in L(A_I; \tilde{b})$, and $0 \in U(A_T; \tilde{a})$.

Let $x, y, z \in X$ be such that $x \cdot (y \cdot z), y \in U(A_T; \tilde{a})$. Then $A_T(x \cdot (y \cdot z)) \succeq \tilde{a}$ and $A_T(y) \succeq \tilde{a}$. Since **A** is an interval-valued neutrosophic UP-ideal of X, we have

$$A_T(x \cdot z) \succeq \min\{A_T(x \cdot (y \cdot z)), A_T(y)\} \succeq \tilde{a}.$$

Thus $x \cdot z \in U(A_T; \tilde{a})$.

Let $x, y, z \in X$ be such that $x \cdot (y \cdot z), y \in L(A_I; \tilde{b})$. Then $A_I(x \cdot (y \cdot z)) \preceq \tilde{b}$ and $A_I(y) \preceq \tilde{b}$. Since **A** is an interval-valued neutrosophic UP-ideal of X, we have

$$A_I(x \cdot z) \preceq \operatorname{rmax}\{A_I(x \cdot (y \cdot z)), A_I(y)\} \preceq b.$$

Thus $x \cdot z \in L(A_I; \tilde{b})$.

Let $x, y, z \in X$ be such that $x \cdot (y \cdot z), y \in U(A_F; \tilde{c})$. Then $A_F(x \cdot (y \cdot z)) \succeq \tilde{c}$ and $A_F(y) \succeq \tilde{c}$. Since **A** is an interval-valued neutrosophic UP-ideal of X, we have

 $A_F(x \cdot z) \succeq \min\{A_F(x \cdot (y \cdot z)), A_F(y)\} \succeq \tilde{c}.$

Thus $x \cdot z \in U(A_F; \tilde{c})$.

Hence, $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are UP-ideals of X.

Conversely, assume that for all $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$, the sets $U(A_T; \tilde{a}), L(A_I; \tilde{b})$, and $U(A_F; \tilde{c})$ are either empty or UP-ideals of X.

Let $x \in X$. Then $x \in U(A_T; A_T(x)) \neq \emptyset, x \in L(A_I; A_I(x)) \neq \emptyset$, and $x \in U(A_T; A_T(x)) \neq \emptyset$. By assumption, we have $U(A_T; A_T(x)), L(A_I; A_I(x))$, and $U(A_F; A_F(x))$ are UP-ideals of X. Then $0 \in U(A_T; A_T(x)), 0 \in L(A_I; A_I(x))$, and $0 \in U(A_F; A_F(x))$. Thus $A_T(0) \succeq A_T(x), A_I(0) \preceq A_I(x)$, and $A_F(0) \succeq A_F(x)$.

Let $x, y \in X$. By (1.29), we have $A_T(x \cdot (y \cdot z)) \succeq \min\{A_T(x \cdot (y \cdot z)), A_T(y)\}$ and $A_T(y) \succeq \min\{A_T(x \cdot (y \cdot z)), A_T(y)\}$. Thus $x \cdot (y \cdot z), y \in U(A_T; \min\{A_T(x \cdot (y \cdot z)), A_T(y)\})$. By assumption, we have $U(A_T; \min\{A_T(x \cdot (y \cdot z)), A_T(y)\})$ is a UP-ideal of X. Then $x \cdot z \in U(A_T; \min\{A_T(x \cdot (y \cdot z)), A_T(y)\})$. Thus $A_T(x \cdot z) \succeq \min\{A_T(x \cdot (y \cdot z)), A_T(y)\}$.

Let $x, y \in X$. By (1.29), we have $A_I(x \cdot (y \cdot z)) \preceq \operatorname{rmax}\{A_I(x \cdot (y \cdot z)), A_I(y)\}$ and $A_I(y) \preceq \operatorname{rmax}\{A_I(x \cdot (y \cdot z)), A_I(y)\}$. Thus $x \cdot (y \cdot z), y \in L(A_I; \operatorname{rmax}\{A_I(x \cdot (y \cdot z)), A_I(y)\})$. By assumption, we have $L(A_I; \operatorname{rmax}\{A_I(x \cdot (y \cdot z)), A_I(x)\})$ is a UP-ideal of X. Then $x \cdot z \in L(A_I; \operatorname{rmax}\{A_I(x \cdot (y \cdot z)), A_I(y)\})$. Thus $A_I(x \cdot z) \preceq \operatorname{rmax}\{A_I(x \cdot (y \cdot z)), A_I(y)\}$.

Let $x, y \in X$. By (1.29), we have $A_F(x \cdot (y \cdot z)) \succeq \min\{A_F(x \cdot (y \cdot z)), A_F(y)\}$ and $A_F(y) \succeq \min\{A_F(x \cdot (y \cdot z)), A_F(y)\}$. Thus $x \cdot (y \cdot z), y \in U(A_F; \min\{A_F(x \cdot y \cdot z))\}$. $(y \cdot z)), A_F(y)\}).$ By assumption, we have $U(A_F; \min\{A_F(x \cdot (y \cdot z)), A_F(y)\})$ is a UP-ideal of X. Then $x \cdot z \in U(A_F; \min\{A_F(x \cdot (y \cdot z)), A_F(y)\}).$ Thus $A_F(x \cdot z) \succeq \min\{A_F(x \cdot (y \cdot z)), A_F(y)\}.$

Hence, \mathbf{A} is an interval-valued neutrosophic UP-ideal of X.

THEOREM 3.5. An IVNS **A** in X is an interval-valued neutrosophic strong UP-ideal if and only if for all $\tilde{a}, \tilde{b}, \tilde{c} \in [[0, 1]]$, the sets $E(A_T; A_T(0)), E(A_I; A_I(0))$, and $E(A_F; A_F(0))$ are strong UP-ideals of X.

PROOF. Assume that **A** is an interval-valued neutrosophic strong UP-ideal of X. By Theorem 2.1, we have **A** is constant, that is, A_T, A_I, A_F are constant. Thus

$$(\forall x \in X) \begin{pmatrix} A_T(x) = A_T(0) \\ A_I(x) = A_I(0) \\ A_F(x) = A_F(0) \end{pmatrix}.$$

Hence, $E(A_T; A_T(0)) = X, E(A_I; A_I(0)) = X$, and $E(A_F; A_F(0)) = X$ and so $E(A_T; A_T(0)), E(A_I; A_I(0))$, and $E(A_F; A_F(0))$ are strong UP-ideals of X.

Conversely, assume that $E(A_T; A_T(0)), E(A_I; A_I(0))$, and $E(A_F; A_F(0))$ are strong UP-ideals of X. Then $E(A_T; A_T(0)) = X$, $E(A_I; A_I(0)) = X$, and $E(A_F; A_F(0)) = X$ and so

$$(\forall x \in X) \begin{pmatrix} A_T(x) = A_T(0) \\ A_I(x) = A_I(0) \\ A_F(x) = A_F(0) \end{pmatrix}.$$

Thus A_T, A_I, A_F are constant, that is, **A** is constant. By Theorem 2.1, we have **A** is an interval-valued neutrosophic strong UP-ideal of X.

4. Conclusions and Future Work

In this paper, we have introduced the notions of interval-valued neutrosophic UP-subalgebras, interval-valued neutrosophic near UP-filters, interval-valued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued neutrosophic strong UP-ideals of UP-algebras and investigated some of their important properties. Then, we get the diagram of generalization of IVNSs in UP-algebras as shown in Figure 1.

In our future study, we will apply this notions/results to other type of IVNSs in UP-algebras. Also, we will study the soft set theory of interval-valued neutrosophic UP-subalgebras, interval-valued neutrosophic near UP-filters, interval-valued neutrosophic UP-filters, interval-valued neutrosophic UP-filters, and interval-valued neutrosophic strong UP-ideals.

References

- M. A. Ansari, A. Haidar and A. N. A. Koam. On a graph associated to UP-algebras. Math. Comput. Appl., 23(4)(2018), 61. doi:10.3390/mca23040061
- [2] M. A. Ansari, A. N. A. Koam and A. Haider. Rough set theory applied to UP-algebras. Ital. J. Pure Appl. Math., 42 (2019), 388–402.

FIGURE 1. IVNSs in UP-algebras

- [3] N. Dokkhamdang, A. Kesorn and A. Iampan. Generalized fuzzy sets in UP-algebras. Ann. Fuzzy Math. Inform., 16(2)(2018), 171–190.
- [4] T. Guntasow, S. Sajak, A. Jomkham and A. Iampan. Fuzzy translations of a fuzzy set in UP-algebras. J. Indones. Math. Soc., 23(2)(2017), 1–19.
- [5] A. Iampan. A new branch of the logical algebra: UP-algebras. J. Algebra Relat. Top., 5(1)(2017), 35–54.
- [6] A. Iampan. Introducing fully UP-semigroups. Discuss. Math., Gen. Algebra Appl., 38(2)(2018), 297–306.
- [7] A. Iampan. Multipliers and near UP-filters of UP-algebras. Manuscript accepted for publication in J. Discrete Math. Sci. Cryptography, July 2019.
- [8] Y. Imai and K. Iseki. On axiom systems of propositional calculi xiv. Proc. Japan Acad., 42(1)(1966), 19–22.
- [9] K. Iseki. An algebra related with a propositional calculus. Proc. Japan Acad., 42(1)(1966), 26-29.
- [10] Y. B. Jun, S. J. Kim and F. Smarandache. Interval neutrosophic sets with applications in BCK/BCI-algebra. Axioms, 7(2)(2018), 23–35.
- [11] Y. B. Jun, F. Smarandache and C. S. Kim. Neutrosophic cubic sets. New Math. Nat. Comput., 13(1)(2017), 41–54.
- [12] W. Kaijae, P. Poungsumpao, S. Arayarangsi and A. Iampan. UP-algebras characterized by their anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras. *Ital. J. Pure Appl. Math.*, 36(2016), 667–692.
- [13] B. Kesorn, K. Maimun, W. Ratbandan and A. Iampan. Intuitionistic fuzzy sets in UPalgebras. Ital. J. Pure Appl. Math., 34(2015), 339–364.
- [14] J. N. Mordeson, D. S. Malik and N. Kuroki. Fuzzy semigroups. vol. 131, Springer, 2012.
- [15] G. Muhiuddin. Neutrosophic subsemigroups. Ann. Commun. Math. 1(1)(2018), 1–10.
- [16] G. Muhiuddin, A. N. Al-Kenani, E. H. Roh and Y. B. Jun. Implicative neutrosophic quadruple BCK-algebras and ideals. *Symmetry*, **11**(2)(2019), 277.
- [17] G. Muhiuddin, H. Bordbar, F. Smarandache and Y. B. Jun. Further results on (\in , \in)-neutrosophic subalgebras and ideals in BCK/BCI-algebras. *Neutrosophic Sets Syst.*, **20**(2018), 36–43.

SONGSAENG AND IAMPAN

- [18] G. Muhiuddin and Y. B. Jun. p-semisimple neutrosophic quadruple BCI-algebras and neutrosophic quadruple p-ideals. Ann. Commun. Math., 1(1)(2018), 26–37.
- [19] G. Muhiuddin, S. J. Kim and Y. B. Jun. Implicative N-ideals of BCK-algebras based on neutrosophic N-structures. Discrete Math. Algorithms Appl., 11(1)(2019), 1950011.
- [20] G. Muhiuddin, F. Smarandache and Y. B. Jun. Neutrosophic quadruple ideals in neutrosophic quadruple BCI-algebras. *Neutrosophic Sets Syst.*, 25(2019), 161–173.
- [21] J. Neggers and H. S. Kim. On B-algebras. Mat. Vesnik, 54(1-2)(2002), 21-29.
- [22] A. Satirad, P. Mosrijai and A. Iampan. Formulas for finding UP-algebras. Int. J. Math. Comput. Sci., 14(2)(2019), 403–409.
- [23] A. Satirad, P. Mosrijai and A. Iampan. Generalized power UP-algebras. Int. J. Math. Comput. Sci., 14(1)(2019), 17–25.
- [24] T. Senapati, Y. B. Jun and K. P. Shum. Cubic set structure applied in UP-algebras. Discrete Math. Algorithms Appl., 10(4)(2018), 1850049.
- [25] T. Senapati, G. Muhiuddin and K. P. Shum. Representation of UP-algebras in interval-valued intuitionistic fuzzy environment. *Ital. J. Pure Appl. Math.*, 38(2017), 497–517.
- [26] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw and A. Iampan. Fuzzy sets in UP-algebras. Ann. Fuzzy Math. Inform., 12(6)(2016), 739–756.
- [27] M. Songsaeng and A. Iampan. N-fuzzy UP-algebras and its level subsets. J. Algebra Relat. Top., 6(1)(2018), 1–24.
- [28] S. Sripaeng, K. Tanamoon and A. Iampan. On anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras. J. Inf. Optim. Sci., 39(1)(2018), 1095–1127.
- [29] K. Taboon, P. Butsri and A. Iampan. A cubic set theory approach to UP-algebras. Manuscript submitted for publication, April 2019.
- [30] K. Tanamoon, S. Sripaeng and A. Iampan. Q-fuzzy sets in UP-algebras. Songklanakarin J. Sci. Technol., 40(1)(2018), 9–29.
- [31] H. Wang, F. Smarandache, Y. Q. Zhang and R. Sunderraman. Interval neutrosophic sets and logic: Theory and applications in computing. Hexis, Phoenix, Ariz, USA, 2005.
- [32] L. A. Zadeh. Fuzzy sets. Inf. Cont., 8(3)(1965), 338-353.
- [33] L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci., 8(3)(1975), 199–249.

Received by editors 03.10.2019; Revised version 23.11.2019; Available online 02.12.2019.

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE, UNIVERSITY OF PHAYAO, PHAYAO 56000, THAILAND

E-mail address: metawee.faith@gmail.com

Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand

E-mail address: aiyared.ia@up.ac.th