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NEUTROSOPHIC SETS IN UP-ALGEBRAS BY MEANS

OF INTERVAL-VALUED FUZZY SETS

Metawee Songsaeng and Aiyared Iampan

Abstract. In this paper, we introduce the notion of interval-valued neu-

trosophic UP-subalgebras (resp., interval-valued neutrosophic near UP-filters,
interval-valued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals,
and interval-valued neutrosophic strong UP-ideals) of UP-algebras, proved
some results, and their generalizations. Furthermore, we discuss the relations

between interval-valued neutrosophic UP-subalgebras (resp., interval-valued
neutrosophic near UP-filters, interval-valued neutrosophic UP-filters, interval-
valued neutrosophic UP-ideals, and interval-valued neutrosophic strong UP-

ideals) and their level subsets.

1. Introduction and Preliminaries

Among many algebraic structures, algebras of logic form important class of al-
gebras. Examples of these are BCK-algebras [8], BCI-algebras [9], B-algebras [21],
UP-algebras [5] and others. They are strong connected with logic. For example,
BCI-algebras introduced by Iséki [9] in 1966 have connections with BCI-logic be-
ing the BCI-system in combinatory logic which has application in the language of
functional programming. BCK and BCI-algebras are two classes of logical algebras.
They were introduced by Imai and Iséki [8, 9] in 1966 and have been extensively
investigated by many researchers. It is known that the class of BCK-algebras is a
proper subclass of the class of BCI-algebras.
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The branch of the logical algebra, a UP-algebra was introduced by Iampan [5],
and it is known that the class of KU-algebras is a proper subclass of the class of UP-
algebras. Later Somjanta et al. [26] studied fuzzy UP-subalgebras, fuzzy UP-ideals
and fuzzy UP-filters of UP-algebras. Guntasow et al. [4] studied fuzzy translations
of a fuzzy set in UP-algebras. Kesorn et al. [13] studied intuitionistic fuzzy sets
in UP-algebras. Kaijae et al. [12] studied anti-fuzzy UP-ideals and anti-fuzzy UP-
subalgebras. Tanamoon et al. [30] studied Q-fuzzy sets in UP-algebras. Sripaeng
et al. [28] studied anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-
algebras. Dokkhamdang et al. [3] studied Generalized fuzzy sets in UP-algebras.
Songsaeng and Iampan [27] studied N -fuzzy UP-algebras and its level subsets.

A fuzzy set f in a nonempty set S is a function from S to the closed interval
[0, 1]. The concept of a fuzzy set in a nonempty set was first considered by Zadeh
[32]. The fuzzy set theories developed by Zadeh and others have found many ap-
plications in the domain of mathematics and elsewhere. Zadeh [33] was introduced
an interval-value fuzzy sets. An interval-valued fuzzy set is defined by an interval-
valued membership function. Wang et al. [31] introduced the concept of interval-
valued neutrosophic sets. The interval-valued neutrosophic set is an instance of
neutrosophic set which can be used in real scientific and engineering applications.
Jun et al. [10] introduced the notion of interval-valued neutrosophic sets with ap-
plications in BCK/BCI-algebra, they also introduced the notion of interval-valued
neutrosophic length of an interval-valued neutrosophic set, and investigate their
properties and relations. In 2018-2019, Muhiuddin et al. [15, 16, 17, 18, 19, 20]
applied the notion of neutrosophic sets to semigroups, BCK/BCI-algebras.

In this paper, we apply the concept of interval-valued neutrosophic sets to UP-
algebras. We introduce the notion of interval-valued neutrosophic UP-subalgebras
(resp., interval-valued neutrosophic near UP-filters, interval-valued neutrosophic
UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued neutrosophic
strong UP-ideals) in UP-algebras, proved some results, and their generalizations.
Furthermore, we discuss the relations between interval-valued neutrosophic UP-
subalgebras (resp., interval-valued neutrosophic near UP-filters, interval-valued
neutrosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued
neutrosophic strong UP-ideals) and their level subsets.

Before we begin our study, we will give the definition of a UP-algebra.

Definition 1.1. ([5]) An algebra X = (X, ·, 0) of type (2, 0) is called a UP-
algebra, where X is a nonempty set, · is a binary operation on X, and 0 is a fixed
element of X (i.e., a nullary operation) if it satisfies the following axioms: for any
x, y, z ∈ X,

(UP-1): (y · z) · ((x · y) · (x · z)) = 0,
(UP-2): 0 · x = x,
(UP-3): x · 0 = 0, and
(UP-4): x · y = 0 and y · x = 0 imply x = y.

From [5], the binary relation 6 on a UP-algebraX = (X, ·, 0) defined as follows:

(∀x, y ∈ X)(x 6 y ⇔ x · y = 0).
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Example 1.1. [23] Let X be a universal set and let Ω ∈ P(X), where P(X)
means the power set of X. Let PΩ(X) = {A ∈ P(X) | Ω ⊆ A}. Define a binary
operation · on PΩ(X) by putting A ·B = B∩ (AC ∪Ω) for all A,B ∈ PΩ(X), where
AC means the complement of a subset A. Then (PΩ(X), ·,Ω) is a UP-algebra and
we shall call it the generalized power UP-algebra of type 1 with respect to Ω. Let
PΩ(X) = {A ∈ P(X) | A ⊆ Ω}. Define a binary operation ∗ on PΩ(X) by putting
A ∗ B = B ∪ (AC ∩ Ω) for all A,B ∈ PΩ(X). Then (PΩ(X), ∗,Ω) is a UP-algebra
and we shall call it the generalized power UP-algebra of type 2 with respect to Ω. In
particular, (P(X), ·, ∅) is a UP-algebra and we shall call it the power UP-algebra of
type 1, and (P(X), ∗, X) is a UP-algebra and we shall call it the power UP-algebra
of type 2.

Example 1.2. ([3]) Let N be the set of all natural numbers with two binary
operations ◦ and • defined by

x ◦ y =

{
y if x < y,
0 otherwise

and

x • y =

{
y if x > y or x = 0,
0 otherwise.

Then (N, ◦, 0) and (N, •, 0) are UP-algebras.

For more examples of UP-algebras, see [1, 2, 6, 22, 23, 24, 25].

In a UP-algebra X = (X, ·, 0), the following assertions are valid (see [5, 6]).

(∀x ∈ X)(x · x = 0),(1.1)

(∀x, y, z ∈ X)(x · y = 0, y · z = 0 ⇒ x · z = 0),(1.2)

(∀x, y, z ∈ X)(x · y = 0 ⇒ (z · x) · (z · y) = 0),(1.3)

(∀x, y, z ∈ X)(x · y = 0 ⇒ (y · z) · (x · z) = 0),(1.4)

(∀x, y ∈ X)(x · (y · x) = 0),(1.5)

(∀x, y ∈ X)((y · x) · x = 0 ⇔ x = y · x),(1.6)

(∀x, y ∈ X)(x · (y · y) = 0),(1.7)

(∀a, x, y, z ∈ X)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0),(1.8)

(∀a, x, y, z ∈ X)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0),(1.9)

(∀x, y, z ∈ X)(((x · y) · z) · (y · z) = 0),(1.10)

(∀x, y, z ∈ X)(x · y = 0 ⇒ x · (z · y) = 0),(1.11)

(∀x, y, z ∈ X)(((x · y) · z) · (x · (y · z)) = 0), and(1.12)

(∀a, x, y, z ∈ X)(((x · y) · z) · (y · (a · z)) = 0).(1.13)

Definition 1.2. ([5, 26, 4, 7]) A nonempty subset S of a UP-algebra X =
(X, ·, 0) is called

(1) a UP-subalgebra of X if (∀x, y ∈ S)(x · y ∈ S).
(2) a near UP-filter of X if it satisfies the following properties:
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(i) the constant 0 of X is in S, and
(ii) (∀x, y ∈ X)(y ∈ S ⇒ x · y ∈ S).

(3) a UP-filter of X if it satisfies the following properties:
(i) the constant 0 of X is in S, and
(ii) (∀x, y ∈ X)(x · y ∈ S, x ∈ S ⇒ y ∈ S).

(4) a UP-ideal of X if it satisfies the following properties:
(i) the constant 0 of X is in S, and
(ii) (∀x, y, z ∈ X)(x · (y · z) ∈ S, y ∈ S ⇒ x · z ∈ S).

(5) a strong UP-ideal (renamed from a strongly UP-ideal) of X if it satisfies
the following properties:
(i) the constant 0 of X is in S, and
(ii) (∀x, y, z ∈ X)((z · y) · (z · x) ∈ S, y ∈ S ⇒ x ∈ S).

Guntasow et al. [4] proved that the notion of UP-subalgebras is a generalization
of near UP-filters, near UP-filters is a generalization of UP-filters, UP-filters is a
generalization of UP-ideals, and UP-ideals is a generalization of strong UP-ideals.
Moreover, they also proved that a UP-algebra X is the only one strong UP-ideal
of itself.

In 1965, the concept of a fuzzy set in a nonempty set was first considered by
Zadeh [32] as the following definition.

Definition 1.3. A fuzzy set (briefly, FS) in a nonempty set X (or a fuzzy
subset of X) is defined to be a function λ : X → [0, 1], where [0, 1] is the unit
segment of the real line. Denote by [0, 1]X the collection of all fuzzy sets in X.
Define a binary relation 6 on [0, 1]X as follows:

(1.14) (∀λ, µ ∈ [0, 1]X)(λ 6 µ ⇔ (∀x ∈ X)(λ(x) 6 µ(x))).

Definition 1.4. ([26]) Let λ be a fuzzy set in a nonempty set X. The com-
plement of λ, denoted by λC , is defined by

(1.15) (∀x ∈ X)(λC(x) = 1− λ(x)).

Definition 1.5. ([14]) Let {λi | i ∈ J} be a family of fuzzy sets in a nonempty
set X. We define the join and the meet of {λi | i ∈ J}, denoted by ∨i∈Jλi and
∧i∈Jλi, respectively, as follows:

(∀x ∈ X)((∨i∈Jλi)(x) = sup
i∈J

{λi(x)}),(1.16)

(∀x ∈ X)((∧i∈Jλi)(x) = inf
i∈J

{λi(x)}).(1.17)

In particular, if λ and µ be fuzzy sets in X, we have the join and meet of λ and µ
as follows:

(∀x ∈ X)((λ ∨ µ)(x) = max{λ(x), µ(x)}),(1.18)

(∀x ∈ X)((λ ∧ µ)(x) = min{λ(x), µ(x)}),(1.19)

respectively.
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An interval number we mean a close subinterval ã = [a−, a+] of [0, 1], where
0 6 a− 6 a+ 6 1. The interval number ã = [a−, a+] with a− = a+ is denoted by
a. Denote by [[0, 1]] the set of all interval numbers.

Definition 1.6. ([11]) Let {ãi | i ∈ J} be a family of interval numbers. We
define the refined infimum and the refined supremum of {ãi | i ∈ J}, denoted by
rinfi∈J ãi and rsupi∈J ãi, respectively, as follows:

rinfi∈J{ãi} = [inf
i∈J

{a−i }, inf
i∈J

{a+i }],(1.20)

rsupi∈J{ãi} = [sup
i∈J

{a−i }, sup
i∈J

{a+i }].(1.21)

In particular, if ã1 and ã2 are interval numbers, we define the refined minimum
and the refined maximum of ã1 and ã2, denoted by rmin{ã1, ã2} and rmax{ã1, ã2},
respectively, as follows:

rmin{ã1, ã2} = [min{a−1 , a
−
2 },min{a+1 , a

+
2 }],(1.22)

rmax{ã1, ã2} = [max{a−1 , a
−
2 },max{a+1 , a

+
2 }].(1.23)

Definition 1.7. ([11]) Let ã1 and ã2 be interval numbers. We define the
symbols “≽”, “≼”, “=” in case of ã1 and ã2 as follows:

(1.24) ã1 ≽ ã2 ⇔ a−1 > a−2 and a+1 > a+2 ,

and similarly we may have ã1 ≼ ã2 and ã1 = ã2. To say ã1 ≻ ã2 (resp., ã1 ≺ ã2)
we mean ã1 ≽ ã2 and ã1 ̸= ã2 (resp., ã1 ≼ ã2 and ã1 ̸= ã2).

Definition 1.8. ([33]) Let ã be an interval number. The complement of ã,
denoted by ãC , is defined by the interval number

(1.25) ãC = [1− a+, 1− a−].

In the [[0, 1]], the following assertions are valid (see [29]).

(∀ã ∈ [[0, 1]])((ãC)C = ã),

(1.26)

(∀ã ∈ [[0, 1]])(rmax{ã, ã} = ã and rmin{ã, ã} = ã),

(1.27)

(∀ã1, ã2 ∈ [[0, 1]])(rmax{ã1, ã2} = rmax{ã2, ã1} and rmin{ã1, ã2} = rmin{ã2, ã1}),
(1.28)

(∀ã1, ã2 ∈ [[0, 1]])(rmax{ã1, ã2} ≽ ã1 and ã2 ≽ rmin{ã1, ã2}),
(1.29)

(∀ã1, ã2 ∈ [[0, 1]])(ã1 ≽ ã2 ⇔ ãC1 ≼ ãC2 ),

(1.30)

(∀ã1, ã2, ã3, ã4 ∈ [[0, 1]])(ã1 ≽ ã2, ã3 ≽ ã4 ⇒ rmin{ã1, ã3} ≽ rmin{ã2, ã4}),
(1.31)
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(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 ≽ ã2, ã3 ≽ ã2 ⇔ rmin{ã1, ã3} ≽ ã2),

(1.32)

(∀ã1, ã2, ã3, ã4 ∈ [[0, 1]])(ã1 ≽ ã2, ã3 ≽ ã4 ⇒ rmax{ã1, ã3} ≽ rmax{ã2, ã4}),
(1.33)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã2 ≽ ã1, ã2 ≽ ã3 ⇔ ã2 ≽ rmax{ã1, ã3}),
(1.34)

(∀ã1, ã2 ∈ [[0, 1]])(ã1 ≽ ã2 ⇔ rmin{ã1, ã2} = ã2),

(1.35)

(∀ã1, ã2 ∈ [[0, 1]])(ã1 ≽ ã2 ⇔ rmax{ã1, ã2} = ã1),

(1.36)

(∀ã1, ã2 ∈ [[0, 1]])(rmin{ãC1 , ãC2 } = rmax{ã1, ã2}C),
(1.37)

(∀ã1, ã2 ∈ [[0, 1]])(rmax{ãC1 , ãC2 } = rmin{ã1, ã2}C),
(1.38)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 ≼ rmax{ã2, ã3} ⇔ ãC1 ≽ rmin{ãC2 , ãC3 }),
(1.39)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 ≽ rmax{ã2, ã3} ⇔ ãC1 ≼ rmin{ãC2 , ãC3 }),
(1.40)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 ≼ rmin{ã2, ã3} ⇔ ãC1 ≽ rmax{ãC2 , ãC3 }), and
(1.41)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 ≽ rmin{ã2, ã3} ⇔ ãC1 ≼ rmax{ãC2 , ãC3 }).
(1.42)

In 1975, Zadeh [33] introduced interval-valued fuzzy set as the following defi-
nition.

Definition 1.9. An interval-valued fuzzy set (briefly, an IVFS) in a nonempty
set X is an arbitrary function A : X → [[0, 1]]. Let IV FS(X) stands for the set
of all IVFS in X. For every A ∈ IV FS(X) and x ∈ X,A(x) = [A−(x), A+(x)] is
called the degree of membership of an element x to A, where A−, A+ are fuzzy sets
in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively.
For simplicity, we denote A = [A−, A+].

Definition 1.10. ([11]) LetA andB be interval-valued fuzzy sets in a nonempty
set X. We define the symbols “⊆”, “⊇”, “=” in case of A and B as follows:

(1.43) (∀x ∈ X)(A ⊆ B ⇔ A(x) ≼ B(x)),

and similarly we may have A ⊇ B and A = B.

Definition 1.11. ([33]) Let A be an interval-valued fuzzy set in a nonempty
set X. The complement of A, denoted by AC , is defined as follows: AC(x) = A(x)C

for all x ∈ X, that is,

(1.44) (∀x ∈ X)(AC(x) = [1−A+(x), 1−A−(x)]).
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We note that AC−
(x) = 1−A+(x) and AC+

(x) = 1−A−(x) for all x ∈ X.

Definition 1.12. ([33]) Let {Ai | i ∈ J} be a family of interval-valued fuzzy
sets in a nonempty set X. We define the intersection and the union of {Ai | i ∈ J},
denoted by ∩i∈JAi and ∪i∈JAi, respectively, as follows:

(∀x ∈ X)((∩i∈JAi)(x) = rinfi∈J{Ai(x)}),(1.45)

(∀x ∈ X)((∪i∈JAi)(x) = rsupi∈J{Ai(x)}).(1.46)

We note that

(∀x ∈ X)((∩i∈JAi)
−(x) = (∧i∈JA

−
i )(x) = inf

i∈J
{A−

i (x)})

and

(∀x ∈ X)((∩i∈JAi)
+(x) = (∧i∈JA

+
i )(x) = inf

i∈J
{A+

i (x)}).

Similarly,

(∀x ∈ X)((∪i∈JAi)
−(x) = (∨i∈JA

−
i )(x) = sup

i∈J
{A−

i (x)})

and

(∀x ∈ X)((∪i∈JAi)
+(x) = (∨i∈JA

+
i )(x) = sup

i∈J
{A+

i (x)}).

In particular, if A1 and A2 are interval-valued fuzzy sets in X, we have the inter-
section and the union of A1 and A2 as follows:

(∀x ∈ X)((A1 ∩A2)(x) = rmin{A1(x), A2(x)}),(1.47)

(∀x ∈ X)((A1 ∪A2)(x) = rmax{A1(x), A2(x)}).(1.48)

2. Interval-Valued Neutrosophic Sets in UP-Algebras

In 2005, the concept of an interval-valued neutrosophic set was first considered
by Wang et al. [31] as the following definition.

An interval-valued neutrosophic set (briefly, IVNS) in a nonempty set X is a
structure of the form:

A := {(x,AT (x), AI(x), AF (x)) | x ∈ X},
where AT , AI , and AF are interval-valued fuzzy sets in X, which are called a
truth membership function, an indeterminacy membership function and a falsity
membership function, respectively.

For our convenience, we will denote an IVNS as

A = (X,AT , AI , AF ) = (X,AT,I,F ) = {(x,AT (x), AI(x), AF (x)) | x ∈ X}.
Now, we introduce the notions of interval-valued neutrosophic UP-subalgebras,

interval-valued neutrosophic near UP-filters, interval-valued neutrosophic UP-filters,
interval-valued neutrosophic UP-ideals, and interval-valued neutrosophic strong
UP-ideals of UP-algebras, provide the necessary examples, investigate their prop-
erties, and prove their generalizations.

In what follows, let X denote a UP-algebra (X, ·, 0) unless otherwise specified.
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Definition 2.1. An IVNS A in X is called an interval-valued neutrosophic
UP-subalgebra of X if it holds the following conditions:

(∀x, y ∈ X)(AT (x · y) ≽ rmin{AT (x), AT (y)}),(2.1)

(∀x, y ∈ X)(AI(x · y) ≼ rmax{AI(x), AI(y)}),(2.2)

(∀x, y ∈ X)(AF (x · y) ≽ rmin{AF (x), AF (y)}).(2.3)

Proposition 2.1. If A is an interval-valued neutrosophic UP-subalgebra of X,
then

(∀x ∈ X)(AT (0) ≽ AT (x)),(2.4)

(∀x ∈ X)(AI(0) ≼ AI(x)),(2.5)

(∀x ∈ X)(AF (0) ≽ AF (x)).(2.6)

Proof. Let A be an interval-valued neutrosophic UP-subalgebra of X. By
(1.1), we have

(∀x ∈ X)

 AT (0) = AT (x · x) ≽ rmin{AT (x), AT (x)} = AT (x),

AI(0) = AI(x · x) ≼ rmin{AI(x), AI(x)} = AI(x),

AF (0) = AF (x · x) ≽ rmin{AF (x), AF (x)} = AF (x)

 .

�

Example 2.1. Let X = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and
a binary operation · defined by the following Cayley table:

· 0 1 2 3
0 0 1 2 3
1 0 0 0 2
2 0 1 0 3
3 0 0 0 0

We define an IVNS A in X as follows:

AT =

(
0

[0.9, 1]

1

[0.2, 0.5]

2

[0.3, 0.4]

3

[0.3, 0.4]

)
,

AI =

(
0

[0, 0.3]

1

[0.7, 0.8]

2

[0.2, 0.3]

3

[0.8, 0.9]

)
,

AF =

(
0

[0.7, 1]

1

[0.1, 0.3]

2

[0.5, 0.7]

3

[0.6, 0.7]

)
.

Then A is an interval-valued neutrosophic UP-subalgebra of X.

Definition 2.2. An IVNS A in X is called an interval-valued neutrosophic
near UP-filter of X if it holds the following conditions: (2.4), (2.5), (2.6), and

(∀x, y ∈ X)(AT (x · y) ≽ AT (y)),(2.7)

(∀x, y ∈ X)(AI(x · y) ≼ AI(y)),(2.8)

(∀x, y ∈ X)(AF (x · y) ≽ AF (y)).(2.9)
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Example 2.2. Let X = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and
a binary operation · defined by the following Cayley table:

· 0 1 2 3
0 0 1 2 3
1 0 0 2 0
2 0 1 0 3
3 0 1 2 0

We define an IVNS A in X as follows:

AT =

(
0

[0.9, 1]

1

[0.6, 0.8]

2

[0.5, 0.6]

3

[0.4, 0.6]

)
,

AI =

(
0

[0, 0.1]

1

[0.1, 0.3]

2

[0.3, 0.4]

3

[0.5, 0.8]

)
,

AF =

(
0

[0.8, 0.9]

1

[0.6, 0.8]

2

[0.5, 0.7]

3

[0.4, 0.6]

)
.

Then A is an interval-valued neutrosophic near UP-filter of X.

Definition 2.3. An IVNS A in X is called an interval-valued neutrosophic
UP-filter of X if it holds the following conditions: (2.4), (2.5), (2.6), and

(∀x, y ∈ X)(AT (y) ≽ rmin{AT (x · y), AT (x)}),(2.10)

(∀x, y ∈ X)(AI(y) ≼ rmax{AI(x · y), AI(x)}),(2.11)

(∀x, y ∈ X)(AF (y) ≽ rmin{AF (x · y), AF (x)}).(2.12)

Example 2.3. Let X = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and
a binary operation · defined by the following Cayley table:

· 0 1 2 3
0 0 1 2 3
1 0 0 3 3
2 0 1 0 0
3 0 1 2 0

We define an IVNS A in X as follows:

AT =

(
0

[0.9, 1]

1

[0.5, 0.8]

2

[0.3, 0.6]

3

[0.3, 0.6]

)
,

AI =

(
0

[0, 0.1]

1

[0.2, 0.3]

2

[0.6, 0.8]

3

[0.6, 0.8]

)
,

AF =

(
0

[0.8, 0.9]

1

[0.4, 0.5]

2

[0.3, 0.4]

3

[0.3, 0.4]

)
.

Then A is an interval-valued neutrosophic UP-filter of X.
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Definition 2.4. An IVNS A in X is called an interval-valued neutrosophic
UP-ideal of X if it holds the following conditions: (2.4), (2.5), (2.6), and

(∀x, y, z ∈ X)(AT (x · z) ≽ rmin{AT (x · (y · z)), AT (x)}),(2.13)

(∀x, y, z ∈ X)(AI(x · z) ≼ rmax{AI(x · (y · z)), AI(x)}),(2.14)

(∀x, y, z ∈ X)(AF (x · z) ≽ rmin{AF (x · (y · z)), AF (x)}).(2.15)

Example 2.4. Let X = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and
a binary operation · defined by the following Cayley table:

· 0 1 2 3
0 0 1 2 3
1 0 0 2 3
2 0 0 0 0
3 0 0 2 0

We define an IVNS A in X as follows:

AT =

(
0

[0.9, 1]

1

[0.7, 0.9]

2

[0.6, 0.8]

3

[0.6, 0.9]

)
,

AI =

(
0

[0.1, 0.3]

1

[0.3, 0.5]

2

[0.4, 0.7]

3

[0.3, 0.6]

)
,

AF =

(
0

[0.8, 0.9]

1

[0.5, 0.9]

2

[0.4, 0.6]

3

[0.5, 0.8]

)
.

Then A is an interval-valued neutrosophic UP-ideal of X.

Definition 2.5. An IVNS A in X is called an interval-valued neutrosophic
strong UP-ideal of X if it holds the following conditions: (2.4), (2.5), (2.6), and

(∀x, y, z ∈ X)(AT (x) ≽ rmin{AT ((z · y) · (z · x)), AT (y)}),(2.16)

(∀x, y, z ∈ X)(AI(x) ≼ rmax{AI((z · y) · (z · x)), AI(y)}),(2.17)

(∀x, y, z ∈ X)(AF (x) ≽ rmin{AF ((z · y) · (z · x)), AF (y)}).(2.18)

Example 2.5. Let X = {0, 1, 2, 3} be a UP-algebra with a fixed element 0 and
a binary operation · defined by the following Cayley table:

· 0 1 2 3
0 0 1 2 3
1 0 0 1 3
2 0 0 0 3
3 0 1 2 0

We define an IVNS A in X as follows:

(∀x ∈ X)

AT (x) = [0.7, 0.9]

AI(x) = [0.3, 0.5]

AF (x) = [0.5, 0.9]

 .

Then A is an interval-valued neutrosophic strong UP-ideal of X.
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Definition 2.6. An IVNS A in a nonempty set X is said to be constant if A
is a constant function from X to [[0, 1]]3. That is, AT , AI , and AF are constant
functions from X to [[0, 1]].

Theorem 2.1. An IVNS A in X is constant if and only if it is an interval-
valued neutrosophic strong UP-ideal of X.

Proof. Assume that an IVNS A is constant in X. Then AT (x) = AT (0),
AI(x) = AI(0), and AF (x) = AF (0) for all x ∈ X. Then for all x ∈ X,AT (0) ≽
AT (x), AT (0) ≼ AI(x), and AF (0) ≽ AF (x), and for all x, y, z ∈ X,

rmin{AT ((z · y) · (z · x)), AT (y)} = rmin{AT (0), AT (0)}
= AT (0)((1.27))

= AT (x),

rmax{AI((z · y) · (z · x)), AI(y)} = rmax{AI(0), AI(0)}
= AI(0)((1.27))

= AI(x),

rmin{AF ((z · y) · (z · x)), AF (y)} = rmin{AF (0), AF (0)}
= AF (0)((1.27))

= AF (x).

Hence, A is an interval-valued neutrosophic strong UP-ideal of X.

Conversely, assume that A is an interval-valued neutrosophic strong UP-ideal
of X. Then for all x ∈ X,

AT (x) ≽ rmin{AT ((x · 0) · (x · x)), AT (0)}
= rmin{AT (0 · (x · x)), AT (0)}((UP-3))

= rmin{AT (x · x), AT (0)}((UP-2))

= rmin{AT (0), AT (0)}((1.1))

= AT (0)((1.27))

≽ AT (x),

AI(x) ≼ rmax{AI((x · 0) · (x · x)), AI(0)}
= rmax{AI(0 · (x · x)), AI(0)}((UP-3))

= rmax{AI(x · x), AI(0)}((UP-2))

= rmax{AI(0), AI(0)}((1.1))

= AI(0)((1.27))

≼ AI(x),
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AF (x) ≽ rmin{AF ((x · 0) · (x · x)), AF (0)}
= rmin{AF (0 · (x · x)), AF (0)}((UP-3))

= rmin{AF (x · x), AF (0)}((UP-2))

= rmin{AF (0), AF (0)}((1.1))

= AF (0)((1.27))

≽ AF (x).

Thus AT (0) = AT (x), AI(0) = AI(x), and AF (0) = AF (x) for all x ∈ X. Hence,
A is constant. �

Theorem 2.2. Every interval-valued neutrosophic strong UP-ideal of X is an
interval-valued neutrosophic UP-ideal.

Proof. Assume that A is an interval-valued neutrosophic strong UP-ideal of
X. Then for all x ∈ X,AT (0) ≽ AT (x), AT (0) ≼ AI(x), and AF (0) ≽ AF (x). Let
x, y, z ∈ X. Then

AT (x · z) ≽ rmin{AT ((z · y) · (z · (x · z))), AT (y)}
= rmin{AT ((z · y) · 0), AT (y)}((1.5))

= rmin{AT (0), AT (y)}((UP-3))

= AT (y)

≽ rmin{AT (x · (y · z)), AT (y)},
AI(x · z) ≼ rmax{AI((z · y) · (z · (x · z))), AI(y)}

= rmax{AI((z · y) · 0), AI(y)}((1.5))

= rmax{AI(0), AI(y)}((UP-3))

= AI(y)

≼ rmax{AT (x · (y · z)), AT (y)},
AF (x · z) ≽ rmin{AF ((z · y) · (z · (x · z))), AF (y)}

= rmin{AF ((z · y) · 0), AF (y)}((1.5))

= rmin{AF (0), AF (y)}((UP-3))

= AF (y)

≽ rmin{AF (x · (y · z)), AF (y)}.

Hence, A is an interval-valued neutrosophic UP-ideal of X. �

The following example show that the converse of Theorem 2.2 is not true.

Example 2.6. From Example 2.4, we haveA is an interval-valued neutrosophic
UP-ideal of X. Since AT (1) = [0.7, 0.9] � [0.9, 1] = rmin{AT ((2 ·0) ·(2 ·1)), AT (0)},
we have A is not an interval-valued neutrosophic strong UP-ideal of X.

Theorem 2.3. Every interval-valued neutrosophic UP-ideal of X is an interval-
valued neutrosophic UP-filter.
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Proof. Assume that A is an interval-valued neutrosophic UP-ideal of X.
Then for all x ∈ X,AT (0) ≽ AT (x), AT (0) ≼ AI(x), and AF (0) ≽ AF (x). Let
x, y ∈ X. Then

AT (y) = AT (0 · y)((UP-2))

≽ rmin{AT (0 · (x · y)), AT (x)}
= rmin{AT (x · y), AT (x)},((UP-2))

AI(y) = AI(0 · y)((UP-2))

≼ rmax{AI(0 · (x · y)), AI(x)}
= rmax{AI(x · y), AI(x)},((UP-2))

AF (y) = AF (0 · y)((UP-2))

≽ rmin{AF (0 · (x · y)), AF (x)}
= rmin{AF (x · y), AF (x)}.((UP-2))

Hence, A is an interval-valued neutrosophic UP-filter of X. �
The following example show that the converse of Theorem 2.3 is not true.

Example 2.7. From Example 2.3, we haveA is an interval-valued neutrosophic
UP-filter of X. Since AI(3 ·2) = [0.6, 0.8] � [0.2, 0.3] = rmax{AI(3 · (1 ·2)), AI(1)},
we have A is not an interval-valued neutrosophic UP-ideal of X.

Theorem 2.4. Every interval-valued neutrosophic UP-filter of X is an interval-
valued neutrosophic near UP-filter.

Proof. Assume that A is an interval-valued neutrosophic UP-filter of X.
Then for all x ∈ X,AT (0) ≽ AT (x), AT (0) ≼ AI(x), and AF (0) ≽ AF (x). Let
x, y ∈ X. Then

AT (x · y) ≽ rmin{AT (y · (x · y)), AT (y)}
= rmin{AT (0), AT (y)}((1.5))

= AT (y),

AI(x · y) ≼ rmax{AI(y · (x · y)), AI(y)}
= rmax{AI(0), AI(y)}((1.5))

= AI(y),

AF (x · y) ≽ rmin{AF (y · (x · y)), AF (y)}
= rmin{AF (0), AF (y)}((1.5))

= AF (y).

Hence, A is an interval-valued neutrosophic near UP-filter of X. �
The following example show that the converse of Theorem 2.4 is not true.

Example 2.8. From Example 2.2, we haveA is an interval-valued neutrosophic
near UP-filter of X. Since AF (3) = [0.4, 0.6] � [0.6, 0.8] = rmin{AF (1 · 3), AF (1)},
we have A is not an interval-valued neutrosophic UP-filter of X.
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Theorem 2.5. Every interval-valued neutrosophic near UP-filter of X is an
interval-valued neutrosophic UP-subalgebra.

Proof. Assume that A is an interval-valued neutrosophic near UP-filter of
X. Then for all x ∈ X,AT (0) ≽ AT (x), AT (0) ≼ AI(x), and AF (0) ≽ AF (x). Let
x, y ∈ X. By (1.29), we have

AT (x · y) ≽ AT (y) ≽ rmin{AT (x), AT (y)},
AI(x · y) ≼ AI(y) ≼ rmax{AI(x), AI(y)},
AF (x · y) ≽ AF (y) ≽ rmin{AF (x), AF (y)}.

Hence, A is an interval-valued neutrosophic UP-subalgebra of X. �

The following example show that the converse of Theorem 2.5 is not true.

Example 2.9. From Example 2.1, we haveA is an interval-valued neutrosophic
UP-subalgebra of X. Since AF (1 · 3) = [0.5, 0.7] � [0.6, 0.8] = AF (3), we have A is
not an interval-valued neutrosophic near UP-filter of X.

By Theorems 2.2, 2.3, 2.4, and 2.5 and Examples 2.6, 2.7, 2.8, and 2.9, we
have that the notion of interval-valued neutrosophic UP-subalgebras is a gener-
alization of interval-valued neutrosophic near UP-filters, interval-valued neutro-
sophic near UP-filters is a generalization of interval-valued neutrosophic UP-filters,
interval-valued neutrosophic UP-filters is a generalization of interval-valued neu-
trosophic UP-ideals, and interval-valued neutrosophic UP-ideals is a generalization
of interval-valued neutrosophic strong UP-ideals. Moreover, by Theorem 2.1, we
obtain that interval-valued neutrosophic strong UP-ideals and constant interval-
valued neutrosophic set coincide.

Theorem 2.6. If A is an interval-valued neutrosophic UP-subalgebra of X
satisfying the following condition:

(∀x, y ∈ X)

x · y ̸= 0 ⇒


AT (x) ≽ AT (y)

AI(x) ≼ AI(y)

AF (x) ≽ AF (y)

 ,(2.19)

then A is an interval-valued neutrosophic near UP-filter of X.

Proof. Assume that A is an interval-valued neutrosophic UP-subalgebra of X
satisfying the condition (2.19). By Theorem 2.1, we have A satisfies the conditions
(2.4), (2.5), and (2.6). Next, let x, y ∈ X.

Case 1: x · y = 0. Then

AT (x · y) = AT (0) ≽ AT (y),((2.4))

AI(x · y) = AI(0) ≼ AI(y),((2.5))

AF (x · y) = AF (0) ≽ AF (y).((2.6))
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Case 2: x · y ̸= 0. By (2.19), it follows that

AT (x · y) ≽ rmin{AT (x), AT (y)}((2.1))

= AT (y),((1.35))

AI(x · y) ≼ rmax{AI(x), AI(y)}((2.2))

= AI(y),((1.36))

AF (x · y) ≽ rmin{AF (x), AF (y)}((2.3))

= AF (y).((1.35))

Hence, A is an interval-valued neutrosophic near UP-filter of X. �

Theorem 2.7. If A is an interval-valued neutrosophic near UP-filter of X
satisfying the following condition:

(2.20) AT = AI = AF ,

then A is an interval-valued neutrosophic UP-filter of X.

Proof. Assume that A is an interval-valued neutrosophic near UP-filter of X
satisfying the condition (2.20). Then A satisfies the conditions (2.4), (2.5), and
(2.6). Next, let x, y ∈ X. Then

rmin{AT (x · y), AT (x)} = rmin{AI(x · y), AT (x)}((2.20))

≼ rmin{AI(y), AT (x)}((2.8))

= rmin{AT (y), AT (x)}((2.20))

≼ AT (y),

rmax{AI(x · y), AI(x)} = rmax{AT (x · y), AI(x)}((2.20))

≽ rmax{AT (y), AI(x)}((2.7))

= rmax{AI(y), AI(x)}((2.20))

≽ AI(y),

rmin{AF (x · y), AF (x)} = rmin{AI(x · y), AF (x)}((2.20))

≼ rmin{AI(y), AF (x)}((2.8))

= rmin{AF (y), AF (x)}((2.20))

≼ AF (y).

Hence, A is an interval-valued neutrosophic UP-filter of X. �

Theorem 2.8. If A is an interval-valued neutrosophic UP-filter of X satisfying
the following condition:

(2.21) (∀x, y, z ∈ X)

AT (y · (x · z)) = AT (x · (y · z))
AI(y · (x · z)) = AI(x · (y · z))
AF (y · (x · z)) = AF (x · (y · z))

 ,

then A is an interval-valued neutrosophic UP-ideal of X.
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Proof. Assume that A is an interval-valued neutrosophic UP-filter of X sat-
isfying the condition (2.21). Then A satisfies the conditions (2.4), (2.5), and (2.6).
Next, let x, y, z ∈ X. Then

AT (x · z) ≽ rmin{AT (y · (x · z)), AT (y)}((2.10))

= rmin{AT (x · (y · z)), AT (y)},((2.21) for AT )

AI(x · z) ≼ rmax{AI(y · (x · z)), AI(y)}((2.11))

= rmax{AI(x · (y · z)), AI(y)},((2.21) for AI)

AF (x · z) ≽ rmin{AF (y · (x · z)), AF (y)}((2.12))

= rmin{AF (x · (y · z)), AF (y)}.((2.21) for AF )

Hence, A is an interval-valued neutrosophic UP-ideal of X. �

Theorem 2.9. If A is an IVNS in X satisfying the following condition:

(2.22) (∀x, y, z ∈ X)

z 6 x · y ⇒


AT (z) ≽ rmin{AT (x), AT (y)}
AI(z) ≼ rmax{AI(x), AI(y)}
AF (z) ≽ rmin{AF (x), AF (y)}

 ,

then A is an interval-valued neutrosophic UP-subalgebra of X.

Proof. Assume that A is an IVNS in X satisfying the condition (2.22). Let
x, y ∈ X. By (1.1), we have (x · y) · (x · y) = 0, that is, x · y 6 x · y. It follows from
(2.22) that

AT (x · y) ≽ rmin{AT (x), AT (y)},
AI(x · y) ≼ rmax{AI(x), AI(y)},
AF (x · y) ≽ rmin{AF (x), AF (y)}.

Hence, A is an interval-valued neutrosophic UP-subalgebra of X. �

Theorem 2.10. If A is an IVNS in X satisfying the following condition:

(2.23) (∀x, y, z ∈ X)

z 6 x · y ⇒


AT (z) ≽ AT (y)

AI(z) ≼ AI(y)

AF (z) ≽ AF (y)

 ,

then A is an interval-valued neutrosophic near UP-filter of X.

Proof. Assume that A is an IVNS in X satisfying the condition (2.23). Let
x ∈ X. By (UP-2) and (1.1), we have 0 · (x · x) = 0, that is, 0 6 x · x. It follows
from (2.23) that AT (0) ≽ AT (x), AI(0) ≼ AI(x), and AF (0) ≽ AF (x). Next, let
x, y ∈ X. By (1.1), we have (x · y) · (x · y) = 0, that is, x · y 6 x · y. It follows from
(2.23) that AT (x · y) ≽ AT (y), AI(x · y) ≼ AI(y), and AF (x · y) ≽ AF (y). Hence,
A is an interval-valued neutrosophic near UP-filter of X. �
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Theorem 2.11. If A is an IVNS in X satisfying the following condition:

(2.24) (∀x, y, z ∈ X)

z 6 x · y ⇒


AT (y) ≽ rmin{AT (z), AT (x)}
AI(y) ≼ rmax{AI(z), AI(x)}
AF (y) ≽ rmin{AF (z), AF (x)}

 ,

then A is an interval-valued neutrosophic UP-filter of X.

Proof. Assume that A is an IVNS in X satisfying the condition (2.24). Let
x ∈ X. By (UP-3), we have x · (x · 0) = 0, that is, x 6 x · 0. It follows from (2.24)
and (1.27) that

AT (0) ≽ rmin{AT (x), AT (x)} = AT (x),

AI(0) ≼ rmax{AI(x), AI(x)} = AI(x),

AF (0) ≽ rmin{AF (x), AF (x)} = AF (x).

Next, let x, y ∈ X. By (1.1), we have (x · y) · (x · y) = 0, that is, x · y 6 x · y. It
follows from (2.24) that

AT (y) ≽ rmin{AT (x · y), AT (x)},
AI(y) ≼ rmax{AI(x · y), AI(x)},
AF (y) ≽ rmin{AF (x · y), AF (x)}.

Hence, A is an interval-valued neutrosophic UP-filter of X. �

Theorem 2.12. If A is an IVNS in X satisfying the following condition:
(2.25)

(∀a, x, y, z ∈ X)

a 6 x · (y · z) ⇒


AT (x · z) ≽ rmin{AT (a), AT (y)}
AI(x · z) ≼ rmax{AI(a), AI(y)}
AF (x · z) ≽ rmin{AF (a), AF (y)}

 ,

then A is an interval-valued neutrosophic UP-ideal of X.

Proof. Assume that A is an IVNS in X satisfying the condition (2.25). Let
x ∈ X. By (UP-3), we have x · (0 · (x · 0)) = 0, that is, x 6 0 · (x · 0). It follows
from (2.25) and (1.27) that

AT (0) = AT (0 · 0) ≽ rmin{AT (x), AT (x)} = AT (x),((UP-2))

AI(0) = AI(0 · 0) ≼ rmax{AI(x), AI(x)} = AI(x),((UP-2))

AF (0) = AF (0 · 0) ≽ rmin{AF (x), AF (x)} = AF (x).((UP-2))

Next, let x, y, z ∈ X. By (1.1), we have (x · (y · z)) · (x · (y · z)) = 0, that is,
x · (y · z) 6 x · (y · z). It follows from (2.25) that

AT (x · z) ≽ rmin{AT (x · (y · z)), AT (y)},
AI(x · z) ≼ rmax{AI(x · (y · z)), AI(y)},
AF (x · z) ≽ rmin{AF (x · (y · z)), AF (y)}.

Hence, A is an interval-valued neutrosophic UP-ideal of X. �
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For any fixed interval numbers ã+, ã−, b̃+, b̃−, c̃+, c̃− ∈ [[0, 1]] such that ã+ ≻
ã−, b̃+ ≻ b̃−, c̃+ ≻ c̃− and a nonempty subset G of X, the IVNS AG[ã

+,b̃−,c̃+

ã−,b̃+,c̃−
] =

(X,AG
T [

ã+

ã− ], AG
I [

b̃−

b̃+
], AG

F [
c̃+

c̃− ]) in X, where AG
T [

ã+

ã− ], AG
I [

b̃−

b̃+
], and AG

F [
c̃+

c̃− ] are IVFSs in
X which are given as follows:

AG
T [

ã+

ã− ](x) =

{
ã+ if x ∈ G,

ã− otherwise,

AG
I [

b̃−

b̃+
](x) =

{
b̃− if x ∈ G,

b̃+ otherwise,

AG
F [

c̃+

c̃− ](x) =

{
c̃+ if x ∈ G,

c̃− otherwise.

Lemma 2.1. If the constant 0 of X is in a nonempty subset G of X, then the

IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X satisfies the conditions (2.4), (2.5), and (2.6).

Proof. If 0 ∈ G, then AG
T [

ã+

ã− ](0) = ã+, AG
I [

b̃−

b̃+
](0) = b̃−, and AG

F [
c̃+

c̃− ](0) = c̃+.
Thus

(∀x ∈ X)


AG

T [
ã+

ã− ](0) = ã+ ≽ AG
T [

ã+

ã− ](x)

AG
I [

b̃−

b̃+
](0) = b̃− ≼ AG

I [
b̃−

b̃+
](x)

AG
F [

c̃+

c̃− ](0) = c̃+ ≽ AG
F [

c̃+

c̃− ](x)

 .

Hence, AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the conditions (2.4), (2.5), and (2.6). �

Lemma 2.2. If the IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X satisfies the condition (2.4) (resp.,

(2.5), (2.6)), then the constant 0 of X is in a nonempty subset G of X.

Proof. Assume that the IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X satisfies the condition (2.4).

Then AG
T [

ã+

ã− ](0) ≽ AG
T [

ã+

ã− ](x) for all x ∈ X. Since G is nonempty, there exists

g ∈ G. Thus AG
T [

ã+

ã− ](g) = ã+ and so AG
T [

ã+

ã− ](0) ≽ AG
T [

ã+

ã− ](g) = ã+ ≽ AG
T [

ã+

ã− ](0),

that is, AG
T [

ã+

ã− ](0) = ã+. Hence, 0 ∈ G. �

Theorem 2.13. The IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutro-

sophic UP-subalgebra of X if and only if a nonempty subset G of X is a UP-
subalgebra of X.
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Proof. Assume thatAG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-subalgebra

of X. Let x, y ∈ G. Then AG
T [

ã+

ã− ](x) = ã+ = AG
T [

ã+

ã− ](y). Thus

AG
T [

ã+

ã− ](x · y) ≽ rmin{AG
T [

ã+

ã− ](x), AG
T [

ã+

ã− ](y)}((2.1))

= rmin{ã+, ã+}
= ã+((1.27))

≽ AG
T [

ã+

ã− ](x · y)

and so AG
T [

ã+

ã− ](x · y) = ã+. Thus x · y ∈ G. Hence, G is a UP-subalgebra of X.

Conversely, assume that G is a UP-subalgebra of X. Let x, y ∈ X.
Case 1: x, y ∈ G. Then

AG
T [

ã+

ã− ](x) = ã+ = AG
T [

ã+

ã− ](y),

AG
I [

b̃−

b̃+
](x) = b̃− = AG

I [
b̃−

b̃+
](y),

AG
F [

c̃+

c̃− ](x) = c̃+ = AG
F [

c̃+

c̃− ](y).

Since G is a UP-subalgebra of X, we have x · y ∈ G and so AG
T [

ã+

ã− ](x · y) =

ã+, AG
I [

b̃−

b̃+
](x · y) = b̃−, and AG

F [
c̃+

c̃− ](x · y) = c̃+. By (1.27), it follows that

AG
T [

ã+

ã− ](x · y) = ã+ ≽ ã+ = rmin{ã+, ã+} = rmin{AG
T [

ã+

ã− ](x), AG
T [

ã+

ã− ](y)},

AG
I [

b̃−

b̃+
](x · y) = b̃− ≼ b̃− = rmax{b̃−, b̃−} = rmax{AG

I [
b̃−

b̃+
](x), AG

I [
b̃−

b̃+
](y)},

AG
F [

c̃+

c̃− ](x · y) = c̃+ ≽ c̃+ = rmin{c̃+, c̃+} = rmin{AG
F [

c̃+

c̃− ](x), A
G
F [

c̃+

c̃− ](y)}.
Case 2: x ̸∈ G or y ̸∈ G. Then

AG
T [

ã−

ã− ](x) = ã− or AG
T [

ã+

ã− ](y) = ã−,

AG
I [

b̃−

b̃+
](x) = b̃+ or AG

I [
b̃−

b̃+
](y) = b̃+,

AG
F [

c̃+

c̃− ](x) = c̃− or AG
F [

c̃+

c̃− ](y) = c̃−.

By (1.27), it follows that

rmin{AG
T [

ã+

ã− ](x), AG
T [

ã+

ã− ](y)} = rmin{ã−, ã−} = ã−,

rmax{AG
I [

b̃−

b̃+
](x), AG

I [
b̃−

b̃+
](y)} = rmax{b̃+, b̃+} = b̃+,

rmin{AG
F [

c̃+

c̃− ](x), A
G
F [

c̃+

c̃− ](y)} = rmin{c̃−, c̃−} = c̃−.

Therefore,

AG
T [

ã+

ã− ](x · y) ≽ ã− = rmin{AG
T [

ã+

ã− ](x), AG
T [

ã+

ã− ](y)},

AG
I [

b̃−

b̃+
](x · y) ≼ b̃+ = rmax{AG

I [
b̃−

b̃+
](x), AG

I [
b̃−

b̃+
](y)},

AG
F [

c̃+

c̃− ](x · y) ≽ c̃− = rmin{AG
F [

c̃+

c̃− ](x), A
G
F [

c̃+

c̃− ](y)}.

Hence, AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-subalgebra of X. �
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Theorem 2.14. The IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutro-

sophic near UP-filter of X if and only if a nonempty subset G of X is a near
UP-filter of X.

Proof. Assume that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic near UP-

filter of X. Since AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the condition (2.4), it follows from Lemma

2.2 that 0 ∈ G. Next, let x ∈ X and y ∈ G. Then AG
T [

ã+

ã− ](y) = ã+. By (2.7)

AG
T [

ã+

ã− ](x · y) ≽ AG
T [

ã+

ã− ](y) = ã+ ≽ AG
T [

ã+

ã− ](x · y)

and so AG
T [

ã+

ã− ](x · y) = ã+. Thus x · y ∈ G. Hence, G is a near UP-filter of X.

Conversely, assume that G is a near UP-filter of X. Since 0 ∈ G, it follows

from Lemma 2.1 that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the conditions (2.4), (2.5), and (2.6).

Next, let x, y ∈ X.

Case 1: y ∈ G. Then AG
T [

ã+

ã− ](y) = ã+, AG
I [

b̃−

b̃+
](y) = b̃−, and AG

F [
c̃+

c̃− ](y) =

c̃+. Since G is a near UP-filter of X, we have x · y ∈ G and so AG
T [

ã+

ã− ](x · y) =

ã+, AG
I [

b̃−

b̃+
](x · y) = b̃−, and AG

F [
c̃+

c̃− ](x · y) = c̃+. Thus

AG
T [

ã+

ã− ](x · y) = ã+ ≽ ã+ = AG
T [

ã+

ã− ](y),

AG
I [

b̃−

b̃+
](x · y) = b̃− ≼ b̃− = AG

I [
b̃−

b̃+
](y),

AG
F [

c̃+

c̃− ](x · y) = c̃+ ≽ c̃+ = AG
F [

c̃+

c̃− ](y).

Case 2: y ̸∈ G. Then AG
T [

ã+

ã− ](y) = ã−, AG
I [

b̃−

b̃+
](y) = b̃+, and AG

F [
c̃+

c̃− ](y) = c̃−.
Thus

AG
T [

ã+

ã− ](x · y) ≽ ã− = AG
T [

ã+

ã− ](y),

AG
I [

b̃−

b̃+
](x · y) ≼ b̃+ = AG

I [
b̃−

b̃+
](y),

AG
F [

c̃+

c̃− ](x · y) ≽ c̃− = AG
F [

c̃+

c̃− ](y).

Hence, AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic near UP-filter of X. �

Theorem 2.15. The IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutro-

sophic UP-filter of X if and only if a nonempty subset G of X is a UP-filter of
X.

Proof. Assume that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-filter

of X. Since AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the condition (2.4), it follows from Lemma 2.2

that 0 ∈ G. Next, let x, y ∈ X be such that x · y ∈ G and x ∈ G. Then
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AG
T [

ã+

ã− ](x · y) = ã+ = AG
T [

ã+

ã− ](x). Thus

AG
T [

ã+

ã− ](y) ≽ rmin{AG
T [

ã+

ã− ](x · y), AG
T [

ã+

ã− ](x)}((2.10))

= rmin{ã+, ã+}
= ã+((1.27))

≽ AG
T [

ã+

ã− ](y)

and so AG
T [

ã+

ã− ](y) = ã+. Thus y ∈ G. Hence, G is a UP-filter of X.

Conversely, assume that G is a UP-filter of X. Since 0 ∈ G, it follows from

Lemma 2.1 that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the conditions (2.4), (2.5), and (2.6). Next,

let x, y ∈ X.
Case 1: x · y ∈ G and x ∈ G. Then

AG
T [

ã+

ã− ](x · y) = ã+ = AG
T [

ã+

ã− ](x),

AG
I [

b̃−

b̃+
](x · y) = b̃− = AG

I [
b̃−

b̃+
](x),

AG
F [

c̃+

c̃− ](x · y) = c̃+ = AG
F [

c̃+

c̃− ](x).

Since G is a UP-filter of X, we have y ∈ G and so AG
T [

ã+

ã− ](y) = ã+, AG
I [

b̃−

b̃+
](y) = b̃−,

and AG
F [

c̃+

c̃− ](y) = c̃+. By (1.27), it follows that

AG
T [

ã+

ã− ](y) = ã+ ≽ ã+ = rmin{ã+, ã+} = rmin{AG
T [

ã+

ã− ](x · y), AG
T [

ã+

ã− ](x)},

AG
I [

b̃−

b̃+
](y) = b̃− ≼ b̃− = rmax{b̃−, b̃−} = rmax{AG

I [
b̃−

b̃+
](x · y), AG

I [
b̃−

b̃+
](x)},

AG
F [

c̃+

c̃− ](y) = c̃+ ≽ c̃+ = rmin{c̃+, c̃+} = rmin{AG
F [

c̃+

c̃− ](x · y), AG
F [

c̃+

c̃− ](x)}.

Case 2: x · y ̸∈ G or x ̸∈ G. Then

AG
T [

ã+

ã− ](x · y) = ã− or AG
T [

ã+

ã− ](x) = ã−,

AG
I [

b̃−

b̃+
](x · y) = b̃+ or AG

I [
b̃−

b̃+
](x) = b̃+,

AG
F [

c̃+

c̃− ](x · y) = c̃− or AG
F [

c̃+

c̃− ](x) = c̃−.

By (1.27), it follows that

rmin{AG
T [

ã+

ã− ](x · y), AG
T [

ã+

ã− ](x)} = rmin{ã−, ã−} = ã−,

rmax{AG
I [

b̃−

b̃+
](x · y), AG

I [
b̃−

b̃+
](x)} = rmax{b̃+, b̃+} = b̃+,

rmin{AG
F [

c̃+

c̃− ](x · y), AG
F [

c̃+

c̃− ](x)} = rmin{c̃−, c̃−} = c̃−.

Therefore,

AG
T [

ã+

ã− ](y) ≽ ã− = rmin{AG
T [

ã+

ã− ](x · y), AG
T [

ã+

ã− ](x)},

AG
I [

b̃−

b̃+
](y) ≼ b̃+ = rmax{AG

I [
b̃−

b̃+
](x · y), AG

I [
b̃−

b̃+
](x)},

AG
F [

c̃+

c̃− ](y) ≽ c̃− = rmin{AG
F [

c̃+

c̃− ](x · y), AG
F [

c̃+

c̃− ](x)}.
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Hence, AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-filter of X. �

Theorem 2.16. The IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutro-

sophic UP-ideal of X if and only if a nonempty subset G of X is a UP-ideal of
X.

Proof. Assume that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-ideal

of X. Since AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the condition (2.4), it follows from Lemma 2.2

that 0 ∈ G. Next, let x, y, z ∈ X be such that x · (y · z) ∈ G and y ∈ G. Then

AG
T [

ã+

ã− ](x · (y · z)) = ã+ = AG
T [

ã+

ã− ](y). Thus

AG
T [

ã+

ã− ](x · z) ≽ rmin{AG
T [

ã+

ã− ](x · (y · z)), AG
T [

ã+

ã− ](y)}((2.13))

= rmin{ã+, ã+}
= ã+((1.27))

≽ AG
T [

ã+

ã− ](x · z)

and so AG
T [

ã+

ã− ](x · z) = ã+. Thus x · z ∈ G. Hence, G is a UP-ideal of X.

Conversely, assume that G is a UP-ideal of X. Since 0 ∈ G, it follows from

Lemma 2.1 that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] satisfies the conditions (2.4), (2.5), and (2.6). Next,

let x, y, z ∈ X.
Case 1: x · (y · z) ∈ G and y ∈ G. Then

AG
T [

ã+

ã− ](x · (y · z)) = ã+ = AG
T [

ã+

ã− ](y),

AG
I [

b̃−

b̃+
](x · (y · z)) = b̃− = AG

I [
b̃−

b̃+
](y),

AG
F [

c̃+

c̃− ](x · (y · z)) = c̃+ = AG
F [

c̃+

c̃− ](y).

Since G is a UP-ideal of X, we have x · z ∈ G and so AG
T [

ã+

ã− ](x · z) = ã+, AG
I [

b̃−

b̃+
](x ·

z) = b̃−, and AG
F [

c̃+

c̃− ](x · z) = c̃+. By (1.27), it follows that

AG
T [

ã+

ã− ](x · z) = ã+ ≽ ã+ = rmin{ã+, ã+} = rmin{AG
T [

ã+

ã− ](x · (y · z)), AG
T [

ã+

ã− ](y)},

AG
I [

b̃−

b̃+
](x · z) = b̃− ≼ b̃− = rmax{b̃−, b̃−} = rmax{AG

I [
b̃−

b̃+
](x · (y · z)), AG

I [
b̃−

b̃+
](y)},

AG
F [

c̃+

c̃− ](x · z) = c̃+ ≽ c̃+ = rmin{c̃+, c̃+} = rmin{AG
F [

c̃+

c̃− ](x · (y · z)), AG
F [

c̃+

c̃− ](y)}.

Case 2: x · (y · z) ̸∈ G or y ̸∈ G. Then

AG
T [

ã+

ã− ](x · (y · z)) = ã− or AG
T [

ã+

ã− ](y) = ã−,

AG
I [

b̃−

b̃+
](x · (y · z)) = b̃+ or AG

I [
b̃−

b̃+
](y) = b̃+,

AG
F [

c̃+

c̃− ](x · (y · z)) = c̃− or AG
F [

c̃+

c̃− ](y) = c̃−.
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By (1.27), it follows that

rmin{AG
T [

ã+

ã− ](x · (y · z)), AG
T [

ã+

ã− ](y)} = rmin{ã−, ã−} = ã−,

rmax{AG
I [

b̃−

b̃+
](x · (y · z)), AG

I [
b̃−

b̃+
](y)} = rmax{b̃+, b̃+} = b̃+,

rmin{AG
F [

c̃+

c̃− ](x · (y · z)), AG
F [

c̃+

c̃− ](y)} = rmin{c̃−, c̃−} = c̃−.

Therefore,

AG
T [

ã+

ã− ](x · z) ≽ ã− = rmin{AG
T [

ã+

ã− ](x · (y · z)), AG
T [

ã+

ã− ](y)},

AG
I [

b̃−

b̃+
](x · z) ≼ b̃+ = rmax{AG

I [
b̃−

b̃+
](x · (y · z)), AG

I [
b̃−

b̃+
](y)},

AG
F [

c̃+

c̃− ](x · z) ≽ c̃− = rmin{AG
F [

c̃+

c̃− ](x · (y · z)), AG
F [

c̃+

c̃− ](y)}.

Hence, AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic UP-ideal of X. �

Theorem 2.17. The IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutro-

sophic strong UP-ideal of X if and only if a nonempty subset G of X is a strong
UP-ideal of X.

Proof. Assume that AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic strong

UP-ideal of X. By Theorem 2.1, we have AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is constant, that is, AG

T [
ã+

ã− ]

is constant. Since G is nonempty, we have AG
T [

ã+

ã− ](x) = ã+ for all x ∈ X. Thus
G = X. Hence, G is a strong UP-ideal of X.

Conversely, assume that G is a strong UP-ideal of X. Then G = X, so

(∀x ∈ X)


AG

T [
ã+

ã− ](x) = ã+

AG
I [

b̃−

b̃+
](x) = b̃−

AG
F [

c̃+

c̃− ](x) = c̃+

 .

Thus AG
T [

ã+

ã− ], AG
I [

b̃−

b̃+
], and AG

F [
c̃+

c̃− ] are constant, that is, AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is constant.

By Theorem 2.1, we have AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] is an interval-valued neutrosophic strong

UP-ideal of X. �

3. Level Subsets of Interval-Valued Neutrosophic Sets

In this section, we discuss the relationships among interval-valued neutro-
sophic UP-subalgebras (resp., interval-valued neutrosophic near UP-filters, interval-
valued neutrosophic UP-filters, interval-valued neutrosophic UP-ideals, interval-
valued neutrosophic strong UP-ideals) of UP-algebras and their level subsets.
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Definition 3.1. Let A be an IVFS in a nonempty set X. For any ã ∈ [[0, 1]],
the sets

U(A; ã) = {x ∈ X | A(x) ≽ ã},(3.1)

L(A; ã) = {x ∈ X | A(x) ≼ ã},(3.2)

E(A; ã) = {x ∈ X | A(x) = ã}(3.3)

are called an upper ã-level subset, a lower ã-level subset, and an equal ã-level subset
of A, respectively.

Theorem 3.1. An IVNS A in X is an interval-valued neutrosophic UP-subalgebra
of X if and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and U(AF ; c̃)
are either empty or UP-subalgebras of X.

Proof. Assume that A is an interval-valued neutrosophic UP-subalgebra of
X. Let ã, b̃, c̃ ∈ [[0, 1]] be such that U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are nonempty.

Let x, y ∈ U(AT ; ã). Then AT (x) ≽ ã and AT (y) ≽ ã. Since A is an interval-
valued neutrosophic UP-subalgebra of X and by (1.32), we have

AT (x · y) ≽ rmin{AT (x), AT (y)} ≽ ã.

Thus x · y ∈ U(AT ; ã).

Let x, y ∈ L(AI ; b̃). Then AI(x) ≼ b̃ and AI(y) ≼ b̃. Since A is an interval-
valued neutrosophic UP-subalgebra of X and by (1.34), we have

AI(x · y) ≼ rmax{AI(x), AI(y)} ≼ b̃.

Thus x · y ∈ L(AI ; b̃).
Let x, y ∈ U(AF ; c̃). Then AF (x) ≽ c̃ and AF (y) ≽ c̃. Since A is an interval-

valued neutrosophic UP-subalgebra of X and by (1.32), we have

AF (x · y) ≽ rmin{AF (x), AF (y)} ≽ c̃.

Thus x · y ∈ U(AF ; c̃).

Hence, U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are UP-subalgebras of X.

Conversely, assume that for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and
U(AF ; c̃) are either empty or UP-subalgebras of X.

Let x, y ∈ X. By (1.29), we have AT (x) ≽ rmin{AT (x), AT (y)} and AT (y) ≽
rmin{AT (x), AT (y)}. Thus x, y ∈ U(AT ; rmin{AT (x), AT (y)}). By assumption,
we have U(AT ; rmin{AT (x), AT (y)}) is a UP-subalgebra of X. Then x · y ∈
U(AT ; rmin{AT (x), AT (y)}). Thus AT (x · y) ≽ rmin{AT (x), AT (y)}.

Let x, y ∈ X. By (1.29), we have AI(x) ≼ rmax{AI(x), AI(y)} and AI(y) ≼
rmax{AI(x), AI(y)}. Thus x, y ∈ L(AI ; rmax{AI(x), AI(y)}). By assumption, we
have L(AI ; rmax{AI(x), AI(y)}) is a UP-subalgebra of X. Then
x · y ∈ L(AI ; rmax{AI(x), AI(y)}). Thus AI(x · y) ≼ rmax{AI(x), AI(y)}.

Let x, y ∈ X. By (1.29), we have AF (x) ≽ rmin{AF (x), AF (y)} and AF (y) ≽
rmin{AF (x), AF (y)}. Thus x, y ∈ U(AF ; rmin{AF (x), AF (y)}). By assumption,
we have U(AF ; rmin{AF (x), AF (y)}) is a UP-subalgebra of X. Then x · y ∈
U(AF ; rmin{AF (x), AF (y)}). Thus AF (x · y) ≽ rmin{AF (x), AF (y)}.

Hence, A is an interval-valued neutrosophic UP-subalgebra of X. �
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Theorem 3.2. An IVNS A in X is an interval-valued neutrosophic near UP-
filter of X if and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and
U(AF ; c̃) are either empty or near UP-filters of X.

Proof. Assume that A is an interval-valued neutrosophic near UP-filter of X.
Let ã, b̃, c̃ ∈ [[0, 1]] be such that U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are nonempty.

Let x ∈ U(AT ; ã), y ∈ L(AI ; b̃), z ∈ U(AF ; c̃). Since A is an interval-valued
neutrosophic near UP-filter of X, we have

AT (0) ≽ AT (x) ≽ ã, AI(0) ≼ AI(y) ≼ b̃, AF (0) ≽ AF (z) ≽ c̃.

Thus 0 ∈ U(AT ; ã), 0 ∈ L(AI ; b̃), and 0 ∈ U(AT ; ã).
Let x ∈ X and y ∈ U(AT ; ã). Then AT (y) ≽ ã. Since A is an interval-valued

neutrosophic near UP-filter of X, we have

AT (x · y) ≽ AT (y) ≽ ã.

Thus x · y ∈ U(AT ; ã).

Let x ∈ X and y ∈ L(AI ; b̃). Then AI(y) ≼ b̃. Since A is an interval-valued
neutrosophic near UP-filter of X, we have

AI(x · y) ≼ AI(y) ≼ b̃.

Thus x · y ∈ L(AI ; b̃).
Let x ∈ X and y ∈ U(AF ; c̃). Then AF (y) ≽ c̃. Since A is an interval-valued

neutrosophic near UP-filter of X, we have

AF (x · y) ≽ AF (y) ≽ c̃.

Thus x · y ∈ U(AF ; c̃).

Hence, U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are near UP-filters of X.

Conversely, assume that for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and
U(AF ; c̃) are either empty or near UP-filters of X.

Let x ∈ X. Then x ∈ U(AT ;AT (x)) ̸= ∅, x ∈ L(AI ;AI(x)) ̸= ∅, and x ∈
U(AT ;AT (x)) ̸= ∅. By assumption, we have U(AT ;AT (x)), L(AI ;AI(x)), and
U(AF ;AF (x)) are near UP-filters of X. Then 0 ∈ U(AT ;AT (x)), 0 ∈ L(AI ;AI(x)),
and 0 ∈ U(AF ;AF (x)). Thus AT (0) ≽ AT (x), AI(0) ≼ AI(x), and AF (0) ≽ AF (x).

Let x, y ∈ X. Then y ∈ U(AT ;AT (y)) ̸= ∅. By assumption, we have
U(AT ;AT (y)) is a near UP-filter ofX. Then x·y ∈ U(AT ;AT (y)). Thus AT (x·y) ≽
AT (y).

Let x, y ∈ X. Then y ∈ L(AI ;AI(y)) ̸= ∅. By assumption, we have L(AI ;AI(y))
is a near UP-filter of X. Then x · y ∈ L(AI ;AI(y)). Thus AI(x · y) ≼ AI(y).

Let x, y ∈ X. Then y ∈ U(AF ;AF (y)) ̸= ∅. By assumption, we have
U(AF ;AF (y)) is a near UP-filter ofX. Then x·y ∈ U(AF ;AF (y)). Thus AF (x·y) ≽
AF (y).

Hence, A is an interval-valued neutrosophic near UP-filter of X. �
Theorem 3.3. An IVNS A in X is an interval-valued neutrosophic UP-filter

of X if and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and U(AF ; c̃)
are either empty or UP-filters of X.
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Proof. Assume that A is an interval-valued neutrosophic UP-filter of X. Let
ã, b̃, c̃ ∈ [[0, 1]] be such that U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are nonempty.

Let x ∈ U(AT ; ã), y ∈ L(AI ; b̃), z ∈ U(AF ; c̃). Since A is an interval-valued
neutrosophic UP-filter of X, we have

AT (0) ≽ AT (x) ≽ ã, AI(0) ≼ AI(y) ≼ b̃, AF (0) ≽ AF (z) ≽ c̃.

Thus 0 ∈ U(AT ; ã), 0 ∈ L(AI ; b̃), and 0 ∈ U(AT ; ã).
Let x, y ∈ X be such that x · y, x ∈ U(AT ; ã). Then AT (x · y) ≽ ã and

AT (x) ≽ ã. Since A is an interval-valued neutrosophic UP-filter of X, we have

AT (y) ≽ rmin{AT (x · y), AT (x)} ≽ ã.

Thus y ∈ U(AT ; ã).

Let x, y ∈ X be such that x ·y, x ∈ L(AI ; b̃). Then AI(x ·y) ≼ b̃ and AI(x) ≼ b̃.
Since A is an interval-valued neutrosophic UP-filter of X, we have

AI(y) ≼ rmax{AI(x · y), AI(x)} ≼ b̃.

Thus y ∈ L(AI ; b̃).
Let x, y ∈ X be such that x·y, x ∈ U(AF ; c̃). Then AF (x·y) ≽ c̃ and AF (x) ≽ c̃.

Since A is an interval-valued neutrosophic UP-filter of X, we have

AF (y) ≽ rmin{AF (x · y), AF (x)} ≽ c̃.

Thus y ∈ U(AF ; c̃).

Hence, U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are UP-filters of X.

Conversely, assume that for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and
U(AF ; c̃) are either empty or UP-filters of X.

Let x ∈ X. Then x ∈ U(AT ;AT (x)) ̸= ∅, x ∈ L(AI ;AI(x)) ̸= ∅, and x ∈
U(AT ;AT (x)) ̸= ∅. By assumption, we have U(AT ;AT (x)), L(AI ;AI(x)), and
U(AF ;AF (x)) are UP-filters of X. Then 0 ∈ U(AT ;AT (x)), 0 ∈ L(AI ;AI(x)), and
0 ∈ U(AF ;AF (x)). Thus AT (0) ≽ AT (x), AI(0) ≼ AI(x), and AF (0) ≽ AF (x).

Let x, y ∈ X. By (1.29), we have AT (x · y) ≽ rmin{AT (x · y), AT (x)} and
AT (x) ≽ rmin{AT (x · y), AT (x)}. Thus x · y, x ∈ U(AT ; rmin{AT (x · y), AT (x)}).
By assumption, we have U(AT ; rmin{AT (x · y), AT (x)}) is a UP-filter of X. Then
y ∈ U(AT ; rmin{AT (x · y), AT (x)}). Thus AT (y) ≽ rmin{AT (x · y), AT (x)}.

Let x, y ∈ X. By (1.29), we have AI(x · y) ≼ rmax{AI(x · y), AI(x)} and
AI(x) ≼ rmax{AI(x · y), AI(x)}. Thus x · y, x ∈ L(AI ; rmax{AI(x · y), AI(x)}).
By assumption, we have L(AI ; rmax{AI(x · y), AI(x)}) is a UP-filter of X. Then
y ∈ L(AI ; rmax{AI(x · y), AI(x)}). Thus AI(y) ≼ rmax{AI(x · y), AI(x)}.

Let x, y ∈ X. By (1.29), we have AF (x · y) ≽ rmin{AF (x · y), AF (x)} and
AF (x) ≽ rmin{AF (x · y), AF (x)}. Thus x · y, x ∈ U(AF ; rmin{AF (x · y), AF (x)}).
By assumption, we have U(AF ; rmin{AF (x · y), AF (x)}) is a UP-filter of X. Then
y ∈ U(AF ; rmin{AF (x · y), AF (x)}). Thus AF (y) ≽ rmin{AF (x · y), AF (x)}.

Hence, A is an interval-valued neutrosophic UP-filter of X. �
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Theorem 3.4. An IVNS A in X is an interval-valued neutrosophic UP-ideal
of X if and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and U(AF ; c̃)
are either empty or UP-ideals of X.

Proof. Assume that A is an interval-valued neutrosophic UP-ideal of X. Let
ã, b̃, c̃ ∈ [[0, 1]] be such that U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are nonempty.

Let x ∈ U(AT ; ã), y ∈ L(AI ; b̃), z ∈ U(AF ; c̃). Since A is an interval-valued
neutrosophic UP-ideal of X, we have

AT (0) ≽ AT (x) ≽ ã, AI(0) ≼ AI(y) ≼ b̃, AF (0) ≽ AF (z) ≽ c̃.

Thus 0 ∈ U(AT ; ã), 0 ∈ L(AI ; b̃), and 0 ∈ U(AT ; ã).
Let x, y, z ∈ X be such that x · (y · z), y ∈ U(AT ; ã). Then AT (x · (y · z)) ≽ ã

and AT (y) ≽ ã. Since A is an interval-valued neutrosophic UP-ideal of X, we have

AT (x · z) ≽ rmin{AT (x · (y · z)), AT (y)} ≽ ã.

Thus x · z ∈ U(AT ; ã).

Let x, y, z ∈ X be such that x · (y · z), y ∈ L(AI ; b̃). Then AI(x · (y · z)) ≼ b̃

and AI(y) ≼ b̃. Since A is an interval-valued neutrosophic UP-ideal of X, we have

AI(x · z) ≼ rmax{AI(x · (y · z)), AI(y)} ≼ b̃.

Thus x · z ∈ L(AI ; b̃).
Let x, y, z ∈ X be such that x · (y · z), y ∈ U(AF ; c̃). Then AF (x · (y · z)) ≽ c̃

and AF (y) ≽ c̃. Since A is an interval-valued neutrosophic UP-ideal of X, we have

AF (x · z) ≽ rmin{AF (x · (y · z)), AF (y)} ≽ c̃.

Thus x · z ∈ U(AF ; c̃).

Hence, U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are UP-ideals of X.

Conversely, assume that for all ã, b̃, c̃ ∈ [[0, 1]], the sets U(AT ; ã), L(AI ; b̃), and
U(AF ; c̃) are either empty or UP-ideals of X.

Let x ∈ X. Then x ∈ U(AT ;AT (x)) ̸= ∅, x ∈ L(AI ;AI(x)) ̸= ∅, and x ∈
U(AT ;AT (x)) ̸= ∅. By assumption, we have U(AT ;AT (x)), L(AI ;AI(x)), and
U(AF ;AF (x)) are UP-ideals of X. Then 0 ∈ U(AT ;AT (x)), 0 ∈ L(AI ;AI(x)), and
0 ∈ U(AF ;AF (x)). Thus AT (0) ≽ AT (x), AI(0) ≼ AI(x), and AF (0) ≽ AF (x).

Let x, y ∈ X. By (1.29), we have AT (x · (y · z)) ≽ rmin{AT (x · (y · z)), AT (y)}
and AT (y) ≽ rmin{AT (x · (y · z)), AT (y)}. Thus x · (y · z), y ∈ U(AT ; rmin{AT (x ·
(y · z)), AT (y)}). By assumption, we have U(AT ; rmin{AT (x · (y · z)), AT (y)}) is a
UP-ideal of X. Then x · z ∈ U(AT ; rmin{AT (x · (y · z)), AT (y)}). Thus AT (x · z) ≽
rmin{AT (x · (y · z)), AT (y)}.

Let x, y ∈ X. By (1.29), we have AI(x · (y · z)) ≼ rmax{AI(x · (y · z)), AI(y)}
and AI(y) ≼ rmax{AI(x · (y · z)), AI(y)}. Thus x · (y · z), y ∈ L(AI ; rmax{AI(x ·
(y · z)), AI(y)}). By assumption, we have L(AI ; rmax{AI(x · (y · z)), AI(x)}) is a
UP-ideal of X. Then x · z ∈ L(AI ; rmax{AI(x · (y · z)), AI(y)}). Thus AI(x · z) ≼
rmax{AI(x · (y · z)), AI(y)}.

Let x, y ∈ X. By (1.29), we have AF (x · (y · z)) ≽ rmin{AF (x · (y · z)), AF (y)}
and AF (y) ≽ rmin{AF (x · (y · z)), AF (y)}. Thus x · (y · z), y ∈ U(AF ; rmin{AF (x ·
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(y · z)), AF (y)}). By assumption, we have U(AF ; rmin{AF (x · (y · z)), AF (y)})
is a UP-ideal of X. Then x · z ∈ U(AF ; rmin{AF (x · (y · z)), AF (y)}). Thus
AF (x · z) ≽ rmin{AF (x · (y · z)), AF (y)}.

Hence, A is an interval-valued neutrosophic UP-ideal of X. �

Theorem 3.5. An IVNS A in X is an interval-valued neutrosophic strong
UP-ideal if and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets E(AT ;AT (0)), E(AI ;AI(0)),
and E(AF ;AF (0)) are strong UP-ideals of X.

Proof. Assume that A is an interval-valued neutrosophic strong UP-ideal of
X. By Theorem 2.1, we have A is constant, that is, AT , AI , AF are constant. Thus

(∀x ∈ X)

AT (x) = AT (0)

AI(x) = AI(0)

AF (x) = AF (0)

 .

Hence, E(AT ;AT (0)) = X,E(AI ;AI(0)) = X, and E(AF ;AF (0)) = X and so
E(AT ;AT (0)), E(AI ;AI(0)), and E(AF ;AF (0)) are strong UP-ideals of X.

Conversely, assume that E(AT ;AT (0)), E(AI ;AI(0)), and E(AF ;AF (0)) are
strong UP-ideals of X. Then E(AT ;AT (0)) = X, E(AI ;AI(0)) = X, and
E(AF ;AF (0)) = X and so

(∀x ∈ X)

AT (x) = AT (0)

AI(x) = AI(0)

AF (x) = AF (0)

 .

Thus AT , AI , AF are constant, that is, A is constant. By Theorem 2.1, we have A
is an interval-valued neutrosophic strong UP-ideal of X. �

4. Conclusions and Future Work

In this paper, we have introduced the notions of interval-valued neutrosophic
UP-subalgebras, interval-valued neutrosophic near UP-filters, interval-valued neu-
trosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued
neutrosophic strong UP-ideals of UP-algebras and investigated some of their im-
portant properties. Then, we get the diagram of generalization of IVNSs in UP-
algebras as shown in Figure 1.

In our future study, we will apply this notions/results to other type of IVNSs in
UP-algebras. Also, we will study the soft set theory of interval-valued neutrosophic
UP-subalgebras, interval-valued neutrosophic near UP-filters, interval-valued neu-
trosophic UP-filters, interval-valued neutrosophic UP-ideals, and interval-valued
neutrosophic strong UP-ideals.

References

[1] M. A. Ansari, A. Haidar and A. N. A. Koam. On a graph associated to UP-algebras. Math.
Comput. Appl., 23(4)(2018), 61. doi:10.3390/mca23040061

[2] M. A. Ansari, A. N. A. Koam and A. Haider. Rough set theory applied to UP-algebras. Ital.
J. Pure Appl. Math., 42 (2019), 388–402.



NEUTROSOPHIC SETS IN UP-ALGEBRAS BY MEANS OF INTERVAL-VALUED ... 121

Figure 1. IVNSs in UP-algebras

[3] N. Dokkhamdang, A. Kesorn and A. Iampan. Generalized fuzzy sets in UP-algebras. Ann.
Fuzzy Math. Inform., 16(2)(2018), 171–190.

[4] T. Guntasow, S. Sajak, A. Jomkham and A. Iampan. Fuzzy translations of a fuzzy set in

UP-algebras. J. Indones. Math. Soc., 23(2)(2017), 1–19.
[5] A. Iampan. A new branch of the logical algebra: UP-algebras. J. Algebra Relat. Top.,

5(1)(2017), 35–54.
[6] A. Iampan. Introducing fully UP-semigroups. Discuss. Math., Gen. Algebra Appl.,

38(2)(2018), 297–306.
[7] A. Iampan. Multipliers and near UP-filters of UP-algebras. Manuscript accepted for publica-

tion in J. Discrete Math. Sci. Cryptography, July 2019.
[8] Y. Imai and K. Iseki. On axiom systems of propositional calculi xiv. Proc. Japan Acad.,

42(1)(1966), 19–22.
[9] K. Iseki. An algebra related with a propositional calculus. Proc. Japan Acad., 42(1)(1966),

26–29.
[10] Y. B. Jun, S. J. Kim and F. Smarandache. Interval neutrosophic sets with applications in

BCK/BCI-algebra. Axioms, 7(2)(2018), 23–35.
[11] Y. B. Jun, F. Smarandache and C. S. Kim. Neutrosophic cubic sets. New Math. Nat. Comput.,

13(1)(2017), 41–54.
[12] W. Kaijae, P. Poungsumpao, S. Arayarangsi and A. Iampan. UP-algebras characterized

by their anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras. Ital. J. Pure Appl. Math.,
36(2016), 667–692.

[13] B. Kesorn, K. Maimun, W. Ratbandan and A. Iampan. Intuitionistic fuzzy sets in UP-

algebras. Ital. J. Pure Appl. Math., 34(2015), 339–364.
[14] J. N. Mordeson, D. S. Malik and N. Kuroki. Fuzzy semigroups. vol. 131, Springer, 2012.
[15] G. Muhiuddin. Neutrosophic subsemigroups. Ann. Commun. Math. 1(1)(2018), 1–10.
[16] G. Muhiuddin, A. N. Al-Kenani, E. H. Roh and Y. B. Jun. Implicative neutrosophic quadruple

BCK-algebras and ideals. Symmetry, 11(2)(2019), 277.
[17] G. Muhiuddin, H. Bordbar, F. Smarandache and Y. B. Jun. Further results on (∈

,∈)-neutrosophic subalgebras and ideals in BCK/BCI-algebras. Neutrosophic Sets Syst.,
20(2018), 36–43.



122 SONGSAENG AND IAMPAN

[18] G. Muhiuddin and Y. B. Jun. p-semisimple neutrosophic quadruple BCI-algebras and neu-
trosophic quadruple p-ideals. Ann. Commun. Math., 1(1)(2018), 26–37.

[19] G. Muhiuddin, S. J. Kim and Y. B. Jun. Implicative N -ideals of BCK-algebras based on
neutrosophic N -structures. Discrete Math. Algorithms Appl., 11(1)(2019), 1950011.

[20] G. Muhiuddin, F. Smarandache and Y. B. Jun. Neutrosophic quadruple ideals in neutrosophic
quadruple BCI-algebras. Neutrosophic Sets Syst., 25(2019), 161–173.

[21] J. Neggers and H. S. Kim. On B-algebras. Mat. Vesnik, 54(1-2)(2002), 21–29.

[22] A. Satirad, P. Mosrijai and A. Iampan. Formulas for finding UP-algebras. Int. J. Math.
Comput. Sci., 14(2)(2019), 403–409.

[23] A. Satirad, P. Mosrijai and A. Iampan. Generalized power UP-algebras. Int. J. Math. Com-
put. Sci., 14(1)(2019), 17–25.

[24] T. Senapati, Y. B. Jun and K. P. Shum. Cubic set structure applied in UP-algebras. Discrete
Math. Algorithms Appl., 10(4)(2018), 1850049.

[25] T. Senapati, G. Muhiuddin and K. P. Shum. Representation of UP-algebras in interval-valued
intuitionistic fuzzy environment. Ital. J. Pure Appl. Math., 38(2017), 497–517.

[26] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw and A. Iampan. Fuzzy sets in UP-algebras.
Ann. Fuzzy Math. Inform., 12(6)(2016), 739–756.

[27] M. Songsaeng and A. Iampan. N-fuzzy UP-algebras and its level subsets. J. Algebra Relat.
Top., 6(1)(2018), 1–24.

[28] S. Sripaeng, K. Tanamoon and A. Iampan. On anti Q-fuzzy UP-ideals and anti Q-fuzzy
UP-subalgebras of UP-algebras. J. Inf. Optim. Sci., 39(1)(2018), 1095–1127.

[29] K. Taboon, P. Butsri and A. Iampan. A cubic set theory approach to UP-algebras. Manuscript

submitted for publication, April 2019.
[30] K. Tanamoon, S. Sripaeng and A. Iampan. Q-fuzzy sets in UP-algebras. Songklanakarin J.

Sci. Technol., 40(1)(2018), 9–29.
[31] H. Wang, F. Smarandache, Y. Q. Zhang and R. Sunderraman. Interval neutrosophic sets and

logic: Theory and applications in computing. Hexis, Phoenix, Ariz, USA, 2005.
[32] L. A. Zadeh. Fuzzy sets. Inf. Cont., 8(3)(1965), 338–353.
[33] L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning-

I. Inf. Sci., 8(3)(1975), 199–249.

Received by editors 03.10.2019; Revised version 23.11.2019; Available online 02.12.2019.

Department of Mathematics, School of Science, University of Phayao, Phayao
56000, Thailand

E-mail address: metawee.faith@gmail.com

Department of Mathematics, School of Science, University of Phayao, Phayao
56000, Thailand

E-mail address: aiyared.ia@up.ac.th


