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1. Introduction

The concept of neutrosophic set (NS) developed by Smarandache [17, 18, 19]
is a more general platform which extends the concepts of the classic set and fuzzy
set (see [20], [21]), intuitionistic fuzzy set (see [1]) and interval valued intuitionistic
fuzzy set (see [2]). Neutrosophic set theory is applied to various part (see [4], [5],
[8], [9], [10], [11], [12], [13], [15], [16]). For further particulars, we refer readers to
the site http://fs.gallup.unm.edu/neutrosophy.htm. Barbhuiya [3] introduced and
studied the concept of (∈, ∈ ∨q)-intuitionistic fuzzy ideals of BCK/BCI-algebras.
Jun [7] introduced the notion of neutrosophic subalgebras in BCK/BCI-algebras
with several types. He provided characterizations of an (∈,∈)-neutrosophic sub-
algebra and an (∈,∈ ∨ q)-neutrosophic subalgebra. Given special sets, so called
neutrosophic ∈-subsets, neutrosophic q-subsets and neutrosophic ∈ ∨ q-subsets, he
considered conditions for the neutrosophic ∈-subsets, neutrosophic q-subsets and
neutrosophic ∈∨ q-subsets to be subalgebras. He discussed conditions for a neutro-
sophic set to be a (q, ∈∨ q)-neutrosophic subalgebra.
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In this paper, we give relations between an (∈, ∈∨ q)-neutrosophic subalgebra and
a (q, ∈∨ q)-neutrosophic subalgebra. We discuss characterization of an (∈, ∈∨ q)-
neutrosophic subalgebra by using neutrosophic ∈-subsets. We provide conditions
for an (∈, ∈∨ q)-neutrosophic subalgebra to be a (q, ∈∨ q)-neutrosophic subalgebra.
We investigate properties on neutrosophic q-subsets and neutrosophic ∈∨ q-subsets.

2. Preliminaries

By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the axioms:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(a2) (x ∗ (x ∗ y)) ∗ y = 0,
(a3) x ∗ x = 0,
(a4) x ∗ y = y ∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X. If a BCI-algebra X satisfies the axiom

(a5) 0 ∗ x = 0 for all x ∈ X,

then we say that X is a BCK-algebra. A nonempty subset S of a BCK/BCI-algebra
X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S.

We refer the reader to the books [6] and [14] for further information regarding
BCK/BCI-algebras.

For any family {ai | i ∈ Λ} of real numbers, we define

∨
{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite,
sup{ai | i ∈ Λ} otherwise.

∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite,
inf{ai | i ∈ Λ} otherwise.

If Λ = {1, 2}, we will also use a1 ∨ a2 and a1 ∧ a2 instead of
∨
{ai | i ∈ Λ} and∧

{ai | i ∈ Λ}, respectively.
Let X be a non-empty set. A neutrosophic set (NS) in X (see [18]) is a structure

of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an
indeterminate membership function, and AF : X → [0, 1] is a false membership
function. For the sake of simplicity, we shall use the symbol A = (AT , AI , AF ) for
the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.
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3. Neutrosophic subalgebras of several types

Given a neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈ (0, 1] and γ ∈ [0, 1),
we consider the following sets:

T∈(A;α) := {x ∈ X | AT (x) ≥ α},
I∈(A;β) := {x ∈ X | AI(x) ≥ β},
F∈(A; γ) := {x ∈ X | AF (x) ≤ γ},
Tq(A;α) := {x ∈ X | AT (x) + α > 1},
Iq(A;β) := {x ∈ X | AI(x) + β > 1},
Fq(A; γ) := {x ∈ X | AF (x) + γ < 1},
T∈∨ q(A;α) := {x ∈ X | AT (x) ≥ α or AT (x) + α > 1},
I∈∨ q(A;β) := {x ∈ X | AI(x) ≥ β or AI(x) + β > 1},
F∈∨ q(A; γ) := {x ∈ X | AF (x) ≤ γ or AF (x) + γ < 1}.

We say T∈(A;α), I∈(A;β) and F∈(A; γ) are neutrosophic ∈-subsets; Tq(A;α), Iq(A;β)
and Fq(A; γ) are neutrosophic q-subsets; and T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ)
are neutrosophic ∈∨ q-subsets. For Φ ∈ {∈, q,∈∨ q}, the element of TΦ(A;α) (resp.,
IΦ(A;β) and FΦ(A; γ)) is called a neutrosophic TΦ-point (resp., neutrosophic IΦ-
point and neutrosophic FΦ-point) with value α (resp., β and γ) (see [7]).

It is clear that

T∈∨ q(A;α) = T∈(A;α) ∪ Tq(A;α),(3.1)

I∈∨ q(A;β) = I∈(A;β) ∪ Iq(A;β),(3.2)

F∈∨ q(A; γ) = F∈(A; γ) ∪ Fq(A; γ).(3.3)

Definition 3.1 ([7]). Given Φ,Ψ ∈ {∈, q,∈∨ q}, a neutrosophic setA = (AT , AI , AF )
in a BCK/BCI-algebra X is called a (Φ, Ψ)-neutrosophic subalgebra of X if the fol-
lowing assertions are valid.

x ∈ TΦ(A;αx), y ∈ TΦ(A;αy) ⇒ x ∗ y ∈ TΨ(A;αx ∧ αy),

x ∈ IΦ(A;βx), y ∈ IΦ(A;βy) ⇒ x ∗ y ∈ IΨ(A;βx ∧ βy),

x ∈ FΦ(A; γx), y ∈ FΦ(A; γy) ⇒ x ∗ y ∈ FΨ(A; γx ∨ γy)

(3.4)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

Lemma 3.2 ([7]). A neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is an (∈, ∈∨ q)-neutrosophic subalgebra of X if and only if it satisfies:

(∀x, y ∈ X)

 AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5}

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 0.5}

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5}

 .(3.5)

Theorem 3.3. A neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra X is
an (∈, ∈∨ q)-neutrosophic subalgebra of X if and only if the neutrosophic ∈-subsets
T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras of X for all α, β ∈ (0, 0.5] and
γ ∈ [0.5, 1).
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Proof. Assume that A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-neutrosophic subalgebra of
X. For any x, y ∈ X, let α ∈ (0, 0.5] be such that x, y ∈ T∈(A;α). Then AT (x) ≥ α
and AT (y) ≥ α. It follows from (3.5) that

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5} ≥ α ∧ 0.5 = α

and so that x ∗ y ∈ T∈(A;α). Thus T∈(A;α) is a subalgebra of X for all α ∈ (0, 0.5].
Similarly, I∈(A;β) is a subalgebra of X for all β ∈ (0, 0.5]. Now, let γ ∈ [0.5, 1) be
such that x, y ∈ F∈(A; γ). Then AF (x) ≤ γ and AF (y) ≤ γ. Hence

AF (x ∗ y) ≤
∨
{AFx), AF (y), 0.5} ≤ γ ∨ 0.5 = γ

by (3.5), and so x ∗ y ∈ F∈(A; γ). Thus F∈(A; γ) is a subalgebra of X for all
γ ∈ [0.5, 1).

Conversely, let α, β ∈ (0, 0.5] and γ ∈ [0.5, 1) be such that T∈(A;α), I∈(A;β) and
F∈(A; γ) are subalgebras of X. If there exist a, b ∈ X such that

AI(a ∗ b) <
∧
{AI(a), AI(b), 0.5},

then we can take β ∈ (0, 1) such that

AI(a ∗ b) < β <
∧
{AI(a), AI(b), 0.5}.(3.6)

Thus a, b ∈ I∈(A;β) and β < 0.5, and so a ∗ b ∈ I∈(A;β). But, the left inequality in
(3.6) induces a ∗ b /∈ I∈(A;β), a contradiction. Hence

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 0.5}

for all x, y ∈ X. Similarly, we can show that

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5}

for all x, y ∈ X. Now suppose that

AF (a ∗ b) >
∨
{AF (a), AF (b), 0.5}

for some a, b ∈ X. Then there exists γ ∈ (0, 1) such that

AF (a ∗ b) > γ >
∨
{AF (a), AF (b), 0.5}.

It follows that γ ∈ (0.5, 1) and a, b ∈ F∈(A; γ). Since F∈(A; γ) is a subalgebra of X,
we have a ∗ b ∈ F∈(A; γ) and so AF (a ∗ b) ≤ γ. This is a contradiction, and thus

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5}

for all x, y ∈ X. Using Lemma 3.2, A = (AT , AI , AF ) is an (∈, ∈∨ q)-neutrosophic
subalgebra of X. �

Using Theorem 3.3 and [7, Theorem 3.8], we have the following corollary.

Corollary 3.4. For a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X, if the nonempty neutrosophic ∈∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ)
are subalgebras of X for all α, β ∈ (0, 1] and γ ∈ [0, 1), then the neutrosophic ∈-
subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras of X for all α, β ∈ (0, 0.5]
and γ ∈ [0.5, 1).
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Theorem 3.5. Given neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X, the nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are sub-
algebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5) if and only if the following
assertion is valid.

(∀x, y ∈ X)

 AT (x ∗ y) ∨ 0.5 ≥ AT (x) ∧AT (y)

AI(x ∗ y) ∨ 0.5 ≥ AI(x) ∧AI(y)

AF (x ∗ y) ∧ 0.5 ≤ AF (x) ∨AF (y)

 .(3.7)

Proof. Assume that the nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and
F∈(A; γ) are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5). Suppose
that there are a, b ∈ X such that AT (a ∗ b) ∨ 0.5 < AT (a) ∧ AT (b) := α. Then
α ∈ (0.5, 1] and a, b ∈ T∈(A;α). Since T∈(A;α) is a subalgebra of X, it follows that
a ∗ b ∈ T∈(A;α), that is, AT (a ∗ b) ≥ α which is a contradiction. Thus

AT (x ∗ y) ∨ 0.5 ≥ AT (x) ∧AT (y)

for all x, y ∈ X. Similarly, we know that AI(x ∗ y) ∨ 0.5 ≥ AI(x) ∧ AI(y) for
all x, y ∈ X. Now, if AF (x ∗ y) ∧ 0.5 > AF (x) ∨ AF (y) for some x, y ∈ X, then
x, y ∈ F∈(A; γ) and γ ∈ [0, 0.5) where γ = AF (x) ∨ AF (y). But, x ∗ y /∈ F∈(A; γ)
which is a contradiction. Hence AF (x ∗ y) ∧ 0.5 ≤ AF (x) ∨AF (y) for all x, y ∈ X.

Conversely, let A = (AT , AI , AF ) be a neutrosophic set in X satisfying the con-
dition (3.7). Let x, y, a, b ∈ X and α, β ∈ (0.5, 1] be such that x, y ∈ T∈(A;α) and
a, b ∈ I∈(A;β). Then

AT (x ∗ y) ∨ 0.5 ≥ AT (x) ∧AT (y) ≥ α > 0.5,

AI(a ∗ b) ∨ 0.5 ≥ AI(a) ∧AI(b) ≥ β > 0.5.

It follows that AT (x ∗ y) ≥ α and AI(a ∗ b) ≥ β, that is, x ∗ y ∈ T∈(A;α) and
a ∗ b ∈ I∈(A;β). Now, let x, y ∈ X and γ ∈ [0, 0.5) be such that x, y ∈ F∈(A; γ).
Then AF (x ∗ y) ∧ 0.5 ≤ AF (x) ∨ AF (y) ≤ γ < 0.5 and so AF (x ∗ y) ≤ γ, i.e.,
x ∗ y ∈ F∈(A; γ). This completes the proof. �

We consider relations between a (q, ∈ ∨ q)-neutrosophic subalgebra and an (∈,
∈∨ q)-neutrosophic subalgebra.

Theorem 3.6. In a BCK/BCI-algebra, every (q, ∈∨ q)-neutrosophic subalgebra is
an (∈, ∈∨ q)-neutrosophic subalgebra.

Proof. LetA = (AT , AI , AF ) be a (q, ∈∨ q)-neutrosophic subalgebra of aBCK/BCI-
algebra X and let x, y ∈ X. Let αx, αy ∈ (0, 1] be such that x ∈ T∈(A;αx) and
y ∈ T∈(A;αy). Then AT (x) ≥ αx and AT (y) ≥ αy. Suppose x∗y /∈ T∈∨ q(A;αx∧αy).
Then

AT (x ∗ y) < αx ∧ αy,(3.8)

AT (x ∗ y) + (αx ∧ αy) ≤ 1.(3.9)

It follows that

AT (x ∗ y) < 0.5.(3.10)
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Combining (3.8) and (3.10), we have

AT (x ∗ y) <
∧
{αx, αy, 0.5}

and so

1−AT (x ∗ y) > 1−
∧
{αx, αy, 0.5}

=
∨
{1− αx, 1− αy, 0.5}

≥
∨
{1−AT (x), 1−AT (y), 0.5}.

Hence there exists α ∈ (0, 1] such that

1−AT (x ∗ y) ≥ α >
∨
{1−AT (x), 1−AT (y), 0.5}.(3.11)

The right inequality in (3.11) induces AT (x) + α > 1 and AT (y) + α > 1, that is,
x, y ∈ Tq(A;α). Since A = (AT , AI , AF ) is a (q, ∈ ∨ q)-neutrosophic subalgebra
of X, we have x ∗ y ∈ T∈∨ q(A;α). But, the left inequality in (3.11) implies that
AT (x ∗ y) +α ≤ 1, i.e., x ∗ y /∈ Tq(A;α), and AT (x ∗ y) ≤ 1−α < 1− 0.5 = 0.5 < α,
i.e., x ∗ y /∈ T∈(A;α). Hence x ∗ y /∈ T∈∨ q(A;α), a contradiction. Thus x ∗ y ∈
T∈∨ q(A;αx ∧ αy). Similarly, we can show that if x ∈ I∈(A;βx) and y ∈ I∈(A;βy)
for βx, βy ∈ (0, 1], then x ∗ y ∈ I∈∨ q(A;βx ∧ βy). Now, let γx, γy ∈ [0, 1) be such
that x ∈ F∈(A; γx) and y ∈ F∈(A; γy). AF (x) ≤ γx and AF (y) ≤ γy. If x ∗ y /∈
F∈∨ q(A; γx ∨ γy), then

AF (x ∗ y) > γx ∨ γy,(3.12)

AF (x ∗ y) + (γx ∨ γy) ≥ 1.(3.13)

It follows that

AF (x ∗ y) >
∨
{γx, γy, 0.5}

and so that

1−AF (x ∗ y) < 1−
∨
{γx, γy, 0.5}

=
∧
{1− γx, 1− γy, 0.5}

≤
∧
{1−AF (x), 1−AF (y), 0.5}.

Thus there exists γ ∈ [0, 1) such that

1−AF (x ∗ y) ≤ γ <
∧
{1−AF (x), 1−AF (y), 0.5}.(3.14)

It follows from the right inequality in (3.14) that AF (x) + γ < 1 and AF (y) + γ < 1,
that is, x, y ∈ Fq(A; γ), which implies that x ∗ y ∈ F∈∨ q(A; γ). But, we have
x ∗ y /∈ F∈∨ q(A; γ) by the left inequality in (3.14). This is a contradiction, and so
x ∗ y ∈ F∈∨ q(A; γx ∨ γy). Therefore A = (AT , AI , AF ) is an (∈, ∈∨ q)-neutrosophic
subalgebra of X. �

The following example shows that the converse of Theorem 3.6 is not true.
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Table 1. Cayley table of the operation ∗

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 1
2 2 1 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

X AT (x) AI(x) AF (x)
0 0.6 0.8 0.3
1 0.2 0.3 0.6
2 0.2 0.3 0.6
3 0.7 0.1 0.7
4 0.4 0.4 0.9

Example 3.7. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cay-
ley table.
Let A = (AT , AI , AF ) be a neutrosophic set in X defined by
Then

T∈(A;α) =

 {0, 3} if α ∈ (0.4, 0.5],
{0, 3, 4} if α ∈ (0.2, 0.4],
X if α ∈ (0, 0.2],

I∈(A;β) =


{0} if β ∈ (0.4, 0.5],
{0, 4} if β ∈ (0.3, 0.4],
{0, 1, 2, 4} if β ∈ (0.1, 0.3],
X if β ∈ (0, 0.1],

F∈(A; γ) =


X if γ ∈ (0.9, 1),
{0, 1, 2, 3} if γ ∈ [0.7, 0.9),
{0, 1, 2} if γ ∈ [0.6, 0.7),
{0} if γ ∈ [0.5, 0.6),

which are subalgebras of X for all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1). Using Theorem
3.3, A = (AT , AI , AF ) is an (∈, ∈∨ q)-neutrosophic subalgebra of X. But it is not
a (q, ∈∨ q)-neutrosophic subalgebra of X since 2 ∈ Tq(A; 0.83) and 3 ∈ Tq(A; 0.4),
but 2 ∗ 3 = 2 /∈ T∈∨ q(A; 0.4).

We provide conditions for an (∈, ∈∨ q)-neutrosophic subalgebra to be a (q, ∈∨ q)-
neutrosophic subalgebra.

Theorem 3.8. Assume that any neutrosophic TΦ-point and neutrosophic IΦ-point
has the value α and β in (0, 0.5], respectively, and any neutrosophic FΦ-point has
the value γ in [0.5, 1) for Φ ∈ {∈, q,∈ ∨ q}. Then every (∈, ∈ ∨ q)-neutrosophic
subalgebra is a (q, ∈∨ q)-neutrosophic subalgebra.

Proof. Let X be a BCK/BCI-algebra and let A = (AT , AI , AF ) be an (∈, ∈∨ q)-
neutrosophic subalgebra of X. For x, y, a, b ∈ X, let αx, αy, βa, βb ∈ (0, 0.5] be
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such that x ∈ Tq(A;αx), y ∈ Tq(A;αy), a ∈ Iq(A;βa) and b ∈ Tq(A;βb). Then
AT (x) + αx > 1, AT (y) + αy > 1, AI(a) + βa > 1 and AI(b) + βb > 1. Since
αx, αy, βa, βb ∈ (0, 0.5], it follows that AT (x) > 1− αx ≥ αx, AT (y) > 1− αy ≥ αy,
AI(a) > 1−βa ≥ βa and AI(b) > 1−βb ≥ βb, that is, x ∈ T∈(A;αx), y ∈ T∈(A;αy),
a ∈ I∈(A;βa) and b ∈ I∈(A;βb). Also, let x ∈ Fq(A; γx) and y ∈ Fq(A; γy) for
x, y ∈ X and γx, γy ∈ [0.5, 1). Then AF (x) + γx < 1 and AF (y) + γy < 1, and so
AF (x) < 1−γx ≤ γx and AF (y) < 1−γy ≤ γy since γx, γy ∈ [0.5, 1). This shows that
x ∈ F∈(A; γx) and y ∈ F∈(A; γy). It follows from (3.4) that x∗y ∈ T∈∨ q(A;αx∧αy),
a∗b ∈ I∈∨ q(A;βa∧βb), and x∗y ∈ F∈∨ q(A; γx∨γy). Consequently, A = (AT , AI , AF )
is a (q, ∈∨ q)-neutrosophic subalgebra of X. �

Theorem 3.9. Both (∈, ∈)-neutrosophic subalgebra and (∈∨ q, ∈∨ q)-neutrosophic
subalgebra are an (∈, ∈∨ q)-neutrosophic subalgebra.

Proof. It is clear that (∈, ∈)-neutrosophic subalgebra is an (∈, ∈∨ q)-neutrosophic
subalgebra. Let A = (AT , AI , AF ) be an (∈∨ q, ∈∨ q)-neutrosophic subalgebra of
X. For any x, y, a, b ∈ X, let αx, αy, βa, βb ∈ (0, 1] be such that x ∈ T∈(A;αx),
y ∈ T∈(A;αy), a ∈ I∈(A;βa) and b ∈ I∈(A;βb). Then x ∈ T∈∨ q(A;αx), y ∈
T∈∨ q(A;αy), a ∈ I∈∨ q(A;βa) and b ∈ I∈∨ q(A;βb) by (3.1) and (3.2). It follows
that x ∗ y ∈ T∈∨ q(A;αx ∧ αy) and a ∗ b ∈ I∈∨ q(A;βa ∧ βb). Now, let x, y ∈ X and
γx, γy ∈ [0, 1) be such that x ∈ F∈(A; γx) and y ∈ F∈(A; γy). Then x ∈ F∈∨ q(A; γx)
and y ∈ F∈∨ q(A; γy) by (3.3). Hence x ∗ y ∈ F∈∨ q(A; γx ∨ γy). Therefore A =
(AT , AI , AF ) is an (∈, ∈∨ q)-neutrosophic subalgebra of X. �

The converse of Theorem 3.9 is not true in general. In fact, the (∈, ∈ ∨ q)-
neutrosophic subalgebra A = (AT , AI , AF ) in Example 3.7 is neither an (∈, ∈)-
neutrosophic subalgebra nor an (∈∨ q, ∈∨ q)-neutrosophic subalgebra.

Theorem 3.10. For a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X, if the nonempty neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ) are sub-
algebras of X for all α, β ∈ (0.5, 1] and γ ∈ (0, 0.5), then

x ∈ T∈(A;αx), y ∈ T∈(A;αy) ⇒ x ∗ y ∈ Tq(A;αx ∨ αy),

x ∈ I∈(A;βx), y ∈ I∈(A;βy) ⇒ x ∗ y ∈ Iq(A;βx ∨ βy),

x ∈ F∈(A; γx), y ∈ F∈(A; γy) ⇒ x ∗ y ∈ Fq(A; γx ∧ γy)

(3.15)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0.5, 1] and γx, γy ∈ (0, 0.5).

Proof. Let x, y, a, b, u, v ∈ X and αx, αy, βa, βb ∈ (0.5, 1] and γu, γv ∈ (0, 0.5) be
such that x ∈ T∈(A;αx), y ∈ T∈(A;αy), a ∈ I∈(A;βa), b ∈ I∈(A;βb), u ∈ F∈(A; γu)
and v ∈ F∈(A; γv). Then AT (x) ≥ αx > 1 − αx, AT (y) ≥ αy > 1 − αy, AI(a) ≥
βa > 1− βa, AI(b) ≥ βb > 1− βb, AF (u) ≤ γu < 1− γu and AF (v) ≤ γv < 1− γv.
It follows that x, y ∈ Tq(A;αx ∨ αy), a, b ∈ Iq(A;βa ∨ βb) and u, v ∈ Fq(A; γu ∧ γv).
Since αx∨αy, βa∨βb ∈ (0.5, 1] and γu∧γv ∈ (0, 0.5), we have x∗y ∈ Tq(A;αx∨αy),
a ∗ b ∈ Iq(A;βa ∨ βb) and u ∗ v ∈ Fq(A; γu ∧ γv) by hypothesis. This completes the
proof. �

The following corollary is by Theorem 3.10 and [7, Theorem 3.7].

Corollary 3.11. Every (∈, ∈∨ q)-neutrosophic subalgebra A = (AT , AI , AF ) in a
BCK/BCI-algebra X satisfies the condition (3.15).
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Corollary 3.12. Every (q, ∈ ∨ q)-neutrosophic subalgebra A = (AT , AI , AF ) in a
BCK/BCI-algebra X satisfies the condition (3.15).

Proof. It is by Theorem 3.6 and Corollary 3.11. �

Theorem 3.13. For a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X, if the nonempty neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ) are sub-
algebras of X for all α, β ∈ (0, 0.5] and γ ∈ (0.5, 1), then

x ∈ Tq(A;αx), y ∈ Tq(A;αy) ⇒ x ∗ y ∈ T∈(A;αx ∨ αy),

x ∈ Iq(A;βx), y ∈ Iq(A;βy) ⇒ x ∗ y ∈ I∈(A;βx ∨ βy),

x ∈ Fq(A; γx), y ∈ Fq(A; γy) ⇒ x ∗ y ∈ F∈(A; γx ∧ γy)

(3.16)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0, 0.5] and γx, γy ∈ (0.5, 1).

Proof. Let x, y, a, b, u, v ∈ X and αx, αy, βa, βb ∈ (0, 0.5] and γu, γv ∈ (0.5, 1)
be such that x ∈ Tq(A;αx), y ∈ Tq(A;αy), a ∈ Iq(A;βa), b ∈ Iq(A;βb), u ∈
Fq(A; γu) and v ∈ Fq(A; γv). Then x, y ∈ Tq(A;αx ∨ αy), a, b ∈ Iq(A;βa ∨ βb) and
u, v ∈ Fq(A; γu ∧ γv). Since αx ∨ αy, βa ∨ βb ∈ (0, 0.5] and γu ∧ γv ∈ (0.5, 1), it
follows from the hypothesis that x ∗ y ∈ Tq(A;αx ∨ αy), a ∗ b ∈ Iq(A;βa ∨ βb) and
u ∗ v ∈ Fq(A; γu ∧ γv). Hence

AT (x ∗ y) > 1− (αx ∨ αy) ≥ αx ∨ αy, that is, x ∗ y ∈ T∈(A;αx ∨ αy),

AI(a ∗ b) > 1− (βa ∨ βb) ≥ βa ∨ βb, that is, a ∗ b ∈ I∈(A;βa ∨ βb),
AF (u ∗ v) < 1− (γu ∧ γv) ≤ γu ∧ γv, that is, u ∗ v ∈ F∈(A; γu ∧ γv).

Consequently, the condition (3.16) is valid for all x, y ∈ X, αx, αy, βx, βy ∈ (0, 0.5]
and γx, γy ∈ (0.5, 1). �

Theorem 3.14. Given a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-
algebra X, if the nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and
F∈∨ q(A; γ) are subalgebras of X for all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1), then the
following assertions are valid.

x ∈ Tq(A;αx), y ∈ Tq(A;αy) ⇒ x ∗ y ∈ T∈∨ q(A;αx ∨ αy),

x ∈ Iq(A;βx), y ∈ Iq(A;βy) ⇒ x ∗ y ∈ I∈∨ q(A;βx ∨ βy),

x ∈ Fq(A; γx), y ∈ Fq(A; γy) ⇒ x ∗ y ∈ F∈∨ q(A; γx ∧ γy)

(3.17)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0, 0.5] and γx, γy ∈ [0.5, 1).

Proof. Let x, y, a, b, u, v ∈ X and αx, αy, βa, βb ∈ (0, 0.5] and γu, γv ∈ [0.5, 1) be
such that x ∈ Tq(A;αx), y ∈ Tq(A;αy), a ∈ Iq(A;βa), b ∈ Iq(A;βb), u ∈ Fq(A; γu)
and v ∈ Fq(A; γv). Then x ∈ T∈∨ q(A;αx), y ∈ T∈∨ q(A;αy), a ∈ I∈∨ q(A;βa),
b ∈ I∈∨ q(A;βb), u ∈ F∈∨ q(A; γu) and v ∈ F∈∨ q(A; γv). It follows that x, y ∈
T∈∨ q(A;αx ∨ αy), a, b ∈ I∈∨ q(A;βa ∨ βb) and u, v ∈ F∈∨ q(A; γu ∧ γv) which imply
from the hypothesis that x ∗ y ∈ T∈∨ q(A;αx ∨ αy), a ∗ b ∈ I∈∨ q(A;βa ∨ βb) and
u ∗ v ∈ F∈∨ q(A; γu ∧ γv). This completes the proof. �

Corollary 3.15. Every (∈, ∈∨ q)-neutrosophic subalgebra A = (AT , AI , AF ) of a
BCK/BCI-algebra X satisfies the condition (3.17).

Proof. It is by Theorem 3.14 and [7, Theorem 3.9]. �
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Theorem 3.16. Given a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-
algebra X, if the nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and
F∈∨ q(A; γ) are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5), then the
following assertions are valid.

x ∈ Tq(A;αx), y ∈ Tq(A;αy) ⇒ x ∗ y ∈ T∈∨ q(A;αx ∨ αy),

x ∈ Iq(A;βx), y ∈ Iq(A;βy) ⇒ x ∗ y ∈ I∈∨ q(A;βx ∨ βy),

x ∈ Fq(A; γx), y ∈ Fq(A; γy) ⇒ x ∗ y ∈ F∈∨ q(A; γx ∧ γy)

(3.18)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0.5, 1] and γx, γy ∈ [0, 0.5).

Proof. It is similar to the proof Theorem 3.14. �

Corollary 3.17. Every (q, ∈ ∨ q)-neutrosophic subalgebra A = (AT , AI , AF ) of a
BCK/BCI-algebra X satisfies the condition (3.18).

Proof. It is by Theorem 3.16 and [7, Theorem 3.10]. �

Combining Theorems 3.14 and 3.16, we have the following corollary.

Corollary 3.18. Given a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-
algebra X, if the nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and
F∈∨ q(A; γ) are subalgebras of X for all α, β ∈ (0, 1] and γ ∈ [0, 1), then the following
assertions are valid.

x ∈ Tq(A;αx), y ∈ Tq(A;αy) ⇒ x ∗ y ∈ T∈∨ q(A;αx ∨ αy),

x ∈ Iq(A;βx), y ∈ Iq(A;βy) ⇒ x ∗ y ∈ I∈∨ q(A;βx ∨ βy),

x ∈ Fq(A; γx), y ∈ Fq(A; γy) ⇒ x ∗ y ∈ F∈∨ q(A; γx ∧ γy)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

Conclusions

We have considered relations between an (∈, ∈∨ q)-neutrosophic subalgebra and
a (q, ∈∨ q)-neutrosophic subalgebra. We have discussed characterization of an (∈,
∈∨ q)-neutrosophic subalgebra by using neutrosophic ∈-subsets, and have provided
conditions for an (∈, ∈∨ q)-neutrosophic subalgebra to be a (q, ∈∨ q)-neutrosophic
subalgebra. We have investigated properties on neutrosophic q-subsets and neutro-
sophic ∈∨ q-subsets. Our future research will be focused on the study of generaliza-
tion of this paper.
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