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1. Introduction

In 1970, Levine [7] initiated the study of generalized closed sets. Zadeh [16] introduced the degree of membership/truth

(T) in 1965 and defined the fuzzy set as a mathematical tool to solve problems and vagueness in everyday life. In fuzzy set

theory, the membership of an element to a fuzzy set is a single value between zero and one. The theory of fuzzy topology

was introduced by C.L.Chang [4] in 1967; several researches were conducted on the generalizations of the notions of fuzzy

sets and fuzzy topology. Atanassov [3] introduced the degree of nonmembership/falsehood (F) in 1986 and defined the

intuitionistic fuzzy set as a generalization of fuzzy sets. The theory of vague sets was first proposed by Gau and Buehre

[6] as an extension of fuzzy set theory in 1993. Then, Smarandache [14] introduced the degree of indeterminacy/neutrality

(I) as independent component in 1995 (published in 1998) and defined the neutrosophic set. He has coined the words

neutrosophy and neutrosophic. Neutrosophic set is a generalization of fuzzy set theory and intuitionistic fuzzy sets. Shawkat

Alkhazaleh [13] in 2015 introduced the concept of neutrosophic vague set as a combination of neutrosophic set and vague

set. Neutrosophic vague theory is an effective tool to process incomplete, indeterminate and inconsistent information. In

this paper we introduce the concept of neutrosophic vague generalized pre-closed sets and neutrosophic vague generalized

pre-open sets and their properties are obtained. Also its relationship with other existing sets are compared and discussed

with examples.

2. Preliminaries

Definition 2.1 ([13]). A neutrosophic vague set ANV (NVS in short) on the universe of discourse X written as ANV ={〈
x; T̂ANV (x) ; ÎANV (x) ; F̂ANV (x)

〉
;x ∈ X

}
, whose truth membership, indeterminacy membership and false membership
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functions is defined as:

T̂ANV (x) =
[
T−, T+] , ÎANV (x) =

[
I−, I+

]
, F̂ANV (x) =

[
F−, F+]

where,

(1). T+ = 1− F−

(2). F+ = 1− T− and

(3). −0 ≤ T− + I− + F− ≤ 2+.

Definition 2.2 ([13]). Let ANV and BNV be two NVSs of the universe U . If ∀ ui ∈ U, T̂ANV (ui) ≤ T̂BNV (ui) ; ÎANV (ui) ≥

ÎBNV (ui) ; F̂ANV (ui) ≥ F̂BNV (ui) , then the NVS ANV is included by BNV , denoted by ANV ⊆ BNV , where 1 ≤ i ≤ n.

Definition 2.3 ([13]). The complement of NVS ANV is denoted by Ac
NV and is defined by

T̂ c
ANV

(x) =
[
1− T+, 1− T−

]
, ÎcANV

(x) =
[
1− I+, 1− I−

]
, F̂ c

ANV
(x) =

[
1− F+, 1− F−

]
.

Definition 2.4 ([13]). Let ANV be NVS of the universe U where ∀ ui ∈ U , T̂ANV (x) = [1, 1] ; ÎANV (x) = [0, 0] ;

F̂ANV (x) = [0, 0] . Then ANV is called unit NVS, where 1 ≤ i ≤ n.

Definition 2.5 ([13]). Let ANV be NVS of the universe U where ∀ ui ∈ U , T̂ANV (x) = [0, 0] ; ÎANV (x) = [1, 1] ;

F̂ANV (x) = [1, 1] . Then ANV is called zero NVS, where 1 ≤ i ≤ n.

Definition 2.6 ([13]). The union of two NVSs ANV and BNV is NVS CNV , written as CNV = ANV ∪ BNV , whose

truth-membership, indeterminacy-membership and false-membership functions are related to those of ANV and BNV given

by,

T̂CNV (x) =
[
max

(
T−ANVx

, T−BNVx

)
,max

(
T+
ANVx

, T+
BNVx

)]
ÎCNV (x) =

[
min

(
I−ANVx

, I−BNVx

)
,min

(
I+ANVx

, I+BNVx

)]
F̂CNV (x) =

[
min

(
F−ANVx

, F−BNVx

)
,min

(
F+
ANVx

, F+
BNVx

)]
.

Definition 2.7 ([13]). The intersection of two NVSs ANV and BNV is NVS CNV , written as CNV = ANV ∩BNV , whose

truth-membership, indeterminacy-membership and false-membership functions are related to those of ANV and BNV given

by,

T̂CNV (x) =
[
min

(
T−ANVx

, T−BNVx

)
,min

(
T+
ANVx

, T+
BNVx

)]
ÎCNV (x) =

[
max

(
I−ANVx

, I−BNVx

)
,max

(
I+ANVx

, I+BNVx

)]
F̂CNV (x) =

[
max

(
F−ANVx

, F−BNVx

)
,max

(
F+
ANVx

, F+
BNVx

)]
.

Definition 2.8 ([13]). Let ANV and BNV be two NVSs of the universe U . If ∀ ui ∈ U, T̂ANV (ui) = T̂BNV (ui) ; ÎANV (ui) =

ÎBNV (ui) ; F̂ANV (ui) = F̂BNV (ui) , then the NVS ANV and BNV , are called equal, where 1 ≤ i ≤ n.

Definition 2.9. Let (X, τ) be topological space. A subset A of X is called:

(1). semi closed set (SCS in short) [8] if int (cl (A)) ⊆ A,
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(2). pre- closed set (PCS in short) [11] if cl (int (A)) ⊆ A,

(3). semi-pre closed set (SPCS in short) [1] if int (cl (int (A))) ⊆ A,

(4). α -closed set ( α CS in short) [12] if cl (int (cl (A))) ⊆ A,

(5). regular closed set (RCS in short) [15] if A = cl (int (A)) .

Definition 2.10. Let (X, τ) be topological space. A subset A of X is called:

(1). generalized closed (briefly, g-closed) [7] if cl (A) ⊆ U , whenever A ⊆ U and U is open in X.

(2). generalized semi closed (briefly, gs-closed) [2] if scl (A) ⊆ U whenever A ⊆ U and U is open in X.

(3). a-generalized closed (briefly, ag-closed) [9] if αcl (A) ⊆ U whenever A ⊆ U and U is open in X.

(4). generalized pre-closed (briefly, gp-closed) [10] if pcl (A) ⊆ U whenever A ⊆ U and U is open in X.

(5). generalized semi-pre closed (briefly, gsp-closed) [5] if spcl (A) ⊆ U whenever A ⊆ U and U is open in X.

3. Neutrosophic Vague Topological Space

In this section we introduce neutrosophic vague topology.

Definition 3.1. A neutrosophic vague topology (NVT in short) on X is a family τ of neutrosophic vague sets (NVS in

short) in X satisfying the following axioms:

(1). 0NV , 1NV ∈ τ

(2). G1 ∩G2 ∈ τ for any G1, G2 ∈ τ

(3). ∪Gi ∈ τ,∀ {Gi : i ∈ J} ⊆ τ .

In this case the pair (X, τ) is called neutrosophic vague topological space (NVTS in short) and any NVS in τ is known as

neutrosophic vague open set (NVOS in short) in X. The complement Ac of NVOS in NVTS (X, τ) is called neutrosophic

vague closed set (NVCS in short) in X.

Definition 3.2. Let (X, τ) be NVTS and A =
{〈
x,
[
T̂A, ÎA, F̂A

]〉}
be NVS in X. Then the neutrosophic vague interior

and neutrosophic vague closure are defined by

(1). NV int (A) = ∪{G/GisaNVOSinXandG ⊆ A} ,

(2). NV cl (A) = ∩{K/KisaNVCSinXandA ⊆ K} .

Note that for any NVS A in (X, τ) , we have NV cl (Ac) = (NV int (A))c and NV int (Ac) = (NV cl (A))c. It can be also

shown that NV cl (A) is NVCS and NV int (A) is NVOS in X.

(1). A is NVCS in X if and only if NV cl (A) = A.

(2). A is NVOS in X if and only if NV int (A) = A.

Proposition 3.3. Let A be any NVS in X. Then

(1). NV int (1−A) = 1− (NV cl (A)) and
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(2). NV cl (1−A) = 1− (NV int (A)).

Proof.

(1). By definition NV cl (A) = ∩{K/KisaNVCSinXandA ⊆ K}.

1− (NV cl (A)) = 1− ∩{K/KisaNVCSinXandA ⊆ K}

= ∪{1−K/KisaNVCSinXandA ⊆ K}

= ∪{G/GisanNVOSinXandG ⊆ 1−A}

= NV int (1−A)

(2). The proof is similar to (1).

Proposition 3.4. Let (X, τ) be a NVTS and A , B be NVSs in X. Then the following properties hold:

(a). NV int (A) ⊆ A ,

(b). A ⊆ B ⇒ NV int (A) ⊆ NV int (B) ,

(c). NV int (NV int (A)) = NV int (A) ,

(d). NV int (A ∩B) = NV int (A) ∩NV int (B) ,

(e). NV int (1NV ) = 1NV ,

(a’). A ⊆ NV cl (A)

(b’). A ⊆ B ⇒ NV cl (A) ⊆ NV cl (B)

(c’). NV cl (NV cl (A)) = NV cl (A)

(d’). NV cl (A ∪B) = NV cl (A) ∪NV cl (B)

(e’). NV cl (0NV ) = 0NV .

Proof. (a), (b) and (e) are obvious, (c) follows from (a).

(d) From NV int (A ∩B) ⊆ NV int (A) and NV int (A ∩B) ⊆ NV int (B) we obtain NV int (A ∩B) ⊆ NV int (A) ∩

NV int (B).

On the other hand, from the facts NV int (A) ⊆ A and NV int (B) ⊆ B ⇒ NV int (A)∩NV int (B) ⊆ A∩B and NV int (A)∩

NV int (B) ∈ τ we see that NV int (A) ∩NV int (B) ⊆ NV int (A ∩B) , for which we obtain the required result.

(a’)-(e’) They can be easily deduced from (a)-(e).

Definition 3.5. A NVS A =
{〈
x,
[
T̂A, ÎA, F̂A

]〉}
in NVTS (X, τ) is said to be

(1). Neutrosophic Vague semi closed set (NVSCS in short) if NV int (NV cl (A)) ⊆ A,

(2). Neutrosophic Vague semi open set (NVSOS in short) if A ⊆ NV cl (NV int (A)),

(3). Neutrosophic Vague pre-closed set (NVPCS in short) if NV cl (NV int (A)) ⊆ A,

(4). Neutrosophic Vague pre-open set (NVPOS in short) if A ⊆ NV int (NV cl (A)),

(5). Neutrosophic Vague α-closed set (NV α CS in short) if NV cl (NV int (NV cl (A))) ⊆ A,

(6). Neutrosophic Vague α-open set ( NV αOS in short) if A ⊆ NV int (NV cl (NV int (A))),

(7). Neutrosophic Vague semi pre- closed set (NVSPCS in short) if NV int (NV cl (NV int (A))) ⊆ A,

(8). Neutrosophic Vague semi pre-open set (NVSPOS in short) if A ⊆ NV cl (NV int (NV cl (A))),

(9). Neutrosophic Vague regular open set (NVROS in short) if A = NV int (NV cl (A)),

(10). Neutrosophic Vague regular closed set (NVRCS in short) if A = NV cl (NV int (A)).
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Definition 3.6. Let A be NVS of a NVTS (X, τ). Then the neutrosophic vague semi interior of A ( NV sint (A) in short)

and neutrosophic vague semi closure of A ( NV scl (A) in short) are defined by

(1). NV sint (A) = ∪{G/GisaNVSOSinXandG ⊆ A} ,

(2). NV scl (A) = ∩{K/KisaNVSCSinXandA ⊆ K}.

Result 3.7. Let A be NVS of a NVTS (X, τ) , then

(1). NV scl (A) = A ∪NV int (NV cl (A)) ,

(2). NV sint (A) = A ∩NV cl (NV int (A)).

Definition 3.8. Let A be NVS of a NVTS (X, τ). Then the neutrosophic vague alpha interior of A ( NV αint (A) in short)

and neutrosophic vague alpha closure of A ( NV αcl (A) in short) are defined by

(1). NV αint (A) = ∪{G/GisaNVαOSinXandG ⊆ A} ,

(2). NV αcl (A) = ∩{K/KisaNVαCSinXandA ⊆ K}.

Result 3.9. Let A be NVS of a NVTS (X, τ) , then

(1). NV αcl (A) = A ∪NV cl (NV int (NV cl (A))) ,

(2). NV αint (A) = A ∩NV int (NV cl (NV int (A))).

Definition 3.10. Let A be NVS of a NVTS (X, τ). Then the neutrosophic vague semi-pre interior of A ( NV spint (A) in

short) and neutrosophic vague semi-pre closure of A ( NV spcl (A) in short) are defined by

(1). NV spint (A) = ∪{G/GisaNVSPOSinXandG ⊆ A} ,

(2). NV spcl (A) = ∩{K/KisaNVSPCSinXandA ⊆ K} .

Definition 3.11. A NVS A of a NVTS (X, τ) is said to be neutrosophic vague generalized closed set (NVGCS in short) if

NV cl (A) ⊆ U whenever A ⊆ U and U is NVOS in X.

Definition 3.12. A NVS A of a NVTS (X, τ) is said to be neutrosophic vague generalized semi closed set (NVGSCS in

short) if NV scl (A) ⊆ U whenever A ⊆ U and U is NVOS in X.

Definition 3.13. A NV A of a NVTS (X, τ) is said to be neutrosophic vague alpha generalized closed set ( NV αGCS in

short) if NV αcl (A) ⊆ U whenever A ⊆ U and U is NVOS in X.

Definition 3.14. A NVS A of a NVTS (X, τ) is said to be neutrosophic vague generalized semi-pre closed set (NVGSPCS

in short) if NV spcl (A) ⊆ U whenever A ⊆ U and U is NVOS in X.

Definition 3.15. Let (X, τ) be a NVTS and A =
{〈
x,
[
T̂A, ÎA, F̂A

]〉}
be a NVS in X. The neutrosophic vague pre interior

of A and denoted by NV pint (A) is defined to be the union of all neutrosophic vague pre-open sets of X which are contained

in A. The intersection of all neutrosophic vague pre-closed sets containing A is called the neutrosophic pre-closure of A and

is denoted by NV pcl (A).

(1). NV pint (A) = ∪{G/GisaNVPOSinXandG ⊆ A} ,

(2). NV pcl (A) = ∩{K/KisaNVPCSinXandA ⊆ K} .
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Result 3.16. Let A be NVS of a NVTS (X, τ) , then

(1). NV pcl (A) = A ∪NV cl (NV int (A)) ,

(2). NV pint (A) = A ∩NV int (NV cl (A)).

4. Neutrosophic Vague Generalized Pre-closed Sets

In this section we introduce neutrosophic vague generalized pre-closed set and their properties are analysed.

Definition 4.1. A NVS A is said to be neutrosophic vague generalized pre-closed set (NVGPCS in short) in (X, τ) if

NV pcl (A) ⊆ U whenever A ⊆ U and U is NVOS in X. The family of all NVGPCSs of a NVTS (X, τ) is denoted by

NVGPC (X).

Example 4.2. Let X = {a, b} and let τ = {0, G, 1} is a NVT on X, where G =
{
x, a
〈[0.6,0.8];[0.3,0.5];[0.2,0.4]〉 ,

b
〈[0.4,0.5];[0.2,0.6];[0.5,0.6]〉

}
. Then the NVS A =

{
x, a
〈[0.6,0.7];[0.5,0.8];[0.3,0.4]〉 , b

〈[0.2,0.5];[0.4,0.6];[0.5,0.8]〉

}
is NVGPCS in X.

Theorem 4.3. Every NVCS is NVGCS but not conversely.

Proof. Let A be NVCS in X. Suppose U is NVOS in X, such that A ⊆ U . Then NV cl (A) = A ⊆ U . Hence A is NVGCS

in X.

Example 4.4. Let X = {a, b, c} and let τ = {0, G, 1} be a NVT on X, where G =
{
x, a
〈[0.2,0.3];[0.5,0.7];[0.7,0.8]〉 ,

b
〈[0.1,0.4];[0.8,0.9];[0.6,0.9]〉 ,

c
〈[0.1,0.2];[0.6,0.7];[0.8,0.9]〉

}
. Then the NVS A =

{
x, a
〈[0.3,0.5];[0.6,0.9];[0.5,0.7]〉 ,

b
〈[0.2,0.3];[0.5,1];[0.7,0.8]〉 ,

c
〈[0.1,0.6];[0.7,0.8];[0.4,0.9]〉

}
is NVGCS in X but not NVCS in X. Since NV cl (A) ={

x, a
〈[0.7,0.8];[0.3,0.5];[0.2,0.3]〉 , b

〈[0.6,0.9];[0.1,0.2];[0.1,0.4]〉 ,
c

〈[0.8,0.9];[0.3,0.4];[0.1,0.2]〉

}
6= A.

Theorem 4.5. Every NVCS is NV α CS but not conversely.

Proof. Let A be NVCS in X. Since NV int (A) ⊆ A, and NV cl (A) = A, which implies NV int (NV cl (A)) ⊆ NV cl (A) ,

so NV cl (NV int (NV cl (A))) ⊆ A. Hence A is NV α CS in X.

Example 4.6. Let X = {a, b, c} and let τ = {0, G1, G2, 1} be NVT on X , where G1 =
{
x, a
〈[0.2,0.5];[0.6,0.9];[0.5,0.8]〉 ,

b
〈[0.1,0.2];[0.1,0.3];[0.8,0.9]〉 ,

c
〈[0.3,0.4];[0.5,0.7];[0.6,0.7]〉

}
, G2 =

{
x, a
〈[0.6,0.8];[0.2,0.3];[0.2,0.4]〉 , b

〈[0.5,0.7];[0.1,0.2];[0.3,0.5]〉 ,

c
〈[0.7,0.9];[0.4,0.6];[0.1,0.3]〉

}
. Then the NVS A =

{
x, a
〈[0.1,0.4];[0.3,0.4];[0.6,0.9]〉 , b

〈[0.7,0.9];[0.8,0.9];[0.1,0.3]〉 ,
c

〈[0.1,0.2];[0.3,0.6];[0.8,0.9]〉

}
is NV α CS in X but not NVCS in X. Since NV cl (A) =

{
x, a
〈[0.5,0.8];[0.1,0.4];[0.2,0.5]〉 , b

〈[0.8,0.9];[0.7,0.9];[0.1,0.2]〉 ,

c
〈[0.6,0.7];[0.3,0.5];[0.3,0.4]〉

}
6= A.

Theorem 4.7. Every NVCS is NVPCS but not conversely.

Proof. Suppose A is NVCS in X. Since NV int (A) ⊆ A, NV cl (NV int (A)) ⊆ NV cl (A) = A, which implies

NV cl (NV int (A)) ⊆ A. Thus A is NVPCS in X.

Example 4.8. Let X = {a, b} and let τ = {0, G1, G2, 1} be NVT on X , where G1 =
{
x, a
〈[0.5,0.8];[0.2,0.3];[0.2,0.5]〉 ,

b
〈[0.6,0.9];[0.3,0.7];[0.1,0.4]〉

}
and G2 =

{
x, a
〈[0.4,0.7];[0.8,0.9];[0.3,0.6]〉 , b

〈[0.2,0.5];[0.6,0.8];[0.5,0.8]〉

}
. Then the NVS A ={

x, a
〈[0.2,0.6];[0.7,0.9];[0.4,0.8]〉 , b

〈[0.3,0.8];[0.5,0.7];[0.2,0.7]〉

}
is NVPCS in X but not NVCS in X.

Theorem 4.9. Every NV α CS is NVPCS but not conversely.
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Proof. Assume that A is NV α CS in X. Then NV cl (NV int (NV cl (A))) ⊆ A. Since A ⊆ NV cl (A), which implies

NV cl (NV int (A)) ⊆ A. Hence A is NVPCS in X.

Example 4.10. Let X = {a, b, c} and let τ = {0, G1, G2, 1} be NVT on X , where G1 =
{
x, a
〈[0.7,0.9];[0.3,0.5];[0.1,0.3]〉 ,

b
〈[0.6,0.8];[0.1,0.3];[0.2,0.4]〉 ,

c
〈[0.8,1];[0.2,0.6];[0,0.2]〉

}
, G2 =

{
x, a
〈[0.5,0.7];[0.4,0.8];[0.3,0.5]〉 , b

〈[0.4,0.6];[0.3,0.7];[0.4,0.6]〉 ,

c
〈[0.2,0.4];[0.8,0.9];[0.6,0.8]〉

}
. Then the NVS A =

{
x, a
〈[0.3,0.6];[0.1,0.2];[0.4,0.7]〉 , b

〈[0.2,0.8];[0.7,0.9];[0.2,0.8]〉 ,
c

〈[0.4,0.7];[0.1,0.3];[0.3,0.6]〉

}
is NVPCS in X but not NV α CS in X. Since NV cl (NV int (NV cl (A))) = 1 6⊂ A.

Theorem 4.11. Every NVRCS is NVCS but not conversely.

Proof. Let A be NVRCS in X. Then A = NV cl (NV int (A)) ⇒ NV cl (A) = NV cl (NV int (A)). Therefore NV cl (A) =

A. Hence, A is NVCS in X.

Example 4.12. Let X = {a, b, c} and let τ = {0, G, 1} is NVT on X , where G =
{
x, a
〈[0.4,0.8];[0.8,0.9];[0.2,0.6]〉 ,

b
〈[0.2,0.4];[0.6,0.7];[0.6,0.8]〉 ,

c
〈[0.1,0.3];[0.6,0.9];[0.7,0.9]〉

}
. The NVS A =

{
x, a
〈[0.2,0.6];[0.1,0.2];[0.4,0.8]〉 , b

〈[0.6,0.8];[0.3,0.4];[0.2,0.4]〉 ,

c
〈[0.7,0.9];[0.1,0.4];[0.1,0.3]〉

}
is a NVCS in X but not NVRCS in X.

Theorem 4.13. Every NV α CS is NVSCS but not conversely.

Proof. Let A be NV α CS in X. Then NV cl (NV int (Nvcl (A))) ⊆ A. Since A ⊆ NV cl (A), so NV int (NV cl (A)) ⊆ A.

Hence, A is neutrosophic vague semi closed set in X.

Example 4.14. Let X = {a, b, c} and let τ = {0, G1, G2, 1} be NVT on X, where G1 =
{
x, a
〈[0.3,0.6];[0.8,0.9];[0.4,0.7]〉 ,

b
〈[0.2,0.4];[0.6,0.9];[0.6,0.8]〉 ,

c
〈[0.1,0.5];[0.7,0.8];[0.5,0.9]〉

}
, G2 =

{
x, a
〈[0.5,0.7];[0.1,0.2];[0.3,0.5]〉 , b

〈[0.7,0.9];[0.2,0.5];[0.1,0.3]〉

, c
〈[0.6,0.8];[0.3,0.4];[0.2,0.4]〉

}
. Then the NVS A =

{
x, a
〈[0.4,0.7];[0.8,0.9];[0.3,0.6]〉 , b

〈[0.5,0.7];[0.1,0.9];[0.3,0.5]〉 ,
c

〈[0.4,0.9];[0.7,0.8];[0.1,0.6]〉

}
is NVSCS in X but not NV α CS in X.

Theorem 4.15. Every NVPCS is NVSPCS but not conversely.

Proof. Let A be NVPCS in X. By hypothesis NV cl (NV int (A)) ⊆ A. Therefore NV int (NV cl (NV int (A))) ⊆

NV int (A) ⊆ A. Therefore NV int (NV cl (NV int (A))) ⊆ A. Hence A is NVSPCS in X.

Example 4.16. Let X = {a, b} and let τ = {0, G1, G2, 1} be NVT on X, where G1 =
{
x, a
〈[0.9,1];[0.2,0.3];[0,0.1]〉 ,

b
〈[0.7,0.9];[0.4,0.5];[0.1,0.3]〉

}
, G2 =

{
x, a
〈[0.1,0.5];[0.7,0.9];[0.5,0.7]〉 , b

〈[0.4,0.6];[0.8,0.9];[0.4,0.6]〉

}
. Then the NVS A ={

x, a
〈[0.7,0.8];[0.5,0.6];[0.2,0.3]〉 , b

〈[0.6,0.8];[0.8,0.9];[0.2,0.4]〉

}
is NVSPCS in X but not NVPCS in X.

Theorem 4.17. Every NVCS is NVGPCS but not conversely.

Proof. Let A be NVCS in X and let A ⊆ U and U be NVOS in X. Since NV pcl (A) ⊆ NV cl (A) and A is NVCS in X,

NV pcl (A) ⊆ NV cl (A) = A ⊆ U . Therefore A is NVGPCS in X.

Example 4.18. Let X = {a, b} and let τ = {0, G, 1} be NVT on X, where G =
{
x, a
〈[0.4,0.7];[0.6,0.8];[0.3,0.6]〉 ,

b
〈[0.3,0.5];[0.4,0.7];[0.5,0.7]〉

}
. Then the NVS A =

{
x, a
〈[0.2,0.6];[0.4,0.7];[0.4,0.8]〉 , b

〈[0.1,0.4];[0.3,0.8];[0.6,0.9]〉

}
is NVGPCS in X but

not NVCS in X.

Theorem 4.19. Every NVGCS is NVGPCS but not conversely.

Proof. Let A be NVGCS in X and let A ⊆ U and U is NVOS in (X, τ). Since NV pcl (A) ⊆ NV cl (A) and by hypothesis,

NV pcl (A) ⊆ U . Therefore A is NVGPCS in X.
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Example 4.20. Let X = {a, b} and let τ = {0, G1, G2, 1} be NVT on X , where G1 =
{
x, a
〈[0.1,0.4];[0.6,0.7];[0.6,0.9]〉 ,

b
〈[0.2,0.5];[0.7,0.9];[0.5,0.8]〉

}
and G2 =

{
x, a
〈[0.7,0.9];[0.2,0.6];[0.1,0.3]〉 , b

〈[0.8,0.9];[0.4,0.5];[0.1,0.2]〉

}
. Then the NVS A ={

x, a
〈[0.8,0.9];[0.2,0.3];[0.1,0.2]〉 , b

〈[0.6,0.8];[0.1,0.2];[0.2,0.4]〉

}
is NVGPCS in X but not NVGCS in X since NV cl (A) = 1 6⊂ G.

Theorem 4.21. Every NV α CS is NVGPCS but not conversely.

Proof. Let A be NV α CS in X and let A ⊆ U and U be NVOS in X. By hypothesis, NV cl (NV int (NV cl (A))) ⊆ A.

Since A ⊆ NV cl (A) , NV cl (NV int (A)) ⊆ NV cl (NV int (NV cl (A))) ⊆ A. Hence NV pcl (A) ⊆ A ⊆ U . Therefore A is

NVGPCS in X.

Example 4.22. Let X = {a, b} and let τ = {0, G1, G2, 1} be NVT on X , where G1 =
{
x, a
〈[0.6,0.9];[0.3,0.5];[0.1,0.4]〉 ,

b
〈[0.7,0.8];[0.2,0.4];[0.2,0.3]〉

}
and G2 =

{
x, a
〈[0.1,0.3];[0.5,0.8];[0.7,0.9]〉 , b

〈[0.4,0.5];[0.6,0.8];[0.5,0.6]〉

}
. Then the NVS

A =
{
x, a
〈[0.8,0.9];[0.1,0.4];[0.1,0.2]〉 , b

〈[0.7,0.9];[0.2,0.3];[0.1,0.3]〉

}
is NVGPCS in X but not NV α CS in X since

NV cl (NV int (NV cl (A))) = 1 6⊂ A.

Theorem 4.23. Every NVRCS is NVGPCS but not conversely.

Proof. Let A be a NVRCS in X. By Definition 3.5, A = NV cl (NV int (A)). This implies NV cl (A) = NV cl (NV int (A)).

Therefore NV cl (A) = A. That is A is NVCS in X. By Theorem 4.17, A is NVGPCS in X.

Example 4.24. Let X = {a, b} and let τ = {0, G1, G2, 1} be NVT on X , where G1 =
{
x, a
〈[0.1,0.4];[0.5,0.7];[0.6,0.9]〉 ,

b
〈[0.2,0.4];[0.6,0.8];[0.6,0.8]〉

}
and G2 =

{
x, a
〈[0.6,0.9];[0.4,0.5];[0.1,0.4]〉 , b

〈[0.7,0.8];[0.2,0.4];[0.2,0.3]〉

}
. Then the NVS A ={

x, a
〈[0.7,0.9];[0.3,0.5];[0.1,0.3]〉 , b

〈[0.6,0.9];[0.2,0.4];[0.1,0.4]〉

}
is NVGPCS in X but not NVRCS in X since NV cl (NV int (A)) ={

x, a
〈[0.6,0.9];[0.3,0.5];[0.3,0.4]〉 , b

〈[0.6,0.8];[0.2,0.4];[0.2,0.4]〉

}
6= A.

Theorem 4.25. Every NVPCS is NVGPCS but not conversely.

Proof. Let A be NVPCS in X and let A ⊆ U and U is NVOS in X. By Definition 3.5, NV cl (NV int (A)) ⊆ A. This

implies NV pcl (A) = A ∪NV cl (NV int (A)) ⊆ A. Therefore NV pcl (A) ⊆ U . Hence A is NVGPCS in X.

Example 4.26. Let X = {a, b, c} and let τ = {0, G, 1} be NVT on X , where G =
{
x, a
〈[0.5,0.7];[0.3,0.6];[0.3,0.5]〉 ,

b
〈[0.4,0.8];[0.2,0.5];[0.2,0.6]〉 ,

c
〈[0.2,0.6];[0.4,0.5];[0.4,0.8]〉

}
. Then the NVS A =

{
x, a
〈[0.6,0.7];[0.2,0.5];[0.3,0.4]〉 , b

〈[0.7,0.8];[0.1,0.4];[0.2,0.3]〉 ,

c
〈[0.5,0.8];[0.2,0.4];[0.2,0.5]〉

}
is NVGPCS in X but not NVPCS in X since NV cl (NV int (A)) = 1 6⊂ A.

Theorem 4.27. Every NV α GCS is NVGPCS but not conversely.

Proof. Let A be NV α GCS in X and let A ⊆ U and U is NVOS in (X, τ). By Result 3.9, A∪NV cl (NV int (NV cl (A))) ⊆

U . This implies NV cl (NV int (NV cl (A))) ⊆ U and NV cl (NV int (A)) ⊆ U . Thus NV pcl (A) = A ∪NV cl (NV int (A)) ⊆

U . Hence A is NVGPCS in X.

Example 4.28. Let X = {a, b} and let τ = {0, G1, G2, 1} be NVT on X, where G1 =
{
x, a
〈[0.6,0.8];[0.1,0.2];[0.2,0.4]〉 ,

b
〈[0.7,0.9];[0.2,0.5];[0.1,0.3]〉

}
and G2 =

{
x, a
〈[0.2,0.4];[0.5,0.6];[0.6,0.8]〉 , b

〈[0.3,0.6];[0.7,0.8];[0.4,0.7]〉

}
. Then the NVS A ={

x, a
〈[0.8,0.9];[0.2,0.7];[0.1,0.2]〉 , b

〈[0.5,0.7];[0.3,0.4];[0.3,0.5]〉

}
is NVGPCS in X but not NV α GCS in X since NV αcl (A) = 1 6⊂ G.

Theorem 4.29. Every NVGPCS is NVSPCS but not conversely.

Proof. Let A be NVGPCS in X , this implies NV pcl (A) ⊆ U whenever A ⊆ U and U is NVOS in X. By hypothesis

NV cl (NV int (A)) ⊆ A. Therefore NV int (NV cl (NV int (A))) ⊆ NV int (A) ⊆ A. Therefore NV int (NV cl (NV int (A))) ⊆

A. Hence A is NVSPCS in X.
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Example 4.30. Let X = {a, b, c} and let τ = {0, G, 1} is NVT on X , where G =
{
x, a
〈[0.1,0.3];[0.4,0.6];[0.7,0.9]〉 ,

b
〈[0.2,0.4];[0.7,0.9];[0.6,0.8]〉 ,

c
〈[0.3,0.4];[0.8,0.9];[0.6,0.7]〉

}
. Then the NVS A = G is NVSPCS in X but not NVGPCS in X.

Theorem 4.31. Every NVGPCS is NVGSPCS but not conversely.

Proof. Let A be NVGPCS in X and let A ⊆ U and U is NVOS in X. By hypothesis NV cl (NV int (A)) ⊆ A ⊆ U .

Therefore NV int (NV cl (NV int (A))) ⊆ NV int (U) ⊆ U . This implies NV spcl (A) ⊆ U whenever A ⊆ U and U is NVOS

in X. Therefore A is NVGSPCS in X.

Example 4.32. Let X = {a, b, c} and let τ = {0, G, 1} be NVT on X, where G =
{
x, a
〈[0.2,0.4];[0.6,0.8];[0.6,0.8]〉 ,

b
〈[0.1,0.3];[0.4,0.6];[0.7,0.9]〉 ,

c
〈[0.4,0.5];[0.7,0.8];[0.5,0.6]〉

}
. Then the NVS A = G is NVGSPCS in X but not NVGPCS in X.

Proposition 4.33. NVSCS and NVGPCS are independent to each other.

Example 4.34. Let X = {a, b, c} and let τ = {0, G, 1} be NVT on X, where G =
{
x, a
〈[0.2,0.6];[0.7,0.8];[0.4,0.8]〉 ,

b
〈[0.1,0.4];[0.5,0.6];[0.6,0.9]〉 ,

c
〈[0.3,0.5];[0.7,0.8];[0.5,0.7]〉

}
. Then the NVS A = G is NVSCS in X but not NVGPCS in X.

Example 4.35. Let X = {a, b, c} and let τ = {0, G, 1} be NVT on X , where G =
{
x, a
〈[0.4,0.7];[0.1,0.2];[0.3,0.6]〉 ,

b
〈[0.5,0.6];[0.2,0.6];[0.4,0.5]〉 ,

c
〈[0.6,0.8];[0.4,0.5];[0.2,0.4]〉

}
. Then the NVS A =

{
x, a
〈[0.2,0.5];[0.6,0.7];[0.5,0.8]〉 , b

〈[0.3,0.4];[0.4,0.6];[0.6,0.7]〉 ,

c
〈[0.5,0.7];[0.6,0.7];[0.3,0.5]〉

}
is NVGPCS in X but not NVSCS in X since NV int (NV cl (A)) = 1 6⊂ A.

Proposition 4.36. NVGSCS and NVGPCS are independent to each other.

Example 4.37. Let X = {a, b, c} and let τ = {0, G, 1} be NVT on X , where G =
{
x, a
〈[0.4,0.5];[0.1,0.2];[0.5,0.6]〉 ,

b
〈[0.3,0.6];[0.2,0.7];[0.4,0.7]〉 ,

c
〈[0.2,0.7];[0.1,0.3];[0.3,0.8]〉

}
. Then the NVS A = G is NVGSCS in X but not NVGPCS in X since

A ⊆ G but NV pcl (A) = 1 6⊂ G.

Example 4.38. Let X = {a, b} and let τ = {0, G1, G2, 1} be NVT on X, where G1 =
{
x, a
〈[0.3,0.5];[0.7,0.8];[0.5,0.7]〉 ,

b
〈[0.2,0.4];[0.6,0.7];[0.6,0.8]〉

}
and G2 =

{
x, a
〈[0.7,0.8];[0.1,0.4];[0.2,0.3]〉 , b

〈[0.8,0.9];[0.2,0.5];[0.1,0.2]〉

}
. Then the NVS A ={

x, a
〈[0.2,0.5];[0.8,0.9];[0.5,0.8]〉 , b

〈[0.1,0.3];[0.7,0.8];[0.7,0.9]〉

}
is NVGPCS in X but not NVGSCS in X.

Remark 4.39. We have the following implications by summing up the above theorems.

In this diagram by A → B we mean A implies B but not conversely and A = B means A and B are independent of each

other. None of them is reversible.

Remark 4.40. The union of any two NVGPCSs is not NVGPCS in general as seen in the following example.

Example 4.41. Let X = {a, b, c} and let G =
{
x, a
〈[0.4,0.7];[0.2,0.3];[0.3,0.6]〉 , b

〈[0.5,0.6];[0.3,0.4];[0.4,0.5]〉 ,
c

〈[0.6,0.7];[0.3,0.5];[0.3,0.4]〉

}
.

Then τ = {0, G, 1} is NVT on X and the NVSs A =
{
x, a
〈[0.6,0.9];[0.6,0.7];[0.1,0.4]〉 , b

〈[0.3,0.4];[0.5,0.6];[0.6,0.7]〉 ,

c
〈[0.4,0.5];[0.6,0.7];[0.5,0.6]〉

}
, B =

{
x, a
〈[0.7,0.8];[0.1,0.2];[0.2,0.3]〉 , b

〈[0.6,0.8];[0.3,0.4];[0.2,0.4]〉 ,
c

〈[0.6,0.9];[0.1,0.3];[0.1,0.4]〉

}
are NVGPCSs

in X but A ∪B is not NVGPCS in X.
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5. Neutrosophic Vague Generalized Pre-open Set

In this section we introduce neutrosophic vague generalized pre-open set and their properties are deliberated.

Definition 5.1. A NVS A is said to be neutrosophic vague generalized pre-open set (NVGPOS in short) in (X, τ) if the

complement Ac is NVGPCS in (X, τ). The family of all NVGPOSs of NVTS (X, τ) is denoted by NVGPO (X).

Example 5.2. Let X = {a, b, c} and let τ = {0, G, 1} is NVT on X , where G =
{
x, a
〈[0.6,0.8];[0.2,0.5];[0.2,0.4]〉 ,

b
〈[0.7,0.8];[0.1,0.4];[0.2,0.3]〉 ,

c
〈[0.6,0.9];[0.1,0.2];[0.1,0.4]〉

}
. Then the NVS A =

{
x, a
〈[0.3,0.5];[0.1,0.4];[0.5,0.7]〉 , b

〈[0.6,0.7];[0.2,0.5];[0.3,0.4]〉 ,

c
〈[0.6,0.8];[0.5,0.6];[0.2,0.4]〉

}
is NVGPOS in X.

Theorem 5.3. For any NVTS (X, τ) , we have the following results.

(1). Every NVOS is NVGPOS but not conversely.

(2). Every NVROS is NVGPOS but not conversely.

(3). Every NV α OS is NVGPOS but not conversely.

(4). Every NVPOS is NVGPOS but not conversely.

The converse of the above theorem need not be true which can be seen from the following examples.

Example 5.4. Let X = {a, b} and G1 =
{
x, a
〈[0.2,0.5];[0.6,0.7];[0.5,0.8]〉 , b

〈[0.3,0.6];[0.5,0.7];[0.4,0.7]〉

}
, G2 ={

x, a
〈[0.6,0.7];[0.2,0.4];[0.3,0.4]〉 , b

〈[0.8,0.9];[0.4,0.5];[0.1,0.2]〉

}
. Then τ = {0, G1, G2, 1} is NVT on X. The NVS A ={

x, a
〈[0.4,0.7];[0.5,0.6];[0.3,0.6]〉 , b

〈[0.3,0.6];[0.4,0.5];[0.4,0.7]〉

}
is NVGPOS in X but not NVOS in X.

Example 5.5. Let X = {a, b} and G1 =
{
x, a
〈[0.7,0.9];[0.1,0.2];[0.1,0.3]〉 , b

〈[0.8,0.9];[0.2,0.5];[0.1,0.2]〉

}
, G2 ={

x, a
〈[0.2,0.3];[0.5,0.7];[0.7,0.8]〉 , b

〈[0.4,0.6];[0.2,0.4];[0.4,0.6]〉

}
. Then τ = {0, G1, G2, 1} is NVT on X. The NVS A ={

x, a
〈[0.5,0.6];[0.4,0.7];[0.5,0.8]〉 , b

〈[0.2,0.5];[0.5,0.8];[0.5,0.8]〉

}
is NVPSOS in X but not NVROS in X.

Example 5.6. Let X = {a, b, c} and G1 =
{
x, a
〈[0.2,0.4];[0.7,0.8];[0.6,0.8]〉 ,

b
〈[0.3,0.5];[0.6,0.9];[0.5,0.7]〉 ,

c
〈[0.4,0.5];[0.6,0.7];[0.5,0.6]〉

}
,

G2 =
{
x, a
〈[0.6,0.8];[0.2,0.5];[0.2,0.4]〉 ,

b
〈[0.7,0.9];[0.1,0.4];[0.1,0.3]〉 ,

c
〈[0.7,0.8];[0.5,0.6];[0.2,0.3]〉

}
. Then τ = {0, G1, G2, 1} is a NVT on

X. The NVS A =
{
x, a
〈[0.4,0.5];[0.1,0.2];[0.3,0.5]〉 ,

b
〈[0.3,0.6];[0.5,0.6];[0.4,0.7]〉 ,

c
〈[0.4,0.5];[0.2,0.3];[0.5,0.6]〉

}
is NVGPOS in X but not NV

α OS in X.

Example 5.7. Let X = {a, b, c} and G =
{
x, a
〈[0.7,0.8];[0.2,0.5];[0.2,0.3]〉 ,

b
〈[0.6,0.8];[0.1,0.4];[0.2,0.4]〉 ,

c
〈[0.7,0.9];[0.2,0.3];[0.1,0.3]〉

}
. Then

τ = {0, G, 1} is NVT on X. The NVS A =
{
x, a
〈[0.1,0.2];[0.6,0.8];[0.8,0.9]〉 ,

b
〈[0.2,0.3];[0.8,0.9];[0.7,0.8]〉 ,

c
〈[0.1,0.2];[0.7,0.9];[0.8,0.9]〉

}
is

NVGPOS in X but not NVPOS in X.

Remark 5.8. The intersection of any two NVGPOSs is not NVGPOS in general and it is shown in the following example.

Example 5.9. Let X = {a, b, c} and let G =
{
x, a
〈[0.3,0.5];[0.6,0.7];[0.5,0.7]〉 , b

〈[0.4,0.5];[0.6,0.8];[0.5,0.6]〉 ,
c

〈[0.2,0.4];[0.7,0.9];[0.6,0.8]〉

}
.

Then τ = {0, G, 1} is NVT on X and the NVSs A =
{
x, a
〈[0.4,0.6];[0.5,0.7];[0.4,0.6]〉 , b

〈[0.4,0.7];[0.1,0.4];[0.3,0.6]〉 ,

c
〈[0.5,0.9];[0.2,0.6];[0.1,0.5]〉

}
, B =

{
x, a
〈[0.4,0.7];[0.4,0.8];[0.3,0.6]〉 , b

〈[0.3,0.5];[0.4,0.5];[0.5,0.7]〉 ,
c

〈[0.2,0.6];[0.3,0.6];[0.4,0.8]〉

}
are NVGPOSs

in X but A ∩B is not NVGPOS in X.

Theorem 5.10. Let (X, τ) be NVTS. If A ∈ NVGPO (X) then V ⊆ NV int (NV cl (A)) whenever V ⊆ A and V is NVCS

in X.
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Proof. Let A ∈ NVGPO (X). Then Ac is NVGPCS in X. Therefore NV pcl (Ac) ⊆ U whenever Ac ⊆ U and U is NVOS

in X. That is NV cl (NV int (Ac)) ⊆ U . This implies Uc ⊆ NV int (NV cl (A)) whenever Uc ⊆ A and Uc is NVCS in X.

Replacing Uc by V , we get V ⊆ NV int (NV cl (A)) whenever V ⊆ A and V is NVCS in X.

Theorem 5.11. Let (X, τ) be NVTS. Then for every A ∈ NVGPO (X) and for every B ∈ NVS (X), NV pint (A) ⊆ B ⊆ A

implies B ∈ NVGPO (X).

Proof. By hypothesis Ac ⊆ Bc ⊆ (NV pint (A))c. Let Bc ⊆ U and U be NVOS. Since Ac ⊆ Bc, Ac ⊆ U . But Ac is

NVGPCS, NV pcl (Ac) ⊆ U . Also Bc ⊆ (NV pint (A))c = NV pcl (Ac). Therefore NV pcl (Bc) ⊆ NV pcl (Ac) ⊆ U . Hence

Bc is NVGPCS. Which implies B is NVGPOS of X.

Theorem 5.12. A NVS A of NVTS (X, τ) is NVGPOS if and only if F ⊆ NV pint (A) whenever F is NVCS and F ⊆ A.

Proof. Necessity: Suppose A is NVGPOS in X. Let F be NVCS and F ⊆ A. Then F c is NVOS in X such that Ac ⊆ F c.

Since Ac is NVGPCS, we have NV pcl (Ac) ⊆ F c. Hence (NV pint (A))c ⊆ F c. Therefore F ⊆ NV pint (A).

Sufficiency: Let A be NVS of X and let F ⊆ NV pint (A) whenever F is NVCS and F ⊆ A. Then Ac ⊆ F c and F c is

NVOS. By hypothesis, (NV pint (A))c ⊆ F c. Which implies NV pcl (Ac) ⊆ F c. Therefore Ac is NVGPCS of X. Hence A is

NVGPOS of X.

Corollary 5.13. A NVS A of a NVTS (X, τ) is NVGPOS if and only if F ⊆ NV int (NV cl (A)) whenever F is NVCS and

F ⊆ A.

Proof. Necessity: Suppose A is NVGPOS in X. Let F be NVCS and F ⊆ A. Then F c is NVOS in X such that Ac ⊆ F c.

Since Ac is NVGPCS, we have NV pcl (Ac) ⊆ F c. Therefore NV cl (NV int (Ac)) ⊆ F c. Hence (NV int (NV cl (A)))c ⊆ F c.

This implies F ⊆ NV int (NV cl (A)).

Sufficiency: Let A be NVS of X and let F ⊆ NV int (NV cl (A)) whenever F is NVCS and F ⊆ A. Then Ac ⊆ F c and F c

is NVOS. By hypothesis, (NV int (NV cl (A)))c ⊆ F c. Hence NV cl (NV int (Ac)) ⊆ F c, which implies NV pcl (Ac) ⊆ F c.

Hence A is NVGPOS of X.

Theorem 5.14. For a NVS A, A is NVOS and NVGPCS in X if and only if A is NVROS in X.

Proof. Necessity: Let A be NVOS and NVGPCS in X. Then NV pcl (A) ⊆ A. This implies NV cl (NV int (A)) ⊆ A.

Since A is NVOS, it is NVPOS. Hence A ⊆ NV int (NV cl (A)). Therefore A = NV int (NV cl (A)). Hence A is NVROS in

X.

Sufficiency: Let A be NVROS in X. Therefore A = NV int (NV cl (A)). Let A ⊆ U and U is NVOS in X. This implies

NV pcl (A) ⊆ A. Hence A is NVGPCS in X.

6. Applications of Neutrosophic Vague Generalized Pre-closed Sets

In this section we provide some applications of neutrosophic vague generalized pre-closed sets.

Definition 6.1. A NVTS (X, τ) is said to be neutrosophic vague T1/2 space (NVT1/2 in short) if every NVGCS in X is

NVCS in X.

Definition 6.2. A NVTS (X, τ) is said to be neutrosophic vague pT1/2 space (NVpT1/2 in short) if every NVPCS in X is

NVCS in X.
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Definition 6.3. A NVTS (X, τ) is said to be neutrosophic vague gpT1/2 space (NVgpT1/2 in short) if every NVGPCS in X

is NVCS in X.

Definition 6.4. A NVTS (X, τ) is said to be a neutrosophic vague gpTp space (NV gpTp in short) if every NVGPCS in X

is NVPCS in X.

Theorem 6.5. Every NV T1/2 space is NV gpTp space. But the converse is not true in general.

Proof. Let X be NV T1/2 space and let A be NVGCS in X, we know that every NVGCS is NVGPCS, hence A is NVGPCS

in X. By hypothesis A is NVCS in X. Since every NVCS is NVPCS, A is NVPCS in X. Hence X is NV gpTp space.

Example 6.6. Let X = {a, b} and G =
{
x, a
〈[0.6,0.7];[0.1,0.3];[0.3,0.4]〉 ,

b
〈[0.8,0.9];[0.2,0.4];[0.1,0.2]〉

}
. Then τ = {0, G, 1} is NVT

on X. Let A =
{
x, a
〈[0.7,0.8];[0.2,0.5];[0.2,0.3]〉 ,

b
〈[0.3,0.5];[0.6,0.7];[0.5,0.7]〉

}
. Then (X, τ) is NV gpTp space. But it is not NV T1/2

space since A is NVGCS but not NVCS in X.

Theorem 6.7. Every NV gpT1/2 space is NV gpTp space. But the converse is not true in general.

Proof. Let X be NV gpT1/2 space and let A be NVGPCS in X. By hypothesis A is NVCS in X. Since every NVCS is

NVPCS, A is NVPCS in X. Hence X is NV gpTp space.

Example 6.8. Let X = {a, b, c} and G =
{
x, a
〈[0.5,0.7];[0.2,0.4];[0.3,0.5]〉 ,

b
〈[0.3,0.8];[0.1,0.3];[0.2,0.7]〉 ,

c
〈[0.4,0.7];[0.2,0.6];[0.3,0.6]〉

}
. Then

τ = {0, G, 1} is NVT on X. Let A =
{
x, a
〈[0.4,0.8];[0.2,0.8];[0.2,0.6]〉 ,

b
〈[0.2,0.5];[0.1,0.4];[0.5,0.8]〉 ,

c
〈[0.1,0.6];[0.2,0.5];[0.4,0.9]〉

}
. Then X

is NV gpT1/2 space. But it is not NV gpTp space since A is NVGPCS but not NVCS in X.

Theorem 6.9. Let (X, τ) be NVTS and X is NV gpT1/2 space then,

(1). Any union of NVGPCSs is NVGPCS

(2). Any intersection of NVGPOSs is NVGPOS.

Proof.

(1). Let {Ai}i∈J is a collection of NVGPCSs in NV gpT1/2 space (X, τ). Therefore every NVGPCS is NVCS. But the union

of NVCS is NVCS. Hence the union of NVGPCS is NVGPCS in X.

(2). It can be proved by taking complement of (1).

Theorem 6.10. A NVTS X is NV gpT1/2 space if and only if NVGPO (X) = NVPO (X).

Proof. Necessity: Let A be NVGPOS in X, then Ac is NVGPCS in X. By hypothesis Ac is NVGPCS in X. Therefore

A is NVPOS in X. Hence NVGPO (X) = NVPO (X).

Sufficiency: Let A be NVGPCS in X. Then Ac is NVGPOS in X. By hypothesis Ac is NVGPOS in X. Therefore A is

NVPCS in X. Hence X is NV gpTp space.
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