Neutrosophic weakly G*-Closed Sets

A.Atkinswestley¹, S.Chandrasekar²

¹Department of Mathematics, Roever College Engineering and Technology, Elambalur, Perambalur(DT), Tamil Nadu, India

²Department of Mathematics, Arignar Anna Government Arts college,

Namakkal(DT), Tamil Nadu, India.

E-mail: ats.wesly@gmail.com, chandrumat@gmail.com.

Abstract— Aim of this present paper is, we introduce and investigate about new kind of Neutrosophic closed set is called Neutrosophic weakly g*-closed setsin Neutrosophic topological spaces and also discussed about properties and characterization

Keywords— Nu.g* open set, Nu.g*closed set ,Nu.weakly g* open set, Nu.weakly g*closed set, Neutrosophic topological spaces

I. INTRODUCTION

A.A.Salama introduced Neutrosophic topological spaces by using Smarandache's Neutrosophic sets. Neutrosophic g closed set introduced by.R. Dhavasheelan et.al. andNeutrosophic g*-closed sets presented by A.Atkinswesley et.al. Aim of this present paper is, we introduce and investigate about new kind of Neutrosophic closed set is called Neutrosophic weakly g*-closed sets in Neutrosophic topological spaces and also discussed about properties and characterization

II.PRELIMINARIES

In this section, we introduce the basic definition for Neutrosophic sets and its operations.

Definition 2.1 [7]

Let X be a non-empty fixed set. A Neutrosophic set A is an object having the form

 $A = \{ <x, \eta_A(x), \sigma_A(x), \gamma_A(x) >: x \in X \}$

Where $\eta_A(x)$, $\sigma_A(x)$ and $\gamma_A(x)$ which represent Neutrosophic topological spaces the degree of membership function, the degree indeterminacy and the degree of non-membership function respectively of each element $x \in X$ to the set A.

Remark 2.2 [7]

A Neutrosophic set A={ $<x, \eta_A(x), \sigma_A(x), \gamma_A(x) >: x \in X$ } can be identified to an ordered triple $<\eta_A, \sigma_A, \gamma_A >$ in]-0,1+[on X.

Remark 2.3[7]

We shall use the symbol

A =<x, η_A , σ_A , γ_A > for the Neutrosophic set A = {<x, $\eta_A(x), \sigma_A(x), \gamma_A(x) >: x \in X$ }.

Example 2.4 [7]

Every Neutrosophic set A is a non-empty set in X is obviously on Neutrosophic set having the form A={ <x, $\eta_A(x)$, 1-(($\eta_A(x) + \gamma_A(x)$), $\gamma_A(x) >: x \in X$ }. Since our main purpose is to construct the tools for developing Neutrosophic set and Neutrosophic topology, we must introduce the Neutrosophic set 0_N and 1_N in X as follows:

0_N may be defined as:

 $(0_1) \ 0_N = \{ < x, 0, 0, 1 >: x \in X \}$ $(0_2) \ 0_N = \{ < x, 0, 1, 1 >: x \in X \}$ $(0_3) \ 0_N = \{ < x, 0, 1, 0 >: x \in X \}$

 $(0_4) 0_N = \{ < x, 0, 0, 0 > : x \in X \}$

1_N may be defined as :

 $(1_1) 1_N = \{<x, 1, 0, 0>: x \in X\}$ $(1_2) 1_N = \{<x, 1, 0, 1>: x \in X\}$ $(1_3) 1_N = \{<x, 1, 1, 0>: x \in X\}$ $(1_4) 1_N = \{<x, 1, 1, 1>: x \in X\}$

Definition 2.5 [8]

Let $A = \langle \eta_A, \sigma_A, \gamma_A \rangle$ be a Neutrosophic set on X, then the complement of the set A A^C defined as

 $A^C = \{ <\!\! x \ , \gamma_A(x) \ , 1 \text{-} \ \sigma_A(x), \eta_A(x) >: x \in X \}$

Definition 2.6 [8]

Let X be a non-empty set, and Neutrosophic sets A and B in the form

 $A = \{<\!\!x, \eta_A(x), \sigma A(x), \gamma A(x) \!\!>: \!\!x \!\in\! \! X\} \text{ and }$

 $B = \{<\!\!x, \eta_B(x), \sigma_B(x), \gamma_B(x)\!\!>:\!x\!\in\!\!X\}.$

Then we consider definition for subsets (A \subseteq B).

A \subseteq B defined as: A \subseteq B \Leftrightarrow \eta_A(x) \le \eta_B(x), \sigma_A(x) \le \sigma_B(x) \text{ and } \gamma_A(x) \ge \gamma_B(x) \text{ for all } x \in X

Proposition 2.7 [8]

For any Neutrosophic set A, then the following condition are holds:

(i) $0_N \subseteq A$, $0_N \subseteq 0_N$

(ii) $A \subseteq 1_N$, $1_N \subseteq 1_N$

Definition 2.8 [8]

Let X be a non-empty set, and A=<x, $\eta_B(x), \sigma_A(x)$, $\gamma_A(x)$ >, B =<x, $\eta_B(x), \sigma_B(x), \gamma_B(x)$ > be two Neutrosophic sets. Then

(i) A \cap B defined as : A \cap B =<x, $\eta_A(x) \land \eta_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) >$

(ii) AUB defined as :AUB =<x, $\eta_A(x) \forall \eta_B(x), \sigma_A(x) \forall \sigma_B(x), \gamma_A(x) \land \gamma_B(x) >$

Proposition 2.9 [8]

For all A and B are two Neutrosophic sets then the following condition are true:

(i) $(A \cap B)^{C} = A^{C} \cup B^{C}$

(ii) $(A \cup B)^{C} = A^{C} \cap B^{C}$.

Definition 2.10 [8]

A Neutrosophic topology is a non-empty set X is a family τ_N of Neutrosophic subsets in X satisfying the following axioms:

(i) 0_N , $1_N \in \tau_N$,

(ii) $G_1 \cap G_2 \in \tau_N$ for any $G_1, G_2 \in \tau_N$,

(iii) $\cup G_i \in \tau_N$ for any family $\{G_i | i \in J \} \subseteq \tau_N$.

the pair (X, τ_N) is called a Neutrosophic topological space.

The element Neutrosophic topological spaces of τ_N are called Neutrosophic open sets.

A Neutrosophic set A is closed if and only if A^C is Neutrosophic open.

Example 2.11[11]

Let X={x} and A₁= {<x, 0.5, 0.6, 0.5>:x \in X} A₂= {<x, 0.4, 0.7, 0.8>:x \in X} A₃= {<x, 0.5, 0.7, 0.5>:x \in X} A₄= {<x, 0.4, 0.6, 0.8>:x \in X} Then the family τ_N ={0_N, 1_N,A₁, A₂, A₃, A₄} is called a Neutrosophic topological space on X. **Definition 2.12**[11] Let (X, Nu_{τ}) be Neutrosophic topological spaces and $A = \{<x, \eta_A(x), \sigma_A(x), \gamma_A(x) > :x \in X\}$ be a Neutrosophic set in X. Then the Neutrosophic closure and Neutrosophic interior of A are defined by Neu-Nu-cl(A)= \cap {K:K is a Neutrosophic closed set in X and A \subseteq K}

Neu-Nu-int(A)= \cup {G:G is a Neutrosophic open set in X and G \subseteq A}.

Definition 2.13

Let (X, Nu_{τ}) be a Neutrosophic topological space. Then A is called

- (i) Neutrosophic regular Closed set [1] (Neu-RCS in short) if A=Neu-Cl(Neu-Int(A)),
- (ii) Neutrosophic α -Closed set[1] (Neu- α CS in short) if Neu-Cl(Neu-Int(Neu-Cl(A))) \subseteq A,
- (iii) Neutrosophic semi Closed set [8] (Neu-SCS in short) if Neu-Int(Neu-Cl(A))⊆A,

(iv) Neutrosophic pre Closed set [18] (Neu-PCS in short) if Neu-Cl(Neu-Int(A)) $\subseteq A$,

Definition 2.14

Let (X, Nu_{τ}) be a Neutrosophic topological space. Then A is called

- a) Neutrosophic regular open set [1](Neu-ROS in short) if A=Neu-Int(Neu-Cl(A)),
- b) Neutrosophic α -open set [1](Neu- α OS in short) if A \subseteq Neu-Int(Neu-Cl(Neu-Int(A))),
- c) Neutrosophic semi open set [8](Neu-SOS in short) if A⊆Neu-Cl(Neu-Int(A)),
- d) Neutrosophic pre open set [18] (Neu-POS in short) if A⊆Neu-Int(Neu-Cl(A)),

Definition 2.15:

An Neutrosophic set A of an Neutrosophic topological space (X, \mathfrak{I}) is called:

- (a) Neutrosophic g-closed [4] if Nu-cl (A) \subseteq G whenever A \subseteq G and Gis Neutrosophic open.
- (b) Neutrosophic sg-closed [17] if Nu-scl (A) ⊆G whenever A ⊆G and G is Neutrosophic semi open.
- (c) Neutrosophic g*-closed [2]if Nu-cl (A) \subseteq G whenever A \subseteq G and G is Neutrosophic g-open.
- (d) Neutrosophic α g-closed[9] if Nu- α cl (A) \subseteq Gwhenever A \subseteq G and G is Neutrosophic open.
- (e) Neutrosophic ga-closed [5] if Nu-acl (A) \subseteq G whenever A \subseteq G and G is Neutrosophic α open.
- (f) Neutrosophic w-closed[16] if Nu-cl (A) ⊆Gwhenever A ⊆G and G is Neutrosophic semi open.
- (g) Neutrosophic gp-closed [10] if Nu-pcl (A) \subseteq G whenever A \subseteq Gand G is Neutrosophic open.
- (h) Neutrosophic gs-closed [17] if Nu-scl (A) ⊆G whenever A ⊆G and G is Neutrosophic open. The complements of the above mentioned closed set are their respective open sets.

Definition 2.16[4]

If A is an Neutrosophic set in Neutrosophic topological space(X, \Im) then

- (a) Nu-scl (A)= \cap { F:A \subseteq F, F is Neutrosophic semi closed}
- (b) Nu-pcl (A)= \cap { F:A \subseteq F, F is Neutrosophic pre closed}
- (c) Nu- α cl (A)= \cap { F:A \subseteq F, F is Neutrosophic α closed}

Remark 2.17:

- (a) Every Neutrosophic closed set is Neutrosophic g-closed set.
- (b) Every Neutrosophic α -closed set is Neutrosophic α g-closed set.
- (c) Every Neutrosophic g-closed is Neutrosophic gα-closed set.
- (d) Every Neutrosophic αg-closed is Neutrosophic gα-closed set.
- (e) Every Neutrosophic w-closed set is Neutrosophic g-closed
- (f) Every Neutrosophic w-closed set is Neutrosophic sg-closed set.
- (i) Every Neutrosophic sg-closed set is Neutrosophic gs-closed set.

Lemma 2.18[8]: Let A and B be any two Neutrosophic sets of an Neutrosophic topological space (X, \mathfrak{I}) . Then:

(a) A is an Neutrosophic closed set in $X \Leftrightarrow$ Nu-cl (A) = A

(b) A is an Neutrosophic open set in $X \Leftrightarrow$ Nu-int (A) = A.

(c) $\text{Nu-cl}(A^{\text{C}}) = (\text{Nu-int}(A))^{\text{C}}$.

(d)Nu- int $(A^{C}) = (Nu-cl (A))^{C}$.

(e) $A \subseteq B \Rightarrow$ Nu-int (A) \subseteq Nu-int (B).

(f) $A \subseteq B \Rightarrow$ Nu-cl (A) \subseteq Nu-cl (B).

(g) Nu-cl $(A \cup B) =$ Nu-cl $(A) \cup$ Nu-cl(B).

(h)Nu- int(A \cap B) = Nu-int (A) \cap Nu-int(B)

I. NEUTROSOPHICWEAKLY g* -CLOSED SET

Definition 3.1:

An Neutrosophic set A of an Neutrosophic topological space (X,\mathfrak{I}) is called anNeutrosophicweakly g*-closed if Nu-cl (Nu-int(A)) \subseteq G whenever A \subseteq G and G is Neutrosophic g-open in X.

Theorem 3.2:

Every Neutrosophic w-closed set is Neutrosophicweakly g*-closed -closed.

Proof:

Let A is Neutrosophic w-closed set. Let $A \subseteq U$ and U Neutrosophic semi-open sets in X. Sinceevery Neutrosophic semi open set is Neutrosophic g-open sets U is Neutrosophic g-open sets. Now by definition of Neutrosophic w-closed sets Nu-cl(A) \subseteq U. But Nu-cl(Nu-int(A)) \subseteq Nu-cl(A) \subseteq U. We have Nu-cl(Nu-int(A)) \subseteq U whenever $A \subseteq U$ and U is Neutrosophic g-open in X. Therefore A is Neutrosophicweakly g*-closed set.

Remark 3.3:

The converse of above theorem need not be true as from the following example.

Example 3.4:

Let $X = \{a, b\}$ and $\mathfrak{I} = \{0, U, 1\}$ be an Neutrosophic topology on X, where

U= $\langle x, \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$ Then the Neutrosophic set

 $A = \langle x, \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$ is Neutrosophic weakly g^* -closed but it is not Neutrosophic weclosed.

Theorem 3.5:

Every Neutrosophic g*-closed set is Neutrosophicweakly g*-closed sets..

Proof:

Let A is Neutrosophic g*-closed set. Let $A \subseteq U$ and U is Neutrosophic g-open sets in X. Nowby definition of Neutrosophic g*-closed sets Nu-cl(A) \subseteq U. But Nu-cl(Nu-int(A)) \subseteq Nu-cl(A) \subseteq U. We have Nu-cl(Nu-int(A)) \subseteq U whenever $A \subseteq U$ and U is Neutrosophic g-open in X. Therefore A is Neutrosophicweakly g*-closed set.

Remark 3.6:

The converse of above theorem need not be true as from the following example.

Example 3.7:

Let X = {a, b, c, d} and Neutrosophic sets A_1, A_2, A_3, A_4 defined as follows $A_1 = \{ \langle x, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$ $A_2 = \langle x, \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$

$$A_{3} = \langle \mathbf{x}, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$$
$$A_{4} = \langle \mathbf{x}, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$$

 $\mathfrak{I} = \{0, A_1, A_2, A_3, A_4, 1\} \text{ be an Neutrosophic topology on X. Then the Neutrosophic set} \\ A = \langle x, \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle \text{ is Neutrosophic weakly } g^* \text{ -closed but it is not Neutrosophic } g^*\text{ -closed.}$

Theorem 3.8:

Every Neutrosophic g-closed set is Neutrosophicweakly g*-closed sets.

Proof:

Let A is Neutrosophic g-closed set. Let $A \subseteq U$ and U Neutrosophic-open sets in X. Since everyNeutrosophic open set is Neutrosophic g-open sets U is Neutrosophic g-open sets. Now by definition of Neutrosophic g-closed sets $Nu-cl(A) \subseteq U$. But $Nu-cl(Nu-int(A)) \subseteq Nu-cl(A) \subseteq U$. We have $Nu-cl(Nu-int(A)) \subseteq U$ whenever $A \subseteq U$ and U is Neutrosophic g-open in X. Therefore A is Neutrosophicweakly g*-closed set.

Remark 3.9:

The converse of above theorem need not be true as from the following example

Example 3.10:

Let X = {a, b, c, d, e} and Neutrosophic sets
$$A_1, A_2, A_3$$
, defined as follows
 $A_1 = \langle x, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{1}{10}, \frac{5}{10}, \frac{1}{10}\right), A_2$

$$A_3$$

Let $\Im = \{0, A_1, A_2, A_31\}$ be an Neutrosophic topology on X. Then the Neutrosophic set $A = \langle x, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$ is Neutrosophic weakly g^* - closed but it is not Neutrosophic g-closed.

Theorem 3.11:

Every Neutrosophic ag-closed set is Neutrosophicweakly g*-closed sets.

Proof:

Let Ais Neutrosophic α g-closed set. Let A \subseteq U and U Neutrosophic -open sets in X. Since everyNeutrosophic open set is Neutrosophic g-open sets U is Neutrosophic g-open sets. Now by definition of Neutrosophic α g-closed sets Nu- α cl(A) \subseteq U. But Nu- α cl(A) \subseteq Nu-cl(A) therefore Nucl(A) \subseteq A. NowNu-cl(Nu-int(A)) \subseteq Nu-cl(A) \subseteq U. We have Nu-cl(Nu-int(A)) \subseteq U whenever A \subseteq U and U is Neutrosophic g-open in X. Therefore A is Neutrosophicweakly g*-closed set.

Remark 3.12:

The converse of above theorem need not be true as from the following example **Example 3.13**:

Let X = {a, b, c, d} and Neutrosophic sets A_1, A_2 defined as follows $A_1 = \{ \langle x, \left(\frac{7}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$ $A_2 = \langle x, \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$ Let $\Im = \{0, A_1, A_2, 1\}$ be an Neutrosophic topology on X. Then the Neutrosophic set $A = \langle x, \left(\frac{7}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$ is Neutrosophicweakly g* -closed but it is not Neutrosophic ag-closed.

Theorem 3.14:

Every Neutrosophic g α -closed set is Neutrosophicweakly g*-closed sets.

Proof:

It follows from theorem 3.11the fact that every Neutrosophic $g\alpha$ -closed set is Neutrosophic αg -closed sets.

Theorem 3.15:

Every Neutrosophic gp-closed set is Neutrosophicweakly g*-closed sets.

Proof:

Let A is Neutrosophic gp-closed set. Let $A \subseteq U$ and U Neutrosophic-open sets in X. Since everyNeutrosophic open set is Neutrosophic g-open sets U is Neutrosophic g-open sets. Now by

definition of Neutrosophic gp-closed sets Nu-pcl(A)⊆U. But Nu-pcl(A)⊆Nu-cl(A) therefore Nu-

 $cl(A) \subseteq A. Now Nu-cl(Nu-int(A)) \subseteq Nu-cl(A) \subseteq U. We have Nu-cl(Nu-int(A)) \subseteq U whenever A \subseteq U and A \subseteq U an$

U is Neutrosophic g-open in X. Therefore A is Neutrosophicweakly g*-closed set.

Remark 3.16:

The converse of above theorem need not be true as from the following example.

Example 3.17:

Let $X = \{a, b\}$ and $\mathfrak{I} = \{0_N, A_1, 1_N\}$ be an Neutrosophic topology on X, where

 $A_1 = \langle \mathbf{x}, \left(\frac{4}{10}, \frac{5}{10}, \frac{3}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle.$ Then the Neutrosophic set

 $A_2 = \langle x, \left(\frac{4}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle$ is Neutrosophic weakly g^* -closed but it is not Neutrosophic gpclosed.

Corollary 3.20:

Every Neutrosophic closed set is Neutrosophicweakly g*-closed set.

Every Neutrosophica-closed set is Neutrosophicweakly g*-closed set.

Every Neutrosophic pre-closed set is Neutrosophic weakly g*-closed set.

Every Neutrosophic regular-closed set is Neutrosophic weakly g*-closed set.

Proof: Obvious

Remark 3.25: The intersection of two Neutrosophicweakly g^* -closed sets in an Neutrosophic topologicalspace (X, \mathfrak{I}) may not be Neutrosophicweakly g^* -closed. For,

 $\mathfrak{I} = \{0, A_1, A_2, A_3, A_4 \mid 1, \} \text{ be an Neutrosophic topology on X. Then the Neutrosophic set} \\ \mathbf{A} = \langle \mathbf{x}, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{8}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle \\ = \langle \mathbf{x}, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{0}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle \\ = \langle \mathbf{x}, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle \\ = \langle \mathbf{x}, \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{9}{10}, \frac{5}{10}, \frac{1}{10}\right) \rangle \\ = \langle \mathbf{x}, \mathbf{x}$

$$B = \langle \mathbf{x}, \left(\frac{1}{10}, \frac{1}{10}, \frac{1}{10}\right), \left(\frac{1}{10}, \frac{1}$$

are Neutrosophicweakly g*-closed in (X, \mathfrak{I}) but A \cap B is not Neutrosophicweakly g*-closed. **Theorem 3.27**:

Let A be an Neutrosophicweakly g*-closed set in an Neutrosophic topological space(X, \mathfrak{I}) and A \subseteq B \subseteq Nu-cl (Nu-int(A)). Then B is Neutrosophicweakly g*-closed in X.

Proof:

Let G be an Neutrosophic g-open set in X such that $B \subseteq G$. Then $A \subseteq G$ and since A is Neutrosophicweakly g*-closed, Nu-cl(Nu-int(A)) $\subseteq G$. Now $B \subseteq Nu$ -cl (Nu-int(A)) \Rightarrow Nu-cl(Nu-int(B))

 \subseteq Nu-cl(Nu-int(Nu-cl(Int(A)))) =Nu-cl(Nu-int(A)), Nu-cl(Nu-int(B)) \subseteq Nu-cl(Nu-int(A)) \subseteq G. Consequently B is Neutrosophicweakly g*-closed.

Definition 3.28: An Neutrosophic set A of an Neutrosophic topological space (X,\mathfrak{T}) is called Neutrosophic g*-open if and only if its complement A^C is Neutrosophicweakly g*-closed. **Remark 3.29**:

Every Neutrosophic w-open set is Neutrosophicweakly g*-open but its converse may notbe true. **Example 3.30**:

Let X = {a, b} and $\Im = \{0, A_1, 1\}$ be an Neutrosophictopology on X, where $A_1 = \langle x, \left(\frac{7}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{6}{10}, \frac{5}{10}, \frac{3}{10}\right) \rangle$. Then the Neutrosophic set

 $A_2 = \langle x, \left(\frac{2}{10}, \frac{5}{10}, \frac{7}{10}\right), \left(\frac{1}{10}, \frac{5}{10}, \frac{8}{10}\right) \rangle \text{ is Neutrosophic weakly } g^* \text{-open in } (X, \mathfrak{I}) \text{ but it is not Neutrosophic works } w \text{-open in } (X, \mathfrak{I}).$

Theorem 3.31:

An Neutrosophic set A of an Neutrosophic topological space (X, \Im) is Neutrosophicweakly g*-open if F \subseteq Nu-cl(Nu-int (A)) whenever F is Neutrosophic g-closed and F \subseteq A.

Proof: Follows from definition 3.1 and Lemma 2.18

Theorem 3.32:

Let A be an Neutrosophicweakly g*-open set of an Neutrosophic topological space(X, \mathfrak{I}) and Nucl(Nu-int (A)) \subseteq B \subseteq A. Then B is Neutrosophicweakly g*-open.

Proof:

Suppose A is an Neutrosophicweakly g*-open in X and Nu-cl(Nu-int(A)) \subseteq B \subseteq A. \Rightarrow A^C \subseteq B^C \subseteq (Nu-cl(Nu-int(A)))^C \subseteq A^C \subseteq B^C \subseteq Nu-cl(Nu-int(A^C) by Lemma 2.18and A^C is Neutrosophicweakly g*-closed it follows from theorem that B^c is Neutrosophicweakly g*-closed . Hence B is Neutrosophicweakly g*-open.

IV. CONCLUSION

The theory of g-closed sets plays an important role in general topology. Since its inception many weak and strong forms of g-closed sets have been introduced in general topology as well as fuzzy topology and Neutrosophic topology. The present paper investigated a new weak form of Neutrosophic g-closed sets called Neutrosophicweakly g*-closed sets which has been compared with the classes of Neutrosophic closed sets, Neutrosophic pre closed sets, Neutrosophic α -closed sets, Neutrosophic w-closed sets, Neutrosophic gp-closed sets , Neutrosophic α -closed sets, Neutrosophic ga-closed sets , Neutrosophic g*- closed sets. Several properties and application of Neutrosophicweakly g*-closed sets are studied. Many examples are given to justify the result.

REFERENCES

- 1. I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala, On Some New Notions and Functions in Neutrosophic Topological Spaces, Neutrosophic Sets and Systems, Vol. 16, 16-19 (2017).
- 2. A.Atkinswestley, S.Chandrasekar, Neutrosophic g*- closed sets (Communicated)
- 3. V. Banu priya S.Chandrasekar: Neutrosophic αgs Continuity and Neutrosophic αgs Irresolute Maps, Neutrosophic Sets and Systems, vol. 28, 2019, pp. 162-170. DOI: 10.5281/zenodo.3382531
- 4. R. Dhavaseelan and S. Jafari, Generalized Neutrosophic closed sets, New trends in Neutrosophic theory and applications Volume II- 261-273, (2018).
- 5. R.Dhavaseelan, S. Jafari and Md. Hanif Page,Neutrosophic Generalized α-contra-continuity,CREAT. MATH. INFORM. 20 (2011), No. 2, 1-6.

- 6. Florentin Smarandache, Neutrosophic and Neutrosophic Logic, First International Confer On Neutrosophic, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, smarand@unm.edu (2002).
- 7. Floretin Smaradache, Neutrosophic Set: A Generalization of Neutrosophic set, Journal of Defense Resourses Management. 1(2010), 107-114.
- 8. P. Iswarya and K. Bageerathi, On Neutrosophic semi-open sets in Neutrosophic Topological spaces, International Journal of Mathematics Trends and Technology (IJMTT), Vol37, No.3, 24-33 (2016).
- D.Jayanthi,αGeneralized closed Sets in Neutrosophic Topological Spaces, International Journal of Mathematics Trends and Technology (IJMTT)- Special Issue ICRMIT March (2018)
- Mary Margaret. A, Trinita Pricilla. M, Neutrosophic vague generalized pre-closed sets in neutrosophic vague topological spaces, International journal of mathematics and its applications, 5,4-E, (2017): 747–759.
- C.Maheswari, M.Sathyabama, S.Chandrasekar.,:,Neutrosophic generalized b-closed Sets In Neutrosophic Topological Spaces, Journal of physics Conf. Series 1139 (2018) 012065. doi:10.1088/1742-6596/1139/1/012065
- 12. T. Rajesh Kannan, S. Chandrasekar, Neutrosophic ωα Closed Sets in Neutrosophic Topological Spaces, Journal of Computer and Mathematical Sciences, Vol.9(10),1400-1408 October 2018.
- T.Rajesh Kannan, S.Chandrasekar, Neutrosophic α-Continuity Multifunction In Neutrosophic Topological Spaces, The International journal of analytical and experimental modal analysis ,Volume XI, Issue IX, September/2019 ISSN NO: 0886- 9367 PP.1360-1368
- 14. A.A. Salama and S.A. Alblowi, Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces, Journal computer Sci. Engineering, Vol.(2) No.(7) (2012).
- 15. A.A.Salama and S.A.Alblowi, Neutrosophic set and Neutrosophic topological space, ISOR J. Mathematics, Vol.(3), Issue(4), pp-31-35 (2012).
- 16. Santhi R. and Udhayarani, N ω -Closed Sets In Neutrosophic Topological Spaces, Neutrosophic Sets and Systems, Vol. 12, 114-117 (2016).
- V.K.Shanthi, S.Chandrasekar, K.Safina Begam, Neutrosophic Generalized Semi Closed Sets In Neutrosophic Topological Spaces, International Journal of Research in Advent Technology, Vol.6, No.7, 1739-1743 July (2018).
- V.Venkateswara Rao, Y.Srinivasa Rao., Neutrosophic Pre-open Sets and Pre-closed Sets in Neutrosophic Topology, International Journal of ChemTech Research, Vol.(10), No.10, pp 449-458, (2017)