
Studies in Indian Place Names 

(UGC Care Journal) 

ISSN: 2394-3114 

Vol-40-Issue-70-March -2020 

 

 

P a g e  | 3548  Copyright ⓒ 2020Authors 

 
 

Neutrosophic weakly G*-Closed Sets 
 

A.Atkinswestley
1
, S.Chandrasekar

2 

 

 
1
Department of Mathematics, Roever College Engineering and Technology , Elambalur, 

Perambalur(DT), Tamil Nadu, India 

 
2
Department of Mathematics, Arignar Anna Government Arts college, 

Namakkal(DT),Tamil Nadu, India. 

E-mail: ats.wesly@gmail.com,chandrumat@gmail.com. 

Abstract— Aim of this present paper is, we introduce and investigate about new kind of 

Neutrosophic closed set is called Neutrosophic weakly g*-closed setsin Neutrosophic topological 

spaces and also discussed about properties and characterization  

Keywords— Nu.g* open set, Nu.g*closed set ,Nu.weakly g* open set, Nu.weakly g*closed set, 

Neutrosophic topological spaces 

I. INTRODUCTION 

       A.A.Salama introduced Neutrosophic topological spaces by using Smarandache’s Neutrosophic 

sets. Neutrosophic g closed set introduced by.R. Dhavasheelan et.al. andNeutrosophic g*-closed sets 

presented by A.Atkinswesley et.al.  Aim of this present paper is, we introduce and investigate about 

new kind of Neutrosophic closed set is called Neutrosophic weakly g*-closed setsin Neutrosophic 

topological spaces and also discussed about properties and characterization  

II.PRELIMINARIES 

In this section, we introduce the basic definition for Neutrosophic sets and its operations.  

Definition 2.1 [7]   

Let X be a non-empty fixed set. A Neutrosophic set A is an object having the form  

A = {<x, ηA(x), σA(x) ,γA(x) >:x∈X} 

Where ηA(x), σA(x) and γA(x) which represent Neutrosophic topological spaces the degree of 

membership function, the degree indeterminacy and the degree of non-membership function 

respectively of each element x ∈ X to the set  A.  

Remark 2.2 [7]   

A Neutrosophic set A={<x, ηA(x), σA(x), γA(x) >: x∈X} can be identified to an ordered triple  

<ηA, σA, γA> in ⦌-0,1+⦋  on X. 

Remark 2.3[7]   

We shall use the symbol  

A =<x, ηA, σA, γA> for the Neutrosophic  set  A = {<x, ηA(x),σA(x),γA(x) >:x∈X}.  

Example 2.4 [7]   

Every Neutrosophic set A is a non-empty set in X is obviously on Neutrosophic set having the form 

A={ <x, ηA(x), 1-((ηA(x) + γA(x)), γA(x) >:x∈X}. Since our main purpose is to construct the tools for 

developing Neutrosophic set and Neutrosophic topology, we must introduce the Neutrosophic set 0N 

and 1N in X as follows:  

0N may be defined as: 

(01) 0N={<x, 0, 0, 1>: x ∈X}  

(02) 0N={<x, 0, 1, 1>: x ∈X}  

(03) 0N ={<x, 0, 1, 0 >:x∈X}  

(04) 0N={<x, 0, 0, 0>: x ∈X}  
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1N may be defined as : 

(11) 1N ={<x, 1, 0, 0>: x∈X}  

(12) 1N ={<x, 1, 0, 1 >: x∈X}  

(13) 1N ={<x, 1, 1, 0 >: x∈X}  

(14) 1N ={<x, 1, 1, 1 >: x∈X}  

Definition 2.5 [8]   

Let A=<ηA, σA,γA> be a Neutrosophic  set on X, then the complement of the set A  

A
C 

defined as  

A
C
={<x , γA(x) ,1- σA(x), ηA(x) >: x ∈X}  

Definition 2.6 [8]   

Let X be a non-empty set, and Neutrosophic sets A and B in the form  

  A ={<x, ηA(x), σA(x), γA(x)>:x∈X} and 

  B ={<x, ηB(x), σB(x), γB(x)>: x∈X}. 

 Then we consider definition for subsets (A⊆B ).  

A⊆B defined as: A⊆B ⟺ηA(x) ≤ ηB(x), σA(x) ≤ σB(x) and γA(x) ≥ γB(x) for all  x∈X 

Proposition 2.7 [8]   

For any Neutrosophic set A, then the following condition are holds: 

(i) 0N⊆A, 0N⊆ 0N 

(ii) A⊆1N, 1N⊆ 1N 

Definition 2.8 [8]   

Let X be a non-empty set, and  A=<x, ηB(x),σA(x), γA(x)> , B =<x, ηB(x), σB(x), γB(x)> be two 

Neutrosophic sets. Then  

(i) A∩B defined as :A∩B =<x, ηA(x)⋀ηB(x), σA(x)⋀σB(x),γA(x)⋁γB(x)> 

(ii) A∪B defined as :A∪B =<x, ηA(x)⋁ηB(x), σA(x)⋁σB(x), γA(x)⋀γB(x)> 

Proposition 2.9 [8] 

 For all A and B are two Neutrosophic sets then the following condition are true: 

(i) (A∩B)
C
=A

C∪B
C
 

(ii) (A∪B)
C
=A

C
∩B

C
.  

Definition 2.10 [8]   

A Neutrosophic  topology is a non-empty set X is a family τN of  Neutrosophic subsets in X satisfying 

the following axioms:  

(i) 0N, 1N ∈τN , 

(ii) G1∩G2∈τN  for any G1, G2∈τN, 

(iii) ∪Gi∈τNfor any family {Gi⎸i∈J  }⊆τN. 

 the pair (X, τN) is called a Neutrosophic topological space.  

The element Neutrosophic topological spaces of τN are called Neutrosophic open sets. 

A Neutrosophic set  A is closed if and only if A
C
 is Neutrosophic open.  

Example 2.11[11]   

Let X={x} and  

A1= {<x, 0.5, 0.6, 0.5>:x∈X}    

A2= {<x, 0.4, 0.7, 0.8>:x∈X}  

A3= {<x, 0.5, 0.7, 0.5>:x∈X}  

A4= {<x, 0.4, 0.6, 0.8>:x∈X}  

Then the family τN={0N, 1N,A1, A2, A3, A4}is called a Neutrosophic  topological space on X.  

Definition 2.12[11]   
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Let (X, Nu.τ) be Neutrosophic topological spaces  and A={<x,ηA(x),σA(x),γA(x)>:x∈X} be a 

Neutrosophic set in X. Then the Neutrosophic closure and Neutrosophic interior of A are defined by  

Neu-Nu-cl(A)=∩{K:K is a Neutrosophic closed set  in X and A⊆K}  

Neu-Nu-int(A)=∪{G:G is a Neutrosophic open set  in X and G⊆A}.  

Definition 2.13  

Let (X, Nu.τ) be a Neutrosophic topological space. Then A is called 

 (i) Neutrosophic regular Closed set [1] (Neu-RCS in short) if A=Neu-Cl(Neu-Int(A)), 

(ii) Neutrosophic α-Closed set[1] (Neu-αCS in short) if Neu-Cl(Neu-Int(Neu-Cl(A)))⊆A, 

(iii) Neutrosophic semi Closed set [8] (Neu-SCS in short) if Neu-Int(Neu-Cl(A))⊆A , 

(iv) Neutrosophic pre Closed set [18] (Neu-PCS in short) if Neu-Cl(Neu-Int(A))⊆A, 

Definition 2.14  

Let (X, Nu.τ) be a Neutrosophic topological space. Then A is called 

a) Neutrosophic regular open set [1](Neu-ROS in short) if A=Neu-Int(Neu-Cl(A)), 

b)  Neutrosophic α-open set [1](Neu-αOS in short) if A⊆Neu-Int(Neu-Cl(Neu-Int(A))), 

c)  Neutrosophic semi open set [8](Neu-SOS in short) if A⊆Neu-Cl(Neu-Int(A)), 

d) Neutrosophic pre open set [18] (Neu-POS in short) if A⊆Neu-Int(Neu-Cl(A)), 

Definition 2.15:  

An Neutrosophic set A of an Neutrosophic topological space (X,) is called: 

(a) Neutrosophic g-closed [4] if Nu-cl (A) G whenever A G and Gis Neutrosophic open. 

(b) Neutrosophic sg-closed [17]if Nu-scl (A) G whenever A G and G is Neutrosophic semi 

open. 

(c) Neutrosophic g*-closed [2]if Nu-cl (A) G whenever A G and G is Neutrosophic g-open. 

(d) Neutrosophic αg-closed[9] if Nu-αcl  (A) Gwhenever A G and G is Neutrosophic - open. 

(e) Neutrosophic gα-closed [5]if Nu-αcl  (A) G whenever A G and G is Neutrosophic α- open. 

(f) Neutrosophic w-closed[16] if Nu-cl (A) Gwhenever A G and G is Neutrosophic semi 

open. 

(g) Neutrosophic gp-closed [10]if Nu-pcl (A) G whenever A Gand G is Neutrosophic  open. 

(h) Neutrosophic gs-closed [17]if Nu-scl (A) G whenever A G and G is Neutrosophic open. 

The complements of the above mentioned closed set are their respective open sets. 

Definition 2.16[4] 

If A is an Neutrosophic set in Neutrosophic topological space(X,) then 

(a) Nu-scl (A)={ F:AF, F is  Neutrosophic semi closed} 

(b) Nu-pcl (A)={ F:AF, F is Neutrosophic pre closed} 

(c) Nu-αcl (A)={ F:AF, F is Neutrosophic α closed} 

Remark 2.17: 

(a) Every Neutrosophic closed set is Neutrosophic g-closed set. 

(b) Every Neutrosophic α-closed set is Neutrosophic αg-closed set. 

(c) Every Neutrosophic g-closed is Neutrosophic gα-closed set. 

(d) Every Neutrosophic αg-closed is Neutrosophic gα-closed set. 

(e) Every Neutrosophic w-closed set is Neutrosophic g-closed   

(f) Every Neutrosophic w-closed set is Neutrosophic sg-closed set. 

(i) Every Neutrosophic sg-closed set is Neutrosophic gs-closed set. 

 

Lemma 2.18[8]: Let A and B be any two Neutrosophic sets of an Neutrosophic topological space 

(X,). Then:  

 (a) A is an Neutrosophic closed set in X ⇔Nu-cl (A) = A  
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(b) A is an Neutrosophic open set in X ⇔Nu-int (A) = A.  

(c) Nu-cl(A
C
) = (Nu-int (A))

C
.  

(d)Nu- int (A
C
) = (Nu-cl (A))

C
.  

(e) A  B ⇒Nu-int (A) Nu-int (B).  

(f) A  B ⇒Nu-cl (A) Nu-cl (B).  

(g) Nu-cl (A∪ B) = Nu-cl (A) ∪Nu-cl(B).  

(h)Nu- int(A ∩ B) = Nu-int (A) ∩Nu-int(B)  

 

 

I. NEUTROSOPHICWEAKLY g* -CLOSED SET 

Definition 3.1:  

An Neutrosophic set A of an Neutrosophic topological space (X,) is called anNeutrosophicweakly 

g*-closed if Nu-cl (Nu-int(A) )G whenever A G and G is Neutrosophic g-open in X.  

Theorem 3.2: 

Every Neutrosophic w-closed set is Neutrosophicweakly g*-closed -closed. 

Proof:  

Let A is Neutrosophic w-closed set. Let AU and U Neutrosophic semi-open sets in X. Sinceevery 

Neutrosophic semi open set is Neutrosophic g-open sets U is Neutrosophic g-open sets. Now by 

definition of Neutrosophic w-closed sets Nu-cl(A)  U. But Nu-cl(Nu-int(A)) Nu-cl(A)  U. We 

have Nu-cl(Nu-int(A))  U whenever A  U and U is Neutrosophic g-open in X. Therefore A is 

Neutrosophicweakly g*-closed set. 

Remark 3.3: 

The converse of above theorem need not be true as from the following example. 

Example 3.4: 

 Let X = {a, b} and= {0,U, 1} be an Neutrosophic topology on X, where 

U= x,  
7

10
,

5

10
,

2

10
 ,  

6

10
,

5

10
,

3

10
  Then the Neutrosophic set  

𝐴 =  x,  
7

10
,

5

10
,

2

10
 ,  

8

10
,

5

10
,

1

10
  is Neutrosophicweakly g* -closed but it is not Neutrosophic w- 

closed. 

Theorem 3.5:  

Every Neutrosophic  g*-closed set is Neutrosophicweakly g*-closed sets.. 

Proof:  

Let A is Neutrosophic g*-closed set. Let AU and U is Neutrosophic g–open sets in X. Nowby 

definition of Neutrosophic g*-closed sets Nu-cl(A)  U. But Nu-cl(Nu-int(A)) Nu-cl(A)  U. We 

have Nu-cl(Nu-int(A))  U whenever A  U and U is Neutrosophic g-open in X. Therefore A is 

Neutrosophicweakly g*-closed set. 

Remark 3.6:  

The converse of above theorem need not be true as from the following example. 

Example 3.7: 

 Let X = {a, b, c, d } and Neutrosophic sets 𝐴1,𝐴2, 𝐴3,𝐴4 defined as follows 

𝐴1 = {  x,  
9

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
   

𝐴2 =  x,  
0

10
,

5

10
,

1

10
 ,  

8

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
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𝐴3 =  x,  
9

10
,

5

10
,

1

10
 ,  

8

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
   

𝐴4 =  x,  
9

10
,

5

10
,

1

10
 ,  

8

10
,

5

10
,

1

10
 ,  

7

10
,

5

10
,

2

10
 ,  

0

10
,

5

10
,

1

10
   

 = {0 , 𝐴1,𝐴2, 𝐴3,𝐴4, 1} be an Neutrosophic topology on X. Then the Neutrosophic set  

A =  x,  
0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

7

10
,

5

10
,

2

10
 ,  

0

10
,

5

10
,

1

10
   is Neutrosophicweakly g* -closed but it is 

not Neutrosophic g*-closed. 

Theorem 3.8: 

Every Neutrosophic g-closed set is Neutrosophicweakly g*-closed sets. 

Proof:  

Let A is Neutrosophic g-closed set. Let AU and U Neutrosophic-open sets in X. Since 

everyNeutrosophic open set is Neutrosophic g-open sets U is Neutrosophic g-open sets. Now by 

definition of Neutrosophic g-closed sets Nu-cl(A)  U. But Nu-cl(Nu-int(A)) Nu-cl(A)  U. We 

have Nu-cl(Nu-int(A))  U whenever A  U and U is Neutrosophic g-open in X. Therefore A is 

Neutrosophicweakly g*-closed set. 

Remark 3.9:  

The converse of above theorem need not be true as from the following example 

Example 3.10: 

 Let X = {a, b, c, d, e} and Neutrosophic sets 𝐴1,𝐴2, 𝐴3,defined as follows 

𝐴1 =  x,  
9

10
,

5

10
,

1

10
 ,  

8

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
   

𝐴2

𝐴3

Let  = {0 , 𝐴1,𝐴2, 𝐴31 } be an Neutrosophic topology on X. Then the Neutrosophic set  

 A =  x,  
9

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
  is Neutrosophicweakly g* -

closed but it is not Neutrosophic g-closed. 

Theorem 3.11:  

Every Neutrosophic αg-closed set is Neutrosophicweakly g*-closed sets. 

Proof: 

Let Ais Neutrosophic αg-closed set. Let AU and U Neutrosophic -open sets in X. Since 

everyNeutrosophic open set is Neutrosophic g-open sets U is Neutrosophic g-open sets. Now by 

definition of Neutrosophic αg-closed sets Nu-αcl(A)U. But Nu-αcl(A)⊆Nu-cl(A) therefore Nu-

cl(A)⊆ A. NowNu-cl(Nu-int(A)) Nu-cl(A)U. We have Nu-cl(Nu-int(A))U whenever AU and 

U is Neutrosophic g-open in X. Therefore A is Neutrosophicweakly g*-closed set. 

Remark 3.12: 

The converse of above theorem need not be true as from the following example 

Example 3.13:  

Let X = {a, b, c, d} and Neutrosophic sets 𝐴1,𝐴2 defined as follows 

𝐴1= {  x,  
7

10
,

5

10
,

1

10
 ,  

6

10
,

5

10
,

2

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
   

𝐴2 =  x,  
0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

7

10
,

5

10
,

2

10
 ,  

6

10
,

5

10
,

1

10
   

 Let  = {0 , 𝐴1,𝐴2, 1 } be an Neutrosophic topology on X. Then the Neutrosophic set  

A =  x,  
7

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

2

10
 ,  

0

10
,

5

10
,

1

10
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is Neutrosophicweakly g* -closed but it is not Neutrosophic αg-closed. 

Theorem 3.14: 

Every Neutrosophic gα-closed set is Neutrosophicweakly g*-closed sets. 

Proof:  

It follows from theorem 3.11the fact that every Neutrosophic gα-closed set is Neutrosophic αg-closed 

sets. 

Theorem 3.15:  

Every Neutrosophic gp-closed set is Neutrosophicweakly g*-closed sets. 

Proof:  

Let A is Neutrosophic gp-closed set. Let AU and U Neutrosophic-open sets in X. Since 

everyNeutrosophic open set is Neutrosophic g-open sets U is Neutrosophic g-open sets. Now by 

definition of Neutrosophic gp-closed sets Nu-pcl(A)U. But Nu-pcl(A)⊆Nu-cl(A) therefore Nu-

cl(A)⊆ A. Now Nu-cl(Nu-int(A))Nu-cl(A)U. We have Nu-cl(Nu-int(A))U whenever AU and 

U is Neutrosophic g-open in X. Therefore A is Neutrosophicweakly g*-closed set. 

Remark 3.16:  

The converse of above theorem need not be true as from the following example. 

Example 3.17:  

Let X = {a, b} and= {0N,𝐴1, 1N} be an Neutrosophic topology on X, where 

𝐴1= x,  
4

10
,

5

10
,

3

10
 ,  

6

10
,

5

10
,

3

10
  .Then the Neutrosophic set  

𝐴2 = x,  
4

10
,

5

10
,

2

10
 ,  

6

10
,

5

10
,

1

10
   is Neutrosophicweakly g* -closed but it is not Neutrosophic gp- 

closed. 

Corollary 3.20:  

Every Neutrosophic closed set is Neutrosophicweakly g*-closed set. 

Every Neutrosophicα-closed set is Neutrosophicweakly g*-closed set. 

Every Neutrosophic pre-closed set is Neutrosophic weakly g*-closed set. 

Every Neutrosophic regular-closed set is Neutrosophic weakly g*-closed set. 

Proof: Obvious  

Remark 3.25: The intersection of two Neutrosophicweakly g*-closed sets in an Neutrosophic 

topologicalspace (X,) may not be Neutrosophicweakly g*-closed. For, 

Example 3.26: Let X = {a, b, c, d } and Neutrosophic sets 𝐴1,𝐴2, 𝐴3,𝐴4 defined as follows 

𝐴1 =  x,  
9

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
   

𝐴2 =  x,  
0

10
,

5

10
,

1

10
 ,  

8

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
   

𝐴3 =  x,  
9

10
,

5

10
,

1

10
 ,  

8

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
   

𝐴4 =  x,  
9

10
,

5

10
,

1

10
 ,  

8

10
,

5

10
,

1

10
 ,  

7

10
,

5

10
,

2

10
 ,  

0

10
,

5

10
,

1

10
   

 = {0 , 𝐴1,𝐴2, 𝐴3,𝐴4 1 ,} be an Neutrosophic topology on X. Then the Neutrosophic set

A =   x,  
9

10
,

5

10
,

1

10
 ,  

8

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
   

B =  x,  
9

10
,

5

10
,

1

10
 ,  

0

10
,

5

10
,

1

10
 ,  

7

10
,

5

10
,

2

10
 ,  

9

10
,

5

10
,

1

10
   

are  Neutrosophicweakly g*-closed in (X,) but AB is not Neutrosophicweakly g*-closed.

Theorem 3.27: 

 Let A be an Neutrosophicweakly g*-closed set in an Neutrosophic topological space(X,) and A 

BNu-cl (Nu-int(A)). Then B is Neutrosophicweakly g*-closed in X. 
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Proof: 

 Let G be an Neutrosophic g-open set in X such that BG. Then AGand since A is 

Neutrosophicweakly g*-closed, Nu-cl(Nu-int(A))G. Now BNu-cl (Nu-int(A)) Nu-cl(Nu-int(B)) 

⊆Nu-cl(Nu-int(Nu-cl(Int(A)))) =Nu-cl(Nu-int(A)), Nu-cl(Nu-int(B))Nu-cl(Nu-int(A)) G. 

Consequently B is Neutrosophicweakly g*-closed. 

Definition 3.28: An Neutrosophic set A of an Neutrosophic topological space (X,) is called 

Neutrosophic g*-open if and only if its complement A
C
 is Neutrosophicweakly g*-closed. 

Remark 3.29:  

Every Neutrosophic w-open set is Neutrosophicweakly g*-open but its converse may notbe true. 

Example  3.30:  

Let X = {a, b} and =  {0 , 𝐴1,1 }  be  an  Neutrosophictopology  on  X,  where 

𝐴1=  x,  
7

10
,

5

10
,

2

10
 ,  

6

10
,

5

10
,

3

10
  .Then the Neutrosophic set  

𝐴2= x,  
2

10
,

5

10
,

7

10
 ,  

1

10
,

5

10
,

8

10
   is Neutrosophicweakly g*-open in (X,  ) but it is not Neutrosophic 

w-open in (X, ). 

Theorem 3.31:  

An Neutrosophic set A of an Neutrosophic topological space (X,) is Neutrosophicweakly g*-open if 

F Nu-cl(Nu-int (A)) whenever F is Neutrosophic g-closed and F  A. 

Proof: Follows from definition 3.1 and Lemma 2.18 

Theorem 3.32: 

Let A be an Neutrosophicweakly g*-open set of an Neutrosophic topological space(X,) and Nu-

cl(Nu-int (A))  B  A. Then B is Neutrosophicweakly g*-open. 

Proof:  

Suppose A is an Neutrosophicweakly g*-open in X  and Nu-cl(Nu-int(A))BA.A
C
B

C
(Nu-

cl(Nu-int(A)))
C
A

C
 B

C
Nu-cl(Nu-int(A

C
) by Lemma 2.18and A

C
 is Neutrosophicweakly g*-

closed it follows from theorem that B
c
 is Neutrosophicweakly g*-closed . Hence B is 

Neutrosophicweakly g*-open.

IV.  CONCLUSION 

The theory of g-closed sets plays an important role in general topology. Since its inception many 

weak and strong forms of g-closed sets have been introduced in general topology as well as fuzzy 

topology and Neutrosophic topology. The present paper investigated a new weak form of 

Neutrosophic g-closed sets called Neutrosophicweakly g*-closed sets which has been compared with 

the classes of Neutrosophic closed sets, Neutrosophic pre closed sets, Neutrosophic α-closed sets, 

Neutrosophic w-closed sets, Neutrosophic gp-closed sets , Neutrosophic αg-closed sets, Neutrosophic 

gα-closed sets , Neutrosophic g*- closed sets. Several properties and application of 

Neutrosophicweakly g*-closed sets are studied. Many examples are given to justify the result. 
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