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Abstract-   Aim of this present paper is, we introduce and investigate about new kind of Neutrosophic continuity  is called 

Neutrosophic weakly π generalized continuous in Neutrosophic topological spaces and also discussed about properties 
and characterization Neutrosophic weakly π generalized continuous 

Keywords – NS WπG  open set, NS WπG  closed set Neutrosophic weakly π generalized continuous, Neutrosophic 

topological spaces 

I. INTRODUCTION 

A.A.Salama introduced Neutrosophic topological spaces by using Smarandache’s Neutrosophic sets. 

I.Arokiarani.[2] et al, introduced Neutrosophic  α-closed sets.P. Ishwarya, [8]et.al, introduced and studied about on 
Neutrosophic semi-open sets in Neutrosophic topological spaces. Aim of this present paper is, we introduce and 

investigate about new kind of Neutrosophic continuity  is called Neutrosophic weakly π generalized continuous in 

Neutrosophic topological spaces and also discussed about properties and characterization Neutrosophic weakly π 

generalized continuous 

II.  PRELIMINARIES 
In this section, we introduce the basic definition for Neutrosophic sets and its operations.  

Definition 2.1 [7]   

Let X be a non-empty fixed set. A Neutrosophic set A is an object having the form  

A = {<x, ηA(x), σA(x) ,γA(x) >:x∈X} 

Where ηA(x), σA(x) and γA(x) which represent Neutrosophic topological spaces the degree of membership 

function, the degree indeterminacy and the degree of non-membership function respectively of each element x ∈ X 

to the set  A.  

Remark 2.2 [7]   

A Neutrosophic set A={<x, ηA(x), σA(x), γA(x) >: x∈X} can be identified to an ordered triple  

<ηA, σA, γA> in ⦌-0,1+⦋  on X. 

Remark 2.3[7]   

We shall use the symbol  

A =<x, ηA, σA, γA> for the Neutrosophic  set  A = {<x, ηA(x),σA(x),γA(x) >:x∈X}.  

Example 2.4 [7]   

Every Neutrosophic set A is a non-empty set in X is obviously on Neutrosophic set having the form A={ <x, ηA(x), 

1-((ηA(x) + γA(x)), γA(x) >:x∈X}. Since our main purpose is to construct the tools for developing Neutrosophic set 

and Neutrosophic topology, we must introduce the Neutrosophic set 0N and 1N in X as follows:  

0N may be defined as: 

(01) 0N={<x, 0, 0, 1>: x ∈X}  

(02) 0N={<x, 0, 1, 1>: x ∈X}  

(03) 0N ={<x, 0, 1, 0 >:x∈X}  

(04) 0N={<x, 0, 0, 0>: x ∈X}  
1N may be defined as : 

(11) 1N ={<x, 1, 0, 0>: x∈X}  
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(12) 1N ={<x, 1, 0, 1 >: x∈X}  

(13) 1N ={<x, 1, 1, 0 >: x∈X}  

(14) 1N ={<x, 1, 1, 1 >: x∈X}  

Definition 2.5 [7]   

Let A=<ηA, σA,γA> be a Neutrosophic  set on X, then the complement of the set A  

AC  defined as  

AC={<x , γA(x) ,1- σA(x), ηA(x) >: x ∈X}  

Definition 2.6 [7]   

Let X be a non-empty set, and Neutrosophic sets A and B in the form  

  A ={<x, ηA(x), σA(x), γA(x)>:x∈X} and 

  B ={<x, ηB(x), σB(x), γB(x)>: x∈X}. 

 Then we consider definition for subsets (A⊆B ).  

A⊆B defined as: A⊆B ⟺ηA(x) ≤ ηB(x), σA(x) ≤ σB(x) and γA(x) ≥ γB(x) for all  x∈X 

Proposition 2.7 [7]   

For any Neutrosophic set A, then the following condition are holds: 

(i) 0N⊆A, 0N⊆ 0N 

(ii) A⊆1N, 1N⊆ 1N 

Definition 2.8 [7]   

Let X be a non-empty set, and  A=<x, ηB(x),σA(x), γA(x)> , B =<x, ηB(x), σB(x), γB(x)> be two Neutrosophic sets. 

Then  

(i) A∩B defined as :A∩B =<x, ηA(x)⋀ηB(x), σA(x)⋀σB(x),γA(x)⋁γB(x)> 

(ii) A∪B defined as :A∪B =<x, ηA(x)⋁ηB(x), σA(x)⋁σB(x), γA(x)⋀γB(x)> 

Proposition 2.9 [7] 

 For all A and B are two Neutrosophic sets then the following condition are true: 

(i) (A∩B)C=AC∪BC 

(ii) (A∪B)C=AC∩BC.  

Definition 2.10 [11]   

A Neutrosophic  topology is a non-empty set X is a family τN of  Neutrosophic subsets in X satisfying the following 

axioms:  

(i) 0N, 1N ∈τN , 

(ii) G1∩G2∈τN  for any G1, G2∈τN, 

(iii) ∪Gi∈τN for any family {Gi ⎸i∈J  }⊆τN. 

 the pair (X, τN) is called a Neutrosophic topological space.  

The element Neutrosophic topological spaces of τN are called Neutrosophic open sets. 

A Neutrosophic set  A is closed if and only if AC is Neutrosophic open.  

Example 2.11[11]   

Let X={x} and  

A1= {<x, 0.6, 0.6, 0.5>:x∈X}    

A2= {<x, 0.5, 0.7, 0.9>:x∈X}  

A3= {<x, 0.6, 0.7, 0.5>:x∈X}  

A4= {<x, 0.5, 0.6, 0.9>:x∈X}  

Then the family τN={0N, 1N,A1, A2, A3, A4}is called a Neutrosophic  topological space on X.  

Definition 2.12[11]   

Let (X, τN) be Neutrosophic topological spaces  and A={<x,ηA(x),σA(x),γA(x)>:x∈X} be a Neutrosophic set in X. 

Then the Neutrosophic closure and Neutrosophic interior of A are defined by  

Neu-cl(A)=∩{K:K is a Neutrosophic closed set  in X and A⊆K}  

Neu-int(A)=∪{G:G is a Neutrosophic open set  in X and G⊆A}.  

Definition 2.13  

Let (X, τN) be a Neutrosophic topological space. Then A is called 

 (i) Neutrosophic regular Closed set [2] (Neu-RCS in short) if A=Neu-Cl(Neu-Int(A)), 

(ii) Neutrosophic α-Closed set[2] (Neu-αCS in short) if Neu-Cl(Neu-Int(Neu-Cl(A)))⊆A, 

(iii) Neutrosophic semi Closed set [9] (Neu-SCS in short) if Neu-Int(Neu-Cl(A))⊆A , 

(iv) Neutrosophic pre Closed set [12] (Neu-PCS in short) if Neu-Cl(Neu-Int(A))⊆A, 

Definition 2.14  
Let (X, τN) be a Neutrosophic topological space. Then A is called 
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 (i). Neutrosophic regular open set [2](Neu-ROS in short) if A=Neu-Int(Neu-Cl(A)), 

(ii). Neutrosophic α-open set [2](Neu-αOS in short) if A⊆Neu-Int(Neu-Cl(Neu-Int(A))), 

(iii). Neutrosophic semi open set [9](Neu-SOS in short) if A⊆Neu-Cl(Neu-Int(A)), 

(iv).Neutrosophic pre open set [13] (Neu-POS in short) if A⊆Neu-Int(Neu-Cl(A)), 

Definition 2.15 

Let (X, τN) be a Neutrosophic topological space. Then A is called 

 (i).Neutrosophic generalized closed set[4](Neu-GCS in short) if Neu-cl(A)⊆U whenever A⊆U    and U is a Neu-OS  

     in X , 

(ii).Neutrosophic generalized semi closed set[12] (Neu-GSCS in short) if Neu-scl(A)⊆U  Whenever A⊆U and U is a  

      Neu-OS in X, 

(iii).Neutrosophic α generalized closed set [8](Neu-αGCS in short) if Neu-αcl(A)⊆U  whenever   A⊆U and U is a  

        Neu-OS in X , 

 (iv).Neutrosophic generalized alpha closed set [8] (Neu-GαCS in short) if Neu-αcl(A)⊆U   whenever A⊆U and U is              
        a Neu-αOS in X . 

The complements of the above mentioned Neutrosophic closed sets are called their respective Neutrosophic open 

sets. 

Definition 2.18:[5] 

 Let f be a mapping from an NSTS (X, 𝑁𝑆𝜏)   into NSTS Y,σ . Then f is said to be Neutrosophic generalized 

continuous (NSG cts) if,f−1(B)∈ NSGCS (X) for every NSCS, B in Y.  

Definition 2.18:[5] 

Let f be a mapping from an NSTS (X, 𝑁𝑆𝜏)  into NSTS (Y,NSσ). Then f is said to be Neutrosophic continuous  (NS 

cts) if, f−1(B)∈ NSOS (X) for every B∈ σ. 
Definition 2.19:[12] 

 A mapping f: (X, 𝑁𝑆𝜏)→(Y,NSσ) is called Neutrosophic  generalized semi continuous  (NSGS cts) if, f−1(B) is an 

NSGSCS in (X, 𝑁𝑆𝜏)  for every NSCS, B of (Y,NSσ).  

Definition 2.20: 

 A mapping f: (X, 𝑁𝑆𝜏)→(Y,NSσ)  is called Neutrosophic  α generalized continuous (NSαGS cts) if, f−1(B) is an 

NSαGCS in (X, 𝑁𝑆𝜏)   for every NSCS, B of (Y,NSσ). 

Definition 2.17:  

Let f be a mapping from an NSTS (X, 𝑁𝑆𝜏)   into NSTS (Y,NSσ). Then f is said to be  

i) Neutrosophic semi continuous [15] (NS(S) cts) if, f−1(B)∈ NS(S)O(X) for every B∈ σ,  

ii) Neutrosophic  α continuous [15] (NS(α) cts) if, f−1(B)∈ NS(α)O(X) for every B∈ σ,  

iii)Neutrosophic  pre continuous [15] (NS(P) cts) if, f−1(B)∈ NS(P)O(X) for every B∈ σ,  

iv)Neutrosophic  regular continuous [15] (NS(R) cts) if, f−1(B)∈ NSRO(X) for every B∈ σ. 

3. NEUTROSOPHIC WEAKLY π GENERALIZED CONTINUOUS MAPPINGS  
In this section, Neutrosophic weakly π generalized continuous mappings is defined. Some of its properties are 

derived.  
Definition 3.1: 

 A mapping f: (X, 𝑁𝑆𝜏)→(Y,NSσ) is called an Neutrosophic weakly π generalized continuous mapping (NS(WπG) 

cts) if, f−1(B) is a NS(WπG)CS in (X, NSτ) for every NSCS, B of (Y, 𝑁𝑆𝜎).  

Example 3.2:  

Let X= {a,b},Y={u,v} and  

G1= <𝑥, (
2

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

7

10
)  > ,  

G2= <𝑦, (
6

10
,

5

10
,

4

10
) , (

7

10
,

5

10
,

2

10
)>. Then  

NSτ = { 0NS , G1, 1NS } and 𝑁𝑆𝜎= { 0NS , G2, 1NS } are NSTs on X and Y respectively. 

Define a mapping  f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) by f(a)=u and f(b)=v.  

Then f is a NS(WπG)CTS mapping.  

Proposition 3.3:  

Every NSCTS mapping is a NS(WπG)CTS mapping but not conversely.  

Proof:  

Let f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) be a NSCTS mapping. Let B be a NSCS in Y. Since f is NSCTS mapping, f−1(B) is a 

NSCS in X. Since every NSCS is a NS(WπG)CS, f−1(B) is a NS(WπG)CS in X. Therefore f is a NS(WπG)CTS 

mapping.  
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Example 3.4:  

Let X= {a,b},Y={u,v} and  

G1= <𝑥(
1

10
,

5

10
,

8

10
) , (

2

10
,

5

10
,

7

10
)>,  

G2= <𝑦, (
8

10
,

5

10
,

1

10
) , (

7

10
,

5

10
,

3

10
)>. Then  

NSτ = { 0NS , G1, 1NS } and NSσ = { 0NS , G2, 1NS } are NSTs on X and Y respectively.  

Define a mapping f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) by f(a)=u and f(b)=v.  

The NSS, B= <𝑦, (
1

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)> is NSCS in Y. Then f−1(B) is NS(WπG)CS in X,  

but not NSCS in X. Therefore f is a NS(WπG)CTS mapping but not a NSCTS mapping.  

Proposition 3.5:  

Every NS(α) continuous mapping is a NS(WπG)CTS mapping but not conversely.  

Proof:  

Let f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) be a NS(α) continuous mapping. Let B be a NSCS in Y. Then by definition f−1(B) is a 

NS(α)CS in X. Since every NS(α)CS is a NS(WπG)CS, f−1(B) is a NS(WπG)CS in X. Thus f is a NS(WπG)CTS 

mapping.  

Example 3.6:  

Let X= {a,b},Y={u,v} and  

G1= <𝑥, (
4

10
,

5

10
,

6

10
) , (

3

10
,

5

10
,

5

10
) > ,  

G2= <𝑦, (
2

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

4

10
)>.  

Then NSτ = { 0NS , G1, 1NS } and NSσ = { 0NS , G2, 1NS } are NSTs on X and Y respectively. 

 Define a mapping f: (X, 𝑁𝑆𝜏)→(Y, 𝑁𝑆𝜎) by f(a)=u and f(b)=v.  

The NSS, B= <𝑦, (
5

10
,

5

10
,

2

10
) , (

4

10
,

5

10
,

3

10
)> is NSCS in Y. Then f−1(B) is NS(WπG)CS in X, but not NS(α)CS in X. 

Then f is a NS(WπG)CTS mapping but not a NS(α) continuous mapping.  

Proposition 3.7:  

Every NS(R) CTS mapping is a NS(WπG)CTS mapping but not conversely.  

Proof:  

Let f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) be a NS(R)CTS mapping. Let B be a NSCS in Y. Then by definition f−1(B) is a NS(R)CS 

in X. Since every NS(R)CS is a NS(WπG)CS, f−1(B) is a NS(WπG)CS in X. So, f is a NS(WπG)CTS mapping.  

Example3.8:  
Let X= {a,b},Y={u,v} and  

G1= <𝑥, (
5

10
,

5

10
,

4

10
) , (

4

10
,

5

10
,

5

10
)>,  

G2= <𝑦, (
5

10
,

5

10
,

4

10
) , (

5

10
,

5

10
,

3

10
)>. Then  

NSτ={0NS ,G1,1NS} and NSσ={0NS , G2,1NS} are NSTs on X and Y respectively.  

Define a mapping f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) by f(a)=u and f(b)=v.  

The NSS, B= <𝑦, (
4

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

5

10
)> is NSCS in Y. Then f−1(B) is NS(WπG)CS in X, but not NS(R)CS in X. 

Therefore f is NS(WπG)CTS mapping but not a NS(R) CTS mapping.  

Proposition 3.9:  

Every NS(P)CTS mapping is a NS(WπG)CTS mapping but not conversely.  

Proof:  

Let f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) be a NS(P) CTS mapping. Let B be a NSCS in Y. Then f−1(B) is a NS(P)CS in X. Since 

every NS(P)CS is a NS(WπG)CS, f−1(B) is a NS(WπG)CS in X. Therefore f is a NS(WπG)CTS mapping.  

Example 3.10: 

 Let X= {a,b},Y={u,v} and  

G1= <𝑥, (
4

10
,

5

10
,

6

10
) , (

3

10
,

5

10
,

7

10
)>,  

G2= <𝑦, (
6

10
,

5

10
,

4

10
) , (

4

10
,

5

10
,

4

10
) >.  

Then NSτ = { 0NS , G1, 1NS } and NSσ = { 0NS , G2, 1NS } are NSTs on X and Y respectively.  

Define a mapping f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) by f(a)=u and f(b)=v.  

The NSS, B= <𝑦, (
4

10
,

5

10
,

6

10
) , (

4

10
,

5

10
,

4

10
)> is NSCS in Y. Then f−1(B) is  NS(WπG)CS in X,  

but not NS(P)CS in X. Therefore f is NS(WπG)CTS mapping but not a NS(P) CTS mapping.  
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Proposition 3.11: 

 Every NS(G)CTSmapping is a NS(WπG)CTS mapping but not conversely.  

Proof: 

 Let f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) be a NS(G)CTS mapping. Let B be a NSCS in Y. Since f is a NS(G)CTS mapping, 

f−1(B) is a NS(G)CS in X. Since every NS(G)CS is a NS(WπG)CS, f−1(B) is a NS(WπG)CS in X. Thus f is a 

NS(WπG)CTS mapping.  

Example 3.12: Let X= {a,b},𝑌={𝑢,𝑣} and  

G1= <𝑥, (
2

10
,

5

10
,

7

10
) , (

3

10
,

5

10
,

6

10
)> ,  

G2= <𝑦, (
8

10
,

5

10
,

2

10
) , (

7

10
,

5

10
,

2

10
) >. 

 Then NSτ = { 0NS , G1, 1NS } and NSσ = { 0NS , G2, 1NS } are NSTs on X and Y respectively. 

 Define a mapping f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) by f(a)=u and f(b)=v.  

The NSS, B= <𝑦, (
2

10
,

5

10
,

8

10
) , (

2

10
,

5

10
,

7

10
) > is NSCS in Y, f−1(B) is NS(WπG)CS in X but not NS(G)CS in X. 

Therefore f is NS(WπG)CTS mapping but not a NS(G)CTS mapping.  

Proposition 3.13:  

Every NS(αG) continuous mapping is a NS(WπG)CTS mapping but not conversely.  

Proof:  

Let f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) be a NS(αG) continuous mapping. Let B be a NSCS in Y. Then by definition, f−1(B) is a 

NS(αG)CS in X. Since every NS(αG)CS is a NS(WπG)CS,f−1(B) is a NS(WπG)CS in X. So, f is a NS(WπG)CTS 
mapping.  

Example 3.14: 

 Let X= {a,b},Y={u,v} and  

G1= <𝑥, (
4

10
,

5

10
,

2

10
) , (

6

10
,

5

10
,

2

10
)> ,  

G2= <𝑦, (
6

10
,

5

10
,

4

10
) , (

2

10
,

5

10
,

3

10
)>. Then NSτ = { 0NS , G1, 1NS } and NSσ= { 0NS , G2, 1NS } are NSTs on X and Y 

respectively.  

Define a mapping f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) by f(a)=u and f(b)=v.  

The NSS, B= <𝑦, (
4

10
,

5

10
,

6

10
) , (

3

10
,

5

10
,

2

10
)> is NSCS in Y. Then f−1(B) is NS(WπG)CS in X, but not NS(αG)CS in 

X. Therefore f is NS(WπG) CTS mapping but not a NS(αG) continuous mapping.  

Remark 3.15:  
NSS continuous mapping and NS(WπG)CTS mapping are independent to each other.  

Example 3.8: Let X= {a,b},Y={u,v} and  

G1= <𝑥, (
4

10
,

5

10
,

6

10
) , (

3

10
,

5

10
,

7

10
) > ,  

G2= <𝑦, (
6

10
,

5

10
,

4

10
) , (

7

10
,

5

10
,

3

10
) >.  

Then NSτ = { 0NS , G1,1NS } and NSσ ={0NS , G2, 1NS } are NSTs on X and Y respectively. 

 Define a mapping f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) by f(a)=u and f(b)=v.  

Then f is NSS continuous mapping but not a NS(WπG)CTS mapping,  

since B= <𝑦, (
4

10
,

5

10
,

6

10
) , (

3

10
,

5

10
,

2

10
) > is a NSSCS in Y, 

 but f−1(B) = <𝑥, (
4

10
,

5

10
,

6

10
) , (

3

10
,

5

10
,

2

10
) > is not a NS(WπG)CS in X.  

Example 3.16:  

Let X= {a,b},Y={u,v} and  

G1= <𝑥, (
9

10
,

5

10
,

1

10
) , (

7

10
,

5

10
,

2

10
) > ,  

G2= <𝑦, (
3

10
,

5

10
,

4

10
) , (

7

10
,

5

10
,

6

10
)>.  

Then NSτ={ 0NS , G1, 1NS } and NSσ={ 0NS , G2, 1NS } are NSTs on X and Y respectively. 

 Define a mapping f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) by f(a)=u and f(b)=v. Then f is NS(WπG)CTS mapping, but not a NSS 

continuous mapping, since B= <𝑦, (
7

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

4

10
) > is a NS(WπG)CS in Y,  

but f−1(B) = <𝑥, (
7

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

4

10
) > is not a NSSCS in X.  

Remark 3.17: NS(GS) CTS mapping and NS(WπG)CTS mapping are independent to each other.  

Example 3.18: Let X= {a,b},Y={ u,v} and  
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G1= <𝑥, (
2

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

5

10
) >,  

G2= <𝑦, (
5

10
,

5

10
,

2

10
) , (

5

10
,

5

10
,

3

10
) >. Then  

NSτ = { 0NS , G1, 1NS } and NSσ = { 0NS ,G2, 1NS } are NSTs on X and Y respectively. 

 Define a mapping  f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) by f(a)=u and f(b)=v.  

Then f is NS(GS) CTS mapping, but not a NS(WπG)CTS mapping,  

since B= <𝑦, (
2

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

5

10
) > is a NS(GS)CS in Y,  

but f−1(B) = <𝑥, (
2

10
,

5

10
,

5

10
) , (

3

10
,

5

10
,

5

10
)> is not a NS(WπG)CS in X.  

Example 3.19:  

Let X= {a,b},Y= {u,v} and  

G1= <𝑥, (
5

10
,

5

10
,

2

10
) , (

6

10
,

5

10
,

2

10
) > ,  

G2= <𝑦, (
6

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

2

10
)>.  

Then NSτ= { 0NS , G1, 1NS } and NSσ = { 0NS , G2, 1NS } are NSTs on X and Y respectively. 

 Define a mapping f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) by f(a)=u and f(b)=v.  

Then f is NS(WπG)CTS mapping, but not a NS(GS) CTS mapping, 

 since B= <𝑦, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

6

10
) > is a NS(WπG)CS in Y  

but f−1(B)= <𝑥, (
3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

6

10
) > is not a NS(GS)CS in X.  

 

 

 

 
 

 

4.APPLICATIONS OF NEUTROSOPHIC WEAKLY π GENERALIZED CLOSED MAPPING  

 

Definition 4.1: 
 An NSTS (X, 𝑁𝑆𝜏) is called an Neutrosophic wπT1/2 space (NSwπT1/2) if every NSWπGCS in X is an NSCS  

  in X. 
Proposition 4.2: 

 A mapping f: (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) is NS(WπG) CTS, then the inverse image of each NSOS in Y is a NS(WπG)OS 

in X.  

Proof: 

 Let B be a NSOS in Y. This implies BC is NSCS in Y. Since f is NS(WπG) CTS, f−1(BC) is NS(WπG)CS in X. 

Since f−1(BC)= (f−1(B))C, f−1(B) is a NS(WπG)OS in X. 

Proposition 4.3: 

 Let f: X→Y be a NS(WπG)CTS mapping and X be a NSwπT1/2 space. Then f is a NSCTS mapping.  
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Proof:  
Let X be a NSwπT1/2 space and B be a NSCS in Y. Then by definition (4.1), f−1(B) is a NS(WπG)CS in X. So, 

f−1(B) is a NSCS in X. Therefore f is a NSCTS mapping. 

Proposition 4.4: 

 A mapping f:    (X, 𝑁𝑆𝜏) →(Y, 𝑁𝑆𝜎) be a NS(WπG)CTS mapping and g∘ f: (Y, 𝑁𝑆𝜎)→ (Z, 𝑁𝑆𝛿) is NS continuous, 

then g∘f∶(X, 𝑁𝑆𝜏) → (Z, 𝑁𝑆𝛿)is a NS(WπG) CTS.  

Proof:  
Let D be a NSCS in Z. Then by definition g−1(D) is a NSCS in Y. Since f is a NS(WπG)CTS mapping, inverse 

image of a NSCS in Y is a NS(WπG)CS in X. ie., f−1∘ g−1 (D) = (g∘f) −1(D)is a NS(WπG)CS in X. Therefore g∘f is a 

NS(WπG)CTS mapping. 

V.CONCLUSION 

Many different forms of closed sets have been introduced over the years. Various interesting problems arise when 

one considers openness. Its importance is significant in various areas of mathematics and related sciences, In this 

paper, we introduced the concept of NS(WπG)CTS in Neutrosophic Topological Spaces.This shall be extended in 

the future Research with some applications 
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