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Abstract: After the neutrosophic set (NS) was proposed, NS was used in many uncertainty problems.
The single-valued neutrosophic set (SVNS) is a special case of NS that can be used to solve real-word
problems. This paper mainly studies multigranulation neutrosophic rough sets (MNRSs) and their
applications in multi-attribute group decision-making. Firstly, the existing definition of neutrosophic
rough set (we call it type-I neutrosophic rough set (NRSI) in this paper) is analyzed, and then
the definition of type-II neutrosophic rough set (NRSII), which is similar to NRSI, is given and
its properties are studied. Secondly, a type-III neutrosophic rough set (NRSIII) is proposed and
its differences from NRSI and NRSII are provided. Thirdly, single granulation NRSs are extended
to multigranulation NRSs, and the type-I multigranulation neutrosophic rough set (MNRSI) is
studied. The type-II multigranulation neutrosophic rough set (MNRSII) and type-III multigranulation
neutrosophic rough set (MNRSIII) are proposed and their different properties are outlined. We found
that the three kinds of MNRSs generate tcorresponding NRSs when all the NRs are the same. Finally,
MNRSIII in two universes is proposed and an algorithm for decision-making based on MNRSIII is
provided. A car ranking example is studied to explain the application of the proposed model.

Keywords: inclusion relation; neutrosophic rough set; multi-attribute group decision-making
(MAGDM); multigranulation neutrosophic rough set (MNRS); two universes

1. Introduction

Many theories have been applied to solve problems with imprecision and uncertainty. Fuzzy set
(FS) theories [1–3] use the degree of membership to solve the fuzziness. Rough set (RS) theories [4–7]
deal with uncertainty by lower and upper approximation (LUA). Soft set theories [8–10] deal with
uncertainty by using a parametrized set. However, all these theories have their own restrictions.
Smarandache proposed the concept of the neutrosophic set (NS) [11], which was a generalization of
the intuitionistic fuzzy set (IFS). To address real-world uncertainty problems, Wang et al. proposed the
single-valued neutrosophic set (SVNS) [12]. Many theories about neutrosophic sets were studied and
extended single-valued neutrosophic set [13–15]. Zhang et al. [16] analyzed two kinds of inclusion
relations of the NS and then proposed the type-3 inclusion relation of NS. The combinations of the
FS and RS are popular and produce many interesting results [17]. Broumi and Smarandache [18]
combined the RS and NS, then produced a rough NS and studied its qualities. Yang et al. [19] combined
the SVNS and RS, then produced the SVNRS (single-valued neutrosophic rough set) and studied
its qualities.

From the view point of granular computing, the RS uses upper and lower approximations
to solve uncertainty problems, shown by single granularity. However, with the complexity of
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real-word problems, we often encounter multiple relationship concepts. Qian and Liang [20] proposed
a multigranularity rough set (MGRS). Many scholars have generalized MGRS and acquired some
interesting consequences [21–26]. Zhang et al. [27] proposed non-dual MGRSs and investigated
their qualities.

Few articles have been published about the combination of NSs and multigranulation rough
sets. In this paper, we study three kinds of neutrosophic rough sets (NRSs) and multigranulation
neutrosophic rough sets (MNRSs) that are based on three kinds of inclusion relationships of NS
and corresponding union and intersection relationships [11,12,16]. Their different properties are
discussed. We found that MNRSs degenerate to corresponding NRSs when the NRs are the same.
Yang et al. [19] defined the NRSI and considered its properties. Bo et al. [28] proposed MNRSI and
discussed its properties. In this paper, we study NRSII and MNRSII. We also study NRSIII and
MNRSIII, which are based on a type-3 inclusion relationship and corresponding union and intersection
relationships. Finally, we use MNRSIII on two universes to solve multi-attribute group decision-making
(MAGDM) problems.

The structure of this article is as follows: In Section 2, some basic notions and operations of
NRSI and NRSII are introduced. In Section 3, the definition of NRSIII is proposed and its qualities are
investigated, and the differences between NRSI, NRSII, and NRSIII are illustrated using an example.
In Section 4, MNRSI and MNRSII are discussed. In Section 5, MNRSIII is proposed and its differences
from MNRSI and MNRSII are studied. In Section 6, MNRSIII on two universes is proposed and
an application to solve the MAGDM problem is outlined. Finally, Section 7 provides our conclusions
and outlook.

2. Preliminary

In this chapter, we look back at several basic concepts of type-I NRS, then propose the definition
and properties of type-II NRS.

Definition 1. [12] A single valued neutrosophic set A in X is denoted by:

A = {(x, TA(x), IA(x), FA(x))|x ∈ X }, (1)

where TA(x), IA(x), FA(x) ∈ [0, 1] for each point x in X and satisfies the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.
For convenience, “SVNS” is abbreviated to “NS” later. Here, NS(X) denotes the set of all SVNS in X.

Definition 2. [29] A neutrosophic relation (NR) is a neutrosophic fuzzy subset of X × Y, that is, ∀x ∈ X,
y ∈ Y,

R(x, y) = (TR, IR, FR), (2)

where TR: X × Y→ [0, 1], IR: X × Y→ [0, 1], and FR: X × Y→ [0, 1] and satisfies 0 ≤ TR + IR + FR ≤ 3.
NR(X × Y) denotes all the NRs in X × Y.

Definition 3. [19] Suppose (U, R) is a neutrosophic approximation space (NAS). ∀A ∈ NS(U), the LUA of A,
denoted by R(A) and R(A), is defined as: ∀x ∈ U,

R(A) = ∩
y∈U

(Rc(x, y) ∪ A(y)), R(A) = ∪
y∈U

(R(x, y) ∩ A(y)). (3)

The pair
(

R(A), R(A)
)

is called the SVNRS of A. In this paper, we called it type-I neutrosophic rough set
(NRSI). Because the definition of NRSI is based on the type-1 operator of NS, the definition can be written as:

NRSI(A) = ∩1
y∈U

(Rc(x, y) ∪1 A(y)), NRSI(A) = ∪1
y∈U

(R(x, y) ∩1 A(y)). (4)
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Proposition 1. [19] Suppose (U, R) is an NAS. ∀A, B ∈ NS(U), we have:

(1) If A ⊆1 B, then NRSI(A) ⊆1 NRSI(B) and NRSI(A) ⊆1 NRSI(B).
(2) NRSI(A ∩1 B) = NRSI(A) ∩1 NRSI(B), NRSI(A ∪1 B) = NRSI(A) ∪1 NRSI(B).
(3) NRSI(A) ∪1 NRSI(B) ⊆1 NRSI(A ∪1 B), NRSI(A ∩1 B) ⊆1 NRSI(A) ∩1 NRSI(B).

According to the NRSI, we can get the definition and properties of NRSII, which is based on the
type-2 operator of NS.

Definition 4. Suppose (U, R) is an NAS. ∀A ∈ NS(U), the type-II LUA of A, is defined as:

NRSI I(A) = ∩2
y∈U

(Rc(x, y) ∪2 A(y)), NRSI I(A) = ∪2
y∈U

(R(x, y) ∩2 A(y)) (5)

The pair
(

NRSI I(A), NRSI I(A)
)

is called NRSII of A.

Proposition 2. Suppose (U, R) is an NAS. ∀A, B ∈ NS(U), we have:

(1) If A ⊆2 B, then NRSI I(A) ⊆2 NRSI I(B), NRSI I(A) ⊆2 NRSI I(B).
(2) NRSI I(A ∩2 B) = NRSI I(A) ∩2 NRSI I(B), NRSI I(A ∪2 B) = NRSI I(A) ∪2 NRSI I(B).
(3) NRSI I(A) ∪2 NRSI I(B) ⊆2 NRSI I(A ∪2 B), NRSI I(A ∩2 B) ⊆2 NRSI I(A) ∩2 NRSI I(B).

Definition 5. [22] Suppose A, B are two NSs, then the Hamming distance between A and B is defined as:

dN(A, B) =
n

∑
i=1
{|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|}. (6)

3. Type-III NRS

In this chapter, we introduce a new NRS, type-III NRS (NRSIII). We provide the differences
between the three kinds of NRSs. The properties of NRSIII are also given.

Definition 6. Suppose (U, R) is an NAS. ∀A ∈ NS(U), the type-III LUA of A, is defined as:

NRSI I I(A) = ∩3
y∈U

(Rc(x, y) ∪3 A(y)), NRSI I I(A) = ∪3
y∈U

(R(x, y) ∩3 A(y)).

The pair
(

NRSI I I(A), NRSI I I(A)
)

is called NRSIII of A.

Proposition 3. Suppose (U, R) is an NAS. ∀A, B ∈ NS(U), we have:

(1) If A ⊆3 B, then NRSI I I(A) ⊆3 NRSI I I(B), NRSI I I(A) ⊆3 NRSI I I(B).
(2) NRSI I I(A ∩3 B) ⊆3 NRSI I I(A) ∩3 NRSI I I(B), NRSI I I(A) ∪3 NRSI I I(B) ⊆3 NRSI I I(A ∪3 B).
(3) NRSI I I(A ∩3 B) ⊆3 NRSI I I(A) ∩3 NRSI I I(B), NRSI I I(A) ∪3 NRSI I I(B) ⊆3 NRSI I I(A ∪3 B).

Proof. (1) Assume A ⊆3 B,
Case 1: If TA(x) < TB(x), FA(x) ≥ FB(x), then:

TNRSI I I(A)(x) = ∧
y∈U

[FR(x, y) ∨ TA(y)] ≤ ∧
y∈U

[FR(x, y) ∨ TB(y)] = TNRSI I I(B)(x)

FNRSI I I(A)(x) = ∨
y∈U

[TR(x, y) ∧ FA(y)] ≥ ∨
y∈U

[TR(x, y) ∧ FB(y)] = FNRSI I I(B)(x).
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Hence,
NRSI I I(A) ⊆3 NRSI I I(B).

Case 2: If TA(x) = TB(x), FA(x) > FB(x), then:

TNRSI I I(A)(x) = ∧
y∈U

[FR(x, y) ∨ TA(y)] = ∧
y∈U

[FR(x, y) ∨ TB(y)] = TNRSI I I(B)(x)

FNRSI I I(A)(x) = ∨
y∈U

[TR(x, y) ∧ FA(y)] ≥ ∨
y∈U

[TR(x, y) ∧ FB(y)] = FNRSI I I(B)(x).

Hence,
NRSI I I(A) ⊆3 NRSI I I(B).

Case 3: suppose TA(x) = TB(x), FA(x) = FB(x) and IA(x) ≤ IB(x), then:

TNRSI I I(A)(x) = ∧
y∈U

[FR(x, y) ∨ TA(y)] = ∧
y∈U

[FR(x, y) ∨ TB(y)] = TNRSI I I(B)(x)

FNRSI I I(A)(x) = ∨
y∈U

[TR(x, y) ∧ FA(y)] = ∨
y∈U

[TR(x, y) ∧ FB(y)] = FNRSI I I(B)(x)

INRSI I I(A)(x) =


IA
(
yj
)
, Rc(x, yj

)
⊆3 A

(
yj
)
⊆3 A(yk), yk, yj ∈ U

IRc
(

x, yj
)
, A

(
yj
)
⊆3 Rc(x, yj

)
1, else

IMNRSI I I
o(B)(x) =


IB
(
yj
)
, Ri

c(x, yj
)
⊆3 B

(
yj
)
⊆3 B(yk), yk, yj ∈ U

IRi
c
(

x, yj
)
, B

(
yj
)
⊆3 Ri

c(x, yj
)

1, else
.

Hence, INRSI I I(A)(x) ≤ INRSI I I(B)(x). So NRSI I I(A) ⊆3 NRSI I I(B).
Summing up the above, if A ⊆3 B, then NRSI I I(A) ⊆3 NRSI I I(B).
Similarly, we can get NRSI I I(A) ⊆3 NRSI I I(B).
(2) According the Definition 6, we have:

NRSI I I(A ∩3 B) = ∩3
y∈U

[Rc(x, y) ∪3 (A ∩3 B)(y)]

⊆3

[
∩3

y∈U
(Rc(x, y) ∪3 A(y))

]
∩3

[
∩3

y∈U
(Rc(x, y) ∪3 B(y))

]
= NRSI I I(A) ∩3 NRSI I I(B).

Similarly,

NRSI I I(A) ∪3 NRSI I I(B) =

[
∩3

y∈U
(Rc(x, y) ∪3 A(y))

]
∪3

[
∩3

y∈U
(Rc(x, y) ∪3 B(y))

]
⊆3 ∩3

y∈U
[Rc(x, y) ∪3 (A ∪3 B)(y)]

= NRSI I I(A ∪3 B).

(3) The proof is similar to that of Case 2. �

Example 1. Define NAS (U, R), where U = {x1, x2} and R is given in Table 1.

Table 1. A neutrosophic relation R.

R x1 x2

x1 (0.4, 0.6, 0.7) (0.2, 0.2, 0.9)
x2 (0.7, 0.1, 0.4) (0.8, 0.8, 0.6)
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Suppose A is an NS and A = {(x1, 0.8, 0.2, 0.1), (x2, 0.4, 0.9, 0.5). Then, by Definitions 3, 4 and 6,
we can get:

NRSI(A)(x1) = (0.8, 0.8, 0.2), NRSI(A)(x2) = (0.6, 0.2, 0.5),
NRSI(A)(x1) = (0.4, 0.6, 0.7), NRSI(A)(x2) = (0.7, 0.2, 0.4),

NRSI I(A)(x1) = (0.8, 0.4, 0.2), NRSI I(A)(x2) = (0.6, 0.9, 0.5),
NRSI I(A)(x1) = (0.4, 0.2, 0.7), NRSI I(A)(x2) = (0.7, 0.8, 0.4),
NRSI I I(A)(x1) = (0.8, 1, 0.2), NRSI I I(A)(x2) = (0.6, 0, 0.5),

NRSI I I(A)(x1) = (0.4, 0.6, 0.7), NRSI I I(A)(x2) = (0.7, 0.1, 0.4).

4. Type-I and Type-II MNRS

We have proposed a kind of multigranulation neutrosophic rough set [30] (we called it type-I
multigranulation neutrosophic rough set in this paper). MNRSI is based on a type-1 operator of NRs.
In this chapter, we define the type-II multigranulation neutrosophic rough set (MNRSII), which is
based on a type-2 operator of NRs.

Definition 7. [28] Suppose U is a non-empty finite universe, and Ri (1 ≤ i ≤ m) is a binary NR on U. We call
the tuple ordered set (U, Ri) the multigranulation neutrosophic approximation space (MNAS).

Definition 8. [28] Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-I optimistic LUA of A, represented by
MNRSI

o(A) and MNRSI
o
(A), is defined as:

MNRSI
o(A)(x) =

m
∪1
i=1

(
∩1

y∈U
(Ri

c(x, y) ∪1 A(y))

)

MNRSI
o
(A)(x) =

m
∩1
i=1

(
∪1

y∈U
(Ri(x, y) ∩1 A(y))

)
.

Then, A is named a definable NS when MNRSI
o(A) = MNRSI

o
(A). Alternatively, we name the pair(

MNRSI
o(A), MNRSI

o
(A)

)
an optimistic MNRSI.

Definition 9. [30] Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-I pessimistic LUA of A, represented
by MNRSI

p(A) and MNRSI
p
(A), is defined as:

MNRSI
p(A)(x) =

m
∩1
i=1

(
∩1

y∈U
(Ri

c(x, y) ∪1 A(y))

)

MNRSI
p
(A)(x) =

m
∪1
i=1

(
∪1

y∈U
(Ri(x, y) ∩1 A(y))

)
.

Similarly, A is named a definable NS when MNRSI
p(A) = MNRSI

p
(A). Alternatively, we name the

pair
(

MNRSI
p(A), MNRSI

p
(A)

)
a pessimistic MNRSI.

Definition 10. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-II optimistic LUA of A, represented by
MNRSI I

o(A) and MNRSI I
o
(A), is defined as:

MNRSI I
o(A)(x) =

m
∪2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 A(y))

)

MNRSI I
o
(A)(x) =

m
∩2
i=1

(
∪2

y∈U
(Ri(x, y) ∩2 A(y))

)
.
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Then, A is named a definable NS when MNRSI I
o(A) = MNRSI I

o
(A). Alternatively, we name the pair(

MNRSI I
o(A), MNRSI I

o
(A)

)
an optimistic MNRSII.

Definition 11. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-II pessimistic LUA of A, represented by
MNRSI I

p(A) and MNRSI I
p
(A), is defined as:

MNRSI I
p(A)(x) =

m
∩2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 A(y))

)

MNRSI I
p
(A)(x) =

m
∪2
i=1

(
∪2

y∈U
(Ri(x, y) ∩2 A(y))

)
.

Similarly, A is named a definable NS when MNRSI I
p(A) = MNRSI I

p
(A). Alternatively, we name the

pair
(

MNRSI I
p(A), MNRSI I

p
(A)

)
a pessimistic MNRSII.

Proposition 4. Suppose (U, Ri) is an MNAS. ∀A, B ∈ NS(U), then:

(1) MNRSI I
o(A) = ∼ MNRSI I

o
(∼ A), MNRSI I

p(A) = ∼ MNRSI I
p
(∼ A).

(2) MNRSI I
o
(A) = ∼ MNRSI I

o(∼ A), MNRSI I
p
(A) = ∼ MNRSI I

p(∼ A).
(3) MNRSI I

o(A ∩2 B) = MNRSI I
o(A) ∩2 MNRSI I

o(B), MNRSI I
p(A ∩2 B) = MNRSI I

p(A) ∩2

MNRSI I
p(B).

(4) MNRSI I
o
(A ∪2 B) = MNRSI I

o
(A) ∪2 MNRSI I

o
(B), MNRSI I

p
(A ∪2 B) = MNRSI I

p
(A) ∪2

MNRSI I
p
(B).

(5) A ⊆2 B⇒ MNRSI I
o(A) ⊆2 MNRSI I

o(B), MNRSI I
p(A) ⊆2 MNRSI I

p(B) .

(6) A ⊆2 B⇒ MNRSI I
o
(A) ⊆2 MNRSI I

o
(B), MNRSI I

p
(A) ⊆2 MNRSI I

p
(B) .

(7) MNRSI I
o(A) ∪2 MNRSI I

o(B) ⊆2 MNRSI I
o(A ∪2 B), MNRSI I

p(A) ∪2 MNRSI I
p(B) ⊆2

MNRSI I
p(A ∪2 B).

(8) MNRSI I
o
(A ∩2 B) ⊆2 MNRSI I

o
(A) ∩2 MNRSI I

o
(B), MNRSI I

p
(A ∩2 B) ⊆2 MNRSI I

p
(A) ∩2

MNRSI I
p
(B).

Proof. Equations (1), (2), (5), and (6) are obviously according to Definitions 10 and 11. Next, we will
prove Equations (3), (4), (7), and (8).

(3) By Definition 10,

MNRSI I
o(A ∩2 B)(x) =

m
∪2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 (A ∩2 B)(y))

)

=
n
∪2
i=1

(
∩2

y∈U
((Ri

c(x, y) ∪2 A(y)) ∩ (Ri
c(x, y) ∪2 B(y)))

)

=

(
n
∪2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 A(y))

))
∩2

(
n
∪2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 B(y))

))
= MNRSI I

o A(x) ∩2 MNRSI I
oB(y).

Similarly, from Definition 11, we can get the following:

MNRSI I
p(A ∩2 B) = MNRSI I

p(A) ∩2 MNRSI I
p(B).

(4) The proof is similar to that of Equation (3).
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(7) By Definition 10, we can get:

TMNRSI I
o(A∪2B)(x) =

m
max
i=1

min
y∈U

{
max[FRi (x, y), (max(TA(y), TB(y)))]

}
=

m
max
i=1

min
y∈U

{
max[(max(FRi (x, y), TA(y))), (max(FRi (x, y), TB(y)))]

}
≥ max

{[
m

max
i=1

min
y∈U

(max(FRi (x, y), TA(y)))
]

,
[

m
max
i=1

min
y∈U

(max(FRi (x, y), TB(y)))
]}

= max
(

TMNRSI I
o(A)(x), TMNRSI I

o(B)(x)
)

.

IMNRSI I
o(A∪2 B)(x) =

m
max
i=1

min
y∈U

{
max

[(
1− IRi (x, y)

)
, (max(IA(y), IB(y)))

]}
=

m
max
i=1

min
y∈U

{
max

[(
max

((
1− IRi (x, y)

)
, IA(y)

))
,
(
max

((
1− IRi (x, y)

)
, IB(y)

))]}
≥ max

{[
m

max
i=1

min
y∈U

(
max

((
1− IRi (x, y)

)
, IA(y)

))]
,
[

m
max
i=1

min
y∈U

(
max

((
1− IRi (x, y)

)
, IB(y)

))]}
= max

(
IMNRSI I

o(A)(x), IMNRSI I
o(B)(x)

)
.

FMNRSI I
o(A∪2B)(x) =

m
min
i=1

max
y∈U

{
min[TRi (x, y), (min(FA(y), FB(y)))]

}
=

m
min
i=1

max
y∈U

{
min[min(TRi (x, y), FA(y))], [min(TRi (x, y), FB(y))]

}
≤ min

{[
m

min
i=1

max
y∈U

(min(TRi (x, y), FA(y)))
]

,
[

m
min
i=1

max
y∈U

(min(TRi (x, y), FB(y)))
]}

= min
(

FMNRSI I
o(A)(x), FMNRSI I

o(B)(x)
)

.

Hence, MNRSI I
o(A) ∪2 MNRSI I

o(B) ⊆2 MNRSI I
o(A ∪2 B).

Additionally, according to Definition 11, we can get MNRSI I
p(A) ∪2 MNRSI I

p(B) ⊆2

MNRSI I
p(A ∪2 B).

(8) The proof is similar to that of Equation (7). �

Remark 1. Note that if the NRs are the same one, then the optimistic (pessimistic) MNRSII degenerates into
NRSII in Section 2.

5. Type-III MNRS

In this chapter, MNRSIII, which is based on a type-3 inclusion relation and corresponding union
and intersection relations, is proposed and their characterizations are provided.

Definition 12. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-III optimistic LUA of A, represented by
MNRSI I I

o(A) and MNRSI I I
o
(A), is defined as:

MNRSI I I
o(A)(x) =

m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

)

MNRSI I I
o
(A)(x) =

m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 A(y))

)
.

Then, A is named a definable NS when MNRSI I I
o(A) = MNRSI I I

o
(A). Alternatively, we name the

pair
(

MNRSI I I
o(A), MNRSI I I

o
(A)

)
an optimistic MNRSIII.

Definition 13. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-III pessimistic LUA of A, represented by
MNRSI I I

p(A) and MNRSI I I
p
(A), is defined as:

MNRSI I I
p(A)(x) =

m
∩3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

)
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MNRSI I I
p
(A)(x) =

m
∪3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 A(y))

)
.

Similarly, A is named a definable NS when MNRSI I I
p(A) = MNRSI I I

p
(A). Alternatively, we name

the pair
(

MNRSI I I
p(A), MNRSI I I

p
(A)

)
a pessimistic MNRSIII.

Proposition 5. Suppose (U, Ri) is an MNAS. ∀A, B ∈ NS(U), then:

(1) MNRSI I I
o(A) =∼ MNRSI I I

o
(∼ A), MNRSI I I

p(A) =∼ MNRSI I I
p
(∼ A).

(2) MNRSI I I
o
(A) =∼ MNRSI I I

o(∼ A), MNRSI I I
p
(A) =∼ MNRSI I I

p(∼ A).
(3) A ⊆3 B⇒ MNRSI I I

o(A) ⊆3 MNRSI I I
o(B), MNRSI I I

p(A) ⊆3 MNRSI I I
p(B) .

(4) A ⊆3 B⇒ MNRSI I I
o
(A) ⊆3 MNRSI I I

o
(B), MNRSI I I

p
(A) ⊆3 MNRSI I I

p
(B) .

(5) MNRSI I I
o(A ∩3 B) ⊆3 MNRSI I I

o(A) ∩3 MNRSI I I
o(B), MNRSI I I

p(A ∩3 B) ⊆3

MNRSI I I
p(A) ∩3 MNRSI I I

p(B).

(6) MNRSI I I
o
(A) ∪3 MNRSI I I

o
(B) ⊆3 MNRSI I I

o
(A ∪3 B), MNRSI I I

p
(A) ∪3 MNRSI I I

p
(B) ⊆3

MNRSI I I
p
(A ∪3 B).

(7) MNRSI I I
o(A) ∪3 MNRSI I I

o(B) ⊆3 MNRSI I I
o(A ∪3 B), MNRSI I I

p(A) ∪3 MNRSI I I
p(B) ⊆3

MNRSI I I
p(A ∪3 B).

(8) MNRSI I I
o
(A ∩3 B) ⊆3 MNRSI I I

o
(A) ∩3 MNRSI I I

o
(B), MNRSI I I

p
(A ∩3 B) ⊆3

MNRSI I I
p
(A) ∩3 MNRSI I I

p
(B).

Proof. Equations (1) and (2) can be directly derived from Definitions 12 and 13. We only provide the
proof of Equations (3)–(8).

(3) Suppose A ⊆3 B, then:
Case 1: If TA(x) < TB(x), FA(x) ≥ FB(x), then:

TMNRSI I I
o(A)(x) =

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TA(y)

]
≤

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TB(y)

]
= TMNRSI I I

o(B)(x)

FMNRSI I I
o(A)(x) =

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FA(y)

]
≥

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FB(y)

]
= FMNRSI I I

o(B)(x).

Hence, MNRSI I I
o(A) ⊆3 MNRSI I I

o(B).
Case 2: If TA(x) = TB(x), FA(x) > FB(x), then:

TMNRSI I I
o(A)(x) =

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TA(y)

]
=

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TB(y)

]
= TMNRSI I I

o(B)(x)

FMNRSI I I
o(A)(x) =

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FA(y)

]
≥

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FB(y)

]
= FMNRSI I I

o(B)(x).

Hence, MNRSI I I
o(A) ⊆3 MNRSI I I

o(B).
Case 3: suppose TA(x) = TB(x), FA(x) = FB(x) and IA(x) ≤ IB(x), then:

TMNRSI I I
o(A)(x) =

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TA(y)

]
=

m
∨

i=1
∧

y∈U

[
FRi (x, y) ∨ TB(y)

]
= TMNRSI I I

o(B)(x)

FMNRSI I I
o(A)(x) =

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FA(y)

]
≥

m
∧

i=1
∨

y∈U

[
TRi (x, y) ∧ FB(y)

]
= FMNRSI I I

o(B)(x)

IMNRSI I I
o(A)(x) =


IA
(
yj
)
, Ri

c(x, yj
)
⊆3 A

(
yj
)
⊆3 A(yk), yk, yj ∈ U

IRi
c
(
x, yj

)
, A
(
yj
)
⊆3 Ri

c(x, yj
)

0, else
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IMNRSI I I
o(B)(x) =


IB
(
yj
)
, Ri

c(x, yj
)
⊆3 B

(
yj
)
⊆3 B(yk), yk, yj ∈ U

IRi
c
(
x, yj

)
, B
(
yj
)
⊆3 Ri

c(x, yj
)

0, else
.

Hence, IMNRSI I I
o(A)(x) ≤ IMNRSI I I

o(B)(x). So, MNRSI I I
o(A) ⊆3 MNRSI I I

o(B).
Summing up the above, if A ⊆3 B, then MNRSI I I

o(A) ⊆3 MNRSI I I
o(B).

Similarly, we can get MNRSI I I
p(A) ⊆3 MNRSI I I

p(B).
(4) The proof is similar to that of Equation (3).
(5) From Definition 12, we have:

MNRSI I I
o(A ∩3 B) =

m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 (A(y) ∩3 B(y)))

)

⊆3
m
∪3
i=1

(
∩3

y∈U
((Ri

c(x, y) ∪3 A(y)) ∩3 (Ri
c(x, y) ∪3 B(y)))

)

⊆3

(
m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

))
∩3

(
m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 B(y))

))
= MNRSI I I

o(A) ∩3 MNRSI I I
o(B).

Similarly, from Definition 13, we can get MNRSI I I
p(A ∩3 B) ⊆3 MNRSI I I

p(A) ∩3 MNRSI I I
p(B).

(6) From Definition 12, we have:

MNRSI I I
o
(A) ∪3 MNRSI I I

o
(B) =

(
m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 A(y))

))
∪3

(
m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 B(y))

))

⊆3
m
∩3
i=1

(
∪3

y∈U
((Ri(x, y) ∩3 A(y)) ∪3 (Ri(x, y) ∩3 B(y)))

)

⊆3
m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 (A(y) ∪3 B(y)))

)
= MNRSI I I

o
(A ∪3 B).

Similarly, from Definition 13, we can get MNRSI I I
p
(A ∪3 B) = MNRSI I I

p
(A) ∪3 MNRSI I I

p
(B).

(7) From Definition 12, we have:

MNRSI I I
o(A ∪3 B) =

m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 (A ∪3 B)(y))

)

=
m
∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 (A(y) ∪3 B(y)))

)

⊇3
m
∪3
i=1

(([
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

]
∪3

[
∩3

y∈U
(Ri

c(x, y) ∪3 B(y))

]))

=

(
m
∪3
i=1

[
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

])
∪3

(
m
∪3
i=1

[
∩3

y∈U
(Ri

c(x, y) ∪3 B(y))

])
= MNRSI I I

o(A) ∪3 MNRSI I I
o(B).

Hence, MNRSI I I
o(A) ∪3 MNRSI I I

o(B) ⊆3 MNRSI I I
o(A ∪3 B).

Additionally, from Definition 13, we can get MNRSI I I
p(A) ∪3 MNRSI I I

p(B) ⊆3

MNRSI I I
p(A ∪3 B).
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(8) From Definition 12, we have:

MNRSI I I
o
(A ∩3 B) =

m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 (A ∩3 B)(y))

)

=
m
∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 (A(y) ∩3 B(y)))

)

⊆3
m
∩3
i=1

([
∪2

y∈U
(Ri(x, y) ∩3 A(y))

]
∩3

[
∪3

y∈U
(Ri(x, y) ∩3 B(y))

])

=

(
m
∩3
i=1

[
∪3

y∈U
(Ri(x, y) ∩3 A(y))

])
∩3

(
m
∩3
i=1

[
∪3

y∈U
(Ri(x, y) ∩3 B(y))

])
= MNRSI I I

o
(A) ∩3 MNRSI I I

o
(B).

Hence, MNRSI I I
o
(A ∩3 B) ⊆3 MNRSI I I

o
(A) ∩3 MNRSI I I

o
(B).

Similarly, from Definition 13, we can get MNRSI I I
p
(A ∩3 B) ⊆3 MNRSI I I

p
(A) ∩3 MNRSI I I

p
(B).

�

Remark 2. Note that if the NRs are the same one, then the optimistic (pessimistic) MNRSIII degenerates into
NRSIII in Section 3.

6. Type-III MNRS in Two Universes with Its Applications

In this chapter, we propose the concept of MNRSIII in two universes and use it to deal with the
MAGDM problem.

Definition 14. [28] Suppose U, V are two non-empty finite universes, and Ri ∈ NS(U × V) (1 ≤ i ≤ m) is a
binary NR. We call (U, V, Ri) the MNAS in two universes.

Definition 15. Suppose (U, V, Ri) is an MNAS in two universes. ∀A ∈ NS(V) and x ∈ U, the type-III
optimistic LUA of A in (U, V, Ri), represented by MNRSI I I

o(A) and MNRSI I I
o
(A), is defined as:

MNRSI I I
o(A)(x) =

m
∪3
i=1

(
∩3

y∈V
(Ri

c(x, y) ∪3 A(y))

)

MNRSI I I
o
(A)(x) =

m
∩3
i=1

(
∪3

y∈V
(Ri(x, y) ∩3 A(y))

)
.

Then, A is named a definable NS in two universes when MNRSI I I
o(A) = MNRSI I I

o
(A). Alternatively,

we name the pair
(

MNRSI I I
o(A), MNRSI I I

o
(A)

)
an optimistic MNRSIII in two universes.

Definition 16. Suppose (U, V, Ri) is an MNAS in two universes. ∀A ∈ NS(V) and x ∈ U, the type-III
pessimistic LUA of A in (U, V, Ri), denoted by MNRSI I I

p(A) and MNRSI I I
p
(A), is defined as follows:

MNRSI I I
p(A)(x) =

m
∩3
i=1

(
∩3

y∈V
(Ri

c(x, y) ∪3 A(y))

)

MNRSI I I
p
(A)(x) =

m
∪3
i=1

(
∪3

y∈V
(Ri(x, y) ∩3 A(y))

)
.

Similarly, A is named a definable NS when MNRSI I I
p(A) = MNRSI I I

p
(A). Alternatively, we name

the pair
(

MNRSI I I
p(A), MNRSI I I

p
(A)

)
a pessimistic MNRSIII in two universes.
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Remark 3. Note that if the two domains are the same, then the optimistic (pessimistic) MNRSIII in two
universes degenerates into the optimistic (pessimistic) MNRSIII in a single universe in Section 5.

The MAGDM problem is becoming more and more generally present in our daily life. MAGDM
means to select or rank all the feasible alternatives in various criterions. There are many ways to solve
the MAGDM problem, but we use MNRS to solve it in this paper. Next, we give the basic description
of the considered MAGDM problem.

For the car-ranking question, suppose U = {x1, x2, . . . , xn} is the decision set and V = {y1, y2, . . . ,
ym} is the criteria set in which x1 represents “very popular”, x2 represents “popular”, x3 represents
“less popular”, . . . , xn represents “not popular”, y1 represents the vehicle type”, y2 represents the
size of the space, y3 represents the ride height, y4 represents quality, and . . . , ym represents length of
durability. Then, l selection experts make evaluations about the criteria sets according to their own
experiences. Here, the evaluations were shown by NRs. Next, we calculate the degree of popularity
for a given car. Therefore, we need to use MGNRS to solve the above problem. For the MAGDM
problem under a multigranulation neutrosophic environment, the optimistic lower approximation can
be regarded as an optimistic risk decision, and the optimistic upper approximation can be regarded
as an optimistic conservative decision. Additionally, the pessimistic lower approximation can be
regarded as a pessimistic risk decision and the pessimistic upper approximation can be regarded as
a pessimistic conservative decision. According to the distance of neutrosophic sets, we define the
difference function dN(A, B)(xi) = (1/3)(|TA(xi) − TB(xi)| + |IA(xi) − IB(xi)| + |FA(xi) − FB(xi)|). We
used the difference function to represent the distance of optimistic (pessimistic) upper and lower
approximation. The smaller the value of the distance is, the better the alternative xi is, because the
risk decision and the conservative decision are close. By comparing the distance value, all alternatives
can be ranked and we can choose the optimal alternative. In this paper, we only used three kinds of
optimistic upper and lower approximation to decision-making.

Next, we show the process of the above car-ranking question based on MGNRSs over two
universes. Let Rl ∈ NR(U × V) be NRs from U to V, where ∀(xi, yj) ∈ U × V, Rl(xi, yj) denotes the
degree of popularity for criteria set yj (yj ∈ V). Rl can be obtained according to experts’ experience.
Given a car A, according to the unconventional questionnaire (suppose there are three options—“like”,
“not like”, and “neutral” to choose for each of the criteria sets, and everyone can choose one or more
options), then we can get the popularity of every criterion as described by an NS A in the universe V
according to the questionnaire. By use of the following Algorithm 1, we can determine the degree of
popularity of the given car A.

Algorithm 1 Decision algorithm

Input Multigranulation neutrosophic decision information systems (U, V, R).
Output The degree of popularity of the given car.
Step 1 Computing three kinds of optimistic multigranulation LUA MNRSI

o(A), MNRSI
o
(A),

MNRSI I
o(A), MNRSI I

o
(A), MNRSI I I

o(A), MNRSI I I
o
(A).

Step 2 Calculate d(MNRSI
o(xi), MNRSI

o
(xi)), d(MNRSI I

o(xi), MNRSI I
o
(xi)) and

d(MNRSI I I
o(xi), MNRSI I I

o
(xi)).

Step 3 The best choice is to select xh (which means that the most welcome degree is xh) if
d(MNRSo(xh), MNRSo

(xh)) = mini∈{1,2,··· ,n}d(MNRSo(xi), MNRSo
(xi)).

Step 4 If h has two or more values, then each xh will be the best choice. In this case, the car may have two or
more popularities and each xk will be regarded as the most possible popularity; otherwise, we use other
methods to make a decision.

Next, we use an example to explain the algorithm.
Let U = {x1, x2, x3, x4} be the decision set, in which x1 denotes “very popular”, x2 denotes

“popular”, x3 denotes “less popular”, and x4 denotes “not popular”. Let V = {y1, y2, y3, y4, y5} be
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criteria sets, in which y1 denotes the vehicle type, y2 denotes the size of the space, y3 denotes the ride
height, y4 denotes quality, and y5 denotes length of durability.

Suppose that R1, R2, and R3 are given by three invited experts. They provide their evaluations for
all criteria yj with respect to decision set elements xi. The evaluation R1, R2, and R3 are NRs between
attribute set V and decision evaluation set U., that is., there are R1, R2, R3 ∈ NR(U × V).

Suppose three experts present their judgment (the neutrosophic relation R1, R2, and R3) for the
attribute and decision sets in Tables 2–4:

Table 2. Neutrosophic relation R1.

R1 y1 y2 y3 y4 y5

x1 (0.8, 0.6, 0.5) (0.2, 0.3, 0.9) (0, 0, 1) (0.7, 0.5, 0.6) (0, 0, 1)
x2 (0.6, 0.4, 0.6) (0.9, 0.3, 0.4) (1, 0, 0) (0, 0, 1) (0.3, 0.6, 0.7)
x3 (0.2, 0.5, 0.9) (0.6, 0.7, 0.5) (0.8, 0.7, 0.8) (0, 0, 1) (1, 0, 0)
x4 (0.6, 0.4, 0.7) (0, 0, 1) (0, 0, 1) (0.9, 0.8, 0.1) (0, 0, 1)

Table 3. Neutrosophic relation R2.

R2 y1 y2 y3 y4 y5

x1 (0.9, 0.3, 0.6) (0, 0, 1) (0, 0, 1) (0.5, 0.6, 0.5) (0.2, 0.3, 0.9)
x2 (0.3, 0.7, 0.8) (0.7, 0.5, 0.6) (0.9, 0.1, 0.1) (0, 0, 1) (0.4, 0.5, 0.8)
x3 (0.1, 0.6, 0.8) (0.3, 0.6, 0.5) (0.7, 0.3, 0.6) (0, 0, 1) (1, 0, 0)
x4 (0.7, 0.5, 0.6) (0, 0, 1) (0, 0, 1) (1, 0, 0) (0, 0, 1)

Table 4. Neutrosophic relation R3.

R3 y1 y2 y3 y4 y5

x1 (0.6, 0.9, 0.4) (0.1, 0.1, 0.8) (0.1, 0, 0.9) (0.8, 0.4, 0.8) (0, 0, 1)
x2 (0.5, 0.6, 0.6) (0.6, 0.2, 0.7) (1, 0, 0) (0, 0, 1) (0, 0, 1)
x3 (0.1, 0.4, 0.7) (0.2, 0.2, 0.7) (0.5, 0.7, 0.6) (0, 0, 1) (0.9, 0.1, 0.2)
x4 (0.6, 0.3, 0.4) (0, 0, 1) (0, 0, 1) (0.7, 0.5, 0.4) (0, 0, 1)

Suppose A is a car and each criterion in V is as follows:

A = {(y1, 0.9, 0.2, 0.2), (y2, 0.2, 0.7, 0.8), (y3, 0, 1, 0.3), (y4, 0.7, 0.6, 0.3), (y5, 0.1, 0.8, 0.9)}.

Then, we can calculate the three kinds of optimistic LUAs of A as follow:

MNRSI
o(A)(x1) = (0.8, 1, 0.3), MNRSI

o(A)(x2) = (0.1, 0.9, 0.6),
MNRSI

o(A)(x3) = (0.2, 0.8, 0.9), MNRSI
o(A)(x4) = (0.7, 1, 0.3),

MNRSI
o
(A)(x1) = (0.7, 0.6, 0.5), MNRSI

o
(A)(x2) = (0.3, 0.6, 0.3),

MNRSI
o
(A)(x3) = (0.2, 0.6, 0.8), MNRSI

o
(A)(x4) = (0.7, 0.5, 0.4),

MNRSI I
o(A)(x1) = (0.8, 0.6, 0.3), MNRSI I

o(A)(x2) = (0.1, 0.6, 0.6),
MNRSI I

o(A)(x3) = (0.2, 0.6, 0.9), MNRSI I
o(A)(x4) = (0.7, 0.6, 0.3),

MNRSI I
o
(A)(x1) = (0.7, 0.4, 0.5), MNRSI I

o
(A)(x2) = (0.3, 0.2, 0.3),

MNRSI I
o
(A)(x3) = (0.2, 0.6, 0.8), MNRSI I

o
(A)(x4) = (0.7, 0.2, 0.4),

MNRSI I I
o(A)(x1) = (0.8, 0, 0.3), MNRSI I I

o(A)(x2) = (0.1, 0, 0.6),
MNRSI I I

o(A)(x3) = (0.2, 0.9, 0.9), MNRSI I I
o(A)(x4) = (0.7, 0.6, 0.3),

MNRSI I I
o
(A)(x1) = (0.7, 1, 0.5), MNRSI I I

o
(A)(x2) = (0.3, 0, 0.3),

MNRSI I I
o
(A)(x3) = (0.2, 0.7, 0.8) MNRSI I I

o
(A)(x4) = (0.7, 0.5, 0.4).
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Therefore, we can get:

d(MNRSI
o(x1), MNRSI

o
(x1)) = 0.7/3, d(MNRSI

o(x2), MNRSI
o
(x2)) = 0.8/3,

d(MNRSI
o(x3), MNRSI

o
(x3)) = 0.1, d(MNRSI

o(x4), MNRSI
o
(x4)) = 0.2,

d(MNRSI I
o(x1), MNRSI I

o
(x1)) = 0.5/3, d(MNRSI I

o(x2), MNRSI I
o
(x2)) = 0.3,

d(MNRSI I
o(x3), MNRSI I

o
(x3)) = 0.1/3, d(MNRSI I

o(x4), MNRSI I
o
(x4)) = 0.5/3,

d(MNRSI I I
o(x1), MNRSI I I

o
(x1)) = 1.3/3, d(MNRSI I I

o(x2), MNRSI I I
o
(x2)) = 0.5/3,

d(MNRSI I I
o(x3), MNRSI I I

o
(x3)) = 0.1, d(MNRSI I I

o(x4), MNRSI I I
o
(x4)) = 0.2/3.

Thus, for the type-I and type-II MNRS, the optimistic best choice is to select x3, that is, this car
is less popular; for the type-III MNRS, the optimistic best choice is to select x4, that is, this car is
not popular.

7. Conclusions

NRS and MNRS are extensions of the Pawlak rough set theory. In this paper, we analysed the
NRSI and NRSII, we proposed model NRSIII, and used an example to outline the differences between
the three kinds of NRS. We gave the definition of MNRSIII, which is based on the type-3 operator
relation of NS, and considered their properties. Furthermore, we proposed MNRSIII in two universes
and we presented an algorithm of the MAGDM problem based on it.

In the future, we will be researching other types of fusions of MGRSs and NSs. We will also study
the applications of concepts in this paper to some algebraic systems (for example, pseudo-BCI algebras,
neutrosophic triplet groups, see [30,31]).
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