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Abstract: Information measures play an important role in the interval neutrosophic sets (INS) theory.
The main purpose of this paper is to study the similarity and entropy of INS and its application in
multi-attribute decision-making. We propose a new inclusion relation between interval neutrosophic
sets where the importance of the three membership functions may be different. Then, we propose
the axiomatic definitions of the similarity measure and entropy of the interval neutrosophic set (INS)
based on the new inclusion relation. Based on the Hamming distance, cosine function and cotangent
function, some new similarity measures and entropies of INS are constructed. Finally, based on the
new similarity and entropy, we propose a multi-attribute decision-making method and illustrate that
these new similarities and entropies are reasonable and effective.

Keywords: interval neutrosophic sets; inclusion relationship; similarity measure; entropy;
multi-attribute decision-making

1. Introduction

Zadeh [1,2] put forward the theory of fuzzy sets in 1965, which is an effective method
to deal with fuzzy information, but only limited to the truth-membership function. In actual
decision-making, because of the fuzziness of people’s thinking and the complexity of objective
things, it is difficult for decision-makers to evaluate only through truth-membership function.
On this basis, Atanassov [3] proposed an intuitionistic fuzzy set, and added a falsity-membership
function to the fuzzy set to represent uncertain information. That is to say, the intuitionistic
fuzzy concentration has both truth-membership function TA(x) and falsity-membership function
FA(x), and TA(x), FA(x) ∈ [0, 1], 0 ≤ TA(x) + FA(x) ≤ 1. However, intuitionistic fuzzy
sets can only solve incomplete information, but can not deal with the uncertain information
and inconsistent information in practical decision-making problems. For example, when voting,
some agreed, some opposed and some abstained. Therefore, Smarandache [4] proposed the
concept of neutrosophic sets. On the basis of the intuitionistic fuzzy set, a neutrosophic set is
characterized independently by the truth-membership function TA(x), the falsity-membership
function FA(x), and the indeterminacy-membership function IA(x). Wang et al. [5,6] proposed the
concept of single-valued neutrosophic sets (SVNS) and interval neutrosophic sets (INS), which are
the subclasses of neutrosophic sets, and the set-theoretic operators and various properties of
SVNSs and INSs are given. In the interval neutrosophic sets, the truth-membership function TA(x),
the indeterminacy-membership function IA(x), and the falsity-membership function FA(x) are all
expressed in the form of interval numbers. Then, some researchers put forward some algorithms of
SVNSs and INSs, and applied them to decision-making problems. The correlation coefficients and

Symmetry 2019, 11, 370; doi:10.3390/sym11030370 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/11/3/370?type=check_update&version=1
http://dx.doi.org/10.3390/sym11030370
http://www.mdpi.com/journal/symmetry


Symmetry 2019, 11, 370 2 of 10

weighted correlation coefficients of single-valued neutrosophic sets are proposed by Ye [7,8]. It is
proved that the cosine similarity under singular concentration is a special case of the correlation
coefficients. Furthermore, a single-valued neutrosophic cross-entropy measurement method is
proposed and applied to multi-attribute decision-making in single-valued neutrosophic environment.
Chi and Liu [9] applied a TOPSIS (The Order Performance technique based on Similarity to Ideal
Solution) method to classify interval neutrosophic multi-attribute decision-making problems to
alternative levels. Ye [10] proposed the Hamming distance and the Euclidean distance in INSs and
defined similarity measure based on distance, and applied them to multi-attribute decision-making
with interval neutrosophic information. In addition, Ye [11] proposed the definition of a simplified
neutrosophic set (SNS). It is a subclass of the neutrosophic set and includes an SVNS and an INS.
Ye also proposed some aggregation operators, including a simplified neutrosophic weighted arithmetic
average operator and a simplified neutrosophic weighted geometric average operator. Based on the
two aggregation operators and cosine similarity measure for SNSs, a multicriteria decision-making
method is established. Zhang et al. [12] further proposed the comparison rules on the basis of
truth-membership function, indeterminacy-membership function, and falsity-membership function
of interval neutrosophic number (INN). Based on the possibility degree of two interval numbers,
a comparison method was proposed. Then, the interval neutrosophic number weighted averaging
(INNWA) operator and interval neutrosophic number weighted geometry (INNWG) operator were
developed and applied to interval neutrosophic multi-attribute decision-making problems.

In 1972, De Luca and Termin gave the axiomatization definition of fuzzy entropy to characterize
the degree of uncertainty [13]. Similarity is mainly used to estimate the degree of similarity between
two objects. Wang [14] proposes the definition of similarity based on distance. Ye [7,8,10,11,15,16],
Ridvan Sahin et al. [17] studied the similarity and entropy of the interval neutrosophic sets from different
angles. Zhang et al. [18,19] proposed a new inclusion relationship of single-valued neutrosophic sets
(called type-3 inclusion relations), and gave the algebraic structure of the singular-valued neutrosophic
set corresponding to the type-3 inclusion relationship. Based on the third inclusion relationship,
Keyun Qin [20] proposed new similarity and entropy.

In this paper, we first give the definitions of the neutrosophic sets, interval neutrosophic sets,
then define the new inclusion relationship of the interval neutrosophic sets, and then give the new
similarity and entropy based on the new inclusion relationship. Then, apply it to multi-attribute
decisions. In Section 2, we introduced the related concepts of the neutrosophic sets and redefined the
inclusion relationship. In Section 3, we introduced the similarity and entropy of interval neutrosophic
value, and based on the new inclusion relationship, we reestablish a similarity and entropy. Then,
we extend the similarity and entropy of the interval neutrosophic value to the interval neutrosophic
sets. In Section 4, we give an example of applying new similarities and entropies to multi-attribute
decisions, and compare with other methods, the results show that the proposed similarity and entropy
are reasonable and effective.

2. Preliminaries

In this section, we recall some fundamental notions and properties related to an interval
neutrosophic set.

Definition 1. (See [4]) Let X be an object set and x be an element in the object set X. A neutrosophic set A of
X can be expressed as

A = {[x, (TA(x), IA(x), FA(x))]|x ∈ X},

where TA(x), IA(x) and FA(x) are real standard or nonstandard subsets of ]0−, 1+[, which represent
truth-membership, indeterminacy-membership, and falsity-membership, respectively, 0− ≤ TA(x) + IA(x) +
FA(x) ≤ 3+.
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In order to easily apply a neutrosophic set theory to science and engineering, Wang et al. [5]
presented the concept of interval neutrosophic set (INS) as follows.

Definition 2. (See [5]) Let X be an object set, an interval neutrosophic set A of X can be expressed as

A = {[x, (TA(x), IA(x), FA(x))]|x ∈ X},

where, for each x ∈ X, TA(x), IA(x) and FA(x) respectively represent truth-membership,
indeterminacy-membership, and falsity-membership, which are sub-sets belonging to [0, 1]. In addition,
((TA(x), IA(x), FA(x))) is the interval neutrosophic value.

Definition 3. (See [5]) The complement of A is defined as Ac = {[x, (TAc(x), IAc(x), FAc(x)]|x ∈ X}, among
them TAc = FA(x) = [FL

A(x), FU
A (x)], IAc(x) = [1− IU

A (x), 1− IL
A(x)], FAc = TA(x) = [TL

A(x), TU
A (x)].

For the inclusion relation of single-valued neutrosophic sets, an original definition is proposed by
Smarandache. It is called type-1 inclusion relation in [18,19]. Another one is called type-2 inclusion
relation. Similarly, in the interval neutrosophic set, an original definition is proposed by Smarandache,
we call it type-1 inclusion relation, and denoted by ⊆1.

Definition 4. (See [5]) let A, B be the two interval neutrosophic sets, A ⊆1 B if and only if TL
A(x) ≤ TL

B (x),
TU

A (x) ≤ TU
B (x), IL

A(x) ≥ IL
B(x), IU

A (x) ≥ IU
B (x), FL

A(x) ≥ FL
B (x), FU

A (x) ≥ FU
B (x).

Definition 5. Suppose that intervals [α1, β1], [α2, β2] ∈ [0, 1], then

(1) [α1, β1] ≤ [α2, β2], iff α1 ≤ α2 and β1 ≤ β2;

(2) [α1, β1] < [α2, β2], iff [α1, β1] ≤ [α2, β2] and α1 < α2 (or β1 < β2).

In Definition 4, truth-membership, indeterminacy-membership, and falsity-membership are
equally important, but, in some cases, people tend to pay more attention to true membership and false
membership, so Zhang et al. [19] proposed a new kind of inclusion relation and examined the basic
properties of the new kind of inclusion relation.

Definition 6. (See [19]) Let A and B be two neutrosophic sets in the universe X. The type-3 inclusion
relation is defined as follows: A ⊆2 B if and only if x ∈ X, (TA(x) < TB(x), FA(x) < FB(x)), or (TA(x) =
TB(x), FA(x) ≥ FB(x)), or (TA(x) = TB(x), FA(x) = FB(x)andIA(x) > IB(x)).

Based on [19], we define a new inclusion relation called type-2 in the same way, and denoted by ⊆2.

Definition 7. Let x = ([xL
1 , xU

1 ], [x
L
2 , xU

2 ], [x
L
3 , xU

3 ]) and y = ([yL
1 , yU

1 ], [y
L
2 , yU

2 ], [y
L
3 , yU

3 ]) be the interval
neutrosophic values. x ≤2 y if and only if one of the following three conditions is true:

(1) [xL
1 , xU

1 ] < [yL
1 , yU

1 ] and [xL
3 , xU

3 ] ≥ [yL
3 , yU

3 ];
(2) [xL

1 , xU
1 ] = [yL

1 , yU
1 ] and [xL

3 , xU
3 ] > [yL

3 , yU
3 ];

(3) [xL
1 , xU

1 ] = [yL
1 , yU

1 ] and [xL
3 , xU

3 ] = [yL
3 , yU

3 ] and [xL
2 , xU

2 ] ≥ [yL
2 , yU

2 ].

The inclusion relations ⊆2 of interval neutrosophic sets are based on it. Let A, B be the two interval
neutrosophic sets, A ⊆2 B if and only if one of the following three conditions is true:

(1) [TL
A(x), TU

A (x)] < [TL
B (x), TU

B (x)] and [FL
A(x), FU

A (x)] ≥ [FL
B (x), FU

B (x)];
(2) [TL

A(x), TU
A (x)] = [TL

B (x), TU
B (x)] and [FL

A(x), FU
A (x)] > [FL

B (x), FU
B (x)];

(3) [TL
A(x), TU

A (x)] = [TL
B (x), TU

B (x)] and [FL
A(x), FU

A (x)] = [FL
B (x), FU

B (x)] and [IL
A(x), IU

A (x)] ≥
[IL

B(x), IU
B (x)].
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3. Similarity and Entropy of Interval Neutrosophic Sets

3.1. Similarity of Interval Neutrosophic Value

Let D∗ = {x|x = ([xL
1 , xU

1 ], [x
L
2 , xU

2 ], [x
L
3 , xU

3 ])} be the set of interval neutrosophic values.

Definition 8. (See [10]) Letting S: D∗ × D∗ −→ [0, 1], the real function S is a similarity between interval
neutrosophic values x and y, if S satisfies the following conditions:

(P1) 0 ≤ S(x, y) ≤ 1;
(P2) S(x, y) = 1 if and only if x = y;
(P3) S(x, y) = S(y, x);
(P4) For all x, y, z ∈ D∗, if x ≤ y ≤ z, then S(x, z) ≤ S(x, y), S(x, z) ≤ S(y, z).

Based on the first inclusion, many similarities have been proposed, such as [10,21]:

S1(x, y) = 1− 1
6 (|xL

1 − yL
1 |+ |xU

1 − yU
1 |+ |xL

2 − yL
2 |+ |xU

2 − yU
2 |+ |xL

3 − yL
3 |+ |xU

3 − yU
3 |);

S2(x, y) = 1− 1
6 ((xL

1 − yL
1 )

2 + (xU
1 − yU

1 )
2 + (xL

2 − yL
2 )

2 + (xU
2 − yU

2 )
2 + (xL

3 − yL
3 )

2 + (xU
3 − yU

3 )
2)

1
2 ;

S3(x, y) = 1− 1
3{max[|xL

1 − yL
1 |, |xU

1 − yU
1 |] + max[|xL

2 − yL
2 |, |xU

2 − yU
2 |] + max[|xL

3 − yL
3 |, |xU

3 − yU
3 |]};

S4(x, y) = 1−max[ 1
2 (|xL

1 − yL
1 |+ |xU

1 − yU
1 |),

1
2 (|xL

2 − yL
2 |,|xU

2 − yU
2 |) +

1
2 (|xL

3 − yL
3 |+ |xU

3 − yU
3 |)].

The above similarity is based on the first inclusion to successfully solve many problems, but it is
not suitable to the inclusion relationship in Definition 7. For example, x = ([0.3,0.4], [0.1,0.2], [0.8,0.9]),
y = ([0.5,0.6], [0.7,0.9], [0.4,0.5]), z = ([0.5,0.7], [0.4,0.5], [0.2,0.3]), then S1(x, y) = 35

60 ≈ 0.5833, S1(y, z) =
0.8, S1(x, z) = 37

60 ≈ 0.6167, so S1(x, y) < S1(x, z). S2(x, y) ≈ 0.8137, S2(y, z) ≈ 0.9028, S2(x, z) ≈
0.8309, so S2(x, y) < S2(x, z). S3(x, y) = 17

30 ≈ 0.5667, S3(y, z) = 23
30 ≈ 0.7667, S3(x, z) = 0.6,

so S3(x, y) < S3(x, z). S4(x, y) = 0.35, S4(y, z) = 0.65, S4(x, z) = 0.4, so S4(x, y) < S4(x, z).
Through the above analysis, we propose a new similarity based on ⊆2.

Definition 9. Let x = ([xL
1 , xU

1 ], [x
L
2 , xU

2 ], [x
L
3 , xU

3 ]), y = ([yL
1 , yU

1 ], [y
L
2 , yU

2 ], [y
L
3 , yU

3 ]), We define the
following similarity:

S(x, y) =

 1− |x
L
2−yL

2 |+|xU
2 −yU

2 |
4 ,

4−|xL
1−yL

1 |−|x
U
1 −yU

1 |−|x
L
3−yL

3 |−|xU
3 −yU

3 |
8 ,

[xL
1 , xU

1 ] = [yL
1 , yU

1 ] and [xL
3 , xU

3 ] = [yL
3 , yU

3 ].
else.

(1)

Theorem 1. S(x, y) defined as formula (1) is a similarity between x and y.

Proof. Let x = ([xL
1 , xU

1 ], [x
L
2 , xU

2 ], [x
L
3 , xU

3 ]) ∈ D∗, y = ([yL
1 , yU

1 ], [y
L
2 , yU

2 ], [y
L
3 , yU

3 ]) ∈ D∗, if [xL
1 , xU

1 ] =

[yL
1 , yU

1 ] and [xL
3 , xU

3 ] = [yL
3 , yU

3 ], then S(x, y) = 1− |x
L
2−yL

2 |+|xU
2 −yU

2 |
4 , so 0.5 ≤ S(x, y) ≤ 1; if [xL

1 , xU
1 ] 6=

[yL
1 , yU

1 ] and [xL
3 , xU

3 ] 6= [yL
3 , yU

3 ], then S(x, y) = 4−|xL
1−yL

1 |−|x
U
1 −yU

1 |−|x
L
3−yL

3 |−|xU
3 −yU

3 |
8 , so 0 ≤ S(x, y) ≤ 0.5.

(P1) Obviously, 0 ≤ S(x, y) ≤ 1.

(P2) S(x, y) = 1, if and only if S(x, y) = 1 − |x
L
2−yL

2 |+|xU
2 −yU

2 |
4 , if and only if [xL

1 , xU
1 ] = [yL

1 , yU
1 ],

[xL
3 , xU

3 ] = [yL
3 , yU

3 ] and [xL
2 , xU

2 ] = [yL
2 , yU

2 ].
(P3) Obviously, S(x, y) = S(y, x).
(P4) Let x = ([xL

1 , xU
1 ], [x

L
2 , xU

2 ], [x
L
3 , xU

3 ]), y = ([yL
1 , yU

1 ], [y
L
2 , yU

2 ], [y
L
3 , yU

3 ]), z = ([zL
1 , zU

1 ], [z
L
2 , zU

2 ], [z
L
3 , zU

3 ]),

and x ≤ y ≤ z, then
(1) If [xL

1 , xU
1 ] < [yL

1 , yU
1 ], [xL

3 , xU
3 ] ≥ [yL

3 , yU
3 ] and [yL

1 , yU
1 ] < [zL

1 , zU
1 ], [yL

3 , yU
3 ] ≥ [zL

3 , zU
3 ],

so S(x, y) =
4−|xL

1−yL
1 |−|x

U
1 −yU

1 |−|x
L
3−yL

3 |−|xU
3 −yU

3 |
8 ,S(y, z) =

4−|yL
1−zL

1 |−|y
U
1 −zU

1 |−|y
L
3−zL

3 |−|yU
3 −zU

3 |
8 , S(x, z) =

4−|xL
1−zL

1 |−|x
U
1 −zU

1 |−|x
L
3−zL

3 |−|xU
3 −zU

3 |
8 , also because [xL

1 , xU
1 ] < [yL

1 , yU
1 ] < [zL

1 , zU
1 ], [x

L
3 , xU

3 ] ≥ [yL
3 , yU

3 ] ≥
[zL

3 , zU
3 ], so S(x, z) ≤ S(x, y), S(x, z) ≤ S(y, z).
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(2) If [xL
1 , xU

1 ] < [yL
1 , yU

1 ], [xL
3 , xU

3 ] ≥ [yL
3 , yU

3 ] and [yL
1 , yU

1 ] = [zL
1 , zU

1 ], [yL
3 , yU

3 ] > [zL
3 , zU

3 ],

so S(x, y) =
4−|xL

1−yL
1 |−|x

U
1 −yU

1 |−|x
L
3−yL

3 |−|xU
3 −yU

3 |
8 ,S(y, z) =

4−|yL
1−zL

1 |−|y
U
1 −zU

1 |−|y
L
3−zL

3 |−|yU
3 −zU

3 |
8 , S(x, z) =

4−|xL
1−zL

1 |−|x
U
1 −zU

1 |−|x
L
3−zL

3 |−|xU
3 −zU

3 |
8 , also because [xL

1 , xU
1 ] < [yL

1 , yU
1 ] = [zL

1 , zU
1 ], [x

L
3 , xU

3 ] ≥ [yL
3 , yU

3 ] >

[zL
3 , zU

3 ], so S(x, z) ≤ S(x, y), S(x, z) ≤ S(y, z).
(3) If [xL

1 , xU
1 ] < [yL

1 , yU
1 ], [xL

3 , xU
3 ] ≥ [yL

3 , yU
3 ] and [yL

1 , yU
1 ] = [zL

1 , zU
1 ], [yL

3 , yU
3 ] = [zL

3 , zU
3 ],

[yL
2 , yU

2 ] ≥ [zL
2 , zU

2 ], so S(x, y) =
4−|xL

1−yL
1 |−|x

U
1 −yU

1 |−|x
L
3−yL

3 |−|xU
3 −yU

3 |
8 ,S(y, z) = 1 − |y

L
2−zL

2 |+|yU
2 −zU

2 |
4 ,

S(x, z) =
4−|xL

1−zL
1 |−|x

U
1 −zU

1 |−|x
L
3−zL

3 |−|xU
3 −zU

3 |
8 , also because [xL

1 , xU
1 ] < [yL

1 , yU
1 ] = [zL

1 , zU
1 ], [x

L
3 , xU

3 ] ≥
[yL

3 , yU
3 ] = [zL

3 , zU
3 ], [y

L
2 , yU

2 ] ≥ [zL
2 , zU

2 ], so S(x, z) ≤ S(x, y), S(x, z) < 0.5 ≤ S(y, z).
(4) If [xL

1 , xU
1 ] = [yL

1 , yU
1 ], [xL

3 , xU
3 ] > [yL

3 , yU
3 ] and [yL

1 , yU
1 ] < [zL

1 , zU
1 ], [yL

3 , yU
3 ] ≥ [zL

3 , zU
3 ],

so S(x, y) =
4−|xL

1−yL
1 |−|x

U
1 −yU

1 |−|x
L
3−yL

3 |−|xU
3 −yU

3 |
8 ,S(y, z) =

4−|yL
1−zL

1 |−|y
U
1 −zU

1 |−|y
L
3−zL

3 |−|yU
3 −zU

3 |
8 , S(x, z) =

4−|xL
1−zL

1 |−|x
U
1 −zU

1 |−|x
L
3−zL

3 |−|xU
3 −zU

3 |
8 , also because [xL

1 , xU
1 ] = [yL

1 , yU
1 ] < [zL

1 , zU
1 ], [x

L
3 , xU

3 ] > [yL
3 , yU

3 ] ≥
[zL

3 , zU
3 ], so S(x, z) ≤ S(x, y), S(x, z) ≤ S(y, z).
(5) If [xL

1 , xU
1 ] = [yL

1 , yU
1 ], [xL

3 , xU
3 ] > [yL

3 , yU
3 ] and [yL

1 , yU
1 ] = [zL

1 , zU
1 ], [yL

3 , yU
3 ] > [zL

3 , zU
3 ],

so S(x, y) =
4−|xL

1−yL
1 |−|x

U
1 −yU

1 |−|x
L
3−yL

3 |−|xU
3 −yU

3 |
8 ,S(y, z) =

4−|yL
1−zL

1 |−|y
U
1 −zU

1 |−|y
L
3−zL

3 |−|yU
3 −zU

3 |
8 , S(x, z) =

4−|xL
1−zL

1 |−|x
U
1 −zU

1 |−|x
L
3−zL

3 |−|xU
3 −zU

3 |
8 , also because [xL

1 , xU
1 ] = [yL

1 , yU
1 ] = [zL

1 , zU
1 ], [x

L
3 , xU

3 ] > [yL
3 , yU

3 ] >

[zL
3 , zU

3 ], so S(x, z) ≤ S(x, y), S(x, z) ≤ S(y, z).
(6) If [xL

1 , xU
1 ] = [yL

1 , yU
1 ], [xL

3 , xU
3 ] > [yL

3 , yU
3 ] and [yL

1 , yU
1 ] = [zL

1 , zU
1 ], [yL

3 , yU
3 ] = [zL

3 , zU
3 ],

[yL
2 , yU

2 ] ≥ [zL
2 , zU

2 ], so S(x, y) =
4−|xL

1−yL
1 |−|x

U
1 −yU

1 |−|x
L
3−yL

3 |−|xU
3 −yU

3 |
8 ,S(y, z) = 1 − |y

L
2−zL

2 |+|yU
2 −zU

2 |
4 ,

S(x, z) =
4−|xL

1−zL
1 |−|x

U
1 −zU

1 |−|x
L
3−zL

3 |−|xU
3 −zU

3 |
8 , also because [xL

1 , xU
1 ] = [yL

1 , yU
1 ] = [zL

1 , zU
1 ], [x

L
3 , xU

3 ] >

[yL
3 , yU

3 ] = [zL
3 , zU

3 ], [y
L
2 , yU

2 ] ≥ [zL
2 , zU

2 ], so S(x, z) = S(x, y), S(x, z) < 0.5 ≤ S(y, z).
(7) If [xL

1 , xU
1 ] = [yL

1 , yU
1 ], [xL

3 , xU
3 ] = [yL

3 , yU
3 ], [xL

2 , xU
2 ] ≥ [yL

2 , yU
2 ] and [yL

1 , yU
1 ] < [zL

1 , zU
1 ],

[yL
3 , yU

3 ] ≥ [zL
3 , zU

3 ], so S(x, y) = 1 − |x
L
2−yL

2 |+|xU
2 −yU

2 |
4 ,S(y, z) =

4−|yL
1−zL

1 |−|y
U
1 −zU

1 |−|y
L
3−zL

3 |−|yU
3 −zU

3 |
8 ,

S(x, z) =
4−|xL

1−zL
1 |−|x

U
1 −zU

1 |−|x
L
3−zL

3 |−|xU
3 −zU

3 |
8 , also because [xL

1 , xU
1 ] = [yL

1 , yU
1 ] < [zL

1 , zU
1 ], [x

L
3 , xU

3 ] =

[yL
3 , yU

3 ] ≥ [zL
3 , zU

3 ],[x
L
2 , xU

2 ] ≥ [yL
2 , yU

2 ], so S(x, z) < 0.5 ≤ S(x, y), S(x, z) ≤ S(y, z).
(8) If [xL

1 , xU
1 ] = [yL

1 , yU
1 ], [xL

3 , xU
3 ] = [yL

3 , yU
3 ], [xL

2 , xU
2 ] ≥ [yL

2 , yU
2 ] and [yL

1 , yU
1 ] = [zL

1 , zU
1 ],

[yL
3 , yU

3 ] > [zL
3 , zU

3 ], so S(x, y) = 1 − |x
L
2−yL

2 |+|xU
2 −yU

2 |
4 ,S(y, z) =

4−|yL
1−zL

1 |−|y
U
1 −zU

1 |−|y
L
3−zL

3 |−|yU
3 −zU

3 |
8 ,

S(x, z) =
4−|xL

1−zL
1 |−|x

U
1 −zU

1 |−|x
L
3−zL

3 |−|xU
3 −zU

3 |
8 , also because [xL

1 , xU
1 ] = [yL

1 , yU
1 ] = [zL

1 , zU
1 ], [x

L
3 , xU

3 ] =

[yL
3 , yU

3 ] > [zL
3 , zU

3 ],[x
L
2 , xU

2 ] ≥ [yL
2 , yU

2 ], so S(x, z) < 0.5 ≤ S(x, y), S(x, z) ≤ S(y, z).
(9) If [xL

1 , xU
1 ] = [yL

1 , yU
1 ], [x

L
3 , xU

3 ] = [yL
3 , yU

3 ], [x
L
2 , xU

2 ] ≥ [yL
2 , yU

2 ] and [yL
1 , yU

1 ] = [zL
1 , zU

1 ], [y
L
3 , yU

3 ] =

[zL
3 , zU

3 ], [y
L
2 , yU

2 ] ≥ [zL
2 , zU

2 ], so S(x, y) = 1− |x
L
2−yL

2 |+|xU
2 −yU

2 |
4 ,S(y, z) = 1− |y

L
2−zL

2 |+|yU
2 −zU

2 |
4 , S(x, z) =

1− |x
L
2−zL

2 |+|xU
2 −zU

2 |
4 , also because [xL

1 , xU
1 ] = [yL

1 , yU
1 ] = [zL

1 , zU
1 ], [x

L
3 , xU

3 ] = [yL
3 , yU

3 ] = [zL
3 , zU

3 ],[x
L
2 , xU

2 ] ≥
[yL

2 , yU
2 ] ≥ [zL

2 , zU
2 ], so S(x, z) < 0.5 ≤ S(x, y), S(x, z) = S(y, z).

Therefore, as defined in formula (1), a similarity between x and y is defined.

3.2. Entropy of Interval Neutrosophic Value

Since entropy is also an important means in the analysis of uncertainty information, we give the
concept of entropy of interval neutrosophic value.

Definition 10. (See [22]) Letting E: D∗ −→ [0, 1], the real function E is an entropy of interval neutrosophic
value, if E satisfies the following conditions:

(N1) E(x) = 0 if and only if [xL
1 , xU

1 ] = [0, 0] or [1, 1] and [xL
3 , xU

3 ] = [0, 0] or [1, 1];
(N2) E(x) = 1 if and only if [xL

1 , xU
1 ] = [xL

2 , xU
2 ] = [xL

3 , xU
3 ] = [0.5, 0.5];

(N3) E(x) = E(xc);
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(N4) Let x = ([xL
1 , xU

1 ], [x
L
2 , xU

2 ], [x
L
3 , xU

3 ]) ∈ D∗, y = ([yL
1 , yU

1 ], [y
L
2 , yU

2 ], [y
L
3 , yU

3 ]) ∈ D∗, then yc =

([yL
3 , yU

3 ], [1− yU
2 , 1− yL

2 ], [y
L
1 , yU

1 ]), E(x) ≤ E(y), that is, x is more ambiguous than y, if x ≤2 y,
when y ≤2 yc, or if y ≤2 x, when yc ≤2 y.

Entropy is usually calculated by the similarity of x and xc, so we define the following entropy:

E(x) = S(x, xc) =

 1− |2xL
2−1|+|2xU

2 −1|
4 ,

4−2|xL
1−xL

3 |−2|xU
1 −xU

3 |
8 ,

[xL
1 , xU

1 ] = [xL
3 , xU

3 ] = [0.5, 0.5],
else.

(2)

Furthermore, if interval neutrosophic values are a fuzzy set i.e.,

D∗ = x|x = ([xL
1 , xu

1 ], [x
L
1 , xu

1 ], [1− xL
1 , 1− xu

1 ]),

then Definition 10 is equivalent to the definition of entropy measure given by de Luca and Termini [13].
If interval neutrosophic values are an intuitionistic fuzzy set i.e.,

D∗ = x|x = ([xL
1 , xu

1 ], [1− xu
1 − xu

3 , 1− xL
1 − xL

3 ], [x
L
3 , xu

3 ]),

then Definition 10 is equivalent to the definition of entropy measure given in [23].

Theorem 2. E(x) defined as (2) is an entropy of x.

Proof. If [xL
1 , xU

1 ] = [xL
3 , xU

3 ] = [0.5, 0.5], then E(x) = 1 − |2xL
2−1|+|2xU

2 −1|
4 , so 0.5 ≤ E(x) ≤ 1;

otherwise, E(x) = 4−2|xL
1−xL

3 |−2|xU
1 −xU

3 |
8 , so 0 ≤ E(x) ≤ 0.5.

(N1) E(x) = 0 if and only if |xL
1 − xU

1 | = 1 and |xL
3 − xU

3 | = 1, also because [xL
1 , xU

1 ] ∈ [0, 1] and
[xL

3 , xU
3 ] ∈ [0, 1], so [xL

1 , xU
1 ] = [0, 0]or[1, 1], [xL

1 , xU
1 ] = [1, 1]or[0, 0], so x is a distinct set.

(N2) Obviously, E(x) = 1 if and only if [xL
1 , xU

1 ] = [xL
2 , xU

2 ] = [xL
3 , xU

3 ] = [0.5, 0.5],
(N3) Obviously, E(x) = E(xc).
(N4) Let x = ([xL

1 , xU
1 ], [x

L
2 , xU

2 ], [x
L
3 , xU

3 ]) ∈ D∗,y = ([yL
1 , yU

1 ], [y
L
2 , yU

2 ], [y
L
3 , yU

3 ]) ∈ D∗,
then y = ([yL

3 , yU
3 ], [1− yU

2 , 1− yL
2 ], [y

L
1 , yU

1 ]), if x ≤2 y, when y ≤2 yc, because

E(x) =

 1− |2xL
2−1|+|2xU

2 −1|
4 ,

4−2|xL
1−xL

3 |−2|xU
1 −xU

3 |
8 ,

[xL
1 , xU

1 ] = [xL
3 , xU

3 ] = [0.5, 0.5],
else,

E(y) =

 1− |2yL
2−1|+|2yU

2 −1|
4 ,

4−2|yL
1−yL

3 |−2|yU
1 −yU

3 |
8 ,

[yL
1 , yU

1 ] = [yL
3 , yU

3 ] = [0.5, 0.5].
else.

(1) If [yL
1 , yU

1 ] < [yL
3 , yU

3 ], [yL
3 , yU

3 ] ≥ [yL
1 , yU

1 ] and [xL
1 , xU

1 ] < [yL
1 , yU

1 ], [xL
3 , xU

3 ] ≥ [yL
3 , yU

3 ],
so [xL

1 , xU
1 ] < [yL

1 , yU
1 ] < [yL

3 , yU
3 ] ≤ [xL

3 , xU
3 ], therefore |xL

1 − xL
3 | ≥ |yL

1 − yL
3 |, |xU

1 − xU
3 | ≥ |yU

1 − yU
3 |,

also because E(x) = 4−2|xL
1−xL

3 |−2|xU
1 −xU

3 |
8 , E(y) = 4−2|yL

1−yL
3 |−2|yU

1 −yU
3 |

8 , so E(x) ≤ E(y).
(2) If [yL

1 , yU
1 ] < [yL

3 , yU
3 ], [yL

3 , yU
3 ] ≥ [yL

1 , yU
1 ] and [xL

1 , xU
1 ] = [yL

1 , yU
1 ], [xL

3 , xU
3 ] > [yL

3 , yU
3 ],

so [xL
1 , xU

1 ] = [yL
1 , yU

1 ] < [yL
3 , yU

3 ] ≤ [xL
3 , xU

3 ], therefore |xL
1 − xL

3 | ≥ |yL
1 − yL

3 |, |xU
1 − xU

3 | ≥ |yU
1 − yU

3 |,
also because E(x) = 4−2|xL

1−xL
3 |−2|xU

1 −xU
3 |

8 , E(y) = 4−2|yL
1−yL

3 |−2|yU
1 −yU

3 |
8 , so E(x) ≤ E(y).

(3) If [yL
1 , yU

1 ] < [yL
3 , yU

3 ], [y
L
3 , yU

3 ] ≥ [yL
1 , yU

1 ] and [xL
1 , xU

1 ] = [yL
1 , yU

1 ], [x
L
3 , xU

3 ] = [yL
3 , yU

3 ], [x
L
2 , xU

2 ] =

[yL
2 , yU

2 ], so [xL
1 , xU

1 ] = [yL
1 , yU

1 ] < [yL
3 , yU

3 ] = [xL
3 , xU

3 ], therefore |xL
1 − xL

3 | ≥ |yL
1 − yL

3 |, |xU
1 − xU

3 | ≥
|yU

1 − yU
3 |, also because E(x) = 4−2|xL

1−xL
3 |−2|xU

1 −xU
3 |

8 , E(y) = 4−2|yL
1−yL

3 |−2|yU
1 −yU

3 |
8 , so E(x) ≤ E(y).

(4) If [yL
1 , yU

1 ] = [yL
3 , yU

3 ], [y
L
3 , yU

3 ] > [yL
1 , yU

1 ], contradiction.
(5) If [yL

1 , yU
1 ] = [yL

3 , yU
3 ], [y

L
2 , yU

2 ] ≥ [1− yU
2 , 1− yL

1 ] and [xL
1 , xU

1 ] < [yL
1 , yU

1 ], [x
L
3 , xU

3 ] ≥ [yL
3 , yU

3 ],
so [xL

1 , xU
1 ] < [yL

1 , yU
1 ] = [yL

3 , yU
3 ] ≤ [xL

3 , xU
3 ]; if [yL

1 , yU
1 ] = [yL

3 , yU
3 ] = [0.5, 0.5], then E(x) =
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4−2|xL
1−xL

3 |−2|xU
1 −xU

3 |
8 , E(y) = 1− |2yL

2−1|+|2yU
2 −1|

4 , so E(x) ≤ 0.5 ≤ E(y); if [yL
1 , yU

1 ] = [yL
3 , yU

3 ] 6= [0.5, 0.5],

then E(x) = 4−2|xL
1−xL

3 |−2|xU
1 −xU

3 |
8 , E(y) = 4−2|yL

1−yL
3 |−2|yU

1 −yU
3 |

8 , also because |xL
1 − xL

3 | ≥ |yL
1 − yL

3 | = 0,
|xU

1 − xU
3 | ≥ |yU

1 − yU
3 | = 0, so E(x) ≤ E(y). In summary, E(x) ≤ E(y).

(6) If [yL
1 , yU

1 ] = [yL
3 , yU

3 ], [y
L
2 , yU

2 ] ≥ [1− yU
2 , 1− yL

1 ] and [xL
1 , xU

1 ] = [yL
1 , yU

1 ], [x
L
3 , xU

3 ] > [yL
3 , yU

3 ],
so [xL

1 , xU
1 ] = [yL

1 , yU
1 ] = [yL

3 , yU
3 ] < [xL

3 , xU
3 ]; if [yL

1 , yU
1 ] = [yL

3 , yU
3 ] = [0.5, 0.5], then E(x) =

4−2|xL
1−xL

3 |−2|xU
1 −xU

3 |
8 , E(y) = 1− |2yL

2−1|+|2yU
2 −1|

4 , so E(x) ≤ 0.5 ≤ E(y); if [yL
1 , yU

1 ] = [yL
3 , yU

3 ] 6= [0.5, 0.5],

then E(x) = 4−2|xL
1−xL

3 |−2|xU
1 −xU

3 |
8 , E(y) = 4−2|yL

1−yL
3 |−2|yU

1 −yU
3 |

8 , also because |xL
1 − xL

3 | ≥ |yL
1 − yL

3 | = 0,
|xU

1 − xU
3 | ≥ |yU

1 − yU
3 | = 0, so E(x) ≤ E(y). In summary, E(x) ≤ E(y).

(7) If [yL
1 , yU

1 ] = [yL
3 , yU

3 ], [y
L
2 , yU

2 ] ≥ [1− yU
2 , 1− yL

1 ] and [xL
1 , xU

1 ] = [yL
1 , yU

1 ], [x
L
3 , xU

3 ] = [yL
3 , yU

3 ],
[xL

2 , xU
2 ] ≥ [yL

2 , yU
2 ], so [xL

1 , xU
1 ] = [yL

1 , yU
1 ] = [yL

3 , yU
3 ] = [xL

3 , xU
3 ]; if [xL

1 , xU
1 ] = [yL

1 , yU
1 ] = [yL

3 , yU
3 ] =

[xL
3 , xU

3 ] = [0.5, 0.5], then E(x) = 1 − |2xL
2−1|+|2xU

2 −1|
4 , E(y) = 1 − |2yL

2−1|+|2yU
2 −1|

4 , also because
[xL

2 , xU
2 ] ≥ [yL

2 , yU
2 ], so E(x) ≤ 0.5 ≤ E(y); if [xL

1 , xU
1 ] = [yL

1 , yU
1 ] = [yL

3 , yU
3 ] = [xL

3 , xU
3 ] 6= [0.5, 0.5],

then E(x) = 4−2|xL
1−xL

3 |−2|xU
1 −xU

3 |
8 , E(y) = 4−2|yL

1−yL
3 |−2|yU

1 −yU
3 |

8 , also because |xL
1 − xL

3 | = |yL
1 − yL

3 | = 0,
|xU

1 − xU
3 | = |yU

1 − yU
3 | = 0, so E(x) = E(y). In summary, E(x) ≤ E(y).

As the same reason, we can easily get the conclusion that if y ≤2 x, when yc ≤2 y, then E(x) ≤
E(y). Therefore, as defined in formula (2), an entropy is defined.

3.3. Similarity and Entropy of Interval Neutrosophic Sets

In this subsection, we extend the notions of similarity measure and entropy measure of interval
nuetrosophic values to interval nuetrosophic sets.

Definition 11. Let A, B be the two interval neutrosophic sets, the real function S is a similarity between
interval neutrosophic sets A and B, if S satisfies the following conditions:

(P1) 0 ≤ S(A, B) ≤ 1;
(P2) S(A, B) = 1 if and only if A = B;
(P3) S(A, B) = S(B, A);
(P4) For all A, B, C ∈ INSs, if A ⊆ B ⊆ C, then S(A, C) ≤ S(A, B), S(A, C) ≤ S(B, C).

Definition 12. Let A be the an interval neutrosophic set, the real function E is the entropy of interval
neutrosophic sets, if E satisfies the following conditions:

(N1) E(A) = 0 if and only if [TL
A, TU

A ] = [0, 0]or[1, 1], [FL
A, FU

A ] = [0, 0]or[1, 1];
(N2) E(A) = 1 if and only if [TL

A, TU
A ] = [IL

A, IU
A ] = [FL

A, FU
A ] = [0.5, 0.5];

(N3) E(A) = E(Ac);
(N4) Let A, B be the two interval neutrosophic sets, E(A) ≤ E(B), that is, B is more ambiguous than A,

if A ⊆2 B, when B ⊆2 Bc, or B ⊆2 A, when Bc ⊆2 B.

By aggregating the similarities and entropies of interval neutrosophic values, we have the
following similarity and entropy of interval neutrosophic sets.

Theorem 3. Let X = {x1, x2, ...xn} be an interval neutrosophic set, s : D∗ × D∗ → [0, 1] is the similarity of
interval neutrosophic sets, ∀A, B ⊆ X, the similarity S of A and B is defined as follows:

S(A, B) =
1
n

n

∑
i=1

s(A(xi), B(xi)). (3)

Theorem 4. Let X = {x1, x2, ...xn} be an interval neutrosophic seet, e : D∗ → [0, 1] is the entropy of interval
neutrosophic sets, ∀A ⊆ X, the similarity S of A is defined as follows:

E(A) = 1
n ∑n

i=1 e(A(xi)).
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If the weights W = (w1, w2, ..., wn) is added, wi ∈ [0, 1] and ∑n
i=1 wi = 1, then the similarities of A

and B and the entropy of A are defined as follows:

S(A, B) = ∑n
i=1 wi · s(A(xi), B(xi)),

E(A) = ∑n
i=1 wi · e(A(xi)).

4. The Numerical Example

Let us consider the decision problem adapted from [10]. Suppose that there is a group with
four possible alternatives to invest: (1) A1 is a food company; (2) A2 is a car company; (3) A3 is a
weapons company; (4) A4 is a computer company. Investment companies must make decisions based
on three criteria: (1) C1 is growth analysis; (2) C2 is risk analysis; and (3) C3 is environmental impact
analysis. By using interval-valued intuitionistic fuzzy information, decision makers evaluated four
possible alternatives based on the above three criteria and the evaluation are expressed as three interval
neutrosophic sets (Table 1).

Table 1. The evaluation of alternatives.

C1 C2 C3

A1 ([0.4,0.5], [0.2,0.3], [0.3,0.4]) ([0.4,0.6], [0.1,0.3], [0.2,0.4]) ([0.7,0.9], [0.2,0.3], [0.4,0.5])
A2 ([0.6,0.7], [0.1,0.2], [0.2,0.3]) ([0.6,0.7], [0.1,0.2], [0.2,0.3]) ([0.3,0.6], [0.3,0.5], [0.8,0.9])
A3 ([0.3,0.6], [0.2,0.3], [0.3,0.4]) ([0.5,0.6], [0.2,0.3], [0.3,0.4]) ([0.4,0.5], [0.2,0.4], [0.7,0.9])
A4 ([0.7,0.8], [0.0,0.1], [0.1,0.2]) ([0.6,0.7], [0.1,0.2], [0.1,0.3]) ([0.6,0.7], [0.3,0.4], [0.8,0.9])

4.1. Ye’s Multi-Attributes Decision-Making Method with Analysis

Ye [10] presented a multi-attributes decision-making method by using a single-valued
neutrosophic set. The approach can be described as follows. Ye presents the definitions of the
Hamming and Euclidean distances between INSs and the similarity measures between INSs based on
the distances, which can be used in real scientific and engineering applications.

(1) The Hamming distance

d1(A, B) = 1
6 ∑n

i=1(|TL
A(xi)−TL

B (xi)|+ |TU
A (xi)−TU

B (xi)|+ |IL
A(xi)− IL

B(xi)|+ |IU
A (xi)− IU

B (xi)|+
|FL

A(xi)− FL
B (xi)|+ |FU

A (xi)− FU
B (xi)|);

(2) The Euclidean distance

d2(A, B) = 1
6 ∑n

i=1((T
L
A(xi) − TL

B (xi))
2 + (TU

A (xi) − TU
B (xi))

2 + (IL
A(xi) − IL

B(xi))
2 + (IU

A (xi) −
IU
B (xi))

2 + (FL
A(xi)− FL

B (xi))
2 + (FU

A (xi)− FU
B (xi))

2)
1
2 ;

Thus, the similarity measures between INSs are based on the distances as follows:
S1(A, B) = 1 − 1

6 ∑n
i=1(|TL

A(xi) − TL
B (xi)| + |TU

A (xi) − TU
B (xi)| + |IL

A(xi) − IL
B(xi)| + |IU

A (xi) −
IU
B (xi)|+ |FL

A(xi)− FL
B (xi)|+ |FU

A (xi)− FU
B (xi)|);

S2(A, B) = 1− 1
6 ∑n

i=1((T
L
A(xi)− TL

B (xi))
2 + (TU

A (xi)− TU
B (xi))

2 + (IL
A(xi)− IL

B(xi))
2 + (IU

A (xi)−
IU
B (xi))

2 + (FL
A(xi)− FL

B (xi))
2 + (FU

A (xi)− FU
B (xi))

2)
1
2 .

From the interval neutrosophic decision matrix, Ye obtain the following ideal alternative:

A = (([0.7, 0.8], [0.0, 0.1], [0.1, 0.2]), ([0.6, 0.7], [0.1, 0.2], [0.1, 0.3]), ([0.3, 0.6], [0.3, 0.5], [0.8, 0.9])).

Thus, S1(A1, A) = 0.7667, S1(A2, A) = 0.9542, S1(A3, A) = 0.8625, S1(A4, A) = 0.9600.
Therefore, S1(A4, A) > S1(A2, A) > S1(A3, A) > S1(A1, A), so A4 is the best choice. Meanwhile,
S2(A1, A) = 0.7370, S2(A2, A) = 0.9323, S2(A3, A) = 0.8344, S2(A4, A) = 0.9034. Therefore,
S2(A2, A) > S2(A4, A) > S2(A3, A) > S4(A1, A), so A4 is the best choice.
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4.2. Multi-Attributes Decision Making Based on a New Similarity Measure

Next, we use the newly proposed similarity and entropy to get the best alternative. The best
choice is A = ([1, 1], [1, 1], [0, 0]) because it is the largest in the second type of inclusion relationship,
so it is optimal. For convenience, we use Aij that indicates the neutrosophic value in line i column
j. It is available from (1), S(A11, A) = 0.275, S(A12, A) = 0.3, S(A13, A) = 0.3375, S(A21, A) = 0.35,
S(A22, A) = 0.35, S(A23, A) = 0.15, S(A31, A) = 0.275, S(A32, A) = 0.225, S(A33, A) = 0.1625,
S(A41, A) = 0.4, S(A42, A) = 0.3625, S(A43, A) = 0.2. Thus, by (3), we can obtain that S(A1, A) =
1
3 × 0.275 + 1

3 × 0.3 + 1
3 × 0.3375 ≈ 0.3042, for the same reason, we can obtain that S(A2, A) ≈

0.2833, S(A3, A) ≈ 0.2208, S(A4, A) ≈ 0.3208. Therefore, S(A4, A) > S(A1, A) > S(A2, A) > S(A3, A),
so A4 is the best choice.

In order to validate the feasibility of the proposed decision-making methods, a comparative study
was conducted with other methods as follows.

In the similarity measures in [10], due to the differences in inclusion relation and in the best
choice, we have different conclusions. Moreover, in [10], the distances between INSs are first calculated
and any difference is then amplified in the results using criteria weights, which cause a distortion
in the similarity between an alternative and the ideal alternative. Meanwhile, in [17], Sahin defined
the interval neutrosophic cross-entropy in two different ways, which are based on extension of
fuzzy cross-entropy and single-valued neutrosophic cross-entropy. Additionally, two multi-criteria
decision-making methods using the interval neutrosophic cross-entropy between an alternative and
the ideal alternative are developed in order to determine the order of the alternatives and choose the
most preferred one(s). In addition, Sahin ranked the alternatives as A4 > A1 > A2 > A3. For this
example, by using the new similarity measure proposed in this paper, we obtained the same ranking
order of alternatives as in [17]. It shows that the new similarity measures proposed in this paper are
effective and efficient.

5. Discussion and Conclusions

Based on the existing inclusion relation of the wisdom set in the interval, this paper combines
the new inclusion relation type-3 of the single-valued neutrosophic sets proposed by Zhang [18,19],
and gives the inclusion relationship of the new interval neutrosophic sets. The existing similarity
measure is mainly designed for the original inclusion relationship, and does not apply to the new
inclusion relationship, then we propose the similarity and entropy of the interval neutrosophic
set. The new similarity and entropy also prove that the defined similarity and entropy satisfy the
corresponding axiomatization definition, and finally apply it to the corresponding multi-attribute
decision-making. The results show that the proposed similarity and entropy are reasonable
and effective.
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