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Abstract: Cut sets, decomposition theorem and representation theorem have a great influence on the
realization of the transformation of fuzzy sets and classical sets, and the single-valued neutrosophic
multisets (SVNMSs) as the generalization of fuzzy sets, which cut sets, decomposition theorem
and representation theorem have the similar effects, so they need to be studied in depth. In this
paper, the decomposition theorem, representation theorem and the application of a new similarity
measures of SVNMSs are studied by using theoretical analysis and calculations. The following are
the main results: (1) The notions, operation and operational properties of the cut sets and strong cut
sets of SVNMSs are introduced and discussed; (2) The decomposition theorem and representation
theorem of SVNMSs are established and rigorously proved. The decomposition theorem and the
representation theorem of SVNMSs are the theoretical basis for the development of SVNMSs. The
decomposition theorem provides a new idea for solving the problem of SVNMSs, and points out the
direction for the principle of expansion of SVNMSs. (3) Based on the decomposition theorem and
representation theorem of SVNMSs, a new notion of similarity measure of SVNMSs is proposed by
applying triple integral. And this new similarity is applied to the practical problem of multicriteria
decision-making, which explains the efficacy and practicability of this decision-making method. The
new similarity is not only a way to solve the problem of multi-attribute decision-making, but also
contains an important mathematical idea, that is, the idea of transformation.

Keywords: single-valued neutrosophic multiset (SVNMS); cut set; decomposition theorem;
representation theorem; similarity measure; triple integral; multicriteria decision-making

1. Introduction

It is essential for medical experts to address incomplete and uncertain information included
in actual medical diagnostic questions. In order to effectively use various uncertain diagnostic
information, Smarandache [1] proposed neutrosophic set (NS), which is a generalization of fuzzy
set (FS) and intuitionistic fuzzy set (IFS) [2]. NS is more flexible and applicable than FS and IFS.
Nevertheless, it is hard to apply the NS to practical problems for the values of the functions with
respect to truth, indeterminacy and falsity lie in ]0−,1+ [. Thus, Smarandache and Wang [3] introduced
the notion of the single-valued neutrosophic set (SVNS), whose values belong to [0,1]. In the actual
decision-making problems, scholars have obtained many inspiring research results according to the
SVNS theories [4–9]. However, in the multicriteria decision-making problem, the application of SVNS
has certain limitations. Fortunately, Yager [10] firstly discussed fuzzy multisets (FMSs), in which every
element may appear more than once and may have the same or different membership values. Indeed,

Symmetry 2018, 10, 466; doi:10.3390/sym10100466 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-2320-0884
http://www.mdpi.com/2073-8994/10/10/466?type=check_update&version=1
http://dx.doi.org/10.3390/sym10100466
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 466 2 of 19

fuzzy multisets theories cannot cope with all types of uncertain and incomplete information. So, Ye [11]
introduced the notion of the single-valued neutrosophic multisets (SVNMSs) by capitalizing on fuzzy
multisets (FMs) [12,13]. So far, a large number of scholars have studied the similarity measures of
SVNMSs from different angles and discuss its application in decision-making problems in [11,14–18],
which is crucial for further in-depth analysis and research on SVNMSs in the future.

As we all know, the decomposition theorem, representation theorem and expansion theorem are
three theoretical pillars of fuzzy mathematics. Decomposition theorem and representation theorem are
the bond between fuzzy set theory and classical set theory, that is, any fuzzy set problem can be turned
into a problem of classical set by taking a cut set and constructing a geometric set. The notion of λ-cut
sets of FS, some basic properties of λ-cut sets, the decomposition theorem, the representation theorem
of FSs had been proposed [1,19]. What is more, the definitions of cut sets, some basic properties of
cut sets, the decomposition theorem and the representation theorem of IFS, interval intuitionistic
fuzzy set (IIFS), interval value fuzzy set (IVFS) which as generations of FSs had been proposed [20–28].
After that D. Singh, A. J. Alkali and A. I. Isah introduced the definition of α-cuts for FMS, which is a
generalization of λ-cut sets of FS, and proposed some properties of α-cuts, decomposition theorem
for FMS [29]. However, the cut sets and its operational properties, decomposition theorem and
representation theorem of the SVNMSs have not been studied yet. Thus, it is necessary to discuss
the cut sets, decomposition theorem and representation theorem of SVNMSs. We have already been
researching SVNMSs and proposed some new results in [30–32]. Moreover, this paper proposes a new
similarity from the perspective of decomposition theorem which is different from [11–16]. This new
method uses the decomposition theorem as the theoretical basis and the integral as the mathematical
tool. The idea is simple, the calculation is convenient, and it contains important mathematical ideas,
which is more practical [33–36].

The organization of this paper is as follows: In Section 2, some basic conceptions of FMS, IFM and
SVNMS are reviewed. Section 3 discusses some new properties of SVNMS. Section 4 proposes the (α,
β, γ)-cut sets for SVNMS, and investigates the decomposition theorem and the representation theorem
of SVNMS. In Section 5, based on the established cut sets, a new method is proposed to calculate
the similarity measure between SVNMSs. In Section 6, a practicable example is offered for medical
diagnosis to illustrate the approach proposed in this paper. Section 7 presents final conclusions and
further research.

2. Preliminaries

2.1. Some Basic Concepts of IFS, FMS

Definition 1 ([2]). Let X be a nonempty set. An IFS M in X is given by

M = { 〈x, µM(x), νM(x)〉|x ∈ X} (1)

where µM : X → [0, 1] and νM : X → [0, 1] with the condition 0 ≤ µM + νM ≤ 1 for all x ∈ X.

Here µM(x), νM(x) ∈ [0, 1] denote the membership and the non-membership functions of the
fuzzy set M.

Definition 2 ([10]). A fuzzy multiset M is a generation set of multisets over the universe X, which is denoted
by pairs, where the first part of each pair is the element of X, and the second part is the membership of the element
relative to M. Note that an element of X may occur more than once in the same or different membership values.
For each x ∈ X, a membership sequence is defined to be the decreasing ordered sequence of the elements, that is,(

µ1
M(x), µ2

M(x), · · · , µ
q
M(x)

)
,



Symmetry 2018, 10, 466 3 of 19

where µ1
M(x) ≥ µ2

M(x) ≥ · · · ≥ µ
q
M(x). Hence, the FMS M is given by

M =
{(

µ1
M(x), µ2

M(x), · · · , µ
q
M(x)

)∣∣∣x}, for all x ∈ X. (2)

2.2. Some Concepts of SVNMS

Definition 3 ([11]). Let X be a nonempty set with a generic element in X denoted by x. A SVNMS M in X is
characterized by three functions: count truth-membership of CTM, count indeterminacy-membership of CIM,
and count falsity-membership of CFM, such that CTM(x) : X → R , CIM(x) : X → R , CFM(x) : X → R ,
for every x ∈ X, where R is the set of all real number multisets in the real unit interval [0, 1]. Then, a SVNMS
M is given by

M =
{〈

x,
(

T1
M(x), T2

M(x), · · · , Tk
M(x)

)
,
(

I1
M(x), I2

M(x), · · · , Ik
M(x)

)
,
(

F1
M(x), F2

M(x), · · · , Fk
M(x)

)〉∣∣∣x ∈ X
}

,

where the truth-membership sequence
(

T1
M(x), T2

M(x), · · · , Tk
M(x)

)
, the indeterminacy-membership sequence(

I1
M(x), I2

M(x), · · · , Ik
M(x)

)
, and the falsity-membership sequence

(
F1

M(x), F2
M(x), · · · , Fk

M(x)
)

may be in

decreasing order or not. Additionally, the T j
M(x), I j

M(x), Fj
M(x) also satisfies the following condition

0 ≤ T j
M(x) + I j

M(x) + Fj
M(x) ≤ 3, for allx ∈ X, j = 1, 2, · · · , k.

In order to express more concisely, a SVNMS M over X can be given by

M =
{〈

x, T j
M(x), I j

M(x), Fj
M(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , k
}

(3)

Furthermore, we represent the set of all SVNMSs on X as SVNMS(X).

Definition 4 ([11]). Let M ∈ SVNMS(X), for every element x included in M, the length of x is
defined as the cardinal number of CTM(x) or CIM(x), or CFM(x), and is expressed as l(x : M). That is,
l(x : M) = |CTM(x)| = |CIM(x)| = |CFM(x)|. Suppose M, N ∈ SVNMS(X), then, l(x : M, N) =

max{l(x : M), l(x : N)}.

Definition 5 ([11]). An absolute SVNMS M̃ is a SVNMS, whose T j
M̃
(x) = 1, I j

M̃
(x) = 0 and Fj

M̃
(x) = 0,

for all x ∈ X and j = 1, 2, · · · , l(x : M̃).

Definition 6 ([11]).A null SVNMS Φ̃ is a SVNMS, whose T j
Φ̃
(x) = 0, I j

Φ̃
(x) = 1 and Fj

Φ̃
(x) = 1, for all

x ∈ X and j = 1, 2, · · · , l(x : Φ̃).

Let M, N ∈ SVNMS(X). In order to further study the operations between M and N, we must
verify that l(x : M) = l(x : N) is true for every x ∈ X, if not, we use a sufficient number of zeroes to
fill the truth-membership values and a sufficient number of ones to fill the indeterminacy-membership
values and falsity-membership values of the smaller-length sequences, respectively, so that the lengths
of sequences are equal to facilitate computing.

Definition 7 ([11]). Let M =
{〈

x, T j
M(x), I j

M(x), Fj
M(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M)
}

and N ={〈
x, T j

N(x), I j
N(x), Fj

N(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : N)

}
be two SVNMSs in X. Then, we have

(1) Inclusion: M ⊆ N if and only if T j
M(x) ≤ T j

N(x), I j
M(x) ≥ I j

N(x), Fj
M(x) ≥ Fj

N(x) for
j = 1, 2, · · · ,l(x : M, N);
(2) Equality: M = N if and only if M ⊆ N and N ⊆ M;
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(3) Complement: Mc̃ =
{〈

x, Fj
M(x), 1− I j

M(x), T j
M(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M)
}

;

(4) Union: M ∪ N =
{〈

x, T j
M(x) ∨ T j

N(x), I j
M(x) ∧ I j

N(x), Fj
M(x) ∧ Fj

N(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M, N)

}
;

(5) Intersection: M ∩ N =
{〈

x, T j
M(x) ∧ T j

N(x), I j
M(x) ∨ I j

N(x), Fj
M(x) ∨ Fj

N(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M, N)

}
;

(6) Addition: M⊕ N =
{〈

x, T j
M(x) + T j

N(x)− T j
M(x)T j

N(x), I j
M(x)I j

N(x), Fj
M(x)Fj

N(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M, N)

}
;

(7) Multiplication: M⊗ N =
{〈

x, T j
M(x)T j

N(x), I j
M(x) + I j

N(x)− I j
M(x)I j

N(x), Fj
M(x) + Fj

N(x)− Fj
M(x)Fj

N(x)
〉∣∣∣

x ∈ X, j = 1, 2, · · · , l(M, N)}.

Definition 8 ([14]). Let M =
{〈

xi, T j
M(xi), I j

M(xi), Fj
M(xi)

〉∣∣∣xi ∈ X; i = 1, 2, · · · , n; j = 1, 2, · · · , l(x : M)
}

and N =
{〈

xi, T j
N(xi), I j

N(xi), Fj
N(xi)

〉∣∣∣xi ∈ X; i = 1, 2, · · · , n; j = 1, 2, · · · , l(x : N)
}

be two SVNMSs
in X = {x1, x2, · · · , xn}. Now, we propose the generalized distance measure between M and N as follows:

DP(M, N) =

[
1
n

n
∑

i=1

1
3li

li
∑

j=1

(∣∣∣T j
M(xi)− T j

N(xi)
∣∣∣P +

∣∣∣I j
M(xi)− I j

N(xi)
∣∣∣P +

∣∣∣Fj
M(xi)− Fj

N(xi)
∣∣∣P)] 1

P

, (4)

where li = l(xi : M, N) = max{l(xi : M), l(xi : N)} for i = 1, 2, · · · , n.

If P = 1, 2, it reduces to the Hamming distance and the Euclidean distance, which are usually
applied to real science and engineering areas.

Based on the relationship between the distance measure and the similarity measure, we can
introduce two distance-based similarity measures between M and N:

S1(M, N) = 1− DP(M, N), (5)

S2(M, N) =
1− DP(M, N)

1 + DP(M, N)
. (6)

3. Some New Properties of SVNMS

The operation of SVNMS is discussed in depth and certain theoretical results are obtained. On this
basis, this section generalizes the union and intersection operations of two SVNMSs to the general case,
that is, for any indicator set. In addition, this section presents the arithmetic properties of SVNMSs.

Remark 1. The union and intersection operations of the two SVNMSs can be extended to general case, that is,
for any index set T, if Mt ∈ SVNMS(X), ∀t ∈ T, we can define

∪t∈T Mt =
{〈

x,∨t∈TT j
Mt

(x),∧t∈T I j
Mt

(x),∧t∈T Fj
Mt

(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , lx

}
,

and
∩t∈T Mt =

{〈
x,∧t∈TT j

Mt
(x),∨t∈T I j

Mt
(x),∨t∈T Fj

Mt
(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , lx

}
,

where lx = max{ l(x : Mt)|t ∈ T}.

Proposition 1. Let M, N and Q be three SVNMSs in X. We have the following operational properties:

(1) Commutation: M ∪ N = N ∪M, M ∩ N = N ∩M;
(2) Association: M ∪ (N ∪Q) = (M ∪ N) ∪Q, M ∩ (N ∩Q) = (M ∩ N) ∩Q;
(3) Idempotent: M ∪M = M, M ∩M = M;
(4) Absorption: M ∪ (M ∩ N) = M, M ∩ (M ∪ N) = M;
(5) Identity: M ∪ M̃ = M̃; M ∩ M̃ = M, M ∪ Φ̃ = M, M ∩ Φ̃ = Φ̃;
(6) Distribution: M ∪ (N ∩Q) = (M ∪ N) ∩ (M ∪Q), M ∩ (N ∪Q) = (M ∩ N) ∪ (M ∩Q);
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(7) Involution:
(

Mc̃
)c̃

= M,
(

M̃
)c̃

= Φ̃,
(

Φ̃
)c̃

= M̃;

(8) De Morgan: (M ∩ N)c̃ = Mc̃ ∪ N c̃, (M ∪ N)c̃ = Mc̃ ∩ N c̃.

Remark 2. As we know, the complementation can be established in classical set, however, it is not true in
SVNMS. For example, let X = {x1, x2, x3}, M ∈ SVNMS(X) as follows:

M = {〈x1, (0.5, 0.3), (0.1, 0.1), (0.7, 0.8)〉 , 〈x2, (0.7, 0.68, 0.62), (0.3, 0.45, 0.5), (0.34, 0.28, 0.49)〉,
〈x3, (0.67, 0.5, 0.3), (0.2, 0.3, 0.4), (0.4, 0.5, 0.7)〉}.

Obviously,

M ∪Mc̃ = {〈x1, (0.7, 0.8), (0.1, 0.1), (0.5, 0.3)〉 , 〈x2, (0.7, 0.68, 0.62), (0.3, 0.45, 0.5), (0.34, 0.28, 0.49)〉,
〈x3, (0.67, 0.5, 0.7), (0.2, 0.3, 0.4), (0.4, 0.5, 0.3)〉} 6= M̃;

M ∩Mc̃ = {〈x1, (0.5, 0.3), (0.9, 0.9), (0.7, 0.8)〉 , 〈x2, (0.34, 0.28, 0.49), (0.7, 0.55, 0.5), (0.7, 0.68, 0.62)〉,
〈x3, (0.4, 0.5, 0.3), (0.8, 0.7, 0.6), (0.67, 0.5, 0.7)〉} 6= Φ̃.

4. Decomposition Theorem and Representation Theorem of SVNMS

In this section, the notions of cut sets, strong cut sets of SVNMS are defined. Some properties
of cut sets are proposed. We also investigate decomposition theorem and representation theorem of
SVNMS based on cut sets.

4.1. Decomposition Theorem

Definition 9. Let X = {x1, x2, · · · , xn}, A ∈ SVNMS(X) and α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3.
The α-cut set of truth value function generated by A is defined as follows:

Aα =
{

xi ∈ X
∣∣∣T j

A(xi) ≥ α; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (7)

The strong α-cut set of truth value function generated by A is defined as follows:

Aα+ =
{

xi ∈ X
∣∣∣T j

A(xi) > α; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (8)

The β-cut set of indeterminacy value function generated by A is defined as follows:

Aβ =
{

xi ∈ X
∣∣∣I j

A(xi) ≤ β; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (9)

The strong β-cut set of indeterminacy value function generated by A is defined as follows:

Aβ+ =
{

xi ∈ X
∣∣∣I j

A(xi) < β; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (10)

The γ-cut set of falsity value function generated by A is defined as follows:

Aγ =
{

xi ∈ X
∣∣∣Fj

A(xi) ≤ γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (11)

The strong γ-cut set of falsity value function generated by A is defined as follows:

Aγ+ =
{

xi ∈ X
∣∣∣Fj

A(xi) < γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

. (12)
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Next, we can define the (α, β, γ)-cut sets as follows:

A(α, β, γ) =
{

xi ∈ X
∣∣∣T j

A(xi) ≥ α, I j
A(xi) ≤ β, Fj

A(xi) ≤ γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (13)

A(α+, β, γ) =
{

xi ∈ X
∣∣∣T j

A(xi) > α, I j
A(xi) ≤ β, Fj

A(xi) ≤ γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (14)

A(α, β+, γ) =
{

xi ∈ X
∣∣∣T j

A(xi) ≥ α, I j
A(xi) < β, Fj

A(xi) ≤ γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (15)

A(α, β, γ+) =
{

xi ∈ X
∣∣∣T j

A(xi) ≥ α, I j
A(xi) ≤ β, Fj

A(xi) < γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (16)

A(α+, β+, γ) =
{

xi ∈ X
∣∣∣T j

A(xi) > α, I j
A(xi) < β, Fj

A(xi) ≤ γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (17)

A(α+, β, γ+) =
{

xi ∈ X
∣∣∣T j

A(xi) > α, I j
A(xi) ≤ β, Fj

A(xi) < γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (18)

A(α, β+, γ+) =
{

xi ∈ X
∣∣∣T j

A(xi) ≥ α, I j
A(xi) < β, Fj

A(xi) < γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

; (19)

A(α+, β+, γ+) =
{

xi ∈ X
∣∣∣T j

A(xi) > α, I j
A(xi) < β, Fj

A(xi) < γ; i = 1, 2, · · · , n; j = 1, 2, · · · , l(xi : A)
}

. (20)

The α-cut sets, β-cut sets, γ-cut sets of SVNMS satisfy the following properties:

Theorem 1. Let A, B ∈ SVNMS(X), α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3. Then,

(1) A ⊆ B⇒ Aα ⊆ Bα , Aβ ⊆ Bβ, Aγ ⊆ Bγ;

(2) (A ∩ B)α = Aα ∩ Bα, (A ∩ B)β = Aβ ∩ Bβ, (A ∩ B)γ = Aγ ∩ Bγ;

(3) (A ∪ B)α = Aα ∪ Bα, (A ∪ B)β = Aβ ∪ Bβ, (A ∪ B)γ = Aγ ∪ Bγ;

(4)
(
∩

t∈T
At

)α

= ∩
t∈T

(At)
α,
(
∩

t∈T
At

)
β = ∩

t∈T
(At)β,

(
∩

t∈T
At

)
γ

= ∩
t∈T

(At)γ;

(5)
(
∪

t∈T
At

)α

= ∪
t∈T

(At)
α,
(
∪

t∈T
At

)
β = ∪

t∈T
(At)β,

(
∪

t∈T
At

)
γ

= ∪
t∈T

(At)γ;

(6) α1 ≥ α2, β1 ≤ β2, γ1 ≤ γ2⇒Aα1 ⊆ Aα2 , Aβ1 ⊆ Aβ2, Aγ1 ⊆ Aγ2 .

Proof.

(1) Since x ∈ Aα, we have T j
A(x) ≥ α. From A ⊆ B, it follows that T j

A(x) ≤ T j
B(x). Thus, T j

B(x) ≥ α.

Thus, x ∈ Bα. Therefore, Aα ⊆ Bα for j = 1, 2, · · · , l(x : A, B). Since x ∈ Aβ, we have I j
A(x) ≤ β.

From A ⊆ B, it follows that I j
A(x) ≥ I j

B(x). Thus, I j
B(x) ≤ β. Thus, x ∈ Bβ. Hence, Aβ ⊆ Bβ for

j = 1, 2, · · · , l(x : A, B).

(2) From x ∈ (A ∩ B)α, we can obtain T j
A∩B(x) ≥ α. Then, min

{
T j

A(x), T j
B(x)

}
≥ α, that is, T j

A(x)≥

α,T j
B(x) ≥ α. Thus, x ∈ Aα, x ∈ Bα. Hence, x ∈ Aα ∩ Bα. On the other hand, since x ∈ Aα ∩ Bα,

we have x ∈ Aα, x ∈ Bα, that is, T j
A(x) ≥ α, T j

B(x) ≥ α. Then, min
{

T j
A(x), T j

B(x)
}
≥ α. Thus,

T j
A∩B(x) ≥ α. Hence, x ∈ (A ∩ B)α. Based on the above facts, we can check that (A ∩ B)α = Aα ∩ Bα

for j = 1, 2, · · · ,l(x : A, B).
Since x ∈ (A ∩ B)β, we have I j

A∩B(x) ≤ β. Then, max
{

I j
A(x), I j

B(x)
}
≤ β, that is, I j

A(x) ≤ β,I j
B(x) ≤ β.

Then, x ∈ Aβ, x ∈ Bβ. Hence, x ∈ Aβ ∩ Bβ. On the other hand, from x ∈ Aβ ∩ Bβ, we have
x ∈ Aβ,x ∈ Bβ. Thus, I j

A(x) ≤ β, I j
B(x) ≤ β, that is, max

{
I j
A(x), I j

B(x)
}
≤ β. Thus, I j

A∩B(x) ≤ β.
Thus, x ∈(A ∩ B)β. Therefore, we can check that (A ∩ B)β = Aβ ∩ Bβ for j = 1, 2, · · · , l(x : A, B).

(3) From x ∈ (A ∪ B)α, we have T j
A∪B(x) ≥ α. Thus, max

{
T j

A(x), T j
B(x)

}
≥ α, that is, T j

A(x) ≥ α or

T j
B(x) ≥ α. Thus, x ∈ Aα or x ∈ Bα. Hence, x ∈ Aα ∪ Bα. On the other hand, since x ∈ Aα ∪ Bα,

we have x ∈ Aα or x ∈ Bα. Thus, T j
A(x) ≥ α or T j

B(x) ≥ α, that is, max
{

T j
A(x), T j

B(x)
}
≥ α. Thus,
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T j
A∪B(x) ≥ α. Hence, x ∈ (A ∪ B)α. Using the above facts, we can check that (A ∪ B)α = Aα ∪ Bα for

j = 1, 2, · · · , l(x : A, B).
Since x ∈ (A ∪ B)γ, we have Fj

A∪B(x) ≤ γ, that is, min
{

Fj
A(x), Fj

B(x)
}
≤ γ. Thus, Fj

A(x) ≤ γ or

Fj
B(x) ≤ γ. Thus, x ∈ Aγ or x ∈ Bγ. Hence, x ∈ Aγ ∪ Bγ. On the other hand, from x ∈ Aγ ∪ Bγ,

we have x ∈ Aγ or x ∈ Bγ. Thus, Fj
A(x) ≤ γ or Fj

B(x) ≤ γ, that is, min
{

Fj
A(x), Fj

B(x)
}
≤ γ.

Thus, Fj
A∪B(x) ≤ γ. Hence, x ∈ (A ∪ B)γ. Therefore, we can check that (A ∪ B)γ = Aγ ∪ Bγ for

j = 1, 2, · · · ,l(x : A, B).

(4) From x ∈
(
∩

t∈T
At

)α

, we have T j
∩

t∈T
At
(x) ≥ α, that is, inf

t∈T

{
T j

At
(x)
}
≥ α. Thus, T j

At
(x) ≥ α for all

t ∈ T, that is, x ∈ (At)
α for all t ∈ T. Hence, x ∈ ∩

t∈T
(At)

α. On the other hand, from x ∈ ∩
t∈T

(At)
α, it

follows that x ∈ (At)
α for all t ∈ T. Then, T j

At
(x) ≥ α for all t ∈ T, that is, inf

t∈T

{
T j

At
(x)
}
≥ α. Then,

T j
∩

t∈T
At
(x) ≥ α. Thus, x ∈

(
∩

t∈T
At

)α

. Based on the above facts, we can check that
(
∩

t∈T
At

)α

= ∩
t∈T

(At)
α

for j = 1, 2, · · · ,l(l = max{ l(x : At)|t ∈ T}).

Since x ∈
(
∩

t∈T
At

)
β, we have I j

∩
t∈T

At
(x) ≤ β, that is, sup

t∈T

{
I j
At
(x)
}
≤ β. Thus, I j

At
(x) ≤ β for all

t ∈ T, that is, x ∈ (At)β for all t ∈ T. Thus, x ∈ ∩
t∈T

(At)β. On the other hand, from x ∈ ∩
t∈T

(At)β,

we have x ∈ (At)β for all t ∈ T. Thus, I j
At
(x) ≤ β for all t ∈ T, that is, sup

t∈T

{
I j
At
(x)
}
≤ β. Thus,

I j
∩

t∈T
At
(x) ≤ β. Hence, x ∈

(
∩

t∈T
At

)
β. Therefore, we can check that

(
∩

t∈T
At

)
β = ∩

t∈T
(At)β for

j = 1, 2, · · · , l(l = max{l (x : At)|t ∈ T}).
(5) The proof of (5) is similar to Theorem 1 (4).

(6) The proof of (6) is obvious from Definition 9.

The (α, β, γ)-cut sets of SVNMS satisfy the following properties. �

Theorem 2. Let A, B ∈ SVNMS(X), α, β, γ ∈ [0, 1] with 0 ≤ α + β + γ ≤ 3. Then,

(1) A(α+,β+,γ+) ⊆ A(α+,β+,γ) ⊆ A(α+,β,γ) ⊆ A(α,β,γ), A(α+,β+,γ+) ⊆ A(α+,β+,γ) ⊆ A(α,β+,γ) ⊆
A(α,β,γ), A(α+,β+,γ+) ⊆ A(α+,β,γ+) ⊆ A(α+,β,γ) ⊆ A(α,β,γ), A(α+,β+,γ+) ⊆ A(α+,β,γ+) ⊆
A(α,β,γ+) ⊆ A(α,β,γ), A(α+,β+,γ+) ⊆ A(α,β+,γ+) ⊆ A(α,β+,γ) ⊆ A(α,β,γ), A(α+,β+,γ+) ⊆
A(α,β+,γ+) ⊆ A(α,β,γ+) ⊆ A(α,β,γ);

(2) A ⊆ B⇒ A(α,β,γ) ⊆ B(α,β,γ) , A(α+,β,γ) ⊆ B(α+,β,γ), A(α,β+,γ) ⊆ B(α,β+,γ), A(α,β,γ+) ⊆ B(α,β,γ+),
A(α+,β+,γ) ⊆ B(α+,β+,γ), A(α+,β,γ+) ⊆ B(α+,β,γ+), A(α,β+,γ+) ⊆ B(α,β+,γ+), A(α+,β+,γ+) ⊆
B(α+,β+,γ+);

(3) α1 ≤ α2, β1 ≥ β2, γ1 ≥ γ2 ⇒ A(α1,β1,γ1) ⊇ A(α1+,β1+,γ1+) ⊇ A(α2,β2,γ2) ⊇ A(α2+,β2+,γ2+) ;

(4) A(α,β,γ) = Aα ∩ Aβ ∩ Aγ;

(5) (A ∩ B)(α,β,γ) = A(α,β,γ) ∩ B(α,β,γ), (A ∩ B)(α+,β,γ) = A(α+,β,γ) ∩ B(α+,β,γ), (A ∩ B)(α,β+,γ) =

A(α,β+,γ) ∩ B(α,β+,γ), (A ∩ B)(α,β,γ+) = A(α,β,γ+) ∩ B(α,β,γ+), (A ∩ B)(α+,β+,γ) = A(α+,β+,γ) ∩
B(α+,β+,γ), (A ∩ B)(α+,β,γ+) = A(α+,β,γ+) ∩ B(α+,β,γ+), (A ∩ B)(α,β+,γ+) = A(α,β+,γ+) ∩
B(α,β+,γ+), (A ∩ B)(α+,β+,γ+) = A(α+,β+,γ+) ∩ B(α+,β+,γ+);

(6) (A ∪ B)(α,β,γ) ⊇ A(α,β,γ) ∪ B(α,β,γ), (A ∪ B)(α+,β,γ) ⊇ A(α+,β,γ) ∪ B(α+,β,γ), (A ∪ B)(α,β+,γ) ⊇
A(α,β+,γ) ∪ B(α,β+,γ), (A ∪ B)(α,β,γ+) ⊇ A(α,β,γ+) ∪ B(α,β,γ+), (A ∪ B)(α+,β+,γ) ⊇ A(α+,β+,γ) ∪
B(α+,β+,γ), (A ∪ B)(α+,β,γ+) ⊇ A(α+,β,γ+) ∪ B(α+,β,γ+), (A ∪ B)(α,β+,γ+) ⊇ A(α,β+,γ+) ∪
B(α,β+,γ+), (A ∪ B)(α+,β+,γ+) ⊇ A(α+,β+,γ+) ∪ B(α+,β+,γ+);
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(7)
(
∩

t∈T
At

)(α,β,γ)
= ∩

t∈T
(At)

(α,β,γ),
(
∩

t∈T
At

)(α+,β,γ)
= ∩

t∈T
(At)

(α+,β,γ),
(
∩

t∈T
At

)(α,β+,γ)
= ∩

t∈T
(At)

(α,β+,γ),(
∩

t∈T
At

)(α,β,γ+)

= ∩
t∈T

(At)
(α,β,γ+),

(
∩

t∈T
At

)(α+,β+,γ)
= ∩

t∈T
(At)

(α+,β+,γ),
(
∩

t∈T
At

)(α+,β,γ+)

=

∩
t∈T

(At)
(α+,β,γ+),

(
∩

t∈T
At

)(α,β+,γ+)

= ∩
t∈T

(At)
(α,β+,γ+),

(
∩

t∈T
At

)(α+,β+,γ+)

= ∩
t∈T

(At)
(α+,β+,γ+);

(8)
(
∪

t∈T
At

)(α,β,γ)
⊇ ∪

t∈T
(At)

(α,β,γ),
(
∪

t∈T
At

)(α+,β,γ)
⊇ ∪

t∈T
(At)

(α+,β,γ),
(
∪

t∈T
At

)(α,β+,γ)
⊇

∪
t∈T

(At)
(α,β+,γ),

(
∪

t∈T
At

)(α,β,γ+)

⊇ ∪
t∈T

(At)
(α,β,γ+),

(
∪

t∈T
At

)(α+,β+,γ)
⊇ ∪

t∈T
(At)

(α+,β+,γ),(
∪

t∈T
At

)(α+,β,γ+)

⊇ ∪
t∈T

(At)
(α+,β,γ+),

(
∪

t∈T
At

)(α,β+,γ+)

⊇ ∪
t∈T

(At)
(α,β+,γ+),(

∪
t∈T

At

)(α+,β+,γ+)

⊇ ∪
t∈T

(At)
(α+,β+,γ+);

(9) ∩
t∈T

A(αt ,βt ,γt) = A(α,β,γ), ∩
t∈T

A(αt+,βt ,γt) = A(α+,β,γ), ∩
t∈T

A(αt ,βt+,γt) = A(α,β+,γ), ∩
t∈T

A(αt ,βt ,γt+) =

A(α,β,γ+), ∩
t∈T

A(αt+,βt+,γt) = A(α+,β+,γ), ∩
t∈T

A(αt+,βt ,γt+) = A(α+,β,γ+), ∩
t∈T

A(αt ,βt+,γt+) =

A(α,β+,γ+), ∩
t∈T

A(αt+,βt+,γt+) = A(α+,β+,γ+),

where e α = ∨t∈Tαt, β = ∧t∈T βt, γ = ∧t∈Tγt.

Proof. The proofs of (1)~(4) are obtained directly from Definition 9. We denote,

A ∪ B =
{〈

x, max
{

T j
A(x), T j

B(x)
}

, min
{

I j
A(x), I j

B(x)
}

, min
{

Fj
A(x), Fj

B(x)
}〉}

,

A ∩ B =
{〈

x, min
{

T j
A(x), T j

B(x)
}

, max
{

I j
A(x), I j

B(x)
}

, max
{

Fj
A(x), Fj

B(x)
}〉}

,

where j = 1, 2, · · · , l(x : A, B).

∪t∈T At =

{〈
x, sup

t∈T

{
T j

At
(x)
}

, inf
t∈T

{
I j
At
(x)
}

, inf
t∈T

{
Fj

At
(x)
}〉}

,

∩t∈T At =

{〈
x, inf

t∈T

{
T j

At
(x)
}

, sup
t∈T

{
I j
At
(x)
}

, sup
t∈T

{
Fj

At
(x)
}〉}

,

j = 1, 2, · · · , l where l = max{ l(x : At)|t ∈ T}.

(5) From x ∈ (A ∩ B)(α,β,γ), we have min
{

T j
A(x), T j

B(x)
}
≥ α, max

{
I j
A(x), I j

B(x)
}
≤ β,

max
{

Fj
A(x), Fj

B (x)} ≤ γ, that is, T j
A(x) ≥ α and T j

B(x) ≥ α,I j
A(x) ≤ β and I j

B(x) ≤ β,Fj
A(x) ≤ γ

and Fj
B(x) ≤ γ. Thus, T j

A(x) ≥ α, I j
A(x) ≤ β, Fj

A(x) ≤ γ and T j
B(x) ≥ α, I j

B(x) ≤ β, Fj
B(x) ≤ γ, that is,

x ∈A(α,β,γ), x ∈ B(α,β,γ). Hence, x ∈ A(α,β,γ) ∩ B(α,β,γ). On the other hand, since x ∈ A(α,β,γ) ∩ B(α,β,γ),
we have x ∈ A(α,β,γ), x ∈ B(α,β,γ), that is, T j

A(x) ≥ α, I j
A(x)≤ β, Fj

A(x) ≤ γ and T j
B(x) ≥ α,

I j
B(x) ≤ β, Fj

B(x) ≤ γ. Thus, T j
A(x) ≥ α and T j

B(x) ≥ α, I j
A(x) ≤ β and I j

B(x) ≤ β, Fj
A(x) ≤ γ

and Fj
B(x) ≤ γ. Hence, min

{
T j

A(x), T j
B(x)

}
≥ α,max

{
I j
A(x), I j

B(x)
}
≤ β, max

{
Fj

A(x), Fj
B(x)

}
≤ γ.

So, x ∈ (A ∩ B)(α,β,γ). Therefore, (A ∩ B)(α,β,γ) = A(α,β,γ) ∩ B(α,β,γ) for j = 1, 2, · · · , l(x : A, B).

(6) Since x ∈ A(α,β,γ) ∪ B(α,β,γ), we have x ∈ A(α,β,γ) or x ∈ B(α,β,γ), that is, T j
A(x) ≥ α, I j

A(x) ≤
β, Fj

A(x) ≤ γ or T j
B(x) ≥ α, I j

B(x) ≤ β, Fj
B(x) ≤ γ. Thus, T j

A(x) ≥ α or T j
B(x) ≥ α, I j

A(x) ≤ β

or I j
B(x) ≤ β, Fj

A(x) ≤ γ or Fj
B(x) ≤ γ, that is, max

{
T j

A(x), T j
B(x)

}
≥ α, min

{
I j
A(x), I j

B(x)
}
≤
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β,min
{

Fj
A(x), Fj

B(x)
}
≤ γ. Thus, x ∈ (A ∪ B)(α,β,γ). Therefore, A(α,β,γ) ∪ B(α,β,γ) ⊆ (A ∪ B)(α,β,γ) for

j = 1, 2, · · · , l(x : A, B).

(7) From x ∈
(
∩

t∈T
At

)(α,β,γ)
, we have inf

t∈T

{
T j

At
(x)
}
≥ α, sup

t∈T

{
I j
At
(x)
}
≤ β, sup

t∈T

{
Fj

At
(x)
}
≤ γ, that

is, T j
At
(x)≥ α, I j

At
(x) ≤ β, Fj

At
(x) ≤ γ for all t ∈ T. Thus, x ∈ (At)

(α,β,γ) for all t ∈ T. Hence,

x ∈ ∩
t∈T

(At)
(α,β,γ). On the other hand, for any x ∈ ∩

t∈T
(At)

(α,β,γ), we have x ∈ (At)
(α,β,γ) for all t ∈ T,

that is, T j
At
(x) ≥ α, I j

At
(x) ≤ β, Fj

At
(x) ≤ γ for all t ∈ T. Thus,

inf
t∈T

{
Fj

At
(x)
}
≥ α, sup

t∈T

{
I j
At
(x)
}
≤ β, sup

t∈T

{
Fj

At
(x)
}
≤ γ.

Hence, x ∈
(
∩

t∈T
At

)(α,β,γ)
. Therefore,

(
∩

t∈T
At

)(α,β,γ)
= ∩

t∈T
(At)

(α,β,γ) for j = 1, 2, · · · , l(x : A, B).

(8) The proof of (8) is similar to that of (6).

(9) Since x ∈ ∩
t∈T

A(αt ,βt ,γt), we have x ∈ A(αt ,βt ,γt) for all t ∈ T, that is,

T j
A(x) ≥ αt, I j

A(x) ≤ βt, Fj
A(x) ≤ γt for all t ∈ T.

Thus, T j
A(x) ≥ ∨

t∈T
αt, I j

A(x) ≤ ∧
t∈T

βt, Fj
A(x) ≤ ∧

t∈T
γt, that is, T j

A(x) ≥ α, I j
A(x) ≤ β, Fj

A(x) ≤ γ. Thus,

x ∈A(α,β,γ). On the other hand, from x ∈ A(α,β,γ), we have T j
A(x) ≥ α, I j

A(x) ≤ β, Fj
A(x) ≤ γ, that is,

T j
A(x) ≥ ∨

t∈T
αt, I j

A(x) ≤ ∧
t∈T

βt, Fj
A(x) ≤ ∧

t∈T
γt for all t ∈ T. Thus, T j

A(x) ≥ αt, I j
A(x) ≤ βt, Fj

A(x) ≤ γt for

all t ∈ T. Thus,x ∈ A(αt ,βt ,γt) for all t ∈ T. Hence, x ∈ ∩
t∈T

A(αt ,βt ,γt). Therefore, ∩
t∈T

A(αt ,βt ,γt) = A(α,β,γ)

for j = 1, 2, · · · ,j = 1, 2, · · · , l(l = max{ l(x : At)|t ∈ T}). �

Remark 3. In property (6) (A ∪ B)(α,β,γ) ⊇ A(α,β,γ) ∪ B(α,β,γ), “⊇” cannot be strengthened as “=”. For
example, let X = {x1, x2, x3}, A, B ∈ SVNMS(X) as follows:

A = {〈x1, (0.5, 0.3), (0.1, 0.1), (0.7, 0.8)〉 , 〈x2, (0.7, 0.68, 0.62), (0.3, 0.45, 0.5), (0.34, 0.28, 0.49)〉,
〈x3, (0.67, 0.5, 0.3), (0.2, 0.3, 0.4), (0.4, 0.5, 0.7)〉}

B = {〈x1, 0.75, 0.2, 0.15〉 , 〈x2, (0.43, 0.37, 0.28), (0.5, 0.2, 0.3), (0.7, 0.8, 0.9)〉,
〈x3, (1.0, 0.86, 0.79), (0.01, 0.1, 0.2), (0.0, 0.3, 0.2)〉}.

If we choose α = 0.4, β = 0.3, γ = 0.5, then,

A(α,β,γ) = {〈x1 , (1, 0), (1, 1), (0, 0)〉, 〈x2, (1, 1, 1), (1, 0, 0), (1, 1, 1)〉, 〈x3, (1, 1, 0), (1, 1, 0), (1, 1, 0)〉},

B(α,β,γ) = {〈x1 , 1, 1, 1〉, 〈x2, (1, 0, 0), (0, 1, 1), (0, 0, 0)〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 1, 1)〉},

(A ∪ B)(α,β,γ) = {〈x1 , (1, 0), (1, 1), (1, 0)〉, 〈x2, (1, 1, 1), (1, 1, 1), (1, 1, 1)〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 1, 1)〉},

A(α,β,γ) ∪B(α,β,γ) = {〈x1, (1, 0), (1, 1), (0, 0)〉, 〈x2, (1, 1, 1), (0, 0, 0), (0, 0, 0)〉, 〈x3, (1, 1, 1), (1, 1, 0), (1, 1, 0)〉}

Obviously, (A ∪ B)(α,β,γ) 6= A(α,β,γ) ∪ B(α,β,γ).

In order to get the decomposition theorem of SVNMS, we also need to introduce the following
important concepts.
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Definition 10. Let L = {(α, β, γ)|α, β, γ ∈ [0, 1] , 0 ≤ α + β + γ ≤ 3},
(α1, β1, γ1) ≤ (α2, β2, γ2)⇔ α1 ≤ α2, β1 ≥ β2 , γ1 ≥ γ2 So, L is a complete lattice, and (1, 0, 0) is
the biggest element, (0, 1, 1) is the smallest element.

Definition 11. Let (α, β, γ) ∈ L, B ∈ 2X , A = (α, β, γ)B. And for any x ∈ X,

T j
A(x) =

{
α, x ∈ B
0, x /∈ B

, I j
A(x) =

{
β, x ∈ B
1, x /∈ B

, Fj
A(x) =

{
γ, x ∈ B
1, x /∈ B

. (21)

Then, A =
{〈

x, T j
A(x), I j

A(x), Fj
A(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : A)
}

is a SVNMS on the universe
X, so we have the definition as follows:

Definition 12. Suppose A ∈ SVNMS(X), (α, β, γ) ∈ L, the dot product (truncated product) of (α, β, γ) and
A is defined as

((α, β, γ)A)(x) =
{〈

x, α ∨ T j
A(x), β ∧ I j

A(x), , γ ∧ Fj
A(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : A)
}

. (22)

That is (α, β, γ)A ∈ SVNMS(X).

Now, we can discuss the decomposition theorem of SVNMS based on the definitions and
operational properties above.

Theorem 3. Let A be a SVNMS. Then for any (α, β, γ) ∈ L, we have

A = ∪
(α,β,γ)∈L

(α, β, γ)A(α,β,γ) = ∪
(α,β,γ)∈L

(α, β, γ)A(α+,β,γ) = ∪
(α,β,γ)∈L

(α, β, γ)A(α,β+,γ)

= ∪
(α,β,γ)∈L

(α, β, γ)A(α,β,γ+) = ∪
(α,β,γ)∈L

(α, β, γ)A(α+,β+,γ) = ∪
(α,β,γ)∈L

(α, β, γ)A(α+,β,γ+)

= ∪
(α,β,γ)∈L

(α, β, γ)A(α,β+,γ+) = ∪
(α,β,γ)∈L

(α, β, γ)A(α+,β+,γ+) (23)

Proof. With regard to A = ∪
(α,β,γ)∈L

(α, β, γ)A(α,β,γ), we just need to prove A(x) =(
∪

(α,β,γ)∈L
(α, β, γ) A(α,β,γ)

)
(x) for all x ∈ X. That is, A(x) = ∨(α,β,γ)∈L

(
(α, β, γ)A(α,β,γ)

)
(x)=(

∨α∈[0,1]

(
α ∨ (Aα)j(x)

)
, ∧β∈[0,1]

(
β ∧ (Aβ)j(x)

)
,∧γ∈[0,1]

(
γ ∧ (Aγ)j(x)

))
for x ∈ X. Since T j

A(x) ∈

[0, 1], we have ∨α∈[0,1](α∨ (Aα)j (x)) =

[
∨

α∈[0,T j
A(x)]

(
α ∨ (Aα)j(x)

)]
∨
[
∨

α∈[T j
A(x),1]

(
α ∨ (Aα)j(x)

)]
.

Indeed, taking α ≤ T j
A(x), we have (Aα)j(x) = 1, otherwise, (Aα)j(x) = 0.

Thus, ∨α∈[0,1]

(
α ∨ (Aα)j(x)

)
= ∨

α∈[0,T j
A(x)]

(
α ∨ (Aα)j(x)

)
=∨

α∈[0,T j
A(x)]

α = T j
A(x).

Similarly,∧β∈[0,1]

(
β ∧ (Aβ)j(x)

)
= ∧

β∈[I j
A(x),1]

(
β ∧ (Aβ)j(x)

)
= ∧

β∈[I j
A(x),1]

β = I j
A(x) and

∧γ∈[0,1]

(
γ ∧ (Aγ)j(x)

)
=∧

γ∈[Fj
A(x),1]

(
γ ∧ (Aγ)j(x)

)
= ∧

γ∈[Fj
A(x),1]

γ = Fj
A(x).

Therefore, ∨(α,β,γ)∈L

(
(α, β, γ)A(α,β,γ)

)
(x) =

(
T j

A(x), I j
A(x), Fj

A(x)
)

= A(x) for j =

1, 2, · · · l(x : A). �

Next, we use an example to illustrate the idea of the decomposition theorem of SVNMS.
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Example 1. Let X = {x1, x2, x3}, A ∈ SVNMS(X) as follows:

A = {〈x1, (0.6, 0.4), (0.5, 0.3), (0.2, 0.3)〉, 〈x2, 0.2, 0.4, 0.7〉, 〈x3, (0.8, 0.6, 0.5), (0.2, 0.2, 0.3), (0.1, 0.3, 0.4)〉}.

We show how A can be represented by180 special SVNMSs using (α, β, γ)-cut sets. According to Definition 9,
11 and 12, we have:

A(α,β,γ) = {〈x1, (1, 1), (0, 0), (0, 0)〉, 〈x2, 1, 0, 0〉, 〈x3, (1, 1, 1), (1, 1, 0), (1, 0, 0)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0.2, 0.2), (1, 1), (1, 1)〉, 〈x2, 0.2, 1, 1〉, 〈x3, (0.2, 0.2, 0.2), (0.2, 0.2, 1), (0.1, 1, 1)〉},

where 0 ≤ α ≤ 0.2, 0 ≤ β ≤ 0.2, 0 ≤ γ ≤ 0.1;

A(α,β,γ) = {〈x1, (1, 1), (0, 1), (1, 0)〉, 〈x2, 0, 0, 0〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 0, 0)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0.4, 0.4), (1, 0.3), (0.2, 1)〉, 〈x2, 1, 1, 1〉, 〈x3, (0.4, 0.4, 0.4), (0.3, 0.3, 0.3), (0.2, 1, 1)〉},

where 0.2 < α ≤ 0.4, 0.2 < β ≤ 0.3, 0.1 < γ ≤ 0.2;

A(α,β,γ) = {〈x1, (1, 0), (0, 1), (1, 1)〉, 〈x2, 0, 1, 0〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 1, 0)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0.5, 0), (1, 0.4), (0.3, 0.3)〉, 〈x2, 0, 0.4, 1〉, 〈x3, (0.5, 0.5, 0.5), (0.4, 0.4, 0.4), (0.3, 0.3, 1)〉},

where 0.4 < α ≤ 0.5, 0.3 < β ≤ 0.4, 0.2 < γ ≤ 0.3;

A(α,β,γ) = {〈x1, (1, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 0〉, 〈x3, (1, 1, 0), (1, 1, 1), (1, 1, 1)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0.6, 0), (0.5, 0.5), (0.4, 0.4)〉, 〈x2, 0, 0.5, 1〉, 〈x3, (0.6, 0.6, 0), (0.5, 0.5, 0.5), (0.4, 0.4, 0.4)〉},

where 0.5 < α ≤ 0.6, 0.4 < β ≤ 0.5, 0.3 < γ ≤ 0.4;

A(α,β,γ) = {〈x1, (0, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 1〉, 〈x3, (1, 0, 0), (1, 1, 1), (1, 1, 1)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0, 0), (1, 1), (0.7, 0.7)〉, 〈x2, 0, 1, 0.7〉, 〈x3, (0.8, 0, 0), (1, 1, 1), (0.7, 0.7, 0.7)〉},

where 0.6 < α ≤ 0.8, 0.5 < β ≤ 1, 0.4 < γ ≤ 0.7;

A(α,β,γ) = {〈x1, (0, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 1〉, 〈x3, (0, 0, 0), (1, 1, 1), (1, 1, 1)〉},

(α, β, γ)A(α,β,γ) = {〈x1, (0, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 1〉, 〈x3, (0, 0, 0), (1, 1, 1), (1, 1, 1)〉},

where 0.8 < α ≤ 1, 0.5 < β ≤ 1, 0.7 < γ ≤ 1.
Similarly, we can get the rest of the results with special SVNMSs. It is obvious to see,

A = ∪
(α,β,γ)∈L

(α, β, γ)A(α,β,γ).

Definition 13. Suppose H : L→ 2X , (λ, µ, ω) 7→ H(λ, µ, ω) is a mapping, a neutrosophic nested set H can
be defined in X if it satisfies the following conditions:

(1) (λ1, µ1, ω1) ≤ (λ2, µ2, ω2)⇒ H(λ1, µ1, ω1) ⊇ H(λ2, µ2, ω2) ;
(2) ∩t∈T H(λt, µt, ωt) ⊆ {H(λ, µ, ω)|λ < ∨t∈Tλt , µ > ∧t∈Tµt, ω > ∧t∈Tωt}.

Remark 4. Let SVNL be a set which composed of all neutrosophic nested sets, A ∈ SVNMS(X), then, all
(α, β, γ)-cut sets of A are neutrosophic nested sets.

Theorem 4. Let A ∈ SVNMS(X), H : L→ 2X , (α, β, γ) 7→ H(α, β, γ) , for any (α, β, γ) ∈ L satisfy
A(α+,β+,γ+) ⊆ H(α, β, γ) ⊆ A(α,β,γ), then
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(1) A = ∪
(α,β,γ)∈L

(α, β, γ)H(α, β, γ);

(2) α1 < α2, β1 > β2, γ1 > γ2 ⇒ H(α1, β1, γ1) ⊇ H(α2, β2, γ2) , where α1, α2, β1, β2, γ1, γ2 ∈ [0, 1],
0 ≤ α1 + β1+γ1 ≤ 3, 0 ≤ α2 + β2 + γ2 ≤ 3;

(3) (I) A(α,β,γ) = ∩{H(λ, µ, ω)|λ < α, µ > β, ω > γ, 0 ≤ λ + µ + ω ≤ 3}, (II) A(α+,β+,γ+) =

∪{H(λ, µ, ω)|λ > α, µ < β, ω < γ, 0 ≤ λ + µ + ω ≤ 3};
(4) ∩

t∈T
H(αt, βt, γt) ⊆ ∩{H(α, β, γ)|α < ∨t∈Tαt, β > ∧t∈T βt, γ > ∧t∈Tγt }.

Proof.

(1) Since A(α+,β+,γ+) ⊆ H(α, β, γ) ⊆ A(α,β,γ) for all (α, β, γ) ∈ L, we have

A = ∪
(α,β,γ)∈L

(α, β, γ)A(α+,β+,γ+) ⊆ ∪
(α,β,γ)∈L

(α, β, γ)H(α, β, γ) ⊆ ∪
(α,β,γ)∈L

(α, β, γ)A(α,β,γ) = A.

Thus, A = ∪
(α,β,γ)∈L

(α, β, γ)H(α, β, γ).

(2) From α1 < α2, β1 > β2, γ1 > γ2, we can obtain

H(α1, β1, γ1) ⊇ A(α1+,β1+,γ1+) ⊇ A(α2,β2,γ2) ⊇ H(α2, β2, γ2).

(3) (I) Suppose ∑ = {(λ, µ, ω)|λ < α, µ > β, ω > γ, 0 ≤ λ + µ + ω ≤ 3}, then,

∨(λ,µ,ω)∈∑ (λ, µ, ω) = (α, β, γ).

So, ∩{H(λ, µ, ω)|λ < α, µ > β, ω > γ, 0 ≤ λ + µ + ω ≤ 3} ⊆ ∩
{

A(λ,µ,ω)|λ < α, µ > β, ω > γ, 0 ≤ λ + µ + ω ≤ 3
}
=

A(α,β,γ). On the other hand, since x ∈ A(α,β,γ), we have T j
A(x) ≥ α, I j

A(x) ≤ β, Fj
A(x) ≤

γ. Thus, T j
A(x)≥ α > λ, I j

A(x) ≤ β < µ, Fj
A(x) ≤ γ < ω. That is, T j

A(x) >

λ, I j
A(x) < µ, Fj

A(x) < ω. Thus, x ∈ A(λ+,µ+,ω+). Thus, x ∈ H(λ, µ, ω). Therefore, x ∈
∩{H(λ, µ, ω)|λ < α, µ > β, ω > γ, 0 ≤ λ + µ + ω ≤ 3}. Based on the above facts, we can obtain
A(α,β,γ) = ∩{H(λ, µ, ω)|λ < α, µ > β, ω > γ, 0 ≤ λ + µ + ω ≤ 3}.
(II) Since A(α+,β+,γ+) ⊇ A(λ, ,µ,γ) ⊇ H(λ, µ, γ) for any λ > α, µ < β, ω < γ, 0 ≤ λ + µ + ω ≤ 3,
we have

A(α+,β+,γ+) ⊇ ∪{H(λ, µ, ω)|λ > α, µ < β, ω < γ, 0 ≤ λ + µ + ω ≤ 3}. On the other hand,
from x ∈ A(α+,β+,γ+) we have T j

A(x) > α, I j
A(x) < β, Fj

A(x) < γ. It follows that there exists

λ > α, µ < β, ω < γ, 0 ≤ λ + µ + ω ≤ 3, such that T j
A(x) > λ > α, I j

A(x) < µ < β,

Fj
A(x) < ω < γ, that is, x ∈ A(λ+,µ+,ω+). Indeed, A(λ+,µ+,ω+) ⊆ H(λ, µ, ω), then, x ∈ H(λ, µ, ω).

Thus, x ∈ ∪{H(λ, µ, ω)|λ > α, µ < β, ω < γ, 0 ≤ λ + µ + ω ≤ 3}. Thus,
A(α+,β+,γ+) ⊆ ∪{H(λ, µ, ω)|λ > α, µ < β, ω < γ, 0 ≤ λ + µ + ω ≤ 3}. Therefore, we can obtain

A(α+,β+,γ+) = ∪{H(λ, µ, ω)|λ > α, µ < β, ω < γ, 0 ≤ λ + µ + ω ≤ 3}.

(4) From A(α+,β+,γ+) ⊆ H(α, β, γ) ⊆ A(α,β,γ), we have ∩
t∈T

H(αt, βt, γt) ⊆ ∩
t∈T

A(αt ,βt ,γt) ⊆ A(α′ ,β′ ,γ′)

for α′ = ∨t∈Tαt,β′ = ∧t∈T βt,γ′ = ∧t∈Tγt. Applying (3) (I), we get

A(α′ ,β′ ,γ′) = ∩{H(α, β, γ)|α < α′, β > β′, γ > γ′, 0 ≤ α + β+γ ≤ 3}+γ ≤ 3}.

Therefore,

∩
t∈T

H(αt, βt, γt) ⊆ ∩
{

H(α, β, γ)
∣∣α < α′, β > β′, γ > γ′, 0 ≤ α + β + γ ≤ 3

}
�

Remark 5. (1) The significance of Theorem 3 (Decomposition Theorem): A SVNMS can be composed of
neutrosophic nested sets which consist of self-decomposed cut sets or strong cut sets. (2) The significance of
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Theorem 4 (Generalized Decomposition Theorem): A collection of family sandwiched between cut or strong cut
sets of a SVNMS must be neutrosophic nested sets, and such nested sets can also compose the original SVNMS.

4.2. Representation Theorem of SVNMS

According to the relationship between the decomposition theorem and the representation theorem,
we can obtain that each neutrosophic nested set can be combined into a single-valued neutrosophic
multiset. Furthermore, its cut sets or strong cut sets can be constructed with the original neutrosophic
nested set. In other words, it is theoretically explained: a family of special single-valued neutrosophic
multisets can be used to completely depict and represent a single-valued neutrosophic multiset).

In this section, the representation theorem of SVNMS based on the decomposition theorem is
proposed in this section.

Theorem 5. Let H ∈ SVNL(X), A ∈ SVNMS(X), and ∀(α, β, γ) ∈ L. We have

(I) A(α,β,γ) = ∩{H(λ, µ, ω)|λ < α, µ > β, ω > γ, 0 ≤ λ + µ + ω ≤ 3};
(II) A(α+,β+,γ+) = ∪{H(λ, µ, ω)|λ > α, µ < β, ω < γ, 0 ≤ λ + µ + ω ≤ 3}.

Proof. Since H(α, β, γ) ∈ 2X for all (α, β, γ) ∈ L, and (α, β, γ)H(α, β, γ) ∈ SVNMS(X), we have
∪(α,β,γ)∈L(α, β, γ)H(α, β, γ) ∈ SVNMS(X), denoted by A. Applying Theorem 4, we only need
to prove,

H : L→ 2X satisfies A(α+,β+,γ+) ⊆ H(α, β, γ) ⊆ A(α,β,γ).

Since x ∈ A(α+,β+,γ+), we have Tj
A(x) > α, I j

A(x) < β, Fj
A(x) < γ. Thus, ∨(λ,µ,ω)∈L

[
λ∧ (H(λ))j(x)

]
> α,

∧(λ,µ,ω)∈L

[
µ ∨ (H(µ))j(x)

]
< β,∧(λ,µ,ω)∈L

[
ω ∨ (H(ω))j(x)

]
< γ. It follows that there exists

(λ0, µ0, ω0) ∈L, such that λ0 ∨ (H(λ0))j(x) > α, µ0 ∨ (H(µ0))j(x) < β, ω0 ∨ (H(ω0))j(x) < γ, that is,
λ0 > α, µ0 < β,ω0 < γ. Taking (H(λ0, µ0, ω0))j(x) = (1, 1, 1), we have (λ0, µ0, ω0) > (α, β, γ). Thus,
x ∈ H(λ0, µ0, ω0) ⊆H(α, β, γ). On the other hand, from x ∈ H(α, β, γ), we have (H(λ, µ, ω))j(x) =

(1, 1, 1). Thus, ∨(λ,µ,ω)∈L

[
λ ∨ (H(λ))j(x)

]
≥ α ∧ (H(α))j(x) = α, ∨(λ,µ,ω)∈L

[
µ ∨ (H(µ))j(x)

]
≤ β ∧

(H(β))j(x) = β and

∨(λ,µ,ω)∈L

[
ω ∨ (H(ω))j(x)

]
≤ γ ∧ (H(γ))j(x) = γ, that is, T j

A(x) ≥ α, I j
A(x) ≤ β, Fj

A(x) ≤ γ.

Thus, x ∈A(α,β,γ). Therefore, A(α+,β+,γ+) ⊆ H(α, β, γ) ⊆ A(α,β,γ) for j = 1, 2, · · · l(x : A, B). �

Theorem 5 (Representation Theorem) provides an effective method for constructing a SVNMS:
Let H ∈ SVNL(X), we can construct a SVNMS with the following membership function:

A : X → L , A(x) = ∨{(α, β, γ) ∈ L|x ∈ H(α, β, γ)}, ∀x ∈ X

Example 2. Suppose X = {x1, x2, x3}. The neutrosophic nested sets on the given X is as follows:

H(α, β, γ) = {〈x1, (1, 1), (0, 0), (0, 0)〉, 〈x2, 1, 0, 0〉, 〈x3, (1, 1, 1), (0, 0, 0), (0, 0, 0)〉},

where α = β = γ = 0;

H(α, β, γ) = {〈x1, (1, 1), (0, 0), (0, 0)〉, 〈x2, 1, 0, 0〉, 〈x3, (1, 1, 1), (1, 1, 0), (1, 0, 0)〉},

where 0 < α ≤ 0.2, 0 < β ≤ 0.2, 0 < γ ≤ 0.1;

H(α, β, γ) = {〈x1, (1, 1), (0, 1), (1, 0)〉, 〈x2, 0, 0, 0〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 0, 0)〉},
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where 0.2 < α ≤ 0.4, 0.2 < β ≤ 0.3, 0.1 < γ ≤ 0.2;

H(α, β, γ) = {〈x1, (1, 0), (0, 1), (1, 1)〉, 〈x2, 0, 1, 0〉, 〈x3, (1, 1, 1), (1, 1, 1), (1, 1, 0)〉},

where 0.4 < α ≤ 0.5, 0.3 < β ≤ 0.4, 0.2 < γ ≤ 0.3;

H(α, β, γ) = {〈x1, (1, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 0〉, 〈x3, (1, 1, 0), (1, 1, 1), (1, 1, 1)〉},

where 0.5 < α ≤ 0.6, 0.4 < β ≤ 0.5, 0.3 < γ ≤ 0.4;

H(α, β, γ) = {〈x1, (0, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 1〉, 〈x3, (1, 0, 0), (1, 1, 1), (1, 1, 1)〉},

where 0.6 < α ≤ 0.8, 0.5 < β ≤ 1, 0.4 < γ ≤ 0.7;

H(α, β, γ) = {〈x1, (0, 0), (1, 1), (1, 1)〉, 〈x2, 0, 1, 1〉, 〈x3, (0, 0, 0), (1, 1, 1), (1, 1, 1)〉},

where 0.8 < α ≤ 1, 0.5 < β ≤ 1, 0.7 < γ ≤ 1.
Similarly, we can give the remaining neutrosophic nested sets.
Then, the SVNMS A determined by H has the following membership function:((

T1
A(x1), T2

A(x1)
)
,
(

I1
A(x1), I2

A(x1)
)
,
(

F1
A(x1), F2

A(x1)
))

= (∨{α ∈ [0, 1]|x1 ∈ H(α, β, γ)},∧{β ∈ [0, 1]|x1 ∈ H(α, β, γ)},∧{γ ∈ [0, 1]|x1 ∈ H(α, β, γ)})
= ((0.6, 0.4), (0.5, 0.3), (0.2, 0.3))(
T1

A(x2), I1
A(x2), F1

A(x2)
)

= (∨{α ∈ [0, 1]|x2 ∈ H(α, β, γ)},∧{β ∈ [0, 1]|x2 ∈ H(α, β, γ)},∧{γ ∈ [0, 1]|x2 ∈ H(α, β, γ)})
= (0.2, 0.4, 0.7)((

T1
A(x3), T2

A(x3), T3
A(x3)

)
,
(

I1
A(x3), I2

A(x3), I3
A(x3)

)
,
(

F1
A(x3), F2

A(x3), F3
A(x3)

))
= (∨{α ∈ [0, 1]|x3 ∈ H(α, β, γ)},∧{β ∈ [0, 1]|x3 ∈ H(α, β, γ)},∧{γ ∈ [0, 1]|x3 ∈ H(α, β, γ)})
= ((0.8, 0.6, 0.5), (0.2, 0.2, 0.3), (0.1, 0.3, 0.4))

Therefore,

A = {〈x1, (0.6, 0.4), (0.5, 0.3), (0.2, 0.3)〉, 〈x2, 0.2, 0.4, 0.7〉, 〈x3, (0.8, 0.6, 0.5), (0.2, 0.2, 0.3), (0.1, 0.3, 0.4)〉}.

5. New Similarity Measure between SVNMSs

On the basis of the decomposition theorem of SVNMS, this section presents a new similarity
measure between SVNMSs. Then, we discuss the properties of this new similarity measure and give a
concrete algorithm by example.

Definition 14. Let M =
{〈

x, T j
M(x), I j

M(x), Fj
M(x)

〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : M)
}

and N ={〈
x, T j

N(x), I j
N(x), Fj

N(x)
〉∣∣∣x ∈ X, j = 1, 2, · · · , l(x : N)

}
be two SVNMSs in X. Suppose V = [0, 1]×

[0, 1]× [0, 1]. Then, we define a new distance measure between M and N as follows:

DC(M, N) =
y

V

f (α, β, γ)dV

where f (α, β, γ) = DP

(
(α, β, γ)M(α,β,γ), (α, β, γ)N(α,β,γ)

)
, α ∈ [0, 1], β ∈ [0, 1], γ ∈ [0, 1].

Proposition 2. Let M, N be two SVNMSs in X. Then, the following properties hold (DC1-DC4):

(DC1) 0 ≤ DC(M, N) ≤ 1;
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(DC2) DC(M, N) = 0 if and only if M = N;
(DC3) DC(M, N) = DC(M, N);
(DC4) If Q is a SVNMS in X and M ⊆ N ⊆ Q, then, DC(M, Q) ≤ DC(M, N) + DC(N, Q) for P > 0.

According to the relationship between distance measure and similarity measures, we can introduce
two distance-based similarity measures between M and N:

SC1(M, N) = 1− DC(M, N) (25)

SC2(M, N) =
1− DC(M, N)

1 + DC(M, N)
(26)

Proposition 3. Let M, N ∈ SVNMS(X). The distance-based similarity measures SC f (M, N), ( f = 1, 2)
hold the following properties (SC1-SC4):

(SC1) 0 ≤ SC f (M, N) ≤ 1;

(SC2) SC f (M, N) = 1 if and only if M = N;

(SC3) SC f (M, N) = SC f (N, M);

(SC4) If Q is a SVNMS in X and M ⊆ N ⊆ Q, then SC f (M, Q) ≤ SC f (M, N) + SC f (N, Q).

Proof. The proofs of proposition 2 and 3 are straightforward. �

This method is based on the cut sets, and uses the idea of the decomposition theorem to convert the
similarity measure between the two SVNMSs into the similarity measure between the corresponding
special SVNMSs. Now, let us use a concrete example to illustrate the specific algorithm.

Example 3. Let X = {x1, x2, x3}, M, N ∈ SVNMS(X). That is,
M = {〈x1, (0.7, 0.8), (0.1, 0.2), (0.2, 0.3)〉, 〈x2, (0.5, 0.6), (0.2, 0.3), (0.4, 0.5)〉}, N =

{〈x1, (0.5, 0.6), (0.1, 0.2), (0.4, 0.5)〉, 〈x2, (0.6, 0.7), (0.1, 0.2), (0.7, 0.8)〉}.
According to the values of T j

M(xi), T j
N(xi)(i = 1, 2; j = 1, 2), we divide the interval [0, 1] of α into 5

subintervals: [0, 0.5], (0.5, 0.6], (0.6, 0.7], (0.7, 0.8], (0.8, 1]. Similarly, we can obtain 4 subintervals of β:
[0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 1], and 7 subintervals of γ: [0, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.7],
(0.7, 0.8], (0.8, 1]. Thus, we have 140 interval combinations of α, β, and γ, take 0 ≤ α ≤ 0.5, 0.2 < β ≤ 0.3,
0.7 < γ ≤ 0.8 for example. In this way, for each combination of interval, we can get the corresponding
M(α,β,γ), N(α,β,γ) and (α, β, γ)M(α,β,γ), (α, β, γ)N(α,β,γ). Based on the above results, the process is
as follows:

Step1, calculate f (α, β, γ) = DP

(
(α, β, γ)M(α,β,γ), (α, β, γ)N(α,β,γ)

)
in every interval combination.

Step2, use Equation (24) to perform the integral operation on f (α, β, γ) over V = [0, 1]× [0, 1]× [0, 1],
and get DC(M, N) = 0.2206.

Step3, using Equation (25) and (26), we can get SC1(M, N) = 0.7794 and SC2(M, N) = 0.6385.

6. Application of New Similarity Measures in Multicriteria Decision-Making Problems

In this section, the new similarity measure is applied to a medical diagnosis problem. Next, we
use the typical examples in [14] to verify the feasibility and effectiveness of the new similarity measure
proposed in Section 5. Furthermore, we analyze the uniqueness of the new similarity measure by
comparing the results with other similarity measures.

Assume that I = {I1, I2, I3, I4} represents 4 patients, set R = {R1, R2, R3, R4} = {viral fever,
tuberculosis, typhoid, throat disease} indicates 4 diseases, and set S = {S1, S2, S3, S4} = {temperature,
cough, sore throat, headache, body pain} indicates 5 symptoms. In medical diagnosis, in order to
obtain a more accurate diagnosis, the doctor collects symptom information for the same patient at
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different times of the day. Therefore, we use the following SVNMSs to indicate the affiliation between
the patient and the symptom:

I1 = {〈S1, (0.8, 0.6, 05), (0.3, 0.2, 0.1), (0.4, 0.2, 0.1)〉, 〈S2, (0.5, 0.4, 0.3), (0.4, 0.4, 0.3), (0.6, 0.3, 0.4)〉
〈S3, (0.2, 0.1, 0.0), (0.3, 0.2, 0.2), (0.8, 0.7, 0.7)〉, 〈S4, (0.7, 0.6, 0.5), (0.3, 0.2, 0.1), (0.4, 0.3, 0.2)〉

〈S5, (0.4, 0.3, 0.2), (0.6, 0.5, 0.5), (0.6, 0.4, 0.4)〉;
I2 = {〈S1, (0.5, 0.4, 0.3), (0.3, 0.3, 0.2), (0.5, 0.4, 0.4)〉, 〈S2, (0.9, 0.8, 0.7), (0.2, 0.1, 0.1), (0.2, 0.1, 0.0)〉
〈S3, (0.6, 0.5, 0.4), (0.3, 0.2, 0.2), (0.4, 0.3, 0.3)〉, 〈S4, (0.6, 0.4, 0.3), (0.3, 0.1, 0.1), (0.7, 0.7, 0.3)〉

〈S5, (0.8, 0.7, 0.5), (0.4, 0.3, 0.1), (0.3, 0.2, 0.1)〉;
I3 = {〈S1, (0.2, 0.1, 0.1), (0.3, 0.2, 0.2), (0.8, 0.7, 0.6)〉, 〈S2, (0.3, 0.2, 0.2), (0.4, 0.2, 0.2), (0.7, 0.6, 0.5)〉
〈S3, (0.8, 0.8, 0.7), (0.2, 0.2, 0.2), (0.1, 0.1, 0.0)〉, 〈S4, (0.3, 0.2, 0.2), (0.3, 0.3, 0.3), (0.7, 0.6, 0.6)〉

〈S5, (0.4, 0.4, 0.3), (0.4, 0.3, 0.2), (0.7, 0.7, 0.5)〉;
I4 = {〈S1, (0.5, 0.5, 0.4), (0.3, 0.2, 0.2), (0.4, 0.4, 0.3)〉, 〈S2, (0.4, 0.3, 0.1), (0.4, 0.3, 0.2), (0.7, 0.5, 0.3)〉
〈S3, (0.7, 0.1, 0.0), (0.4, 0.3, 0.3), (0.7, 0.7, 0.6)〉, 〈S4, (0.6, 0.5, 0.3), (0.6, 0.2, 0.1), (0.6, 0.4, 0.3)〉

〈S5, (0.5, 0.1, 0.1), (0.3, 0.3, 0.2), (0.6, 0.5, 0.4)〉.

Then, the affiliation between the symptoms and the disease is represented by the
following SVNMSs:

R1 = {〈S1, 0.8, 0.1, 0.1〉, 〈S2, 0.2, 0.7, 0.1〉, 〈S3, 0.3, 0.5, 0.2〉, 〈S4, 0.5, 0.3, 0.2〉, 〈S5, 0.5, 0.4, 0.1〉};
R2 = {〈S1, 0.2, 0.7, 0.1〉, 〈S2, 0.9, 0.0, 0.1〉, 〈S3, 0.7, 0.2, 0.1〉, 〈S4, 0.6, 0.3, 0.1〉, 〈S4, 0.7, 0.2, 0.1〉};
R3 = {〈S1, 0.5, 0.3, 0.2〉, 〈S2, 0.3, 0.5, 0.2〉, 〈S3, 0.2, 0.7, 0.1〉, 〈S4, 0.2, 0.6, 0.2〉, 〈S5, 0.4, 0.4, 0.2〉};
R4 = {〈S1, 0.1, 0.7, 0.2〉, 〈S2, 0.3, 0.6, 0.1〉, 〈S3, 0.8, 0.1, 0.1〉, 〈S4, 0.1, 0.8, 0.1〉, 〈S5, 0.1, 0.8, 0.1〉}.

Then, by Definition 14, we use Equations (24) and (25) to get the similarity SC1
(

Ii, Rj
)

between
each patient Ii(i = 1, 2, 3, 4) and disease Rj(j = 1, 2, 3, 4), which are shown in Table 1. Similarly, we use
Equations (24) and (26) to get the similarity SC2

(
Ii, Rj

)
between each patient Ii(i = 1, 2, 3, 4) and disease

Rj(j = 1, 2, 3, 4), which are shown in Table 2.

Table 1. Similarity values of SC1

(
Ii, Rj

)
.

R1
(Viral fever)

R2
(Tuberculosis)

R3
(Typhoid)

R4
(Troat Disease)

I1 0.6927 0.6616 0.6934 0.6694
I2 0.6417 0.6632 0.6458 0.6414
I3 0.6896 0.6820 0.6881 0.7011
I4 0.6966 0.6850 0.7156 0.6923

Table 2. Similarity values of SC2

(
Ii, Rj

)
.

R1
(Viral fever)

R2
(Tuberculosis)

R3
(Typhoid)

R4
(Troat Disease)

I1 0.5299 0.4943 0.5307 0.5031
I2 0.4724 0.4961 0.4769 0.4721
I3 0.5263 0.5175 0.5245 0.5398
I4 0.5344 0.5209 0.5571 0.5294

It is well known that the closeness of the relationship between two SVNMSs can be described by
the similarity between the two, that is, the greater the similarity, the closer the relationship is. As can
be seen from Tables 1 and 2, for these four diseases, by comparison, we can determine the most similar
disease to each patient and get the get the most realistic diagnosis: patient I1 suffers from typhoid,
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patient I2 suffers from tuberculosis, patient I3 suffers from throat disease, and patient I4 also suffers
from typhoid.

The dice similarity measures proposed in [11] are applied to the decision-making example, and
the diagnosis is that patient I1 suffers from typhoid, patient I2 suffers from viral fever, patient I3

suffers from typhoid, and patient I4 suffers from tuberculosis. The distance-based similarity measures
proposed in [14] also are applied in this decision-making example, and the diagnosis is that patient
I1 suffers from viral fever, patient I2 suffers from tuberculosis, patient I3 suffers from typhoid, and
patient I4 suffers from typhoid.

By analyzing and comparing the diagnostic results obtained by the three methods, we found that
when using the new similarity to calculate, the diagnosis of disease in patient I1 is consistent with [11]
and the diagnosis of patients I2 and I4 was consistent with [14], indicating that this method is more
effective, because the results are closer to the actual situation.

According to the above comparative analysis, the method proposed in this paper has the following
advantages: (1) The new similarity measure under the SVNMSs environment can deal with the
indeterminacy and inconsistent information which exists in decision-making problems, that is, it can
be effectively used in many practical applications. (2) The new similarity measure is based on the
cut sets, with the decomposition theorem and the representation theorem as the main ideas, and the
integral as the main mathematical tool. Therefore, it has a solid mathematical theoretical basis. (3) This
method can make full use of all the information of SVNMSs, and use the idea of splitting and summing
to simplify complex problem, provide a simple and effective method for solving practical problems.

7. Conclusions

This paper first systematically discussed 8 properties of the union, intersection and complement
of the single-valued neutrosophic multisets (SVNMSs), and showed that the complementation is no
longer true in SVNMS by the counterexample. Secondly, this paper proposed the notions of cut sets
and strong cut sets of SVNMSs and presented the related properties. On the basis of cut set sand strong
cut sets, the decomposition theorem and representation theorem of SVNMSs were established and
proved. The decomposition theorem realizes the transformation of SVNMSs and special SVNMSs.
Thirdly, based on the decomposition theorem, we transformed the similarity between SVNMSs into the
similarity between special SVNMSs. Therefore, we used the integral to give a new method to calculate
the similarity between SVNMSs. The conceptions of new similarity measures were introduced, and its
feasibility and effectiveness in multi-attribute decision making were verified accordinng to a typical
example. Further, the uniqueness of the new similarity measure was analyzed by comparing the results
with other similarity measures. The results obtained have a significant meaning for further theoretical
research of SVNMSs. As the next research topic, we will explore the fuzzy measure and fuzzy integral
of SVNMSs. In the future, we will discuss the integration of the related topics, such as neutrosophic
set (multiset), fuzzy set (multiset), rough set, soft set and algebra systems (see [30–32,37–39]).
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