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Novel applications of bipolar single-valued neutrosophic

competition graphs

Muhammad Akram1 Maryam Nasir1 K. P. Shum2

Abstract. Bipolar single-valued neutrosophic models are the generalization of bipolar fuzzy

models. We first introduce the concept of bipolar single-valued neutrosophic competition graph-

s. We then, discuss some important propositions related to bipolar single-valued neutrosophic

competition graphs. We define bipolar single-valued neutrosophic economic competition graphs

and m-step bipolar single-valued neutrosophic economic competition graphs. Further, we de-

scribe applications of bipolar single-valued neutrosophic competition graphs in organizational

designations and brands competition. Finally, we present our improved methods by algorithms.

§1 Introduction

The notion of competition graphs was introduced by Cohen [11] in 1968, depending up-

on a problem in ecology. The competition graphs have many utilizations in solving daily life

problems, including channel assignment, modeling of complex economic, phytogenetic tree re-

construction, coding and energy systems.

Fuzzy set theory [34] and intuitionistic fuzzy sets theory [9] are useful models for dealing with

uncertainty and incomplete information. But they may not be sufficient in modeling of indeter-

minate and inconsistent information encountered in real world. In order to cope with this issue,

neutrosophic set theory was proposed by Smarandache [20] as a generalization of fuzzy sets and

intuitionistic fuzzy sets. However, since neutrosophic sets are identified by three functions called

truth-membership (t), indeterminacy-membership (i) and falsity-membership (f) whose values

are real standard or non-standard subset of unit interval ]0−, 1+[. There are some difficulties

in modeling of some problems in engineering and sciences. To overcome these difficulties, The

single valued neutrosophic set was introduced for the first time by Smarandache [21] in 1998

and later by Wang et al. [25]. Ye [27, 28, 29, 30, 31, 32] has proposed the concepts of a single

valued neutrosophic graph, a single valued neutrosophic tree, a minimum spanning tree, and
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novel applications of neutrosophic sets.

Deli et al. [12] extended the ideas of bipolar fuzzy sets [36] and neutrosophic sets to bipolar

neutrosophic sets and studied its operations and applications in decision making problems. S-

marandache [23] proposed notion of neutrosophic graph and they separated them to four main

categories. Wu [26] discussed fuzzy digraphs. The concept of fuzzy k-competition graphs and

p-competition fuzzy graphs was first introduced by Smanta and Pal in [17], it was further s-

tudied in [8, 14, 19]. Akram and Shahzadi [5] first introduced the notion of neutrosophic soft

graphs and gave its applications, it was further discussed in [3-6]. Samanta et al. [18] also intro-

duced the concepts of fuzzy m-step neighbouthood graphs, fuzzy economic competition graphs,

and m-step economic competitions graphs. Akram and Nasir [6] considered interval-valued

neutrosophic competition graphs. All the predator-prey relations cannot only be represented

by neutrosophic competition graphs. For example, a specie may have positive and negative

truth-membership, indeterminacy, and false-memberships at the same time. These are bipo-

lar information which are neutrosophic in nature. This idea motivates the necessity of bipolar

neutrosophic competition graphs. In this paper, we first introduce the concept of bipolar neutro-

sophic competition graphs. We then discuss the method of construction of bipolar neutrosophic

competition graph of the Cartesian product of bipolar neutrosophic digraph. Further, we de-

scribe applications of bipolar neutrosophic competition graphs in organizational designations

and brands competition. Finally, we present our improved methods by algorithms.

§2 Bipolar Single-Valued Neutrosophic Competition Graphs

Definition 2.1. [34, 35] A fuzzy set µ in a universe X is a mapping µ : X → [0, 1]. A fuzzy

relation on X is a fuzzy set ν in X ×X.

Definition 2.2. [36] A bipolar fuzzy set on a non-empty set X has the form

A = {(x, µp
A(x), µn

A(x)) : x ∈ X}

where, µp
A : X → [0, 1] and µn

A : X → [−1, 0] are mappings. The positive membership value

µp
A(x) represents the strength of truth or satisfaction of an element x to a certain property

corresponding to bipolar fuzzy set A and µn
A(x) denotes the strength of satisfaction of an

element x to some counter property of bipolar fuzzy set A. If µp
A(x) 6= 0 and µn

A(x) = 0 it

is the situation when x has only truth satisfaction degree for property A. If µn
A(x) 6= 0 and

µp
A(x) = 0, it is the case that x is not satisfying the property of A but satisfying the counter

property to A. It is possible for x that µp
A(x) 6= 0 and µn

A(x) 6= 0 when x satisfies the property

of A as well as its counter property in some part of X.

Definition 2.3. [1] Let X be a non-empty set. A mapping B = (µp
B , µ

n
B) : X × X →

[0, 1] × [−1, 0] is a bipolar fuzzy relation on X such that µp
B(xy) ∈ [0, 1] and µn

B(xy) ∈ [−1, 0]

for x, y ∈ X.

Definition 2.4. [1] A bipolar fuzzy graph on X is a pair G = (A,B) where A = (µp
A, µ

n
A) is a

bipolar fuzzy set on X and B = (µp
B , µ

n
B) is a bipolar fuzzy relation in X such that
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µp
B(xy) ≤ µp

A(x) ∧ µp
A(y) and µn

B(xy) ≥ µn
A(x) ∨ µn

A(y) for all x, y ∈ X.

Definition 2.5. [24] A neutrosophic set A on a non-empty set X is characterized by a truth-

membership fuction tA : X → [0, 1], indeterminacy-membership function iA : X → [0, 1] and a

falsity-membership function fA : X → [0, 1]. There is no restriction on the sum of tA(x), iA(x)

and fA(x) for all x ∈ X.

Definition 2.6. [12] A bipolar single-valued neutrosophic set A on a non-empty set X is an

object of the form

A = {(x, tpA(x), ipA(x), fpA(x), tnA(x), inA(x), fnA(x)) : x ∈ X},

where tpA, ipA, fpA : X → [0, 1] and tnA, inA, fnA : X → [−1, 0]. The positive values tpA(x),

ipA(x), fpA(x) denote respectively the truth, indeterminacy and false-memberships degrees of

an element x ∈ X, whereas, tnA(x), inA(x), fnA(x) denote the implicit counter property of the

truth,indeterminacy and false-memberships degrees of the element x ∈ X corresponding to the

bipolar single-valued neutrosophic set A.

We now define bipolar single-valued neutrosophic digraph.

Definition 2.7. A bipolar single-valued neutrosophic digraph on a non-empty set X is a pair

G = (A,
−→
B ), (in short, G), where A is a bipolar single-valued neutrosophic set on X and B is

a bipolar single-valued neutrosophic relation on X, such that:

1. tpB
−−−→
(x, y) ≤ tpA(x) ∧ tpA(y), 4. tnB

−−−→
(x, y) ≥ tnA(x) ∨ tnA(y),

2. ipB
−−−→
(x, y) ≤ ipA(x) ∧ ipA(y), 5. inB

−−−→
(x, y) ≥ inA(x) ∨ inA(y),

3. fpB
−−−→
(x, y) ≤ fpA(x) ∨ fpA(y), 6. fnB

−−−→
(x, y) ≥ fnA(x) ∧ fnA(y), for all x, y ∈ X.

Example 2.1. We construct a bipolar single-valued neutrosophic digraph G = (A,
−→
B ) on

X = {a, b, c} as shown in Fig.1.

Figure 1: Bipolar single-valued neutrosophic digraph
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Definition 2.8. Let
−→
G be a bipolar single-valued neutrosophic digraph then bipolar single-

valued neutrosophic out-neighbourhoods of a vertex x is a bipolar single-valued neutrosophic

set

N+(x) = (X+
x , t

(p)+

x , i
(p)+

x , f
(p)+

x , t
(n)+

x , i
(n)+

x , f
(n)+

x ),

where,

X+
x = {y|Bp

1

−−−→
(x, y) > 0, Bp

2

−−−→
(x, y) > 0, Bp

3

−−−→
(x, y) > 0, Bn

1

−−−→
(x, y) < 0, Bn

2

−−−→
(x, y) < 0, Bn

3

−−−→
(x, y) < 0},

such that t
(p)+

x : X+
x → [0, 1], defined by t

(p)+

x (y) = Bp
1

−−−→
(x, y), i

(p)+

x : X+
x → [0, 1], defined by

i
(p)+

x (y) = Bp
2

−−−→
(x, y), f

(p)+

x : X+
x → [0, 1], defined by f

(p)+

x (y) = Bp
3

−−−→
(x, y), t

(n)+

x : X+
x → [−1, 0],

defined by t
(n)+

x (y) = Bn
1

−−−→
(x, y), i

(n)+

x : X+
x → [−1, 0], defined by i

(n)+

x (y) = Bn
2

−−−→
(x, y), f

(n)+

x :

X+
x → [−1, 0], defined by f

(n)+

x (y) = Bn
3

−−−→
(x, y).

Definition 2.9. Let
−→
G be a bipolar single-valued neutrosophic digraph then bipolar single-

valued neutrosophic in-neighbourhoods of a vertex x is a bipolar single-valued neutrosophic

set

N−(x) = (X−x , t
(p)−

x , i
(p)−

x , f
(p)−

x , t
(n)−

x , i
(n)−

x , f
(n)−

x ),

where,

X−x = {y|Bp
1

−−−→
(y, x) > 0, Bp

2

−−−→
(y, x) > 0, Bp

3

−−−→
(y, x) > 0, Bn

1

−−−→
(y, x) < 0, Bn

2

−−−→
(y, x) < 0, Bn

3

−−−→
(y, x) < 0},

such that t
(p)−

x : X−x → [0, 1], defined by t
(p)−

x (y) = Bp
1

−−−→
(y, x), i

(p)−

x : X−x → [0, 1], defined by

i
(p)−

x (y) = Bp
2

−−−→
(y, x), f

(p)−

x : X−x → [0, 1], defined by f
(p)−

x (y) = Bp
3

−−−→
(y, x), t

(n)−

x : X−x → [−1, 0],

defined by t
(n)−

x (y) = Bn
1

−−−→
(y, x), i

(n)−

x : X−x → [−1, 0], defined by i
(n)−

x (y) = Bn
2

−−−→
(y, x), f

(n)−

x :

X−x → [−1, 0], defined by f
(n)−

x (y) = Bn
3

−−−→
(y, x).

Example 2.2. Consider a bipolar single-valued neutrosophic digraph G = (A,
−→
B ) on X =

{a, b, c} as shown in Fig.1. We have Table 1 and Table 2 representing bipolar single-valued

neutrosophic out and in-neighbourhoods, respectively.

Table 1: Bipolar single-valued neutrosophic out-neighbourhoods
x N+(x)

a {(b, 0.3, 0.6, 0.7,-0.1,-0.2,-0.6), (c, 0.1, 0.2, 0.6,-0.1,-0.2,-0.8)}
b {(c, 0.1, 0.2, 0.1,-0.4,-0.5,-0.2)}
c ∅

Table 2: Bipolar single-valued neutrosophic in-neighbourhoods
x N−(x)

a ∅
b {(a, 0.3, 0.6, 0.7,-0.1,-0.2,-0.6)}
c {(a, 0.1, 0.2, 0.6,-0.1,-0.2,-0.8), (b, 0.1, 0.2, 0.1,-0.4,-0.5,-0.2)}
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Definition 2.10. The height of bipolar single-valued neutrosophic set A = (tpA(x), ipA(x),

fpA(x),tnA(x), inA(x), fnA(x)) in universe of discourse X is defined as,

h(A) = (h1(A), h2(A), h3(A), h4(A), h5(A), h6(A))

= (sup
x∈X

tpA(x), sup
x∈X

ipA(x), inf
x∈X

fpA(x), sup
x∈X

tpA(x), sup
x∈X

ipA(x), inf
x∈X

fpA(x)), for all x ∈ X.

Example 2.3. The height of a bipolar single-valued neutrosophic set A = {(a, 0.5, 0.7, 0.2,

−0.8,−0.9, −0.3), (b, 0.1, 0.2, 1, −0.5, −0.7, −0.6), (c, 0.3, 0.5, 0.3, −0.8, −0.6, −0.4)} in

X = {a, b, c} is h(A) = (0.5, 0.7, 0.2, 0.5, 0.7, 0.2).

Definition 2.11. A bipolar single-valued neutrosophic competition graph of a bipolar single-

valued neutrosophic graph
−→
G = (A,

−→
B ) is an undirected bipolar single-valued neutrosoph-

ic graph C
−−→
(G) = (A,R) which has the same vertex set as in

−→
G and there is an edge be-

tween two vertices x and y if and only if N+(x) ∩ N+(y) is non-empty. The positive truth-

membership, indeterminacy-membership, falsity-membership and negative truth-membership,

indeterminacy-membership, falsity-membership values of the edge (x, y) are defined as,

1. tpR(x, y) = (tpA(x) ∧ tpA(y))h1(N+(x) ∩N+(y),

2. ipR(x, y) = (ipA(x) ∧ ipA(y))h2(N+(x) ∩N+(y),

3. fpR(x, y) = (fpA(x) ∨ fpA(y))h3(N+(x) ∩N+(y),

4. tnR(x, y) = (tnA(x) ∨ tnA(y))h4(N+(x) ∩N+(y),

5. inR(x, y) = (inA(x) ∨ inA(y))h5(N+(x) ∩N+(y),

6. fnR(x, y) = (fnA(x) ∧ fnA(y))h6(N+(x) ∩N+(y),

for all x, y ∈ X.

Example 2.4. Consider
−→
G = (A, B) is a bipolar single-valued neutrosophic digraph on X =

{a, b, c}, such that A = {(a, 0.6, 0.7, 0.8,−0.1,−0.3,−0.7), (b, 0.8, 0.9, 0.1,−0.5,−0.6,−0.1), (c,

0.1, 0.3, 0.5,−0.5,−0.6,−0.7)}, and B = {(−→ac, 0.1, 0.2, 0.6,−0.1,−0.2,−0.8), (
−→
ab, 0.3, 0.6, 0.7,

− 0.1,−0.2,−0.6), (
−→
bc,0.1,0.2,0.1,−0.4,−0.5,−0.2)} as shown in Fig.2. By direct calculation-

Figure 2: Bipolar single-valued neutrosophic digraph

s we have Table 3 and Table 4 representing bipolar single-valued neutrosophic out and in-

neighbourhoods, respectively.



M. Akram, et al. Novel applications of bipolar single-valued neutrosophic competition graphs 441

Table 3: Bipolar single-valued neutrosophic out-neighbourhoods
x N+(x)

a {(b, 0.3, 0.6, 0.7,-0.1,-0.2,-0.6), (c, 0.1, 0.2, 0.6,-0.1,-0.2,-0.8)}
b {(c, 0.1, 0.2, 0.1,-0.4,-0.5,-0.2)}
c ∅

Table 4: Bipolar single-valued neutrosophic in-neighbourhoods
x N−(x)

a ∅
b {(a, 0.3, 0.6, 0.7,-0.1,-0.2,-0.6)}
c {(a, 0.1, 0.2, 0.6,-0.1,-0.2,-0.8), (b, 0.1, 0.2, 0.1,-0.4,-0.5,-0.2)}

The bipolar single-valued neutrosophic competition graph of Fig.2 is shown in Fig.3.

Figure 3: Bipolar single-valued neutrosophic competition graph

Definition 2.12. Consider a bipolar single-valued neutrosophic graph G = (A, B), where

A = (Ap
1, Ap

2, Ap
3, An

1 , An
2 , An

3 ), and B = (Bp
1 , Bp

2 , Bp
3 , Bn

1 , Bn
2 , Bn

3 ) then, an edge (x, y), x, y

∈ X is called independent strong if
1

2
[Ap

1(x) ∧Ap
1(y)] < Bp

1(x, y),
1

2
[An

1 (x) ∨An
1 (y)] > Bn

1 (x, y),

1

2
[Ap

2(x) ∧Ap
2(y)] < Bp

2(x, y),
1

2
[An

2 (x) ∨An
2 (y)] > Bn

2 (x, y),

1

2
[Ap

3(x) ∨Ap
3(y)] > Bp

3(x, y),
1

2
[An

3 (x) ∧An
3 (y)] < Bn

3 (x, y).

Otherwise, it is called weak.

Theorem 2.1. Suppose
−→
G is a bipolar single-valued neutrosophic digraph. If N+(x) ∩N+(y)

contains only one element of
−→
G , then the edge (x, y) of C(

−→
G) is independent strong if and only

if

|[N+(x) ∩N+(y)]|tp > 0.5, |[N+(x) ∩N+(y)]|tn < 0.5,

|[N+(x) ∩N+(y)]|ip > 0.5, |[N+(x) ∩N+(y)]|in < 0.5,

|[N+(x) ∩N+(y)]|fp < 0.5, |[N+(x) ∩N+(y)]|fn < 0.5.

Proof. Suppose,
−→
G is a bipolar single-valued neutrosophic digraph. Suppose N+(x)∩N+(y) =

(a, p̆p, qp, rp, p̆n, qn, rn), where, p̆p, qp, rp, p̆n, qn, rn are the positive truth-membership,
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indeterminacy-membership, falsity-membership and negative truth-membership, indeterminacy-

membership, falsity-membership values of either the edge (x, a) or the edge (y, a), respectively.

Here,

|[N+(x) ∩N+(y)]|tp = p̆p = h1(N+(x) ∩N+(y)),

|[N+(x) ∩N+(y)]|tn = p̆n = h4(N+(x) ∩N+(y)),

|[N+(x) ∩N+(y)]|ip = qp = h2(N+(x) ∩N+(y)),

|[N+(x) ∩N+(y)]|in = qn = h5(N+(x) ∩N+(y)),

|[N+(x) ∩N+(y)]|fp = rp = h3(N+(x) ∩N+(y)),

|[N+(x) ∩N+(y)]|fn = rn = h6(N+(x) ∩N+(y)).

Then,

Bp
1(x, y) = p̆p × [Ap

1(x) ∧Ap
1(y)], Bn

1 (x, y) = p̆n × [An
1 (x) ∨An

1 (y)],

Bp
2(x, y) = qp × [Ap

2(x) ∧Ap
2(y)], Bn

2 (x, y) = qn × [An
2 (x) ∨An

2 (y)],

Bp
3(x, y) = rp × [Ap

3(x) ∨Ap
3(y)], Bn

3 (x, y) = rn × [An
3 (x) ∧An

3 (y)].

Therefore, the edge (x, y) in C(
−→
G) is independent strong if and only if p̆p > 0.5, qp > 0.5,

rp < 0.5, p̆n < 0.5, qn < 0.5, rn < 0.5, Hence, the edge (x, y) of C(
−→
G) is independent strong if

and only if

|[N+(x) ∩N+(y)]|tp > 0.5, |[N+(x) ∩N+(y)]|tn < 0.5,

|[N+(x) ∩N+(y)]|ip > 0.5, |[N+(x) ∩N+(y)]|in < 0.5,

|[N+(x) ∩N+(y)]|fp < 0.5, |[N+(x) ∩N+(y)]|fn < 0.5.

We illustrate the theorem with an example as shown in Fig.4.

Theorem 2.2. If all the edges of a bipolar single-valued neutrosophic digraph
−→
G are indepen-

dent strong, then

Bp
1(x, y)

(Ap
1(x) ∧Ap

1(y))2
> 0.5,

Bn
1 (x, y)

(An
1 (x) ∨An

1 (y))2
< 0.5,

Bp
2(x, y)

(Ap
2(x) ∧Ap

2(y))2
> 0.5,

Bn
2 (x, y)

(An
2 (x) ∨An

2 (y))2
< 0.5,

Bp
3(x, y)

(Ap
3(x) ∨Ap

3(y))2
< 0.5,

Bn
3 (x, y)

(An
3 (x) ∧An

3 (y))2
< 0.5,

for all edges (x, y) in C(
−→
G).

Proof. Suppose all the edges of bipolar single-valued neutrosophic digraph
−→
G are independent
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Figure 4: Bipolar single-valued neutrosophic competition graph (1) Bipolar single-valued neu-
trosophic digraph (2) Corresponding bipolar single-valued neutrosophic competition graph

strong. Then
1

2
[Ap

1(x) ∧Ap
1(y)] < Bp

1

−−−→
(x, y),

1

2
[An

1 (x) ∨An
1 (y)] > Bn

1

−−−→
(x, y),

1

2
[Ap

2(x) ∧Ap
2(y)] < Bp

2

−−−→
(x, y),

1

2
[An

2 (x) ∨An
2 (y)] > Bn

2

−−−→
(x, y),

1

2
[Ap

3(x) ∨Ap
3(y)] > Bp

3

−−−→
(x, y),

1

2
[An

3 (x) ∧An
3 (y)] < Bn

3

−−−→
(x, y),

for all the edges (x, y) in
−→
G . Let the corresponding bipolar single-valued neutrosophic compe-

tition graph be C(
−→
G). Then their arise two cases:

Case(1). When N+(x) ∩ N+(y) = ∅ for all x, y ∈ X. Then there exists no edge in C(
−→
G)

between x and y. Thus, we have nothing to prove in this case.

Case(2). When N+(x)∩N+(y) 6= ∅. Let N+(x)∩N+(y) = {(a1, mp
1, rp1 , p̆p1, mn

1 , rn1 , p̆n1 ), (a2,

mp
2, rp2 , p̆p2, mn

2 , rn2 , p̆n2 ), . . . , (al, m
p
l , rpl , p̆pl , mn

l , rnl , p̆nl )}, where mp
i , rpi , p̆pi , mn

i , rni , p̆ni are the

positive and negative truth-membership, indeterminacy-membership and falsity-membership

values of either
−−−−→
(x, ai) or

−−−−→
(y, ai) for i = 1, 2, . . . , l, respectively. Thus,

mp
i = [Bp

1

−−−→
(x, ai) ∧Bp

1

−−−→
(y, ai)], mn

i = [Bn
1

−−−→
(x, ai) ∨Bn

1

−−−→
(y, ai)],

rpi = [Bp
2

−−−→
(x, ai) ∧Bp

2

−−−→
(y, ai)], rni = [Bn

2

−−−→
(x, ai) ∨Bn

2

−−−→
(y, ai)],

p̆pi = [Bp
3

−−−→
(x, ai) ∨Bp

3

−−−→
(y, ai)], p̆ni = [Bn

3

−−−→
(x, ai) ∨Bn

3

−−−→
(y, ai)], for i = 1, 2, . . . , l.

Suppose,

h1(N+(x) ∩N+(y)) = max{mp
i , i = 1, 2, . . . , l} = mp

max,

h2(N+(x) ∩N+(y)) = max{rpi , i = 1, 2, . . . , l} = rpmax,

h3(N+(x) ∩N+(y)) = min{p̆pi , i = 1, 2, . . . , l} = p̆pmin,

h4(N+(x) ∩N+(y)) = min{mn
i , i = 1, 2, . . . , l} = mn

max,

h5(N+(x) ∩N+(y)) = min{rni , i = 1, 2, . . . , l} = rnmax,

h6(N+(x) ∩N+(y)) = min{p̆ni , i = 1, 2, . . . , l} = p̆nmin.

Obviously, mp
max > Bp

1

−−−→
(x, y), rpmax > Bp

2

−−−→
(x, y), p̆pmin < Bp

3

−−−→
(x, y), mn

max < Bn
1

−−−→
(x, y),
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rnmax < Bn
2

−−−→
(x, y), p̆nmin < Bn

3

−−−→
(x, y) for all edges

−−−→
(x, y) shows that

mp
max

Ap
1(x) ∧Ap

1(y)
>

Bp
1

−−−→
(x, y)

Ap
1(x) ∧Ap

1(y)
> 0.5,

mn
max

An
1 (x) ∨An

1 (y)
<

Bn
1

−−−→
(x, y)

An
1 (x) ∨An

1 (y)
< 0.5,

rpmax

Ap
2(x) ∧Ap

2(y)
>

Bp
2

−−−→
(x, y)

Ap
2(x) ∧Ap

2(y)
> 0.5,

rnmax

An
2 (x) ∨An

2 (y)
<

Bn
2

−−−→
(x, y)

An
2 (x) ∨An

2 (y)
< 0.5,

p̆pmin

Ap
3(x) ∨Ap

3(y)
<

Bp
3

−−−→
(x, y)

Ap
3(x) ∨Ap

3(y)
< 0.5,

p̆nmin

An
3 (x) ∧An

3 (y)
<

Bn
3

−−−→
(x, y)

An
3 (x) ∧An

3 (y)
< 0.5,

therefore,

Bp
1(x, y) = (Ap

1(x) ∧Ap
1(y))h1(N+(x) ∩N+(y)), or Bp

1(x, y) = [Ap
1(x) ∧Ap

1(y)]×mp
max,

or
Bp

1 (x,y)

(Ap
1(x)∧Ap

1(y))
= mp

max, or
Bp

1 (x,y)

(Ap
1(x)∧Ap

1(y))2
=

mp
max

(Ap
1(x)∧Ap

1(y))
> 0.5,

Bp
2(x, y) = (Ap

2(x) ∧Ap
2(y))h2(N+(x) ∩N+(y)), or Bp

2(x, y) = [Ap
2(x) ∧Ap

2(y)]× rpmax,

or
Bp

2 (x,y)

(Ap
2(x)∧Ap

2(y))
= rpmax, or

Bp
2 (x,y)

(Ap
2(x)∧Ap

2(y))2
=

rpmax

(Ap
2(x)∧Ap

2(y))
> 0.5,

Bp
3(x, y) = (Ap

3(x) ∨Ap
3(y))h3(N+(x) ∩N+(y)), or Bp

3(x, y) = [Ap
3(x) ∨Ap

3(y)]× p̆pmin,

or
Bp

3 (x,y)

(Ap
3(x)∨Ap

3(y))
= p̆pmin, or

Bp
3 (x,y)

(Ap
3(x)∨Ap

3(y))2
=

p̆p
min

(Ap
3(x)∨Ap

3(y))
< 0.5,

Bn
1 (x, y) = (An

1 (x) ∨An
1 (y))h4(N+(x) ∩N+(y)), or Bn

1 (x, y) = [An
1 (x) ∨An

1 (y)]×mn
max,

or
Bn

1 (x,y)
(An

1 (x)∨An
1 (y)) = mn

max, or
Bn

1 (x,y)
(An

1 (x)∨An
1 (y))2 =

mn
max

(An
1 (x)∨An

1 (y)) < 0.5,

Bn
2 (x, y) = (An

2 (x) ∨An
2 (y))h5(N+(x) ∩N+(y)), or Bn

2 (x, y) = [An
2 (x) ∨An

2 (y)]× rnmax,

or
Bn

2 (x,y)
(An

2 (x)∨An
2 (y)) = rnmax, or

Bn
2 (x,y)

(An
2 (x)∨An

2 (y))2 =
rnmax

(An
3 (x)∨An

2 (y)) < 0.5, and

Bn
3 (x, y) = (An

3 (x) ∧An
3 (y))h6(N+(x) ∩N+(y)), or Bn

3 (x, y) = [An
3 (x) ∧An

3 (y)]× p̆nmin,

or
Bn

3 (x,y)
(An

3 (x)∧An
3 (y)) = p̆nmin, or

Bn
3 (x,y)

(An
3 (x)∧An

3 (y))2 =
p̆n
min

(An
3 (x)∧An

3 (y)) < 0.5.

Hence,
Bp

1(x, y)

(Ap
1(x) ∧Ap

1(y))2
> 0.5,

Bn
1 (x, y)

(An
1 (x) ∨An

1 (y))2
< 0.5,

Bp
2(x, y)

(Ap
2(x) ∧Ap

2(y))2
> 0.5,

Bn
2 (x, y)

(An
2 (x) ∨An

2 (y))2
< 0.5,

Bp
3(x, y)

(Ap
3(x) ∨Ap

3(y))2
< 0.5,

Bn
3 (x, y)

(An
3 (x) ∧An

3 (y))2
< 0.5,

for all edges (x, y) in C(
−→
G).

Definition 2.13. The bipolar single-valued neutrosophic open-neighborhood of a vertex x of

a bipolar single-valued neutrosophic graph G = (A,B) is bipolar single-valued neutrosophic set

N (x) = (Xx, tpx, ipx, fpx , tnx , inx , fnx ), where,

Xx = {y|Bp
1(x, y) > 0, Bp

2(x, y) > 0, Bp
3(x, y) > 0, Bn

1 (x, y) < 0, Bn
2 (x, y) < 0, Bn

3 (x, y) < 0},

and tpx : Xx → [0, 1] defined by tpx(y) = Bp
1(x, y), ipx : Xx → [0, 1] defined by ipx(y) = Bp

2(x,

y), fpx : Xx → [0, 1] defined by fpx(y) = Bp
3(x, y), tnx : Xx → [−1, 0] defined by tnx(y) =

Bn
1 (x, y), inx : Xx → [−1, 0] defined by inx(y) = Bn

2 (x, y), and fnx : Xx → [−1, 0] defined by

fnx (y) = Bn
3 (x, y). For every vertex x ∈ X, the bipolar single-valued neutrosophic singleton

set, Ăx = (x, Ap′
1 , Ap′

2 , Ap′
3 , An′

1 , An′
2 , An′

3 ) such that: Ap′
1 : {x} → [0, 1], Ap′

2 : {x} → [0, 1],

Ap′
3 : {x} → [0, 1], An′

1 : {x} → [−1, 0], An′
2 : {x} → [−1, 0], An′

3 : {x} → [−1, 0], defined

by Ap′
1 (x) = Ap

1(x), Ap′
2 (x) = Ap

2(x), Ap′
3 (x) = Ap

3(x), An′
1 (x) = An

1 (x), An′
2 (x) = An

2 (x), and
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An′
3 (x) = An

3 (x), respectively. The bipolar single-valued neutrosophic closed-neighborhood of a

vertex x is N [x] = N (x) ∪Ax.

Definition 2.14. Suppose G = (A, B) is a bipolar single-valued neutrosophic graph. Bipolar

single-valued neutrosophic open-neighborhood graph ofG is a bipolar single-valued neutrosophic

graph N (G) = (A, B′) which has the same bipolar single-valued neutrosophic set of vertices in

G and has a bipolar single-valued neutrosophic edge between two vertices x, y ∈ X in N (G)

if and only if N (x) ∩ N (y) is a non-empty bipolar single-valued neutrosophic set in G. The

positive truth-membership, indeterminacy-membership, falsity-membership and negative truth-

membership, indeterminacy-membership, falsity-membership values of the edge (x, y) are given

by:

Bp′
1 (x, y) = [Ap

1(x) ∧Ap
1(y)]h1(N (x) ∩N (y)), Bn′

1 (x, y) = [An
1 (x) ∨An

1 (y)]h4(N (x) ∩N (y)),

Bp′
2 (x, y) = [Ap

2(x) ∧Ap
2(y)]h2(N (x) ∩N (y)), Bn′

2 (x, y) = [An
2 (x) ∨An

2 (y)]h5(N (x) ∩N (y)),

Bp′
3 (x, y) = [Ap

3(x) ∨Ap
3(y)]h3(N (x) ∩N (y)), Bn′

3 (x, y) = [An
3 (x) ∧An

3 (y)]h6(N (x) ∩N (y)),

respectively.

Definition 2.15. Suppose G = (A, B) is a bipolar single-valued neutrosophic graph. Bipolar

single-valued neutrosophic closed-neighbourhood graph of G is a single-valued bipolar single-

valued neutrosophic graph N (G) = (A, B′) which has the same bipolar single-valued neutro-

sophic set of vertices inG and has a bipolar single-valued neutrosophic edge between two vertices

x, y ∈ X in N [G] if and only if N [x] ∩N [y] is a non-empty bipolar single-valued neutrosophic

set in G. The positive truth-membership, indeterminacy-membership, falsity-membership and

negative truth-membership, indeterminacy-membership, falsity-membership values of the edge

(x, y) are given by:

Bp′
1 (x, y) = [Ap

1(x) ∧Ap
1(y)]h1(N [x] ∩N [y]), Bn′

1 (x, y) = [An
1 (x) ∨An

1 (y)]h4(N [x] ∩N [y]),

Bp′
2 (x, y) = [Ap

2(x) ∧Ap
2(y)]h2(N [x] ∩N [y]), Bn′

2 (x, y) = [An
2 (x) ∨An

2 (y)]h5(N [x] ∩N [y]),

Bp′
3 (x, y) = [Ap

3(x) ∨Ap
3(y)]h3(N [x] ∩N [y]), Bn′

3 (x, y) = [An
3 (x) ∧An

3 (y)]h6(N [x] ∩N [y]),

respectively.

Example 2.5. Consider G = (A, B) is a bipolar single-valued neutrosophic digraph, such that,

X = {a, b, c, d}, A = {(a, 0.7, 0.8, 0.6,−0.5,−0.3,−0.7), (b, 0.3, 0.5, 0.7,−0.7,−0.8,−0.9), (c,

0.8, 0.9, 0.7, −0.5, −0.6, −0.7), (d, 0.8, 0.7, 0.6, −0.3,−0.7,−0.8)}, andB = {((a, b), 0.2, 0.4, 0.6,
−0.4,−0.2,−0.8), ((a, c),0.6,0.7,0.6,−0.5,−0.2,−0.6), ((b, d),0.2,0.4,0.6,−0.2,−0.6,−0.8), ((c, d),

0.6, 0.6, 0.5,−0.2,−0.5,−0.7)}, as shown in Fig.5.

Then corresponding bipolar single-valued neutrosophic open and closed-neighbourhood graph-

s are shown in Figs. 6 and 7, respectively.

Theorem 2.3. For each edge of a bipolar single-valued neutrosophic graph G, there exists an

edge in N [G].

Proof. Suppose (x, y) is an edge of a bipolar single-valued neutrosophic graph G = (A, B).

Suppose N [G] = (A, B′) is the corresponding closed-neighborhood of a bipolar single-valued
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Figure 5: Bipolar single-valued neutrosophic graph

Figure 6: N (G)

Figure 7: N [G]

neutrosophic graph. Suppose x, y ∈ N [x] and x, y ∈ N [y]. Then x, y ∈ N [x] ∩N [y]. Hence,

h1(N [x] ∩N [y]) 6= 0, h4(N [x] ∩N [y]) 6= 0,

h2(N [x] ∩N [y]) 6= 0, h5(N [x] ∩N [y]) 6= 0,

h3(N [x] ∩N [y]) 6= 0, h6(N [x] ∩N [y]) 6= 0.
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Then,

Bp′
1 (x, y) = [Ap

1(x) ∧Ap
1(y)]h1(N [x] ∩N [y]) 6= 0,

Bn′
1 (x, y) = [An

1 (x) ∨An
1 (y)]h4(N [x] ∩N [y]) 6= 0,

Bp′
2 (x, y) = [Ap

2(x) ∧Ap
2(y)]h2(N [x] ∩N [y]) 6= 0,

Bn′
2 (x, y) = [An

2 (x) ∨An
2 (y)]h5(N [x] ∩N [y]) 6= 0,

Bp′
3 (x, y) = [Ap

3(x) ∨Ap
3(y)]h3(N [x] ∩N [y]) 6= 0,

Bn′
3 (x, y) = [An

3 (x) ∧An
3 (y)]h6(N [x] ∩N [y]) 6= 0.

Thus, for each edge (x, y) in bipolar single-valued neutrosophic graph G, there exists an edge

(x, y) in N [G].

We now discuss the method of construction of bipolar single-valued neutrosophic competi-

tion graph of the Cartesian product of bipolar single-valued neutrosophic digraph in following

theorem.

Theorem 2.4. em Let C(
−→
G1) = (A1, B1) and C(

−→
G2) = (A2, B2) be two bipolar single-valued

neutrosophic competition graphs of bipolar single-valued neutrosophic digraphs
−→
G1 = (A1,

−→
l1 )

and
−→
G2 = (A2,

−→
l2 ), respectively. Then C(

−→
G1�

−→
G2) = GC(−→G1)∗�C(

−→
G2)∗
∪G� where, GC(−→G1)∗�C(

−→
G2)∗

is a bipolar single-valued neutrosophic graph on the crisp graph (X1 ×X2, EC(−→G1)∗
�EC(−→G2)∗

),

C(
−→
G1)∗ and C(

−→
G2)∗ are the crisp competition graphs of

−→
G1 and

−→
G2, respectively. G� is a bipolar

single-valued neutrosophic graph on (X1 ×X2, E
�) such that:

1. E� = {(x1, x2)(y1, y2) : y1 ∈ N−(x1)∗, y2 ∈ N+(x2)∗}
EC(−→G1)∗

�EC(−→G2)∗
= {(x1, x2)(x1, y2) : x1 ∈ X1, x2y2 ∈ EC(−→G2)∗

} ∪ {(x1, x2)(y1, x2) : x2 ∈
X2, x1y1 ∈ EC(−→G1)∗

}.

2. tpA1�A2
= tpA1

(x1)∧ tpA2
(x2), ipA1�A2

= ipA1
(x1)∧ ipA2

(x2), fpA1�A2
= fpA1

(x1)∨fpA2
(x2),

tnA1�A2
= tnA1

(x1)∨ tnA2
(x2), inA1�A2

= inA1
(x1)∨ inA2

(x2), fnA1�A2
= fnA1

(x1)∧fnA2
(x2).

3. tpB((x1, x2)(x1, y2)) = [tpA1
(x1)∧ tpA2

(x2)∧ tpA2
(y2)]×∨a2

{tpA1
(x1)∧ tp−→

l2
(x2a2)∧ tp−→

l2
(y2a2)},

(x1, x2)(x1, y2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, a2 ∈ (N+(x2) ∩N+(y2))∗.

4. ipB((x1, x2)(x1, y2)) = [ipA1
(x1)∧ ipA2

(x2)∧ ipA2
(y2)]×∨a2{i

p
A1

(x1)∧ ip−→
l2

(x2a2)∧ ip−→
l2

(y2a2)},
(x1, x2)(x1, y2) ∈ EC(−→G1)∗

�EC(−→G2)∗
, a2 ∈ (N+(x2) ∩N+(y2))∗.

5. fpB((x1, x2)(x1, y2)) = [fpA1
(x1)∨fpA2

(x2)∨fpA2
(y2)]×∨a2{f

p
A1

(x1)∨fp−→
l2

(x2a2)∨fp−→
l2

(y2a2)},
(x1, x2)(x1, y2) ∈ EC(−→G1)∗

�EC(−→G2)∗
, a2 ∈ (N+(x2) ∩N+(y2))∗.

6. tnB((x1, x2)(x1, y2)) = [tnA1
(x1)∨ tnA2

(x2)∨ tnA2
(y2)]×∨a2{tnA1

(x1)∨ tn−→
l2

(x2a2)∨ tn−→
l2

(y2a2)},
(x1, x2)(x1, y2) ∈ EC(−→G1)∗

�EC(−→G2)∗
, a2 ∈ (N+(x2) ∩N+(y2))∗.

7. inB((x1, x2)(x1, y2)) = [inA1
(x1)∨ inA2

(x2)∨ inA2
(y2)]×∨a2{inA1

(x1)∨ in−→
l2

(x2a2)∨ in−→
l2

(y2a2)},
(x1, x2)(x1, y2) ∈ EC(−→G1)∗

�EC(−→G2)∗
, a2 ∈ (N+(x2) ∩N+(y2))∗.
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8. fnB((x1, x2)(x1, y2)) = [fnA1
(x1)∧fnA2

(x2)∧fnA2
(y2)]×∨a2{fnA1

(x1)∧fn−→
l2

(x2a2)∧fn−→
l2

(y2a2)},
(x1, x2)(x1, y2) ∈ EC(−→G1)∗

�EC(−→G2)∗
, a2 ∈ (N+(x2) ∩N+(y2))∗.

9. tpB((x1, x2)(y1, x2)) = [tpA1
(x1)∧ tpA1

(y1)∧ tpA2
(x2)]×∨a1

{tpA2
(x2)∧ tp−→

l1
(x1a1)∧ tp−→

l1
(y1a1)},

(x1, x2)(y1, x2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, a1 ∈ (N+(x1) ∩N+(y1))∗.

10. ipB((x1, x2)(y1, x2)) = [ipA1
(x1)∧ ipA1

(y1)∧ ipA2
(x2)]×∨a1

{ipA2
(x2)∧ ip−→

l1
(x1a1)∧ ip−→

l1
(y1a1)},

(x1, x2)(y1, x2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, a1 ∈ (N+(x1) ∩N+(y1))∗.

11. fpB((x1, x2)(y1, x2)) = [fpA1
(x1)∨fpA1

(y1)∨fpA2
(x2)]×∨a1

{fpA2
(x2)∨fp−→

l1
(x1a1)∨fp−→

l1
(y1a1)},

(x1, x2)(y1, x2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, a1 ∈ (N+(x1) ∩N+(y1))∗.

12. tnB((x1, x2)(y1, x2)) = [tnA1
(x1)∨ tnA1

(y1)∨ tnA2
(x2)]×∨a1

{tnA2
(x2)∨ tn−→

l1
(x1a1)∨ tn−→

l1
(y1a1)},

(x1, x2)(y1, x2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, a1 ∈ (N+(x1) ∩N+(y1))∗.

13. inB((x1, x2)(y1, x2)) = [inA1
(x1)∨ inA1

(y1)∨ inA2
(x2)]×∨a1

{inA2
(x2)∨ in−→

l1
(x1a1)∨ in−→

l1
(y1a1)},

(x1, x2)(y1, x2) ∈ EC(−→G1)∗
�EC(−→G2)∗

, a1 ∈ (N+(x1) ∩N+(y1))∗.

14. fnB((x1, x2)(y1, x2)) = [fnA1
(x1)∧fnA1

(y1)∧fnA2
(x2)]×∨a1{fnA2

(x2)∧fn−→
l1

(x1a1)∧fn−→
l1

(y1a1)},
(x1, x2)(y1, x2) ∈ EC(−→G1)∗

�EC(−→G2)∗
, a1 ∈ (N+(x1) ∩N+(y1))∗.

15. tpB((x1, x2)(y1, y2)) = [tpA1
(x1)∧tpA1

(y1)∧tpA2
(x2)∧tpA2

(y2)]×[tpA1
(x1)∧tp−→

l1
(y1x1)∧tpA2

(y2)∧
tp−→
l2

(x2y2)], (x1, y1)(x2, y2) ∈ E�.

16. ipB((x1, x2)(y1, y2)) = [ipA1
(x1)∧ipA1

(y1)∧ipA2
(x2)∧ipA2

(y2)]×[ipA1
(x1)∧ip−→

l1
(y1x1)∧ipA2

(y2)∧
ip−→
l2

(x2y2)], (x1, y1)(x2, y2) ∈ E�.

17. fpB((x1, x2)(y1, y2)) = [fpA1
(x1) ∨ fpA1

(y1) ∨ fpA2
(x2) ∨ fpA2

(y2)] × [fpA1
(x1) ∨ fp−→

l1
(y1x1) ∨

fpA2
(y2) ∨ fp−→

l2
(x2y2)], (x1, y1)(x2, y2) ∈ E�.

18. tnB((x1, x2)(y1, y2)) = [tnA1
(x1)∨tnA1

(y1)∨tnA2
(x2)∨tnA2

(y2)]×[tnA1
(x1)∨tn−→

l1
(y1x1)∨tnA2

(y2)∨
tn−→
l2

(x2y2)], (x1, y1)(x2, y2) ∈ E�.

19. inB((x1, x2)(y1, y2)) = [inA1
(x1)∨inA1

(y1)∨inA2
(x2)∨inA2

(y2)]×[inA1
(x1)∨in−→

l1
(y1x1)∨inA2

(y2)∨
in−→
l2

(x2y2)], (x1, y1)(x2, y2) ∈ E�.

20. fnB((x1, x2)(y1, y2)) = [fnA1
(x1) ∧ fnA1

(y1) ∧ fnA2
(x2) ∧ fnA2

(y2)] × [fnA1
(x1) ∧ fn−→

l1
(y1x1) ∧

fnA2
(y2) ∧ fn−→

l2
(x2y2)], (x1, y1)(x2, y2) ∈ E�.

Proof. Using similar arguments as in Theorem 2.3[14], it can be proved.

Example 2.6. Consider
−→
G1 = (A1, l1) and

−→
G2 = (A2, l2) be two bipolar single-valued neu-

trosophic digraphs, respectively as shown in Fig.8. The bipolar single-valued neutrosophic out

and in-neighborhoods of
−→
G1 and

−→
G2 are given in Tables 5 and 6.

The bipolar single-valued neutrosophic competition graphs C(
−→
G1) and C(

−→
G2) are given in Fig.9.
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Figure 8: Bipolar single-valued neutrosophic digraphs

Table 5: Bipolar single-valued neutrosophic-out and in-neighborhoods of
−→
G1

x ∈ X1 N+(x) N−(x)

a1 {b1(0.5, 0.1, 0.7,−0.1,−0.1,−0.3)} ∅
b1 ∅ {a1(0.5, 0.1, 0.7,−0.1,−0.1,−0.3)}
c1 {b1(0.1, 0.1, 0.7,−0.1,−0.2,−0.7)} {d1(0.1, 0.2, 0.7,−0.1,−0.6,−0.6)}
d1 {c1(0.1, 0.2, 0.7,−0.1,−0.6,−0.6)} ∅

Table 6: Bipolar single-valued neutrosophic-out and in-neighborhoods of
−→
G2

x ∈ X2 N+(x) N−(x)

a2 {c2(0.1, 0.3, 0.6,−0.1,−0.1,−0.1)} ∅
b2 {c2(0.3, 0.4, 0.5,−0.1,−0.2,−0.4)} ∅
c2 ∅ {a2(0.1, 0.3, 0.6,−0.1,−0.1,−0.1), b2(0.3, 0.4, 0.5,−0.1,−0.2,−0.4)}

Figure 9: Bipolar single-valued neutrosophic competition graphs of
−→
G1 and

−→
G2
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We now construct the bipolar single-valued neutrosophic competition graphGC(−→G1)∗�C(
−→
G2)∗
∪

G� = (W , B), where, W = (tpW , ipW , fpW , tnW , inW , fnW ) and B = (tpB , ipB , fpB , tnB , inB , fnB),

from C(
−→
G1)∗ and C(

−→
G2)∗ using Theorem 1.4. We obtained the following sets of edges by using

condition (1).

EC(−→G1)∗�C(
−→
G2)∗

={(a1, a2)(a1, b2), (b1, a2)(b1, b2), (c1, a2)(c1, b2),

(d1, a2)(d1, b2), (a1, a2)(c1, a2),

(a1, b2)(c1, b2), (a1, c2)(c1, c2)},

E� ={(b1, a2)(a1, c2), (b1, a2)(c1, c2), (b1, b2)(a1, c2),

(b1, b2)(c1, c2), (c1, a2)(d1, c2), (c1, b2)(d1, c2)}.
According to conditions (3) to (20), the degrees of positive truth-membership, indeterminacy-

membership, falsity-membership, negative truth-membership, indeterminacy-membership and

falsity-membership values of the adjacent edges of GC(−→G1)∗�C(
−→
G2)∗

and G� are given in Table

7.

Table 7: Adjacent edges of GC(−→G1)∗�C(
−→
G2)∗

∪ G�

(x1, x2)(y1, y2) B(x1, x2)(y1, y2)
(a1, a2)(a1, b2) (0.01, 0.09, 0.64,−0.01,−0.03,−0.32)
(b1, a2)(b1, b2) (0.01, 0.04, 0.24,−0.01,−0.04,−0.24)
(c1, a2)(c1, b2) (0.01, 0.09, 0.64,−0.01,−0.06,−0.64)
(d1, a2)(d1, b2) (0.01, 0.09, 0.64,−0.01,−0.06,−0.56)
(a1, a2)(c1, a2) (0.01, 0.03, 0.56,−0.01,−0.01,−0.56)
(a1, b2)(c1, b2) (0.02, 0.03, 0.56,−0.02,−0.01,−0.56)
(a1, c2)(c1, c2) (0.02, 0.03, 0.56,−0.02,−0.01,−0.56)
(b1, a2)(a1, c2) (0.01, 0.02, 0.56,−0.01,−0.01,−0.35)
(b1, a2)(c1, c2) (0.01, 0.02, 0.56,−0.01,−0.02,−0.56)
(b1, b2)(a1, c2) (0.12, 0.02, 0.56,−0.06,−0.01,−0.35)
(b1, b2)(c1, c2) (0.02, 0.02, 0.56,−0.02,−0.03,−0.56)
(c1, a2)(d1, c2) (0.01, 0.06, 0.64,−0.01,−0.04,−0.64)
(c1, b2)(d1, c2) (0.02, 0.06, 0.64,−0.02,−0.06,−0.64)

The bipolar single-valued neutrosophic competition graph obtained using this method is

given in Fig.10 where, the solid lines indicate the part of bipolar single-valued neutrosophic

competition graph obtained from GC(−→G1)∗�C(
−→
G2)∗

, the dotted lines represent the part G�.

The Cartesian product
−→
G1�

−→
G2 of bipolar single-valued neutrosophic digraph

−→
G1 and

−→
G1 is

shown in Fig.11. The bipolar single-valued neutrosophic out-neighbourhoods of
−→
G1�

−→
G2 are

calculated in Table 8.

The bipolar single-valued neutrosophic competition graph of
−→
G1�

−→
G2 is shown in Fig.12.
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Figure 10: GC(−→G1)∗�C(
−→
G2)∗

∪ G�

Table 8: Bipolar single-valued neutrosophic out-neighborhoods of
−→
G1�

−→
G2

(x, y) N+(x, y)
(a1, a2) {((a1, c2), 0.1, 0.3, 0.8,−0.1,−0.1,−0.2), ((b1, a2), 0.1, 0.1, 0.7,−0.1,−0.1,−0.3)}
(a1, b2) {((a1, c2), 0.3, 0.4, 0.5,−0.1,−0.1,−0.4), ((b1, b2), 0.5, 0.1, 0.7,−0.1,−0.1,−0.4)}
(a1, c2) {((b1, c2), 0.4, 0.1, 0.7,−0.1,−0.1,−0.5)}
(b1, a2) {((b1, c2), 0.1, 0.2, 0.6,−0.1,−0.1,−0.4)}
(b1, b2) {((b1, c2), 0.3, 0.2, 0.5,−0.1,−0.2,−0.4)}
(b1, c2) ∅
(c1, a2) {((c1, c2), 0.1, 0.3, 0.8,−0.1,−0.1,−0.8), ((b1, a2), 0.1, 0.1, 0.7,−0.1,−0.2,−0.7)}
(c1, b2) {((b1, b2), 0.1, 0.1, 0.7,−0.1,−0.2,−0.7), ((c1, c2), 0.2, 0.3, 0.8,−0.1,−0.2,−0.8)}
(c1, c2) {((b1, c2), 0.1, 0.1, 0.7,−0.1,−0.2,−0.7)}
(d1, a2) {((d1, c2), 0.1, 0.3, 0.8,−0.1,−0.1,−0.7), ((c1, a2), 0.1, 0.2, 0.7,−0.1,−0.2,−0.6)}
(d1, b2) {((d1, c2), 0.3, 0.4, 0.8,−0.1,−0.2,−0.7), (c1, b2), 0.1, 0.2, 0.7,−0.1,−0.3,−0.6)}
(d1, c2) {((c1, c2), 0.1, 0.2, 0.7,−0.1,−0.3,−0.6)}

It is clear from Figs. 10 and 12 that GC(−→G1)∗�C(
−→
G2)∗

∪G� ∼= C(
−→
G1�

−→
G2).
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Figure 11:
−→
G1�

−→
G2

§3 Bipolar Single-Valued Neutrosophic Economic Competition

Graphs

In this section, we will use the following notations:

Pm
x,y: A bipolar single-valued neutrosophic path of length m from x to y.
−→
Pm

x,y: A directed bipolar single-valued neutrosophic path of length m from x to y.

N+
m(x): m-step bipolar single-valued neutrosophic out-neighborhood of vertex x.

N−m(x): m-step bipolar single-valued neutrosophic in-neighborhood of vertex x.

E
−−→
(G): Bipolar single-valued neutrosophic economic competition graph of the bipolar single-

valued neutrosophic digraph
−→
G .

Em

−−→
(G): m-step bipolar single-valued neutrosophic economic competition graph of the bipolar

single-valued neutrosophic digraph
−→
G .
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Figure 12: C(
−→
G1�

−→
G2)

Definition 3.1. The bipolar single-valued neutrosophic m-step out-neighborhood of vertex x of

a bipolar single-valued neutrosophic digraph
−→
G = (A,

−→
B ) is bipolar single-valued neutrosophic

set

N+
m(x) = (X+

x , t
(p)+

x , i
(p)+

x , f
(p)+

x , t
(n)+

x , i
(n)+

x , f
(n)+

x ), where

X+
x = {y| there exists a directed bipolar single-valued neutrosophic path of length m from x to

y,
−→
P m

x,y}, t
(p)+

x : X+
x → [0, 1], i

(p)+

x : X+
z → [0, 1], f

(p)+

x : X+
z → [0, 1] t

(n)+

x : X+
x → [−1, 0],

i
(n)+

x : X+
z → [−1, 0], f

(n)+

x : X+
z → [−1, 0] are defined by t

(p)+

x = min{tp
−−−−−→
(x1, x2), (x1, x2) is an

edge of
−→
Pm

x,y}, i
(p)+

x = min{ip
−−−−−→
(x1, x2), (x1, x2) is an edge of

−→
Pm

x,y}, f
(p)+

x = max{fp
−−−−−→
(x1, x2),

(x1, x2) is an edge of
−→
Pm

x,y}, t
(n)+

x = max{tp
−−−−−→
(x1, x2), (x1, x2) is an edge of

−→
Pm

x,y}, i
(n)+

x =

max{in
−−−−−→
(x1, x2), (x1, x2) is an edge of

−→
Pm

x,y}, f
(n)+

x = min{fn
−−−−−→
(x1, x2), (x1, x2) is an edge of

−→
Pm

x,y}, respectively.

Example 3.1. Consider
−→
G = (A,

−→
B ) is a bipolar single-valued neutrosophic digraph, such that

X = {x, y, a, b, c, d}, as shown in Fig.13. Then, 2-step out-neighbourhood of vertices x, and y

is calculated as, N+
2 (x) = {(b, 0.2, 0.2, 0.5,−0.2,−0.3,−0.3), (d, 0.2, 0.2, 0.5,−0.2,−0.3,−0.3)},

N+
2 (y) = {(b, 0.1, 0.3, 0.2,−0.2,−0.3,−0.6), (d, 0.3, 0.5, 0.6,−0.2,−0.3,−0.5)}.
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Figure 13: Bipolar single-valued neutrosophic digraph

Definition 3.2. The bipolar single-valued neutrosophic m-step in-neighborhood of vertex x of

a bipolar single-valued neutrosophic digraph
−→
G = (A,

−→
B ) is bipolar single-valued neutrosophic

set

N−m(x) = (X−x , t
(p)−

x , i
(p)−

x , f
(p)−

x , t
(n)−

x , i
(n)−

x , f
(n)−

x ), where

X−x = {y| there exists a directed bipolar single-valued neutrosophic path of length m from y to

x,
−→
P m

y,x}, t
(p)−

x : X−x → [0, 1], i
(p)−

x : X−z → [0, 1], f
(p)−

x : X−z → [0, 1] t
(n)−

x : X−x → [−1, 0],

i
(n)−

x : X−z → [−1, 0], f
(n)−

x : X−z → [−1, 0] are defined by t
(p)−

x = min{tp
−−−−−→
(x1, x2), (x1, x2) is

an edge of
−→
Pm

y,x}, i
(p)−

x = min{ip
−−−−−→
(x1, x2), (x1, x2) is an edge of

−→
Pm

y,x}, f
(p)−

x = max{fp
−−−−−→
(x1, x2),

(x1, x2) is an edge of
−→
Pm

y,x}, t
(n)−

x = max{tn
−−−−−→
(x1, x2), (x1, x2) is an edge of

−→
Pm

y,x}, i
(n)−

x =

max{in
−−−−−→
(x1, x2), (x1, x2) is an edge of

−→
Pm

y,x}, f
(n)−

x = min{fn
−−−−−→
(x1, x2), (x1, x2) is an edge of

−→
Pm

y,x}, respectively.

Example 3.2. Consider
−→
G = (A,

−→
B ) is a bipolar single-valued neutrosophic digraph, such

that, X = {a, b, c, d, e, f}, as shown in Fig.14. Then, 2-step in-neighborhood of vertices a, and

b is calculated as, N−2 (a) = {(f , 0.1, 0.1, 0.5, −0.1, −0.2, −0.6), (e, 0.3, 0.1, 0.7, −0.1, −0.2,

−0.4)}, N−2 (b) = {(f , 0.1, 0.3, 0.6, −0.3, −0.4, −0.7), (e, 0.4, 0.3, 0.6, −0.3, −0.4, −0.5)}.

We now introduce the concepts of bipolar single-valued neutrosophic economic competition

graphs and m-step bipolar single-valued neutrosophic economic competition graphs.

Due to the improvement of internet, people can transfer money from one place to another

in a very short time. During the transfer of money, there are sources and destinations. Let us

assume that there are four projects P1, P2, P3, P4 and again each of five institutions I1, I2,

I3, I4, I5, has to complete a project. Now, the institutions, projects and their relations make

a digraph in which institutions and projects will be considered as vertices and the relations

make directed edges. If two institutions are under the same project, then there will be an edge

between them and so on. This kind of graph is called economic competition graph. Bipolar

single-valued neutrosophic graph representation is more efficient to represent the competitions.
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Figure 14: Bipolar single-valued neutrosophic digraph

Here ,we introduce bipolar single-valued neutrosophic economic competition graphs and m-step

bipolar single-valued neutrosophic economic competition graphs.

Definition 3.3. A bipolar single-valued neutrosophic economic competition graph of a bipolar

single-valued neutrosophic digraph
−→
G = (A,

−→
B ) is an undirected bipolar single-valued neu-

trosophic graph E
−−→
(G) = (A,S) which has the same vertex set as in

−→
G and there is an edge

between two vertices x and y if and only if N−(x) ∩ N−(y) is non-empty. The positive truth-

membership, indeterminacy-membership, falsity-membership and negative truth-membership,

indeterminacy-membership, falsity-membership values of the edge (x, y) are defined as,

1. tPS (x, y) = (tpA(x) ∧ tpA(y))h1(N−(x) ∩N−(y)),

2. ipS(x, y) = (ipA(x) ∧ ipA(y))h2(N−(x) ∩N−(y)),

3. fpS(x, y) = (fpA(x) ∨ fpA(y))h3(N−(x) ∩N−(y)),

4. tnS(x, y) = (tnA(x) ∨ tnA(y))h4(N−(x) ∩N−(y)),

5. inS(x, y) = (inA(x) ∨ inA(y))h5(N−(x) ∩N−(y)),

6. fnS (x, y) = (fnA(x) ∧ fnA(y))h6(N−(x) ∩N−(y)),

for all x, y ∈ X.

Example 3.3. Consider
−→
G = (A,

−→
B ) is a bipolar single-valued neutrosophic digraph, such

that, X = {a, b, c, d, e, f , g}, as shown in Fig.15. Then, N−(a) = ∅, N−(b) = {(a, 0.5,

0.6, 0.4, −0.1, −0.2, −0.5)}, N−(c) = {(a, 0.5, 0.7, 0.5, −0.5, −0.2, −0.1)}, N−(d) = {(a,

0.5, 0.4, 0.4, −0.1, −0.1, −0.1)}, N−(e) = {(c, 0.6, 0.6, 0.5, −0.4, −0.5, −0.5), (b, 0.6, 0.7,

0.6, −0.1, −0.4, −0.6)}, N−(f) = {(d, 0.8, 0.5, 0.7, −0.1, −0.1, −0.1), (c, 0.6, 0.6, 0.6, −0.3,

−0.1, −0.1)}, and N−(g) = {(d, 0.6, 0.4, 0.6, −0.1, −0.2, −0.5)}. After calculating the non-

empty intersections of in-neighborhoods of the vertices, we have Fig.16 representing bipolar

single-valued neutrosophic economic competition graph.

Definition 3.4. Suppose
−→
G = (A,

−→
B ) is a bipolar single-valued neutrosophic digraph. The

m-step bipolar single-valued neutrosophic economic competition graph of bipolar single-valued
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Figure 15: Bipolar single-valued neutrosophic digraph

Figure 16: Bipolar single-valued neutrosophic economic competition graph

neutrosophic digraph
−→
G is denoted by Em(

−→
G) = (A, S) which has same bipolar single-valued

neutrosophic set of vertices as in
−→
G and has an edge between two vertices x, y ∈ X in

Em(
−→
G) if and only if (N−m(x) ∩ N−m(y)) is a non-empty bipolar single-valued neutrosoph-

ic set in
−→
G . The positive truth-membership value of edge (x, y) in Em(

−→
G) is tpS(x, y) =

[tpA(x)∧ tpA(z)]h1(N−m(x)∩N−m(y)), the positive indeterminacy-membership value of edge (x, y)

in Em(
−→
G) is ipS(x, y) = [ipA(x)∧ipA(y)]h2(N−m(x)∩N−m(y)), the positive falsity-membership value

of edge (x, y) in Em(
−→
G) is fpS(x, y) = [fpA(x) ∨ fpA(y)]h3(N−m(x) ∩N−m(y)), the negative truth-

membership value of edge (x, y) in Em(
−→
G) is tnS(x, y) = [tnA(x) ∨ tnA(z)]h4(N−m(x) ∩ N−m(y)),

the negative indeterminacy-membership value of edge (x, y) in Em(
−→
G) is inS(x, y) = [inA(x) ∨
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inA(y)]h5(N−m(x) ∩ N−m(y)), the negative falsity-membership value of edge (x, y) in Em(
−→
G) is

fnS (x, y) = [fnA(x) ∧ fnA(y)]h6(N−m(x) ∩N−m(y)).

The 2−step bipolar single-valued neutrosophic economic competition graph is illustrated by

the following example.

Example 3.4. Consider
−→
G = (A,

−→
B ) is a bipolar single-valued neutrosophic digraph, such

that, X = {a, b, c, d, e, f}, as shown in Fig.17. Then, we calculate N−2 (a) = {(f , 0.1, 0.1,

0.5, −0.1, −0.2, −0.6), (e, 0.3, 0.1, 0.7, −0.1, −0.2, −0.4)}, N−2 (b) = {(f , 0.1, 0.3, 0.6, −0.3,

−0.4, −0.7), (e, 0.4, 0.3, 0.6, −0.3, −0.4, −0.5)}, and N−2 (a)∩N−2 (b) = {(f , 0.1, 0.1, 0.6, −0.1,

−0.2, −0.7), (e, 0.3, 0.1, 0.7, −0.1, −0.2, −0.5)}. 2−step bipolar single-valued neutrosophic

economic competition graph is obtained, as shown in Fig.18.

Figure 17: Bipolar single-valued neutrosophic digraph

Figure 18: 2-step bipolar single-valued neutrosophic economic competition graph

We state the following theorems without proofs.

Theorem 3.1. Bipolar single-valued neutrosophic competition graph and bipolar single-valued

neutrosophic economic competition graph of any complete bipolar single-valued neutrosophic

digraph are same.
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Theorem 3.2. If
−→
G1 is the bipolar single-valued neutrosophic sub-digraph of

−→
G . Then

1. Cm(
−→
G1) ⊂ Cm(

−→
G).

2. Em(
−→
G1) ⊂ Em(

−→
G).

§4 Applications

Competition graphs are very important to represent the competition between objects. But

still these representations are unsuccessful to deal with all the competitions of world, for that

purpose bipolar single-valued neutrosophic competition graphs are introduced. Now, we discuss

applications of bipolar single-valued neutrosophic competition graphs to study the competition

along with algorithms. The bipolar single-valued neutrosophic competition graphs have many

utilizations in different areas.

1. Organizational Designations Competition. Consider the bipolar single-valued neutro-

sophic digraph as shown in Fig.19 representing the competition between applicants for designa-

tions in an organization. Let {Angus, Alvin, Alina, Colin, Alma} be the set of applicants for the

designations {Board of director(BOD), CEO, Director of marketing(DOM), Director of human

resources(DOHR)}. The positive degree of membership tp(x) of each applicant represent the

percentage of hardwork towards the goals of organization, ip(x) and fp(x) represent the inde-

terminacy and falsity in this percentage. The negative degree of membership tn(x) represents

the percentage that the applicant is not effective in order to fulfill the goals of that organiza-

tion, in(x) and fn(x) represent the indeterminacy and falsity in this percentage. The positive

degree of membership tp(x) of each directed edge between applicants and designations represent

the percentage of eligibility for that designation in organization, ip(x) and fp(x) represent the

indeterminacy and falsity in this percentage. The negative degree of membership tn(x) of each

directed edge between applicants and designations represent the percentage of non-eligibility

for that designation in organization, in(x) and fn(x) represent the indeterminacy and falsity

in this percentage. The bipolar single-valued neutrosophic competition graph can be used in

order to find the designations of the applicants.

Table 9: Bipolar single-valued neutrosophic out-neighbourhoods

x ∈ X N+(x)

Angus {(BOD, 0.6, 0.4, 0.5, −0.1, −0.5, −0.5), (CEO, 0.6, 0.4, 0.5, −0.1, −0.5, −0.7),
(DOM , 0.6, 0.4, 0.2, −0.1, −0.5, −0.4)}

Alma {(DOHR, 0.3, 0.4, 0.6, −0.4, −0.3, −0.5)}
Alvin {(DOHR, 0.2, 0.4, 0.6, −0.5, −0.4, −0.6), (CEO, 0.2, 0.4, 0.5, −0.5, −0.6, −0.5)}
Colin {(DOHR, 0.4, 0.6, 0.5, −0.2, −0.3, −0.4), (DOM , 0.4, 0.5, 0.5, −0.2, −0.3, −0.4)}
Alina {(BOD, 0.5, 0.5, 0.6, −0.1, −0.4, −0.4), (CEO, 0.5, 0.5, 0.5, −0.4, −0.5, −0.4),

(DOM , 0.4, 0.4, 0.4, −0.3, −0.4, −0.2)}

Therefore, N+(Angus) ∩ N+(Alma) = ∅, N+(Alma) ∩ N+(Alina) = ∅, N+(Angus) ∩
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Figure 19: Bipolar single-valued neutrosophic digraph

N+(Alvin) = {(CEO, 0.2, 0.4, 0.5, −0.1, −0.5, −0.7)}, N+(Angus) ∩N+(Colin) = {(DOM ,

0.4, 0.4, 0.5, −0.1, −0.3, −0.4)}, N+(Alma)∩N+(Alvin) = {(DOHR, 0.2, 0.4, 0.6, −0.4, −0.3,

−0.6)}, N+(Alma) ∩ N+(Colin) = {(DOHR, 0.3, 0.4, 0.6, −0.2, −0.3, −0.5)}, N+(Alvin) ∩
N+(Colin) = {(DOHR, 0.2, 0.4, 0.6, −0.2, −0.3, −0.6)}, N+(Alvin)∩N+(Alina) = {(CEO,

0.2, 0.4, 0.5, −0.4, −0.5, −0.5)}, N+(Colin)∩N+(Alina) = {(DOM , 0.4, 0.4, 0.5, −0.2, −0.3,

−0.4)}, N+(Angus) ∩ N+(Alina) = {(BOD, 0.5, 0.4, 0.6, −0.1, −0.4, −0.5), (CEO, 0.5, 0.4,

0.5, −0.1, −0.5, −0.7), (DOM , 0.4, 0.4, 0.4, −0.1, −0.4, −0.2)}. The bipolar single-valued

neutrosophic competition graph is shown in Fig.20. The solids lines indicate the strength of

competition between two applicants and dashed lines indicate the applicant competing for the

particular designation. For example, Angus and Alina both are competing for the designation,

BOD and strength of competition between them is (0.30, 0.20,

0.32,−0.05,−0.24,−0.32). In Table 10, T (y, d) represents the value of strength of competition

of applicant y for designation d with respect to hardwork in order to fulfil the goals of that

organization. The strength to compete the others applicant with respect to particular designa-

tion is calculated in Table 10.

From Table 10, Angus and Alina has equal strength to compete the other for designation,

BOD. Angus competes the others for the designations DOM and CEO, while, Colin competes

the others for the designations DOHR.
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Figure 20: Corresponding bipolar single-valued neutrosophic competition graph

Table 10: Strength of competition of applicants for particular designations

(Applicant, Designation) In competition T (Applicant, Designation) S(Applicant, Designation)

(Angus,BOD ) Alina (0.30, 0.20, 0.32,−0.05,−0.24,−0.32) 1.29
(Alina, BOD) Angus (0.30, 0.20, 0.32,−0.05,−0.24,−0.32) 1.29

(Angus, DOM) Alina, Colin (0.25, 0.20, 0.36,−0.045,−0.22,−0.36) 1.225
(Alina, DOM) Angus, Colin (0.25, 0.22, 0.36,−0.065,−0.22,−0.36) 1.185
(Colin, DOM) Angus, Alina (0.20, 0.22, 0.40,−0.060,−0.20,−0.40) 1.120

(Angus, CEO) Alina, Alvin (0.180, 0.180, 0.310,−0.035,−0.260,−0.360) 1.275
(Alina, CEO) Angus, Alvin (0.180, 0.180, 0.360,−0.095,−0.24,−0.335) 1.120
(Alvin, CEO) Angus, Alina (0.06, 0.16, 0.35,−0.080,−0.260,−0.375) 1.105

(Alma, DOHR) Alvin, Colin (0.09, 0.180, 0.450,−0.100,−0.240,−0.450) 1.050
(Alvin, DOHR) Colin, Alma (0.06, 0.16, 0.450,−0.09,−0.240,−0.450) 0.050
(Colin, DOHR) Alma, Alvin (0.09, 0.180, 0.480,−0.05,−0.20,−0.48) 1.060

We now elaborate this method by an algorithm.

Algorithm

Step 1. Input the positive truth, indeterminacy and falsity-memberships values for set of q

applicants.

Step 2. If for any two distinct vertices yi and yj , t
p(yiyj) > 0, ip(yiyj) > 0, fp(yiyj) > 0,
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tn(yiyj) < 0, in(yiyj) < 0, fn(yiyj) < 0, then

(yj , t
p(yiyj), i

p(yiyj), f
p(yiyj), t

n(yiyj), i
n(yiyj), f

n(yiyj)) ∈ N+(yi).

Step 3. Repeat Step 2 for all vertices yi and yj to calculate bipolar single-valued neutrosophic-

out-neighbourhoods N+(yi).

Step 4. Calculate N+(yi) ∩N+(yj) for each pair of distinct vertices yi and yj .

Step 5. Calculate h[N+(yi) ∩N+(yj)].

Step 6. If N+(yi) ∩N+(yj) 6= ∅ then draw an edge yiyj .

Step 7. Repeat step 6 for all pair of distinct vertices.

Step 8. Assign membership values to each edge yiyj using the conditions

tp(yiyj) = (yi ∧ yj)h1[N+(yi) ∩N+(yj)] tn(yiyj) = (yi ∨ yj)h4[N+(yi) ∩N+(yj)]

ip(yiyj) = (yi ∧ yj)h2[N+(yi) ∩N+(yj)] in(yiyj) = (yi ∨ yj)h5[N+(yi) ∩N+(yj)]

fp(yiyj) = (yi ∨ yj)h3[N+(yi) ∩N+(yj)] fn(yiyj) = (yi ∧ yj)h6[N+(yi) ∩N+(yj)].

Step 9. If y, r1, r2, r3, . . ., rq are the applicants competing for designation d, then strength

of competition T (y, d) = (tp(y, d), ip(y, d), fp(y, d), tn(y, d), in(y, d), fn(y, d)) of each

applicant y for the designation d is

T (y, d) =
(tp(yr1)+...+tp(yrq),ip(yr1)+...+ip(yrq),fp(yr1)+...+fp(yrq),tn(yr1)+...+tn(yrq),in(yr1)

q +

. . .+
in(yrq),fn(yr1)+...+fn(yrq))

q .

Step 10. Calculate S(y, d), the strength of competition of each applicant y for designation d.

S(y, d) = tp(y, d)− (ip(y, d) + fp(y, d)) + 1 + tn(y, d)− (in(y, d) + fn(y, d)).

2. Competition Between Different Brands. Brands are of great importance and value for

both the buyer and the seller. Brands are centred on what the seller promises to deliver to its

customers and the consumer’s expectations of a particular product. A brand can be defined as

a name, slogan or anything that can be used to identify and differentiate a particular product

or service. Strong brands such as Stylo shoes and Borjan shoes evoke sound emotional and

physiological responses from customers.

Branding has several benefits for sellers. By having brands for their products, sellers get

product recognition and product differentiation. This means that consumers would be able to

accentuate the value they receive from one seller’s product in comparison with other products

of a similar nature and they would also be able to easily spot these products among other

products. Branding aligns the seller’s advertising and promotional activities. It allows the

seller to form emotional relationship with their customers which is important because people

base their purchasing decisions mainly on emotions and not logic.

Within the business, brands serve as guidance for employees since they clearly dictate what

the company product is about. Branding is also of value to sellers in terms of profitability. A
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product with a well-known brand attached to it would bring more revenue to a seller than a

product without a brand. For example a cup of coffee without a brand can cost 70, however a

cup of coffee with the Kaymu brand attached to it can cost 999. For the seller, a good brand

increases the perceived value of its product and allows it to have a better price and better sales.

For the buyer, a brand represents the satisfaction and value that he or she anticipates and

desires from the process of buying and using a product or service. Brands often appeal to

buyers emotionally this in turn helps build relationships between buyers and sellers. Brands

provide buyers with value which is why they are often times prepared to pay more for branded

products. Among buyers, brands are often a key factor behind purchasing decisions, people

often gravitate toward brands that they are familiar with and that are trusted . In conclusion,

brands exist as feelings and experiences that extend beyond the product or service which create

relationships between the buyer and seller and have great value for both parties. We take the

following brands in order to discuss the competition between them.

1. Deepak Perwani:

At the top of the list we would bring up the name of famous Deepak Perwani. He has been

linked with the fashion designing career since the year 1994. He has been working out in offering

with the women wear along with the men wear clothing collections as well. He has been best

with his designing skills as he does add the dresses with the eastern and western images. This

designer has even got his name listed in a record book as he made a kurta of 53 meter for a

person.

2. Maria B:

On the 2nd spot of expensive clothing brands in Pakistan we would mention with Maria B. She

is one of the top most wanted fashion designers of Pakistan. She has been infused in offering

with the collection line of the bridal, casual and western wear. She has done her graduation

from the Pakistan School Of Fashion Design and later she organized her company in the year

1999.

3. Khaadi:

Khaadi is one of the top most famous clothing brands of the Pakistan. Khaadi was started by

Shamoon Sultan in 1998. This brand has been in the front line for the purpose of offering with

the high quality of the dresses designs in the magnificent designing concepts. It does offer with

the clothing collections for both men and women along with the kidswear.

4. Aamir Adnan:

On the 4th spot on our list we would bring up the name of designer brand Aamir Adnan. This

brand is one of the top most wanted brands of clothing for the men. It has made its renowned

name all through its valuable fashion of sherwani kurtas.

Consider the bipolar single-valued neutrosophic digraph as shown in Fig.21 representing the

competition between brands. Let {Deepak Perwani, Khaadi, Maria B, Aamir Adnan} be the

set of brands and {Uniqueness, Passion, Consistency}, these are the qualities for the popularity

of a particular brand. The positive degree of membership tp(x) of each brand represents the

percentage of productivity of traditional clothes towards the satisfaction of customer, ip(x)
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and fp(x) represent the indeterminacy and falsity in this percentage. The negative degree

of membership tn(x) represents the percentage that the brand can not satisfy the customer,

in(x) and fn(x) represent the indeterminacy and falsity in this percentage. The positive degree

of membership tp(x) of each directed edge between brands and the qualities represent the

percentage of having that quality, ip(x) and fp(x) represent the indeterminacy and falsity

in this percentage. The negative degree of membership tn(x) of each directed edge between

brands and qualities represent the percentage of having no qualities, in(x) and fn(x) represent

the indeterminacy and falsity in this percentage. Thus, bipolar single-valued neutrosophic

competition graph can be used in order to find competitions between different brands.

Figure 21: Bipolar single-valued neutrosophic digraph

Table 11: Bipolar single-valued neutrosophic out-neighbourhoods

x ∈ X N+(x)

Deepak Perwani {(Uniqueness, 0.9, 0.8, 0.1, −0.1, −0.2, −0.7), (Passion, 0.9, 0.8, 0.1, −0.1, −0.1, −0.5),
(Consistency, 0.8, 0.7, 0.1, −0.1, −0.2, −0.5)}

Maria B {(Passion, 0.8, 0.7, 0.1, −0.2, −0.1, −0.6), (Consistency, 0.8, 0.7, 0.2, −0.1, −0.2, −0.5)},
Aamir Adnan {(Passion, 0.6, 0.6, 0.1, −0.2, −0.1, −0.1), (Consistency, 0.6, 0.7, 0.2, −0.1, −0.2, −0.2)},
Khaadi {(Passion, 0.7, 0.8, 0.1, −0.1, −0.1, −0.1), (Uniqueness, 0.8, 0.8, 0.1, −0.1, −0.1, −0.1)},

The bipolar single-valued neutrosophic competition graph is shown in Fig.22. The solid

lines indicate the strength of competition between two brands and dashed lines indicate the

brands are competing for the particular quality. For example, Deepak Perwani and Khaadi

both are competing for the quality, uniqueness and strength of competition between them is

(0.64, 0.64, 0.03,−0.08,−0.08,−0.07). In Table 12, T (y, d) represents the value of strength of

competition of brand y for quality d with respect to level of satisfaction for the customer.

From Table 12, Deepak Perwani and Khaadi has equal strength to compete with the others for

quality, uniqueness. Deepak Perwani competes with the others for the quality passion, while,

Maria B competes with the others for the quality consistency.
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Figure 22: Corresponding bipolar single-valued neutrosophic competition graph

Table 12: Strength of competition of brands for particular quality

(Brand, Quality) In competition T (Brand, Quality) S(Brand, Quality)

(Deepak Perwani, Uniqueness) Khaadi (0.64, 0.64, 0.03,−0.08,−0.08,−0.07) 1.04
(Khaadi, Uniqueness) Deepak Perwani (0.64, 0.64, 0.03,−0.08,−0.08,−0.07) 1.04

(Deepak Perwani, Passion) Khaadi, (0.54, 0.54, 0.03,−0.07,−0.12,−0.07) 1.09
Maria B,

Aamir Adnan
(Khaadi, Passion) Aamir Adnan, (0.54, 0.56, 0.03,−0.07,−0.07,−0.05) 1

Deepak Perwani,
Maria B

(Maria B, Passion) Khaadi, (0.52, 0.51, 0.03,−0.09,−0.14,−0.05) 1.08
Deepak Perwani,
Aamir Adnan

(Aamir Adnan, Passion) Khaadi, (0.38, 0.51, 0.21,−0.08,−0.14,−0.05) 0.77
Deepak Perwani,

Maria B

(Deepak Perwani, Consistency) Maria B, (0.50, 0.49, 0.03,−0.07,−0.14,−0.07) 1.12
Aamir Adnan

(Maria B, Consistency) Deepak Perwani, (0.50, 0.49, 0.03,−0.10,−0.17,−0.08) 1.13
Aamir Adnan

(Aamir Adnan, Consistency) Maria B, (0.36, 0.49, 0.04,−0.09,−0.17,−0.07) 0.99
Deepak Perwani

We now elaborate this method by an algorithm.

Algorithm

Step 1. Input the positive truth, indeterminacy and falsity-memberships values for set of q

brands.

Step 2. If for any two distinct vertices yi and yj , t
p(yiyj) > 0, ip(yiyj) > 0, fp(yiyj) > 0,

tn(yiyj) < 0, in(yiyj) < 0, fn(yiyj) < 0, then

(yj , t
p(yiyj), i

p(yiyj), f
p(yiyj), t

n(yiyj), i
n(yiyj), f

n(yiyj)) ∈ N+(yi).

Step 3. Repeat Step 2 for all vertices yi and yj to calculate bipolar single-valued neutrosophic-

out-neighbourhoods N+(yi).

Step 4. Calculate N+(yi) ∩N+(yj) for each pair of distinct vertices yi and yj .

Step 5. Calculate h[N+(yi) ∩N+(yj)].
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Step 6. If N+(yi) ∩N+(yj) 6= ∅ then draw an edge yiyj .

Step 7. Repeat step 6 for all pair of distinct vertices.

Step 8. Assign membership values to each edge yiyj using the conditions

tp(yiyj) = (yi ∧ yj)h1[N+(yi) ∩N+(yj)] tn(yiyj) = (yi ∨ yj)h4[N+(yi) ∩N+(yj)]

ip(yiyj) = (yi ∧ yj)h2[N+(yi) ∩N+(yj)] in(yiyj) = (yi ∨ yj)h5[N+(yi) ∩N+(yj)]

fp(yiyj) = (yi ∨ yj)h3[N+(yi) ∩N+(yj)] fn(yiyj) = (yi ∧ yj)h6[N+(yi) ∩N+(yj)].

Step 9. If y, r1, r2, r3, . . ., rq are the brands competing for quality d, then strength of com-

petition T (y, d) = (tp(y, d), ip(y, d), fp(y, d), tn(y, d), in(y, d), fn(y, d)) of each brand

y for the quality d is

T (y, d) =
(tp(yr1)+...+tp(yrq),ip(yr1)+...+ip(yrq),fp(yr1)+...+fp(yrq),tn(yr1)+...+tn(yrq),in(yr1)

q +

. . .+
in(yrq),fn(yr1)+...+fn(yrq))

q .

Step 10. Calculate S(y, d), the strength of competition of each brand y for quality d.

S(y, d) = tp(y, d)− (ip(y, d) + fp(y, d)) + 1 + tn(y, d)− (in(y, d) + fn(y, d)).

§5 Conclusion

Graph theory is an enjoyable playground for the research of proof techniques in discrete

mathematics. There are many applications of graph theory in different fields. The notion of

bipolar fuzzy graphs was first introduced by Akram in 2011 as a generalization fuzzy graphs.

The idea that lies behind such description is connected with the existence of “bipolar infor-

mation” (e.g., positive information and negative information) about the given set. Positive

information represents what is granted to be possible, while negative information represents

what is considered to be impossible. Actually, a wide variety of human decision making is

based on double-sided or bipolar judgemental thinking on a positive side and a negative side.

For instance, cooperation and competition, friendship and hostility, common interests and con-

flict of interests, effect and side effect, likelihood and unlikelihood, feedforward and feedback,

and so forth are often the two sides in decision and coordination. Thus, bipolar fuzzy models

indeed have potential impacts on many fields, including artificial intelligence, computer science,

information science, cognitive science, decision science, management science, economics, neural

science, quantum computing, medical science, and social science. In recent years bipolar fuzzy

models seem to have been studied and applied a bit enthusiastically and a bit increasingly. We

now have introduced the concept of the bipolar single-valued neutrosophic competition graph

as a generalized structure of bipolar fuzzy graph, which gives more precision, compatibility and

flexibility to a system when compared with bipolar fuzzy graphs. We aim to extend our research

work to (1) Bipolar fuzzy rough graphs; (2) Bipolar fuzzy rough hypergraphs, (3) Bipolar fuzzy

rough neutrosophic graphs, and (4) Decision support systems based on bipolar single-valued

neutrosophic graphs.
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