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Abstract
The aim of this paper is to introduce the notion of neutrosophic αω-closed sets and study some of the prop-
erties of neutrosophic αω-closed sets. Further, we investigated neutrosophic αω- continuity, neutrosophic
αω-irresoluteness, neutrosophic αω connectedness and neutrosophic contra αω continuity along with exam-
ples.
Keywords: neutrosophic topology, neutrosophic αω-closed set, neutrosophic αω-continuous function and
neutrosophic contra αω-continuous mappings.

1 Introduction
Zadeh [19] introduced truth (t) or the degree of membership of an object in fuzzy set theory. The false-
hood (f) or the degree of non-membership of an object along with membership of an object introduced by
Atanassov [4,5,6] in intuitionistic fuzzy set. Neutrosophic (i) or the degree of indeterminacy of an object
along with membership and non-membership of an objects for incomplete, imprecise, indeterminate informa-
tion is introduced by Smarandache [16,17] in 1998. The neutrosophic triplet set consist of three components
(t, f, i) = (truth, falsehood, indeterminacy). The neutrosophic topological spaces introduced and devel-
oped by Salama et al., [15]. This leads to many investigation among researchers in the field of neutrosophic
topology and their application in decision making algorithms [8,11,12,13,14]. Arokiarani et al.,[3] introduced
and studied α- open sets in neutrosophic topological spaces. Devi et al., [7,9,10] introduced αω-closed sets
in general topology, fuzzy topology and intuitionistic fuzzy topology. In this article, we introduce neutro-
sophic αω-closed sets in neutrosophic topological spaces. Also, we introduce and investigate neutrosophic
αω-continuous,neutrosophic αω-irresoluteness, neutrosophic αω connectedness and neutrosophic contra αω-
continuous mappings .

2 Preliminaries
Let (X, τ) be the neutrosophic topological space(NTS). Each neutrosophic set(NS) in (X, τ) is called a neu-
trosophic open set(NOS) and its complement is called a neutrosophic closed set (NCS).

We provide some of the basic definitions in neutrosophic sets. These are very useful in the sequel.

Definition 2.1. [17] A neutrosophic set (NS) A is an object of the following form

U = {〈u, µU (u), νU (u), ωU (u)〉 : u ∈ X}

where the mappings µU : X → I , νU : X → I and ωU : X → I denote the degree of membership (namely
µU (u)), the degree of indeterminacy (namely νU (u)) and the degree of nonmembership (namely ωU (u)) for
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each element u ∈ X to the set U , respectively and 0 ≤ µU (u) + νU (u) + ωU (u) ≤ 3 for each u ∈ X .

Definition 2.2. [17] Let U and V be NSs of the form U = {〈u, µU (u), νU (u), ωU (u)〉 : u ∈ X} and
V = {〈u, µV (u), νV (u), ωV (u)〉 : u ∈ X}. Then

(i) U ⊆ V if and only if µU (u) ≤ µV (u), νU (u) ≥ νV (u) and ωU (u) ≥ ωV (u);

(ii) U = {〈u, νU (u), µU (u), ωU (u)〉 : u ∈ X};

(iii) U ∩ V = {〈u, µU (u) ∧ µV (u), νU (u) ∨ νV (u), ωU (u) ∨ ωV (u)〉 : u ∈ X};

(iv) U ∪ V = {〈u, µU (u) ∨ µV (u), νU (u) ∧ νV (u), ωU (u) ∧ ωV (u)〉 : u ∈ X}.

We will use the notation U = 〈u, µU , νU , ωU 〉 instead of U = {〈u, µU (u), νU (u), ωU (u)〉 : u ∈ X}. The
NSs 0∼ and 1∼ are defined by 0∼ = {〈u, 0, 1, 1〉 : u ∈ X} and 1∼ = {〈u, 1, 0, 0〉 : u ∈ X}.

Let r, s, t ∈ [0, 1] such that 0 ≤ r + s + t ≤ 3. A neutrosophic point (NP) p(r,s,t) is neutrosophic set
defined by

p(r,s,t)(u) =

{
(r, s, t)(x) if u = p
(0, 1, 1) otherwise

Let f be a mapping from an ordinary set X into an ordinary set Y , If V = {〈y, µV (y), νV (y), ωV (y)〉 :
y ∈ Y } is a NS in Y , then the inverse image of V under f is a NS defined by

f−1(V ) = {
〈
u, f−1(µV )(u), f

−1(νV )(u), f
−1(ωV )(u)

〉
: u ∈ X}

The image of NSU = {〈v, µU (v), νU (v), ωU (v)〉 : v ∈ Y } under f is a NS defined by f(U) = {〈v, f(µU )(v), f(νU )(v), f(ωU )(v)〉 :
v ∈ Y } where

f(µU )(v) =

{
sup

u∈f−1(v)

µU (u), if f−1(v) 6= 0

0 otherwise,

f(νU )(v) =

{
inf

u∈f−1(v)
νU (u), if f−1(v) 6= 0

1 otherwise,

f(ωU )(v) =

{
inf

u∈f−1(v)
ωU (u), if f−1(v) 6= 0

1 otherwise,

for each v ∈ Y .

Definition 2.3. [15] A neutrosophic topology (NT) in a nonempty set X is a family τ of NSs in X satis-
fying the following axioms:

(NT1) 0∼, 1∼ ∈ τ ;

(NT2) G1 ∩G2 ∈ τ for any G1, G2 ∈ τ ;

(NT3) ∪Gi ∈ τ for any arbitrary family {Gi : i ∈ J} ⊆ τ .

Definition 2.4. [15] Let U be a NS in NTS X . Then
Nint(U) = ∪{O : O is an NOS in X and O ⊆ U} is called a neutrosophic interior of U ;
Ncl(U) = ∩{O : O is an NCS in X and O ⊇ U} is called a neutrosophic closure of U .

Definition 2.5. [15] Let p(r,s,t) be a NP in NTS X . A NS U in X is called a neutrosophic neighborhood
(NN) of p(r,s,t) if there exists a NOS V in X such that p(r,s,t) ∈ V ⊆ U .

Definition 2.6. [3] A subset U of a neutrosophic space (X, τ) is called

1. a neutrosophic pre-open set ifU ⊆ Nint(Ncl(U)) and a neutrosophic pre-closed set ifNcl(Nint(U)) ⊆
U ,

2. a neutrosophic semi-open set ifU ⊆ Ncl(Nint(U)) and a neutrosophic semi-closed set ifNint(Ncl(U)) ⊆
U ,

3. a neutrosophicα-open set ifU ⊆ Nint(Ncl(Nint(U))) and a neutrosophicα-closed set ifNcl(Nint(Ncl(U))) ⊆
U ,
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The pre-closure (resp. semi-closure, α-closure) of a subset U of a neutrosophic space (X, τ) is the inter-
section of all pre-closed (resp. semi-closed, α-closed) sets that contain U and is denoted by Npcl(U) (resp.
Nscl(U), Nαcl(U)).

3 On neutrosophic αω-closed sets
Definition 3.1. A subset A of a neutrosophic topological space (X, τ) is called

1. a neutrosophic Nω-closed set if Ncl(U) ⊆ G whenever U ⊆ G and G is neutrosophic semi-open in
(X, τ).

2. a neutrosophic αω-closed (Nαω-closed) set if Nωcl(U) ⊆ G whenever U ⊆ G and G is an Nα-open
set in (X, τ). Its complement is called a neutrosophic αω-open (Nαω-open) set.

Definition 3.2. Let U be a NS in NTS X . Then
Nαωint(U) = ∪{O : O is an NαωOS in X and O ⊆ U} is said to be a neutrosophic αω-interior of U ;
Nαωcl(U) = ∩{O : O is an NαωCS in X and O ⊇ U} is said to be a neutrosophic αω-closure of U .

Theorem 3.3. Every Nα-closed set and N -closed set are Nαω-closed set.
Proof. Let U be an Nα-closed set, then U = Nαcl(U). Let U ⊆ G, G is Nα-open. Since U is Nα-closed,
Nωcl(U) ⊆ Nαcl(U) ⊆ G. Thus U is Nαω-closed.

Theorem 3.4. Every neutrosophic semi-closed set in a neutrosophic set is an Nαω-closed.
Proof. Let U be a Nsemi-closed set in (X, τ), then U = Nscl(U). Let U ⊆ G, G is Nα-open in (X, τ).
Since U is Nsemi-closed, Nωcl(U) ⊆ Nscl(U) ⊆ G. This shows that U is Nαω-closed set.

The converses of the above theorems are not true as explained in Example 3.5.

Example 3.5. Let X = {u, v, w} and neutrosophic sets A,B,C be defined by:

A = 〈(0.1, 0.4, 0.7), (0.9, 0.6, 0.3), (0.9, 0.6, 0.3)〉
B = 〈(0.6, 0.6, 0.4), (0.2, 0.7, 0.8), (1, 0.6, 0.5)〉
C = 〈(0.1, 0.4, 0.8), (0.2, 0.6, 0.4), (0.6, 0.5, 0.9)〉

Let τ = {0∼, A, 1∼}. Then B is Nαω-closed in (X, τ) but not Nα-closed and thus it is not N -closed and C
is Nαω-closed in (X, τ) but not Nsemi-closed.

Theorem 3.6. Let (X, τ) be a NTS and let U ∈ NS(X). If U is Nαω-closed set and U ⊆ V ⊆ Nωcl(U),
then V is Nαω-closed set.
Proof. Let G be a Nα-open set such that V ⊆ G. Since U ⊆ V , then U ⊆ G. But U is Nαω-closed, so
Nωcl(U) ⊆ G. Since V ⊆ Nωcl(U). Since Nωcl(V ) ⊆ Nωcl(U) and hence Nωcl(V ) ⊆ G. Therefore V
is a Nαω-closed set.

Theorem 3.7. Let U be a Nαω-open set in X and Nωint(U) ⊆ V ⊆ U , then V is Nαω-open.
Proof. Suppose U is Nαω-open in X and Nωint(U) ⊆ V ⊆ U . Then U is Nαω-closed and U ⊆ V ⊆
Nωcl(U). Then U is a Nαω-closed set by theorem 3.5. Hence V is a Nαω-open set in X .

Theorem 3.8. A NS U in a NTS (X, τ) is a Nαω-open set if and only if V ⊆ Nωint(U) whenever V
is a Nα-closed set and V ⊆ U .
Proof. Let U be a Nαω-open set and let V be a Nα-closed set such that V ⊆ U . Then U ⊆ V and hence
Nωcl(U) ⊆ V , since U is Nαω-closed. But Nωcl(U) = Nωint(U), thus V ⊆ Nωint(U).
Conversely, suppose that the condition is satisfied, then Nωint(U) ⊆ V whenever V is Nα-open set and
U ⊆ V . This implies that Nωcl(U) ⊆ V = G where G is Nα-open set and U ⊆ G. Therefore U is Nαω-
closed set and hence U is Nαω-open.

Theorem 3.9. Let U be a Nαω-closed subset of (X, τ). Then Nωcl(U) − U does not contain any non-
empty Nαω-closed set.
Proof. Assume that U is a Nαω-closed set. Let F be a non-empty Nαω-closed set, such that F ⊆
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Nωcl(U) − U = Nωcl(U) ∩ U . i.e., F ⊆ Nωcl(U) and F ⊆ U . Therefore, U ⊆ F . Since F is a
Nαω-open set, Nωcl(U) ⊆ F ⇒ F ⊆ (Nωcl(U)− U) ∩ (Nωcl(U)) ⊆ Nωcl(U) ∩Nωcl(U). i.e., F ⊆ φ.
Therefore F is empty.

Corollary 3.10. Let U be a Nαω-closed set of (X, τ). Then Nωcl(U) − U does not contain no non-empty
N-closed set.
Proof. The proof follows from the Theorem 3.9.

Theorem 3.11. If U is both Nω-open and Nαω-closed set, then U is a Nω-closed set.
Proof. Since U is both Nω-open and Nαω-closed set in X , then Nωcl(U) ⊆ U . Also we have U ⊆
Nωcl(U). This gives that Nωcl(U) = U . Therefore U is a Nω-closed set in X .

4 On neutrosophic αω-continuity, connectedness and contra-continuity
Definition 4.1. Let (X, τ) and (Y, σ) be any two neutrosophic topological spaces.

1. A function f : (X, τ) → (Y, σ) is said to be a neutrosophic αω-continuous (briefly, Nαω-continuous)
function if the inverse image of every open set in Y is a Nαω-open set in X .
Equivalently, if the inverse image of every open set in (Y, σ) is Nαω-open in (X, τ);

2. A function f : (X, τ) → (Y, σ) is said to be a neutrosophic αω-irresolute (briefly, Nαω-irresolute)
function if the inverse image of every Nαω-open set in Y is a Nαω-open set in X .
Equivalently, if the inverse image of every Nαω-open set in (Y, σ) is Nαω-open in (X, τ);

Definition 4.2. A NTS (X, τ) is said to be neutrosophic-αωT1/2(NαωT1/2 in short) space if every NαωC in
X is an NC in X .

Definition 4.3. Let (X, τ) be any neutrosophic topological space. (X, τ) is said to be neutrosophic αω-
disconnected (in shortly Nαω-disconnected) if there exists a Nαω-open and Nαω-closed set F such that
F 6= 0∼ and F 6= 1∼. (X, τ) is said to be neutrosophic αω-connected if it is not neutrosophic αω-
disconnected.

Theorem 4.4. Every Nαω-connected space is neutrosophic connected.
Proof. For aNαω-connected (X, τ) space and let (X, τ) not be neutrosophic connected. Hence, there exists a
proper neutrosophic set, F =< µF (x), σF (x), νF (x) >, F 6= 0∼ and F 6= 1∼, such that F is both neutrosophic
open and neutrosophic closed in (X, τ). Since every neutrosophic open set is Nαω-open and neutrosophic
closed set is Nαω-closed, X is not Nαω-connected. Therefore, (X, τ) is neutrosophic connected.
However, the converse is not true.

Example 4.5. Let X = {u, v, w} and neutrosophic sets A,B and C be defined by:

A = 〈(0.4, 0.5, 0.5), (0.4, 0.5, 0.5), (0.5, 0.5, 0.5)〉
B = 〈(0.7, 0.6, 0.5), (0.7, 0.6, 0.5), (0.3, 0.4, 0.5)〉
C = 〈(0.5, 0.6, 0.5), (0.5, 0.6, 0.5), (0.5, 0.6, 0.5)〉

Let τ = {0∼, A,B, 1∼}. It is obvious that (X, τ) is NTS. Now, (X, τ) is neutrosophic connected. However,
it is not a Nαω-connected.

Theorem 4.6. Let (X, τ) be a neutrosophic αωT1/2 space. (X, τ) is neutrosophic connected iff (X, τ) is
Nαω-connected.

Proof. Let (X, τ) is neutrosophic connected. Suppose that (X, τ) is not Nαω-connected, and there exists
a neutrosophic set F which is both Nαω-open and Nαω-closed. Since (X, τ) is neutrosophic αωT1/2, F is
both neutrosophic open and neutrosophic closed. Therefore, (X, τ) is not a neutrosophic connected which is
contradiction to our hypothesis. Hence, (X, τ) is Nαω-connected.
Conversely, let (X, τ) is Nαω-connected. Suppose that (X, τ) is not neutrosophic connected, and there exists
a neutrosophic set F such that F is both NCs and NOs ∈ (X, τ). Since the neutrosophic open set isNαω-open
and the neutrosophic closed set is Nαω-closed, (X, τ) is not Nαω-connected. Hence, (X, τ) is neutrosophic
connected.
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Theorem 4.7. Suppose (X, τ) and (Y, σ) are any two NTSs. If g : (X, τ) → (Y, σ) is Nαω-continuous
surjection and (X, τ) is Nαω-connected, then (Y, σ) is neutrosophic connected.
Proof. Suppose that (Y, σ) is not neutrosophic connected, such that the neutrosophic set F is both neutrosophic
open and neutrosophic closed in (Y, σ). Since g is Nαω-continuous, g−1(F ) is Nαω-open and Nαω-closed
in (Y, σ). Thus, (Y, σ) is not Nαω-connected. Hence, (Y, σ) is neutrosophic connected.

Theorem 4.8. Let g : (X, τ)→ (Y, σ) be a function. Then the following conditions are equivalent.

(i) g is Nαω-continuous;

(ii) The inverse f−1(U) of each N -open set U in Y is Nαω-open set in X .

Proof. It is clear, since g−1(U) = g−1(U) for each N -open set U of Y .

Theorem 4.9. If g : (X, τ)→ (Y, σ) be a Nαω-continuous mapping, then the following statements holds:

(i) g(NαωNcl(U)) ⊆ Ncl(g(U)), for all neutrosophic set U in X;

(ii) NαωNcl(g−1(V )) ⊆ g−1(Ncl(V )), for all neutrosophic set V in Y .

Proof.

(i) Since Ncl(g(U)) is neutrosophic closed set in Y and g is Nαω-continuous, then g−1(Ncl(g(U))) is
Nαω-closed in X . Now, since U ⊆ g−1(Ncl(g(U))). So, Nαωcl(U) ⊆ g−1(Ncl(g(U))). Therefore,
g(NαωNcl(U)) ⊆ Ncl(g(U)).

(ii) By replacing U with V in (i), we obtain g(Nαωcl(g−1(V ))) ⊆ Ncl(g(g−1(V ))) ⊆ Ncl(V ). Hence
Nαωcl(g−1(V )) ⊆ g−1(Ncl(V )).

Theorem 4.10. Let g be a function from a NTS (X, τ) to a NTS (Y, σ). Then the following statements are
equivalent.

(i) g is a neutrosophic αω-continuous function.

(ii) For every NP p(r,s,t) ∈ X and each NN U of g(p(r,s,t)), there exists a Nαω-open set V such that
p(r,s,t) ∈ V ⊆ g−1(U).

(iii) For every NP p(r,s,t) ∈ X and each NN U of g(p(r,s,t)), there exists a Nαω-open set V such that
p(r,s,t) ∈ V and g(V ) ⊆ U .

Proof. (i)⇒ (ii). If p(r,s,t) is a NP in X and also if U be a NN of g(p(r,s,t)), then there exists a NOS W in Y
such that g(p(r,s,t)) ∈W ⊂ U . we have g is neutrosophic αω-continuous, V = g−1(W ) is an NαωOS and

p(r,s,t) ∈ g−1(g(p(r,s,t))) ⊆ g−1(W ) = V ⊆ g−1(U).

Thus (ii) is a valid statement.
(ii)⇒ (iii). Let p(r,s,t) be a NP in X and take U be a NN of g(p(r,s,t)). Then there exists a NαωOS U such
that p(r,s,t) ∈ V ⊆ g−1(U) by (ii). Thus, we have p(r,s,t) ∈ V and g(V ) ⊆ g(g−1(U)) ⊆ U . Hence (iii) is
valid.
(iii)⇒ (i). Let V be a NOS in Y and let p(r,s,t) ∈ g−1(V ). Then g(p(r,s,t)) ∈ g(g−1(V )) ⊂ V . Since V is a
NOS, it follows that V is a NN of g(p(r,s,t)) so from (iii), there exists a NαωOS U such that p(r,s,t) ∈ U and
g(U) ⊆ V . This implies that

p(r,s,t) ∈ U ⊆ g−1(g(U)) ⊆ g−1(V ).

Then, we know that g−1(V ) is a NαωOS in X . Thus g is neutrosophic αω-continuous.

Definition 4.11. A function is said to be a neutrosophic contra αω-continuous function if the inverse im-
age of each NOS V in Y is a NαωCS in X .

Theorem 4.12. Let g : (X, τ)→ (Y, σ) be a function. Then, the following assertions are equivalent:

(i) g is a neutrosophic contra αω-continuous function;
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(ii) g−1(V ) is a Nαω CS in X , for each NOS V in Y .

Proof. (i)⇒ (ii) Let g be any neutrosophic contra αω-continuous function and let V be any NOS in Y . Then,
V is a NCS in Y . By the assumption g−1(V ) is a NαωOS in X . Hence, we get that g−1(V ) is a NαωCS in
X .

The converse of the theorem can be done in the same sense.

Theorem 4.13. Let g : (X, τ) → (Y, σ) be a bijective mapping from an NTS X into an NTS Y . The
mapping g is neutrosophic contra αω-continuous if Ncl(g(U)) ⊆ g(Nαωint(U)), for each NS U in X .
Proof. Let V be any NCS in X . Then, Ncl(V ) = V , and also g is onto, by assumption, it shows that
g(Nαωint(g−1(V ))) ⊇ Ncl(g(g−1(V ))) = Ncl(V ) = V . Hence g−1(g(Nαωint(g−1(V )))) ⊇ g−1(V ).
Since g is an into mapping, we have Nαωint(g−1(V )) = g−1(g(Nαωint(g−1(V )))) ⊇ g−1(V ). Therefore
Nαωint(g−1(V ))
= g−1(V ), so g−1(V ) is a NαωOS in X . Hence g is a neutrosophic contra αω-continuous mapping.

Theorem 4.14. Let g : (X, τ)→ (Y, σ) be a mapping. Then the following statements are equivalent:

(i) g is a neutrosophic contra αω-continuous mapping;

(ii) for each NP p(r,s,t) in X and NCS V containing g(p(r,s,t)) there exists NαωOS U in X containing
p(r,s,t) such that A ⊆ f−1(B);

(iii) for each NP p(r,s,t) in X and NCS V containing p(r,s,t) there exists NαωOS U in X containing p(r,s,t)
such that g(U) ⊆ V .

Proof. (i) ⇒ (ii) Let g be an neutrosophic contra αω-continuous mapping, let V be any NCS in Y and
let p(r,s,t) be a NP in X and such that g(p(r,s,t)) ∈ V . Then p(r,s,t) ∈ g−1(V ) = Nαωint(g−1(V )). Let
U = Nαωint(g−1(V )). Then U is an NαωOS and U = Nαωint(g−1(V )) ⊆ g−1(V ).
(ii)⇒ (iii) The results follows from the evident relations g(U) ⊆ g(g−1(V )) ⊆ V .
(iii) ⇒ (i) Let V be any NCS in Y and let p(r,s,t) be a NP in X such that p(r,s,t) ∈ g−1(V ). Then
g(p(r,s,t)) ∈ V . According to the assumption, there exists an NαωOS U in X such that p(r,s,t) ∈ U
and g(U) ⊆ V . Hence p(r,s,t) ∈ U ⊆ g−1(g(U)) ⊆ g−1(V ). Therefore p(r,s,t) ∈ U = αωint(U) ⊆
Nαωint(g−1(V )). Since, p(r,s,t) is an arbitrary NP and g−1(V ) is the union of all NPs in g−1(V ), we obtain
that g−1(V ) ⊆ Nαωint(g−1(V )). Thus g is a neutrosophic contra Nαω-continuous mapping.

Corollary 4.15. Let X, X1 and X2 be NTSs, p1 : X → X1 ×X2 (i = 1, 2) and p2 : X → X1 ×X2 are the
projections of X1 ×X2 onto Xi, (i = 1, 2). If g : X → X1 ×X2 is a neutrosophic contra αω-continuous,
then pig are also neutrosophic contra αω-continuous mapping.
Proof. The proof follows from the fact that the projections are all neutrosophic continuous functions.

Theorem 4.16. Let g : (X1, τ) → (Y1, σ) be a function. If the graph h : X1 → X1 × Y1 of g is neu-
trosophic contra αω-continuous, then g is neutrosophic contra αω-continuous.
Proof. For every NOS V in Y1 holds g−1(V ) = 1 ∧ g−1(V ) = h−1(1× V ). Since h is a neutrosophic contra
αω-continuous mapping and 1× V is a NOS in X1 × Y1, g−1(V ) is a NαωCS in X1, so g is a neutrosophic
contra αω-continuous mapping.

5 Conclusions
In this paper, we introduced and investigated the neutrosophic αω closed sets and its properties. Also, we in-
vestigated the continuity, irresolute, connectedness and contra-continuity in terms of neutrosophic αω closed
sets.
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