See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326561415

ON I-OPEN SETS AND I-CONTINUOUS FUNCTIONS IN IDEAL BITOPOLOGICAL SPACES

Article • July 2018

Citations
0

4 authors:

M. Caldas

Universidade Federal Fluminense
98 PUBLICATIONS 473 CITATIONS
SEE PROFILE

Nimitha Rajesh
Rajiv Gandhi University of Health Sciences, Karnataka
224 PUBLICATIONS 1,673 CITATIONS

SEE PROFILE

Saeid Jafari

College of Vestsjaelland South
349 PUBLICATIONS 1,296 CITATIONS
SEE PROFILE

Florentin Smarandache
University of New Mexico Gallup Campus
2,856 PUBLICATIONS 15,624 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:Mental models View project

Project Fuzzy Topology View project

ON \mathcal{I}-OPEN SETS AND \mathcal{I}-CONTINUOUS FUNCTIONS IN IDEAL BITOPOLOGICAL SPACES

M. CALDAS, S. JAFARI, N. RAJESH AND F. SMARANDACHE

Abstract

The aim of this paper is to introduce and characterize the concepts of \mathcal{I}-open sets and their related notions in ideal bitopological spaces.

1. Introduction and Preliminaries

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [19] and Vaidyanathasamy [24]. Hamlett and Janković (see [12], [13], [17] and [18]) used topological ideals to generalize many notions and properties in general topology. The research in this direction continued by many researchers such as M. E. Abd El-Monsef, A. Al-Omari, F. G. Arenas, M. Caldas, J. Dontchev, M. Ganster, D. N. Georgiou, T. R. Hamlett, E. Hatir, S. D. Iliadis, S. Jafari, D. Jankovic, E. F. Lashien, M. Maheswari, H. Maki, A. C. Megaritis, F. I. Michael, A. A. Nasef, T. Noiri, B. K. Papadopoulos, M. Parimala, G. A. Prinos, M. L. Puertas, M. Rajamani, N. Rajesh, D. Rose, A. Selvakumar, Jun-Iti Umehara and many others (see [1], [2], [5], [7], [8], [9], [10], [11], [14], [15], [18], [23], [21], [22]). An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator (.)*: $\mathcal{P}(X) \rightarrow \mathcal{P}(X)$, called the local function [24] of A with respect to τ and \mathcal{I}, is defined as follows: for $A \subset X, A^{*}(\tau, \mathcal{I})=\{x \in X \mid U \cap A \notin \mathcal{I}$ for every $U \in \tau(x)\}$, where $\tau(x)=\{U \in \tau \mid x \in U\}$. If \mathcal{I} is an ideal on X, then $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ is called an ideal bitopological space. Let A be a subset of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$. We denote the closure of A and the interior of A with respect to τ_{i} by $\tau_{i}-\mathrm{Cl}(A)$ and $\tau_{i}-\operatorname{Int}(A)$, respectively. A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be (i, j)-preopen [16] if $A \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\operatorname{Cl}(A)\right)$, where $i, j=1,2$ and $i \neq j$. A subset S of an ideal topological space (X, τ, \mathcal{I}) is said to be (i, j)-pre-\mathcal{I}-open [4] if $S \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(S)\right)$. A subset A of a bitopological space (X, τ_{1}, τ_{2}) is said to be (i, j)-preopen [16] (resp. (i, j)-semi- \mathcal{I}-open [3]) if $A \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}(A)\right)\left(\right.$ resp. $\left.S \subset \tau_{j}-\mathrm{Cl}^{*}\left(\tau_{i}-\operatorname{Int}(S)\right)\right)$, where $i, j=1,2$

2000 Mathematics Subject Classification. 54D10.

Key words and phrases. Ideal bitopological spaces, (i, j)-I-open sets, (i, j)-I closed sets.
and $i \neq j$. The complement of an (i, j)-semi- \mathcal{I}-open set is called an (i, j)-semi- \mathcal{I}-closed set. A function $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is said to be (i, j)-pre- \mathcal{I}-continuous [4] if the inverse image of every $\sigma_{i^{-}}$ open set in $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is (i, j)-pre- \mathcal{I}-open in $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$, where $i \neq j$, $i, j=1,2$.

2. (i, j)-I-OPEN SETS

Definition 2.1. A subset A of an ideal bitopological space $\left(X, \tau_{i}, \tau_{2}, \mathcal{I}\right)$ is said to be $(i, j)-\mathcal{I}$-open if $A \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$.
The family of all (i, j)-İ-open subsets of $\left(X, \tau_{i}, \tau_{2}, \mathcal{I}\right)$ is denoted by $(i, j)-\mathcal{I} O(X)$.
Remark 2.2. It is clear that (1,2)-I-openness and τ_{1}-openness are independent notions.
Example 2.3. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\},\{a, b\}, X\}, \tau_{2}=\{\emptyset,\{a\},\{a, c\}, X\}$ and $\mathcal{I}=\{\emptyset,\{a\}\}$. Then $\tau_{1}-\operatorname{Int}\left(\{a, b\}_{2}^{*}\right)=\tau_{1}-\operatorname{Int}(\{b\})=\emptyset \supsetneq\{a, b\}$. Therefore $\{a, b\}$ is a τ_{1}-open set but not $(1,2)$ - \mathcal{I}-open.

Example 2.4. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a, b\}, X\}, \tau_{2}=\{\emptyset,\{a\},\{a, b\}, X\}$ and $\mathcal{I}=\{\emptyset,\{b\}\}$. Then $\tau_{1}-\operatorname{Int}\left(\{a\}_{2}^{*}\right)=\tau_{1}-\operatorname{Int}(X)=X \supset\{a\}$. Therefore, $\{a\}$ is $(1,2)-\mathcal{I}$-open set but not τ_{1}-open.

Remark 2.5. Similarly $(1,2)$-I-openness and τ_{2}-openness are independent notions.

Example 2.6. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}, X\}, \tau_{2}=$ $\{\emptyset,\{b\},\{c\},\{b, c\}, X\}$ and $\mathcal{I}=\{\emptyset,\{c\}\}$. Then $\tau_{1}-\operatorname{Int}\left(\{b, c\}_{2}^{*}\right)=\tau_{1}$ $\operatorname{Int}(\{a, b\})=\{a\} \supsetneq\{b, c\}$. Therefore, $\{b, c\}$ is a τ_{2}-open set but not (1,2)-I-open.
Example 2.7. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}\}, \tau_{2}=$ $\{\emptyset,\{b\},\{b, c\}, X\}$ and $\mathcal{I}=\{\emptyset,\{c\}\}$. Then $\tau_{1}-\operatorname{Int}\left(\{a\}_{2}^{*}\right)=\tau_{1}-\operatorname{Int}(\{a\})=$ $\{a\} \supset\{a\}$. Therefore, $\{a\}$ is an $(1,2)$ - \mathcal{I}-open set but not τ_{2}-open.

Proposition 2.8. Every (i, j)-I -open set is (i, j)-pre- \mathcal{I}-open.
Proof. Let A be an $(i, j)-\mathcal{I}$-open set. Then $A \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right) \subset \tau_{i}-\operatorname{Int}(A \cup$ $\left.A_{j}^{*}\right)=\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right)$. Therefore, $A \in(i, j)-P \mathcal{I} O(X)$.
Example 2.9. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}, X\}, \tau_{2}=$ $\{\emptyset,\{b, c\}, X\}$ and $\mathcal{I}=\{\emptyset,\{c\}\}$. Then the set $\{c\}$ is (1,2)-preopen but not $(1,2)$-I -open.

Remark 2.10. The intersection of two (i, j)-I -open sets need not be (i, j)-I-open as showm in the following example.
Example 2.11. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}, X\}, \tau_{2}=$ $\{\emptyset,\{b\},\{b, c\}, X\}$ and $\mathcal{I}=\{\emptyset,\{a\}\}$. Then $\{a, b\},\{a, c\} \in(1,2)$ $\mathcal{I} O(X)$ but $\{a, b\} \cap\{a, c\}=\{a\} \notin(1,2)-\mathcal{I} O(X)$.

Theorem 2.12. For an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ and $A \subset$ X, we have:
(1) If $\mathcal{I}=\{\emptyset\}$, then $A_{j}^{*}(\mathcal{I})=\tau_{j}$ - $\mathrm{Cl}(A)$ and hence each of $(i, j)-\mathcal{I}$ open set and (i, j)-preopen set are coincide.
(2) If $\mathcal{I}=\mathcal{P}(X)$, then $A_{j}^{*}(\mathcal{I})=\emptyset$ and hence A is (i, j) - \mathcal{I}-open if and only if $A=\emptyset$.

Theorem 2.13. For any (i, j)-I -open set A of an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$, we have $A_{j}^{*}=\left(\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)\right)_{j}^{*}$.
Proof. Since A is (i, j) - \mathcal{I}-open, $A \subset \tau_{i}$ - $\operatorname{Int}\left(A_{j}^{*}\right)$. Then $A_{j}^{*} \subset\left(\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)\right)_{j}^{*}$. Also we have $\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right) \subset A_{j}^{*},\left(\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)\right)^{*} \subset\left(A_{j}^{*}\right)^{*} \subset A_{j}^{*}$. Hence we have, $A_{j}^{*}=\left(\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)\right)_{j}^{*}$.
Definition 2.14. A subset F of an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ is called (i, j) - \mathcal{I}-closed if its complement is (i, j) - \mathcal{I}-open.
Theorem 2.15. For $A \subset\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ we have $\left(\left(\tau_{i}-\operatorname{Int}(A)\right)_{j}^{*}\right)^{c} \neq \tau_{i^{-}}$ $\operatorname{Int}\left(\left(A^{c}\right)_{j}^{*}\right)$ in general.
Example 2.16. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\},\{a, b\}, X\}, \tau_{2}=$ $\{\emptyset,\{a, c\}, X\}$ and $\mathcal{I}=\{\emptyset,\{b\}\}$. Then $\left(\left(\tau_{1}-\operatorname{Int}(\{a, b\})\right)_{2}^{*}\right)^{c}=\left(\{a, b\}_{2}^{*}\right)^{c}=$ $X^{c}=\emptyset(*)$ and $\tau_{1}-\operatorname{Int}\left(\left(\{a, b\}^{c}\right)_{2}^{*}\right)=\tau_{1}-\operatorname{Int}\left(\{c\}_{2}^{*}\right)=\tau_{1}-\operatorname{Int}(X)=X(* *)$. Hence from $(*)$ and $(* *)$, we get $\left(\left(\tau_{1}-\operatorname{Int}(\{a, b\})\right)_{2}^{*}\right)^{c} \neq \tau_{1}-\operatorname{Int}\left(\left(\{a, b\}^{c}\right)_{2}^{*}\right)$.
Theorem 2.17. If $A \subset\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ is (i, j)-I -closed, then $A \supset\left(\tau_{i}\right.$ $\operatorname{Int}(A))_{j}^{*}$.

Proof. Let A be (i, j) - \mathcal{I}-closed. Then $B=A^{c}$ is (i, j) - \mathcal{I}-open. Thus, $B \subset \tau_{i}-\operatorname{Int}\left(B_{j}^{*}\right), B \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}(B)\right), B^{c} \supset \tau_{j}-\mathrm{Cl}\left(\tau_{i}-\operatorname{Int}\left(B^{c}\right)\right), A \supset \tau_{j^{-}}$ $\mathrm{Cl}\left(\tau_{i}-\operatorname{Int}(A)\right)$. That is, $\tau_{j}-\mathrm{Cl}\left(\tau_{i}-\operatorname{Int}(A)\right) \subset A$, which implies that $\left(\tau_{i^{-}}\right.$ $\operatorname{Int}(A))_{j}^{*} \subset \tau_{j}-\mathrm{Cl}\left(\tau_{i}-\operatorname{Int}(A)\right) \subset A$. Therefore, $A \supset\left(\tau_{i}-\operatorname{Int}(A)\right)_{j}^{*}$.
Theorem 2.18. Let $A \subset\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ and $\left(X \backslash\left(\tau_{i}-\operatorname{Int}(A)\right)_{j}^{*}\right)=\tau_{i}$ $\operatorname{Int}\left((X \backslash A)_{j}^{*}\right)$. Then A is (i, j) - \mathcal{I}-closed if and only if $A \supset\left(\tau_{i}-\operatorname{Int}(A)\right)_{j}^{*}$.
Proof. It is obvious.
Theorem 2.19. Let $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ be an ideal bitopological space and $A, B \subset X$. Then:
(i) If $\left\{U_{\alpha}: \alpha \in \Delta\right\} \subset(i, j)-\mathcal{I} O(X)$, then $\bigcup\left\{U_{\alpha}: \alpha \in \Delta\right\} \in(i, j)$ $\mathcal{I} O(X)$.
(ii) If $A \in(i, j)-\mathcal{I} O(X), B \in \tau_{i}$ and $A_{j}^{*} \cap B \subset(A \cap B)_{j}^{*}$, then $A \cap B \in(i, j)-\mathcal{I} O(X)$.
(iii) If $A \in(i, j)-\mathcal{I} O(X), B \in \tau_{i}$ and $B \cap A_{j}^{*}=B \cap(B \cap A)_{j}^{*}$, then $A \cap B \subset \tau_{i}-\operatorname{Int}\left(B \cap(B \cap A)_{j}^{*}\right)$.
Proof. (i) Since $\left\{U_{\alpha}: \alpha \in \Delta\right\} \subset(i, j)-\mathcal{I} O(X)$, then $U_{\alpha} \subset \tau_{i}-\operatorname{Int}\left(\left(U_{\alpha}\right)_{j}^{*}\right)$, for every $\alpha \in \Delta$. Thus, $\bigcup\left(U_{\alpha}\right) \subset \bigcup\left(\tau_{i}-\operatorname{Int}\left(\left(U_{\alpha}\right)_{j}^{*}\right)\right) \subset \tau_{i}-\operatorname{Int}\left(\bigcup\left(U_{\alpha}\right)_{j}^{*} \subset\right.$ $\tau_{i}-\operatorname{Int}\left(\bigcup U_{\alpha}\right)_{j}^{*}$, for every $\alpha \in \Delta$. Hence $\bigcup\left\{U_{\alpha}: \alpha \in \Delta\right\} \in(i, j)-\mathcal{I} O(X)$.
(ii) Given $A \in(i, j)-\mathcal{I} O(X)$ and $B \in \tau_{i}$, that is $A \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$. Then $A \cap B \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right) \cap B=\tau_{i}-\operatorname{Int}\left(A_{j}^{*} \cap B\right)$. Since $B \in \tau_{i}$ and $A_{j}^{*} \cap B \subset$ $(A \cap B)_{j}^{*}$, we have $A \cap B \subset \tau_{i}-\operatorname{Int}\left((A \cap B)_{j}^{*}\right)$. Hence, $A \cap B \in(i, j)$ $\mathcal{I} O(X)$.
(iii) Given $A \in(i, j)-\mathcal{I} O(X)$ and $B \in \tau_{i}$, That is $A \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$. We have to prove $A \cap B \subset \tau_{i}-\operatorname{Int}\left(B \cap(B \cap A)_{j}^{*}\right)$. Thus, $A \cap B \subset \tau_{i^{-}}$ $\operatorname{Int}\left(A_{j}^{*}\right) \cap B=\tau_{i}-\operatorname{Int}\left(A_{j}^{*} \cap B\right)=\tau_{i}-\operatorname{Int}\left(B \cap A_{j}^{*}\right)$. Since $B \cap A_{j}^{*}=$ $B \cap(B \cap A)_{j}^{*}$. Hence $A \cap B \subset \tau_{i}-\operatorname{Int}\left(B \cap(B \cap A)_{j}^{*}\right)$.
Corollary 2.20. The union of (i, j)-I-closed set and τ_{j}-closed set is (i, j)-I-closed.
Proof. It is obvious.
Theorem 2.21. If $A \subset\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ is (i, j)-I -open and (i, j)-semiclosed, then $A=\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$.
Proof. Given A is (i, j) - \mathcal{I}-open. Then $A \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$. Since (i, j) semiclosed, $\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right) \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}(A)\right) \subset A$. Thus $\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right) \subset A$. Hence we have, $A=\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$.
Theorem 2.22. Let $A \in(i, j)-\mathcal{I} O(X)$ and $B \in(i, j)-\mathcal{I} O(Y)$, then $A \times B \in(i, j)-\mathcal{I} O(X \times Y)$, if $A_{j}^{*} \times B_{j}^{*}=(A \times B)_{j}^{*}$.
Proof. $A \times B \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right) \times \tau_{i}-\operatorname{Int}\left(B_{j}^{*}\right)=\tau_{i}-\operatorname{Int}\left(A_{j}^{*} \times B_{j}^{*}\right)$, from hypothesis. Then $A \times B=\tau_{i}-\operatorname{Int}\left((A \times B)_{j}^{*}\right)$; hence, $A \times B \in(i, j)-$ $\mathcal{I} O(X \times Y)$.
Theorem 2.23. If $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ is an ideal bitopological space, $A \in \tau_{i}$ and $B \in(i, j)-\mathcal{I} O(X)$, then there exists a τ_{i}-open subset G of X such that $A \cap G=\emptyset$, implies $A \cap B=\emptyset$.
Proof. Since $B \in(i, j)-\mathcal{I} O(X)$, then $B \subset \tau_{i}-\operatorname{Int}\left(B_{j}^{*}\right)$. By taking $G=$ τ_{i} - $\operatorname{Int}\left(B_{j}^{*}\right)$ to be a τ_{i}-open set such that $B \subset G$. But $A \cap G=\emptyset$, then $G \subset X \backslash A$ implies that $\tau_{i}-\mathrm{Cl}(G) \subset X \backslash A$. Hence $B \subset(X \backslash A)$. Therefore, $A \cap B=\emptyset$.

Definition 2.24. A subset A of $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ is said to be:
(i) τ_{i}^{*}-closed if $A_{i}^{*} \subset A$.
(ii) $\tau_{i}-*$-perfect $A_{i}^{*}=A$.

Theorem 2.25. For a subset $A \subset\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$, we have
(i) If A is τ_{j}^{*}-closed and $A \in(i, j)-\mathcal{I} O(X)$, then τ_{i} - $\operatorname{Int}(A)=\tau_{i}$ $\operatorname{Int}\left(A_{j}^{*}\right)$.
(ii) If A is τ_{j}-*-perfect, then $A=\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$ for every $A \in(i, j)$ $\mathcal{I} O(X)$.
Proof. (i) Let A be $\tau_{j^{-}-\text {-closed }}$ and $A \in(i, j)-\mathcal{I} O(X)$. Then $A_{j}^{*} \subset A$ and $A \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$. Hence $A \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right) \Rightarrow \tau_{i}-\operatorname{Int}(A) \subset \tau_{i}-\operatorname{Int}\left(\tau_{i^{-}}\right.$ $\left.\operatorname{Int}\left(A_{j}^{*}\right)\right) \Rightarrow \tau_{i}-\operatorname{Int}(A) \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$. Also, $A_{j}^{*} \subset A$. Then $\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right) \subset$
$\tau_{i}-\operatorname{Int}(A)$. Hence $\tau_{i}-\operatorname{Int}(A)=\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$.
(ii) Let A be τ_{j}-*-perfect and $A \in(i, j)-\mathcal{I} O(X)$. We have, $A_{j}^{*}=A$, $\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)=\tau_{i}-\operatorname{Int}(A), \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right) \subset A$. Also we have $A \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$. Hence we have, $A=\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)$.
Definition 2.26. Let $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ be an ideal bitopological space, S a subset of X and x be a point of X. Then
(i) x is called an (i, j)-I-interior point of S if there exists $V \in$ $(i, j)-\mathcal{I} O\left(X, \tau_{1}, \tau_{2}\right)$ such that $x \in V \subset S$.
ii) the set of all (i, j) - \mathcal{I}-interior points of S is called (i, j) - \mathcal{I}-interior of S and is denoted by $(i, j)-\mathcal{I} \operatorname{Int}(S)$.
Theorem 2.27. Let A and B be subsets of $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$. Then the following properties hold:
(i) $(i, j)-\mathcal{I} \operatorname{Int}(A)=\cup\{T: T \subset A$ and $A \in(i, j)-\mathcal{I} O(X)\}$.
(ii) $(i, j)-\mathcal{I} \operatorname{Int}(A)$ is the largest (i, j)-I -open subset of X contained in A.
(iii) A is (i, j)-I-open if and only if $A=(i, j)-\mathcal{I} \operatorname{Int}(A)$.
(iv) $(i, j)-\mathcal{I} \operatorname{Int}((i, j)-\mathcal{I} \operatorname{Int}(A))=(i, j)-\mathcal{I} \operatorname{Int}(A)$.
(v) If $A \subset B$, then $(i, j)-\mathcal{I} \operatorname{Int}(A) \subset(i, j)-\mathcal{I} \operatorname{Int}(B)$.
(vi) $(i, j)-\mathcal{I} \operatorname{Int}(A) \cup(i, j)-\mathcal{I} \operatorname{Int}(B) \subset(i, j)-\mathcal{I} \operatorname{Int}(A \cup B)$.
(vii) $(i, j)-\mathcal{I} \operatorname{Int}(A \cap B) \subset(i, j)-\mathcal{I} \operatorname{Int}(A) \cap(i, j)-\mathcal{I} \operatorname{Int}(B)$.

Proof. (i). Let $x \in \cup\{T: T \subset A$ and $A \in(i, j)-\mathcal{I} O(X)\}$. Then, there exists $T \in(i, j)-\mathcal{I} O(X, x)$ such that $x \in T \subset A$ and hence $x \in(i, j)$ $\mathcal{I} \operatorname{Int}(A)$. This shows that $\cup\{T: T \subset A$ and $A \in(i, j)-\mathcal{I} O(X)\} \subset$ $(i, j)-\mathcal{I} \operatorname{Int}(A)$. For the reverse inclusion, let $x \in(i, j)-\mathcal{I} \operatorname{Int}(A)$. Then there exists $T \in(i, j)-\mathcal{I} O(X, x)$ such that $x \in T \subset A$. we obtain $x \in \cup\{T: T \subset A$ and $A \in(i, j)-\mathcal{I} O(X)\}$. This shows that $(i, j)-$ $\mathcal{I} \operatorname{Int}(A) \subset \cup\{T: T \subset A$ and $A \in(i, j)-\mathcal{I} O(X)\}$. Therefore, we obtain $(i, j)-\mathcal{I} \operatorname{Int}(A)=\cup\{T: T \subset A$ and $A \in(i, j)-\mathcal{I} O(X)\}$.
The proof of (ii)-(v) are obvious.
(vi). Clearly, $(i, j)-\mathcal{I} \operatorname{Int}(A) \subset(i, j)-\mathcal{I} \operatorname{Int}(A \cup B)$ and $(i, j)-\mathcal{I} \operatorname{Int}(B)$ $\subset(i, j)-\mathcal{I} \operatorname{Int}(A \cup B)$. Then by (v) we obtain $(i, j)-\mathcal{I} \operatorname{Int}(A) \cup(i, j)$ $\mathcal{I} \operatorname{Int}(B) \subset(i, j)-\mathcal{I} \operatorname{Int}(A \cup B)$.
(vii). Since $A \cap B \subset A$ and $A \cap B \subset B$, by (v), we have ((i, j) $\mathcal{I} \operatorname{Int}(A \cap B) \subset(i, j)-\mathcal{I} \operatorname{Int}(A)$ and $(i, j)-\mathcal{I} \operatorname{Int}(A \cap B) \subset(i, j)-\mathcal{I} \operatorname{Int}(B)$. By (v) $(i, j)-\mathcal{I} \operatorname{Int}(A \cap B) \subset(i, j)-\mathcal{I} \operatorname{Int}(A) \cap(i, j)-\mathcal{I} \operatorname{Int}(B)$.
Definition 2.28. Let $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ be an ideal bitopological space, S a subset of X and x be a point of X. Then
(i) x is called an (i, j)-I-cluster point of S if $V \cap S \neq \emptyset$ for every $V \in(i, j)-\mathcal{I} O(X, x)$.
(ii) the set of all (i, j) - \mathcal{I}-cluster points of S is called $(i, j)-\mathcal{I}$-closure of S and is denoted by $(i, j)-\mathcal{I} \mathrm{Cl}(S)$.
Theorem 2.29. Let A and B be subsets of $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$. Then the following properties hold:
(i) $(i, j)-\mathcal{I} \mathrm{Cl}(A)=\cap\{F: A \subset F$ and $F \in(i, j)-\mathcal{I} C(X)\}$.
(ii) $(i, j)-\mathcal{I} \mathrm{Cl}(A)$ is the smallest $(i, j)-\mathcal{I}$-closed subset of X containing A.
(iii) A is (i, j) - \mathcal{I}-closed if and only if $A=(i, j)-\mathcal{I} \mathrm{Cl}(A)$.
(iv) $(i, j)-\mathcal{I} \mathrm{Cl}((i, j)-\mathcal{I} \mathrm{Cl}(A)=(i, j)-\mathcal{I} \mathrm{Cl}(A)$.
(v) If $A \subset B$, then $(i, j)-\mathcal{I} \mathrm{Cl}(A) \subset(i, j)-\mathcal{I} \mathrm{Cl}(B)$.
(vi) $(i, j)-\mathcal{I} \mathrm{Cl}(A \cup B)=(i, j)-\mathcal{I} \mathrm{Cl}(A) \cup(i, j)-\mathcal{I} \mathrm{Cl}(B)$.
(vii) $(i, j)-\mathcal{I} \mathrm{Cl}(A \cap B) \subset(i, j)-\mathcal{I} \mathrm{Cl}(A) \cap(i, j)-\mathcal{I} \mathrm{Cl}(B)$.

Proof. (i). Suppose that $x \notin(i, j)-\mathcal{I} \mathrm{Cl}(A)$. Then there exists $F \in$ $(i, j)-\mathcal{I} O(X)$ such that $V \cap S \neq \emptyset$. Since $X \backslash V$ is (i, j) - \mathcal{I}-closed set containing A and $x \notin X \backslash V$, we obtain $x \notin \cap\{F: A \subset F$ and $F \in$ $(i, j)-\mathcal{I} C(X)\}$. Then there exists $F \in(i, j)-\mathcal{I} C(X)$ such that $A \subset F$ and $x \notin F$. Since $X \backslash V$ is (i, j) - \mathcal{I}-closed set containing x, we obtain $(X \backslash F) \cap A=\emptyset$. This shows that $x \notin(i, j)-\mathcal{I} \mathrm{Cl}(A)$. Therefore, we obtain $(i, j)-\mathcal{I} \mathrm{Cl}(A)=\cap\{F: A \subset F$ and $F \in(i, j)-\mathcal{I} C(X)$.
The other proofs are obvious.
Theorem 2.30. Let $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ be an ideal bitopological space and $A \subset X$. A point $x \in(i, j)-\mathcal{I} \mathrm{Cl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in(i, j)-\mathcal{I} O(X, x)$.

Proof. Suppose that $x \in(i, j)-\mathcal{I} \mathrm{Cl}(A)$. We shall show that $U \cap A \neq \emptyset$ for every $U \in(i, j)-\mathcal{I} O(X, x)$. Suppose that there exists $U \in(i, j)$ $\mathcal{I} O(X, x)$ such that $U \cap A=\emptyset$. Then $A \subset X \backslash U$ and $X \backslash U$ is (i, j) -\mathcal{I}-closed. Since $A \subset X \backslash U,(i, j)-\mathcal{I} \mathrm{Cl}(A) \subset(i, j)-\mathcal{I} \mathrm{Cl}(X \backslash U)$. Since $x \in(i, j)-\mathcal{I} \mathrm{Cl}(A)$, we have $x \in(i, j)-\mathcal{I} \mathrm{Cl}(X \backslash U)$. Since $X \backslash U$ is (i, j) -\mathcal{I}-closed, we have $x \in X \backslash U$; hence $x \notin U$, which is a contradicition that $x \in U$. Therefore, $U \cap A \neq \emptyset$. Conversely, suppose that $U \cap A \neq \emptyset$ for every $U \in(i, j)-\mathcal{I} O(X, x)$. We shall show that $x \in(i, j)-\mathcal{I} \mathrm{Cl}(A)$. Suppose that $x \notin(i, j)-\mathcal{I} \mathrm{Cl}(A)$. Then there exists $U \in(i, j)-\mathcal{I} O(X, x)$ such that $U \cap A=\emptyset$. This is a contradicition to $U \cap A \neq \emptyset$; hence $x \in(i, j)-\mathcal{I} \mathrm{Cl}(A)$.

Theorem 2.31. Let $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ be an ideal bitopological space and $A \subset X$. Then the following propeties hold:
(i) $(i, j)-\mathcal{I} \operatorname{Int}(X \backslash A)=X \backslash(i, j)-\mathcal{I} \mathrm{Cl}(A)$;
(i) $(i, j)-\mathcal{I} \operatorname{Cl}(X \backslash A)=X \backslash(i, j)-\mathcal{I} \operatorname{Int}(A)$.

Proof. (i). Let $x \in(i, j)-\mathcal{I} \mathrm{Cl}(A)$. There exists $V \in(i, j)-\mathcal{I} O(X, x)$ such that $V \cap A \neq \emptyset$; hence we obtain $x \in(i, j)-\mathcal{I} \operatorname{Int}(X \backslash A)$. This shows that $X \backslash(i, j)-\mathcal{I} \mathrm{Cl}(A) \subset(i, j)-\mathcal{I} \operatorname{Int}(X \backslash A)$. Let $x \in(i, j)-\mathcal{I} \operatorname{Int}(X \backslash A)$. Since $(i, j)-\mathcal{I} \operatorname{Int}(X \backslash A) \cap A=\emptyset$, we obtain $x \notin(i, j)-\mathcal{I} \operatorname{Cl}(A)$; hence $x \in$ $X \backslash(i, j)-\mathcal{I} \operatorname{Cl}(A)$. Therefore, we obtain $(i, j)-\mathcal{I} \operatorname{Int}(X \backslash A)=X \backslash(i, j)$ $\mathcal{I} \mathrm{Cl}(A)$.
(ii). Follows from (i).

Definition 2.32. A subset B_{x} of an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ is said to be an (i, j) - \mathcal{I}-neighbourhood of a point $x \in X$ if there exists an (i, j)-I-open set U such that $x \in U \subset B_{x}$.

Theorem 2.33. A subset of an ideal bitopological space $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$ is (i, j)-I -open if and only if it is an (i, j) - \mathcal{I}-neighbourhood of each of its points.
Proof. Let G be an (i, j) - \mathcal{I}-open set of X. Then by definition, it is clear that G is an (i, j) - \mathcal{I}-neighbourhood of each of its points, since for every $x \in G, x \in G \subset G$ and G is (i, j) - \mathcal{I}-open. Conversely, suppose G is an (i, j)-I -neighbourhood of each of its points. Then for each $x \in G$, there exists $S_{x} \in(i, j)-\mathcal{I} O(X)$ such that $S_{x} \subset G$. Then $G=\bigcup\left\{S_{x}: x \in G\right\}$. Since each S_{x} is (i, j) - \mathcal{I}-open and arbtrary union of (i, j) - \mathcal{I}-open sets is (i, j) - \mathcal{I}-open, G is (i, j) - \mathcal{I}-open in $\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right)$.

3. (i, j)-I-COntinuous functions

Definition 3.1. A function $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is said to be (i, j)-I-continuous if for every $V \in \sigma_{i}, f^{-1}(V) \in(i, j)-\mathcal{I} O(X)$.
Remark 3.2. Every (i, j)-I-continuous function is (i, j)-precontinuous but the converse is not true, in general.

Example 3.3. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}, X\}, \tau_{2}=$ $\{\emptyset,\{b, c\}, X\}, \sigma_{1}=\mathcal{P}(X), \sigma_{2}=\{\emptyset,\{a\},\{a, c\}, X\}$ and $\mathcal{I}=\{\emptyset,\{c\}\}$. Then the identity function $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(X, \sigma_{1}, \sigma_{2}\right)$ is $(1,2)$ precontinuous but not $(1,2)$ - \mathcal{I}-continuous, because $\{c\} \in \sigma_{1}$, but $f^{-1}(\{c\})=$ $\{c\} \notin(1,2)-\mathcal{I} O(X)$.

Remark 3.4. It is clear that $(1,2)$ - \mathcal{I}-continuity and τ_{1}-continuity (resp. τ_{2}-continuity) are independent notions.

Example 3.5. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{b\}, X\}, \tau_{2}=\{\emptyset,\{a, b\}, X\}$, $\sigma_{1}=\{\emptyset,\{b\},\{c\},\{b, c\}, X\}, \sigma_{2}=\{\emptyset,\{a\},\{a, b\}, X\}$ and $\mathcal{I}=\{\emptyset,\{b\}\}$. Then the identity function $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(X, \sigma_{1}, \sigma_{2}\right)$ is τ_{1}-continuous but not $(1,2)-\mathcal{I}$-continuous, because $\{b\} \in \sigma_{1}$, but $f^{-1}(\{b\})=\{b\} \notin$ $(1,2)-\mathcal{I} O(X)$.

Example 3.6. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a, b\}, X\}, \tau_{2}=\{\emptyset,\{a\},\{a, b\}, X\}$, $\sigma_{1}=\{\emptyset,\{b\},\{b, c\}, X\}, \sigma_{2}=\{\emptyset,\{b, c\}, X\}$ and $\mathcal{I}=\{\emptyset,\{b\}\}$. Then the identity function $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(X, \sigma_{1}, \sigma_{2}\right)$ is (1,2)-I)-continuous but not τ_{1}-continuous, because $f^{-1}(\{a\})=\{a\} \in(1,2)-\mathcal{I} O(X)$, but $\{a\} \notin \sigma_{1}$.
Example 3.7. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\},\{a, c\}, X\}, \tau_{2}=\{\emptyset,\{b\},\{c\},\{b, c\}, X\}$, $\sigma_{1}=\{\emptyset,\{b, c\}, X\}, \sigma_{2}=\{\emptyset,\{b\},\{b, c\}, X\}$ and $\mathcal{I}=\{\emptyset,\{c\}\}$. Then the identity function $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(X, \sigma_{1}, \sigma_{2}\right)$ is τ_{2}-continuous but not (1,2)-I -continuous, because $\{b\} \in \sigma_{2}$ but $f^{-1}(\{b\})=\{b\} \notin(1,2)$ $\mathcal{I} O(X)$.

Example 3.8. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}, X\}, \tau_{2}=$ $\{\emptyset,\{b\},\{b, c\}, X\}, \sigma_{1}=\{\emptyset,\{a, c\}, X\}, \sigma_{2}=\{\emptyset,\{b, c\}, X\}$ and $\mathcal{I}=$ $\{\emptyset,\{c\}\}$. Then the identity function $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(X, \sigma_{1}, \sigma_{2}\right)$ is $(1,2)$ - \mathcal{I}-continuous but not τ_{2}-continuous, because $\{a\} \notin \sigma_{2}$ but $f^{-1}(\{a\})=\{a\} \in(1,2)-\mathcal{I} O(X)$.

Theorem 3.9. For a function $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$, the following statements are equivalent:
(i) f is pairwise \mathcal{I}-continuous;
(ii) For each point x in X and each σ_{j}-open set F in Y such that $f(x) \in F$, there is a (i, j)-I-open set A in X such that $x \in A$, $f(A) \subset F$;
(iii) The inverse image of each σ_{j}-closed set in Y is (i, j) - \mathcal{I}-closed in X;
(iv) For each subset A of $X, f((i, j)-\mathcal{I} \mathrm{Cl}(A)) \subset \sigma_{j}-\mathrm{Cl}(f(A))$;
(v) For each subset B of $Y,(i, j)-\mathcal{I} \mathrm{Cl}\left(f^{-1}(B)\right) \subset f^{-1}\left(\sigma_{j}-\mathrm{Cl}(B)\right)$;
(vi) For each subset C of $Y, f^{-1}\left(\sigma_{j}-\operatorname{Int}(C)\right) \subset(i, j)-\mathcal{I} \operatorname{Int}\left(f^{-1}(C)\right)$.

Proof. (i) \Rightarrow (ii): Let $x \in X$ and F be a σ_{j}-open set of Y containing $f(x)$. By (i), $f^{-1}(F)$ is (i, j) - \mathcal{I}-open in X. Let $A=f^{-1}(F)$. Then $x \in A$ and $f(A) \subset F$.
$\left(\right.$ ii) \Rightarrow (i): Let F be σ_{j}-open in Y and let $x \in f^{-1}(F)$. Then $f(x) \in F$. By (ii), there is an (i, j) - \mathcal{I}-open set U_{x} in X such that $x \in U_{x}$ and $f\left(U_{x}\right) \subset F$. Then $x \in U_{x} \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is (i, j)-I -open in X.
(i) $\Leftrightarrow($ iii $)$: This follows due to the fact that for any subset B of Y, $f^{-1}(Y \backslash B)=X \backslash f^{-1}(B)$.
(iii) \Rightarrow (iv): Let A be a subset of X. Since $A \subset f^{-1}(f(A))$ we have $A \subset$ $f^{-1}\left(\sigma_{j}-\mathrm{Cl}(f(A))\right)$. Now, $(i, j)-\mathcal{I} \mathrm{Cl}(f(A))$ is σ_{j}-closed in Y and hence $f^{-1}\left(\sigma_{j}-\mathrm{Cl}(A)\right) \subset f^{-1}\left(\sigma_{j}-\mathrm{Cl}(f(A))\right)$, for $(i, j)-\mathcal{I} \mathrm{Cl}(A)$ is the smallest (i, j) - \mathcal{I}-closed set containing A. Then $f((i, j)-\mathcal{I} \mathrm{Cl}(A)) \subset \sigma_{j}-\mathrm{Cl}(f(A))$. (iv) \Rightarrow (iii): Let F be any (i, j)-pre- \mathcal{I}-closed subset of Y. Then $f((i, j)$ $\left.\mathcal{I} \mathrm{Cl}\left(f^{-1}(F)\right)\right) \subset(i, j)-\sigma_{i}-\mathrm{Cl}\left(f\left(f^{-1}(F)\right)\right)=(i, j)-\sigma_{i}-\mathrm{Cl}(F)=F$. Therefore, $(i, j)-\mathcal{I} \mathrm{Cl}\left(f^{-1}(F)\right) \subset f^{-1}(F)$. Consequently, $f^{-1}(F)$ is $(i, j)-\mathcal{I}$ closed in X.
(iv) $\Rightarrow(\mathrm{v})$: Let B be any subset of Y. Now, $f\left((i, j)-\mathcal{I} \mathrm{Cl}\left(f^{-1}(B)\right)\right)$ $\subset \sigma_{i}-\mathrm{Cl}\left(f\left(f^{-1}(B)\right)\right) \subset \sigma_{i}-\mathrm{Cl}(B)$. Consequently, $(i, j)-\mathcal{I} \mathrm{Cl}\left(f^{-1}(B)\right) \subset$ $f^{-1}\left(\sigma_{i}-\mathrm{Cl}(B)\right)$.
$(\mathrm{v}) \Rightarrow(\mathrm{iv})$: Let $B=f(A)$ where A is a subset of X. Then, $(i, j)-\mathcal{I} \mathrm{Cl}(A)$ $\subset(i, j)-\mathcal{I} \mathrm{Cl}\left(f^{-1}(B)\right) \subset f^{-1}\left(\sigma_{i}-\mathrm{Cl}(B)\right)=f^{-1}\left(\sigma_{i}-\mathrm{Cl}(f(A))\right)$. This shows that $f((i, j)-\mathcal{I} \mathrm{Cl}(A)) \subset \sigma_{i}-\mathrm{Cl}(f(A))$.
$(\mathrm{i}) \Rightarrow($ vi $)$: Let B be a σ_{j}-open set in Y. Clearly, $f^{-1}\left(\sigma_{i}-\operatorname{Int}(B)\right.$ is $(i, j)-\mathcal{I}$ open and we have $f^{-1}\left(\sigma_{i}-\operatorname{Int}(B)\right) \subset(i, j)-\mathcal{I} \operatorname{Int}\left(f^{-1} \sigma_{i}-\operatorname{Int}(B)\right) \subset(i, j)$ $\mathcal{I} \operatorname{Int}\left(f^{-1} B\right)$.
$(\mathrm{vi}) \Rightarrow(\mathrm{i})$: Let B be a σ_{j}-open set in Y. Then $\sigma_{i}-\operatorname{Int}(B)=B$ and $f^{-1}(B) \backslash f^{-1}\left(\sigma_{i}-\operatorname{Int}(B)\right) \subset(i, j)-\mathcal{I} \operatorname{Int}\left(f^{-1}(B)\right)$. Hence we have $f^{-1}(B)$

ON \mathcal{I}-OPEN SETS AND \mathcal{I}-CONTINUOUS FUNCTIONS IN IDEAL BITOPOLOGICAL SPACE 9 $=(i, j)-\mathcal{I} \operatorname{Int}\left(f^{-1}(B)\right)$. This shows that $f^{-1}(B)$ is (i, j) - \mathcal{I}-open in X.

Theorem 3.10. Let $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ be (i, j)-I -continuous and σ_{i}-open function, then the inverse image of each (i, j) - \mathcal{I}-open set in Y is (i, j)-preopen in X.
Proof. Let A be (i, j) - \mathcal{I}-open. Then $A \subset \tau_{i}$ - $\operatorname{Int}\left(A_{j}^{*}\right)$. We have to prove $f^{-1}(A)$ is (i, j)-preopen which implies $f^{-1}(A) \subset \tau_{i}-\operatorname{Int}\left(\tau_{j}-\operatorname{Cl}\left(f^{-1}(A)\right)\right)$. For this, $f(A)=f\left(\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)\right)=\tau_{i}-\operatorname{Int}\left(f\left(\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)\right)\right) \subset \tau_{i}-\operatorname{Int}\left(f\left(A_{j}^{*}\right)\right)$, $A \subset f^{-1}\left(\tau_{i}-\operatorname{Int}\left(f\left(A_{j}^{*}\right)\right)\right) \subset \tau_{i}-\operatorname{Int}\left(f^{-1}\left(\tau_{i}-\operatorname{Int}\left(f\left(A_{j}^{*}\right)\right)\right)\right)_{j}^{*} \subset \tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right)_{j}^{*} \subset$ $\tau_{i}-\operatorname{Int}\left(A_{j}^{*}\right) \subset \tau_{i}-\operatorname{Int}\left(A \cup A_{j}^{*}\right)=\tau_{i}-\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}(A)\right)$. Hence $f^{-1}(A) \subset \tau_{i^{-}}$ $\operatorname{Int}\left(\tau_{j}-\mathrm{Cl}^{*}\left(f^{-1}(A)\right)\right)$. Therefore, $f^{-1}(A)$ is (i, j)-preopen in X.
Theorem 3.11. Let $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ be (i, j)-I-continuous and $f^{-1}\left(V_{j}^{*}\right) \subset\left(f^{-1}(V)\right)_{j}^{*}$, for each $V \subset Y$. Then the inverse image of each (i, j)-I -open set is (i, j)-I -open.

Remark 3.12. The composition of two (i, j)-I -continuous functions need not be (i, j)-I-continuous, in general.

Example 3.13. Let $X=\{a, b, c\}, \tau_{i}=\{\emptyset,\{a, b\}, X\}, \tau_{2}=\{\emptyset,\{a\},\{a, b\}, X\}$, $\sigma_{1}=\{\emptyset,\{b\},\{b, c\}, X\}, \sigma_{2}=\{\emptyset,\{b, c\}, X\}, \gamma_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}, X\}$, $\gamma_{2}=\{\emptyset,\{b, c\}, X\}, \mathcal{I}=\{\emptyset,\{b\}\}, \mathcal{J}=\{\emptyset,\{c\}\}$ and let the function $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is defined by $f(a)=b, f(b)=a$ and $f(c)=c$ and $g:\left(Y, \sigma_{1}, \sigma_{2}, \mathcal{J}\right) \rightarrow\left(Z, \gamma_{1}, \gamma_{2}\right)$ is defined by $g(a)=c$, $g(b)=a$ and $g(c)=a$. It is clear that both f and g are $(1,2)-\mathcal{I}$ continuous. However, the composition function $g \circ f$ is not $(1,2)-\mathcal{I}$ continuous, because $\{a\} \in \gamma_{1}$, but $(g \circ f)^{-1}(\{a\})=\{c\} \notin(1,2)-\mathcal{I} O(X)$.
Theorem 3.14. Let $f:\left(X, \tau_{1}, \tau_{2}, \mathcal{I}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ and $g:\left(Y, \sigma_{1}, \sigma_{2}, \mathcal{J}\right) \rightarrow$ $\left(Z, \mu_{1}, \mu_{2}\right)$. Then $g \circ f$ is (i, j) - \mathcal{I}-continuous, if f is (i, j) - \mathcal{I}-continuous and g is σ_{j}-continuous.

Proof. Let $V \in \mu_{j}$. Since g is μ_{j}-continuous, then $g^{-1}(V) \in \sigma_{j}$. On the other hand, since f is (i, j) - \mathcal{I}-continuous, we have $f^{-1}\left(g^{-1}(V)\right) \in(i, j)$ $\mathcal{I} O(X)$. Since $(g \circ f)^{-1}(V)=f^{-1}\left(g^{-1}(V)\right)$, we obtain that $g \circ f$ is (i, j) - \mathcal{I}-continuous.

4. (i, j)-I -OPEN AND (i, j) - -CLOSED FUNCTIONS

Definition 4.1. A function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}, \mathcal{I}\right)$ is said to be:
(i) pairwise \mathcal{I}-open if $f(U)$ is a (i, j)-I -open set of Y for every τ_{i}-open set U of X.
(ii) pairwise \mathcal{I}-closed if $f(U)$ is a (i, j) - \mathcal{I}-closed set of Y for every τ_{i}-closed set U of X.

Proposition 4.2. Every (i, j)-I-open function is (i, j)-preopen function but the converse is not true in general.

Example 4.3. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\},\{b, c\}, X\}, \tau_{2}=\{\emptyset,\{b\},\{a, b\},\{b, c\}, X\}$, $\sigma_{1}=\{\emptyset,\{a\}, X\}, \sigma_{2}=\{\emptyset,\{b\},\{c\},\{b, c\}, X\}$ and $\mathcal{I}=\{\emptyset,\{a\}\}$. Then the function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(X, \sigma_{1}, \sigma_{2}, \mathcal{I}\right)$ is defined by $f(a)=b$, $f(b)=a$ and $f(c)=c$ is $(1,2)$-preopen but not $(1,2)$-I-open, because $\{a\} \notin \tau_{1}$, but $f(\{a\})=\{b\} \notin(1,2)-\mathcal{I} O(Y)$.
Remark 4.4. Each of (i, j)-I-open function and τ_{i}-open function are independent.
Example 4.5. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{b\},\{b, c\}, X\}, \tau_{2}=\{\emptyset,\{b, c\}, X\}, \sigma_{1}=$ $\{\emptyset,\{a\},\{a, b\}, X\}, \sigma_{2}=\{\emptyset,\{a\},\{a, c\}, X\}$ and $\mathcal{I}=\{\emptyset,\{b\}\}$ on Y.
Then the identity function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(X, \sigma_{1}, \sigma_{2}, \mathcal{I}\right)$ is $(1,2)-\mathcal{I}$ open function but not τ_{1}-open, because $\{a\} \notin \tau_{1}$, but $f(\{a\})=\{a\} \in$ $(1,2)-\mathcal{I} O(Y)$.
Example 4.6. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\},\{b, c\}, X\}, \tau_{2}=\{\emptyset,\{b, c\}, X\}$, $\sigma_{1}=\{\emptyset,\{a\},\{c\},\{a, c\}, X\}, \sigma_{2}=\{\emptyset,\{b\},\{c\},\{b, c\}, X\}$ and $\mathcal{I}=$ $\{\emptyset,\{c\}\}$ on Y. Then the identity function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(X, \sigma_{1}, \sigma_{2}, \mathcal{I}\right)$ is defined by $f(a)=b=f(b)$ and $f(c)=c$ is τ_{1}-open but not $(1,2)$ - \mathcal{I} open function, because $\{a\} \in \tau_{1}$, but $f(\{a\})=\{b\} \notin(1,2)-\mathcal{I} O(Y)$.
Theorem 4.7. For a function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}, \mathcal{I}\right)$, the following statements are equivalent:
(i) f is pairwise \mathcal{I}-open;
(ii) $f\left(\tau_{i}-\operatorname{Int}(U)\right) \subset(i, j)-\mathcal{I} \operatorname{Int}(f(U))$ for each subset U of X;
(iii) $\tau_{i}-\operatorname{Int}\left(f^{-1}(V)\right) \subset f^{-1}((i, j)-\mathcal{I} \operatorname{Int}(V))$ for each subset V of Y.

Proof. $(i) \Rightarrow(i i)$: Let U be any subset of X. Then $\tau_{i}-\operatorname{Int}(U)$ is a $\tau_{i^{-}}$ open set of X. Then $f\left(\tau_{i}-\operatorname{Int}(U)\right)$ is a $(i, j)-\mathcal{I}$-open set of Y. Since $f\left(\tau_{i}-\operatorname{Int}(U)\right) \subset f(U), f\left(\tau_{i}-\operatorname{Int}(U)\right)=(i, j)-\mathcal{I} \operatorname{Int}\left(f\left(\tau_{i}-\operatorname{Int}(U)\right)\right) \subset(i, j)-$ $\mathcal{I} \operatorname{Int}(f(U))$.
$(i i) \Rightarrow(i i i)$: Let V be any subset of Y. Then $f^{-1}(V)$ is a subset of X. Hence $\left.f\left(\tau_{i}-\operatorname{Int}\left(f^{-1}(V)\right)\right) \subset(i, j)-\mathcal{I} \operatorname{Int}\left(f\left(f^{-1}(V)\right)\right) \subset(i, j)-\mathcal{I} \operatorname{Int}(V)\right)$. Then $\tau_{i}-\operatorname{Int}\left(f^{-1}(V)\right) \subset f^{-1}\left(f\left(\tau_{i}-\operatorname{Int}\left(f^{-1}(V)\right)\right)\right) \subset f^{-1}((i, j)-\mathcal{I} \operatorname{Int}(V))$. (iii) $\Rightarrow(i)$: Let U be any τ_{i}-open set of X. Then τ_{i} - $\operatorname{Int}(U)=U$ and $f(U)$ is a subset of Y. Now, $V=\tau_{i}-\operatorname{Int}(V) \subset \tau_{i}-\operatorname{Int}\left(f^{-1}(f(V))\right) \subset$ $f^{-1}((i, j)-\mathcal{I} \operatorname{Int}(f(V)))$. Then $f(V) \subset f\left(f^{-1}((i, j)-\mathcal{I} \operatorname{Int}(f(V)))\right) \subset$ $(i, j)-\mathcal{I} \operatorname{Int}(f(V))$ and $(i, j)-\mathcal{I} \operatorname{Int}(f(V)) \subset f(V)$. Hence $f(V)$ is a (i, j) -\mathcal{I}-open set of Y; hence f is pairwise \mathcal{I}-open.
Theorem 4.8. Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}, \mathcal{I}\right)$ be a function. Then f is a pairwise \mathcal{I}-closed function if and only if for each subset V of X, $(i, j)-\mathcal{I} \mathrm{Cl}(f(V)) \subset f\left(\tau_{i} \mathrm{Cl}(V)\right)$.
Proof. Let f be a pairwise \mathcal{I}-closed function and V any subset of X. Then $f(V) \subset f\left(\tau_{i}-\mathrm{Cl}(V)\right)$ and $f\left(\tau_{i}-\mathrm{Cl}(V)\right)$ is a (i, j) - \mathcal{I}-closed set of Y. We have $(i, j)-\mathcal{I} \mathrm{Cl}(f(V)) \subset(i, j)-\mathcal{I} \mathrm{Cl}\left(f\left(\tau_{i}-\mathrm{Cl}(V)\right)\right)=f\left(\tau_{i^{-}}\right.$ $\mathrm{Cl}(V))$. Conversely, let V be a τ_{i}-open set of X. Then $f(V) \subset(i, j)$ $\mathcal{I} \mathrm{Cl}(f(V)) \subset f\left(\tau_{i}-\mathrm{Cl}(V)\right)=f(V)$; hence $f(V)$ is a $(i, j)-\mathcal{J}$-closed subset of Y. Therefore, f is a pairwise \mathcal{I}-closed function.

Theorem 4.9. Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}, \mathcal{I}\right)$ be a function. Then f is a pairwise \mathcal{I}-closed function if and only if for each subset V of Y, $f^{-1}((i, j)-\mathcal{I} \mathrm{Cl}(V)) \subset \tau_{i}-\mathrm{Cl}\left(f^{-1}(V)\right)$.

Proof. Let V be any subset of Y. Then by Theorem $4.8,(i, j)-\mathcal{I} \mathrm{Cl}(V) \subset$ $f\left(\tau_{i}-\mathrm{Cl}\left(f^{-1}(V)\right)\right)$. Since f is bijection, $f^{-1}((i, j)-\mathcal{I} \mathrm{Cl}(V))=f^{-1}((i, j)-$ $\left.\mathcal{I} \mathrm{Cl}\left(f\left(f^{-1}(V)\right)\right)\right) \subset f^{-1}\left(f\left(\tau_{i}-\mathrm{Cl}\left(f^{-1}(V)\right)\right)\right)=\tau_{i-} \mathrm{Cl}\left(f^{-1}(V)\right)$. Conversely, let U be any subset of X. Since f is bijection, $(i, j)-\mathcal{I} \mathrm{Cl}(f(U))=$ $f\left(f^{-1}((i, j)-\mathcal{I} \mathrm{Cl}(f(U))) \subset f\left(\tau_{i}-\mathrm{Cl}\left(f^{-1}(f(U))\right)\right)=f\left(\tau_{i}-\mathrm{Cl}(U)\right)\right.$. Therefore, by Theorem 4.8, f is a pairwise \mathcal{I}-closed function.

Theorem 4.10. Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}, \mathcal{I}\right)$ be a pairwise \mathcal{I} open function. If V is a subset of Y and U is a τ_{i}-closed subset of X containing $f^{-1}(V)$, then there exists a (i, j)-I-closed set F of Y containing V such that $f^{-1}(F) \subset U$.

Proof. Let V be any subset of Y and U a τ_{i}-closed subset of X containing $f^{-1}(V)$, and let $F=Y \backslash(f(X \backslash V))$. Then $f(X \backslash V) \subset f\left(f^{-1}(X \backslash V)\right) \subset$ $X \backslash V$ and $X \backslash U$ is a τ_{i}-open set of X. Since f is pairwise \mathcal{I}-open, $f(X \backslash U)$ is a (i, j) - \mathcal{I}-open set of Y. Hence F is an (i, j) - \mathcal{I}-closed set of Y and $f^{-1}(F)=f^{-1}(Y \backslash(f(X \backslash U)) \subset U$.

Theorem 4.11. Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \sigma_{1}, \sigma_{2}, \mathcal{I}\right)$ be a pairwise \mathcal{I} closed function. If V is a subset of Y and U is a open subset of X containing $f^{-1}(V)$, then there exists (i, j)-I -open set F of Y containing V such that $f^{-1}(F) \subset U$.

Proof. The proof is similar to the Theorem 4.10.

References

[1] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open sets and I-continuous functions, Kyungpook Math. J., 32(1992), 21-30.
[2] F. G. Arenas, J. Dontchev, M. L. Puertas, Idealization of some weak separation axioms, Acta Math. Hungar. 89 (2000), no. 1-2, 47-53.
[3] S. Bose, Semiopen sets, semi continuity and semiopen mappings in bitopological spaces, Bull. Cal. Math. Soc., 73(1981), 237-246.
[4] M. Caldas, S. Jafari and N. Rajesh, Preopen sets in ideal Bitopological spaces, Bol. Soc. Parana. Mat. (3) 29 (2011), no. 2, 61-68.
[5] M. Caldas, S. Jafari and N. Rajesh, Some fundamental properties of β-open sets in ideal bitopological spaces, Eur. J. Pure Appl. Math. 6 (2013), no. 2, 247-255.
[6] A. I. El-Maghrabi, M. Caldas, S. Jafari, R. M. Latif, A. Nasef, N. Rajesh and S. Shanthi, Properties of ideal bitopological α-open sets, Dedicated to Prof. Valeriu Popa on the occasion of his 80 th birthday, Journal of scientific studies and research series, Mathematics and Informatics, Romania (to appear)
[7] J. Dontchev, M. Ganster, On compactness with respect to countable extensions of ideals and the generalized Banach category theorem, Third Iberoamerican Conference on Topology and its Applications (Valencia, 1999). Acta Math. Hungar. 88 (2000), no. 1-2, 53-58.
[8] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica 49 (3) (1999), 395-401.
[9] J. Dontchev, M. Ganster and D. Rose, Ideal Resolvability, Topology Appl. 93 (1999), 1-16.
[10] D. N. Georgiou and B. K. Papadopoulos, Ideals and its [their] applications, J. Inst. Math. Comput. Sci. Math. Ser. 9 (1996), no. 1, 105-117.
[11] D. N. Georgiou, S. D. Iliadis, A. C. Megaritis, G. A. Prinos, Ideal-convergence classes, Topology Appl. 222 (2017), 217-226.
[12] T. R. Hamlett and D. Janković, Ideals in topological spaces and the set operator, Boll. U.M.I., 7(1990), 863-874.
[13] T. R. Hamlett and D. Janković, Ideals in General Topology, General Topology and Applications, (Middletown, CT, 1988), 115-125; SE: Lecture Notes in Pure \& Appl. Math., 123(1990), Dekker, New York.
[14] E. Hatir, A. Al-omari, S. Jafari, δ-local function and its properties in ideal topological spaces, Fasc. Math. No. 53 (2014), 53-64.
[15] S. Jafari, A. Selvakumar, M. Parimala, Operation approach of g^{*}-closed sets in ideal topological spaces, An. Univ. Oradea Fasc. Mat. 22 (2015), no. 1, 119-123.
[16] M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Sci., 3(1990), 25-29.
[17] D. Jankovićc and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
[18] D. Jankovićc and T. R. Hamlett, Compatible extensions of ideals, Boll. U.M.I., 7(6-B)(1992), 453-465.
[19] K. Kuratowski, Topology, Academic semiss, New York, (1966).
[20] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.
[21] F. I. Michael, On semiopen sets with respect to an ideal, European. J. Pure and Applied Math. 6(1)(2013), 53-58.
[22] T. Noiri, M. Rajamani, M. Maheswari, A decomposition of pairwise continuity via ideals, Bol. Soc. Parana. Mat. (3) 34 (2016), no. 1, 141-149.
[23] H. Maki, Jun-Iti Umehara, Topological ideals and operations, Questions Answers Gen. Topology 29 (2011), no. 1, 57-71.
[24] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.

Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, S/n, 24020-140, Niteroi, RJ Brasil E-mail address: gmamccs@vm.uff.br

College of Vestsjaelland South, Herrestraede, 11, 4200 Slagelse, Denmark
E-mail address: jafaripersia@gmail.com
Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur613005 , Tamilnadu, India.
E-mail address: nrajesh_topology@yahoo.co.in
Mathematics \& Science Department, University of New Maxico,, 705
Gurley Ave, Gallup, NM 87301, USA.
E-mail address: fsmarandache@gmail.com

