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Abstract

This paper mainly focuses on incorporating the idea of 𝒩*ga continuous functions in 
neutrosophic topological spaces. We are also studying their features and looking at their 
properties.

Subject Classification: (2010) 06D72, 03E72.
Keywords: 𝒩*ga -closed set, 𝒩*ga -continuous.

1. Introduction

The connotation of fuzzy set (FS) is implemented by Zadeh [1]. 
Next, the connotation of intuitionistic fuzzy set (IFS) is implemented by 
Atanassov [2]. In 1998, the notion of (IFS) was extended by Smarandache 
[3] to presented the neutrosophic set (NS) and study its applications. It is 
one of the non-classical sets, like fuzzy, nano, soft, permutation sets and 
so on, see ([4]-[26]).Some connotations like neutrosophic closed set (NCS) 
and neutrosophic continuous functions (NCF) in neutrosophic topological 
space (NTS) are given see ([27]). Arokiarani [28] has been introduced to α - 
closed set (α - CS) in (NTS). The fundamental sets like semi/pre/α/-open 
sets are defined in (NTS) then they are studied by many mathematicians, see 
([29]). In 2017, Dhavaseelan and Saeid Jafari [30] introduced neutrosophic 
generalized closed sets. Vigneshwaran [31] defined a new closed set as 
∗gα-closed sets in topological spaces, and it has been applied to define 
some topological functions as continuous functions, irresolute functions 
and homeomorphic functions with some separable axioms.

Recently, the connotation of neutrosophic
 

using continuous and 
irresolute functions in (NTS) are implemented and discussed [32]. In 
this article, we introduce the 𝒩*ga-continuous functions in neutrosophic 
topological spaces and investigate their properties.The basic definitions, 
which are used in the next section are referred from the references [2], [30], 
[32], [27], [31].

2.  N*ga-continuous function

Definition 2.1 : A function 𝒯: (y, 𝒪) → (𝛶, 𝒲) is called 𝒩ga-continuous 
function (𝒩ga-CF) if 𝒯−1(A) is a 𝒩ga-closed set (𝒩ga-CS) of (y, 𝒪) for any 
(NCS) A of (𝛶, 𝒲).
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Definition 2.2 : A function 𝒯: (y, 𝒪) → (𝛶, 𝒲) is called 𝒩*ga-continuous 
function (𝒩*ga-CF) if 𝒯−1(A) is a 𝒩*ga-CS (𝒩*ga-CS) of (y, 𝒪) for any (NCS) 
A of (𝛶, 𝒲).

Theorem 2.3 : Any neutrosophic continuous function (NCF) is 𝒩*ga-CF .

Proof : Assume 𝓑 is a (NCS) of (𝛶, 𝒲). Since 𝒯 is CF, 𝒯−1(𝓑) is (NCS) in (y, 
𝒪). But any (NCS) is a 𝒩*ga-CS. Hence 𝒯−1(𝓑) is 𝒩*ga-CS in (y, 𝒪). Thus 𝒯 
is 𝒩*ga-CF.

The following example demonstrate reversal of this theorem is not 
necessary true.

Example 2.4 : Assume y ={u}, 𝒪 ={ 0𝒩 , A1, 1𝒩 } is a (NT) on (y, 𝒪), A1 =⟨ x, 
(0.3, 0.5, 0.3) ⟩ and 𝛶 ={u}, 𝒲 ={0𝒩 , 𝓑1, 1𝒩 } is a (NT) on (𝛶, 𝒲), 𝓑1 =⟨ y, (0.7, 
0.4, 0.2) ⟩. 

Define 𝒯: (y, 𝒪) → (𝛶, 𝒲) by 𝒯(u) = u. 𝒩*ga-CS of (y, 𝒪) = ⟨ x, (0.2, 
0.6, 0.7) ⟩. Here 𝒯−1(𝓑1 )

c is not (NCS) in (y, 𝒪). Therefore 𝒯 is not (NCF). 
However 𝒯 is 𝒩*ga-CF.

Theorem 2.5 : Any 𝒩*ga-CF is 𝒩g-CF.

Proof : Assume 𝓑 is a (NCS) of (𝛶, 𝒲). Since 𝒯 is 𝒩*ga-CF, 𝒯−1(𝓑) is 𝒩*ga-CS 
in (y, 𝒪). But any 𝒩*ga-CS is a 𝒩g-CS. Hence 𝒯−1(𝓑) is 𝒩g-CS in (y, 𝒪). Thus 
𝒯 is 𝒩g-CF.

The following example demonstrate reversal of this theorem is not 
necessary true.

Example 2.6 : Assume y ={u}, 𝒪 ={ 0𝒩 , A1, 1𝒩 } is a (NT) on (y, 𝒪), A1 =⟨ x, 
(0.8, 0.5, 0.7) ⟩ and 𝛶 ={u}, 𝒲 ={0𝒩 , 𝓑1, 1𝒩 }is a (NT) on (𝛶, 𝒲), 𝓑1 =⟨ y, (0.8, 
0.3, 0.7) ⟩.

Define 𝒯: (y, 𝒪) → (𝛶, 𝒲) by 𝒯(u) = u. 𝒩g-CS of (y, 𝒪) =⟨ x, (0.7, 0.7, 
0.8) ⟩. Here 𝒯−1(𝓑1 )

c is not 𝒩*ga-CS in (y, 𝒪). Therefore 𝒯 is not 𝒩*ga-CF. 
However 𝒯 is 𝒩g-CF.

Theorem 2.7 : Any 𝒩*ga-CF is 𝒩ga-CF.

Proof : Assume 𝓑 is a (NCS) of (𝛶, 𝒲). Since 𝒯 is 𝒩*ga-CF, 𝒯−1(𝓑) is 𝒩*ga-CS 
in (y, 𝒪). But any 𝒩*ga-CS is a 𝒩ga-CS. Hence 𝒯−1(𝓑) is 𝒩ga-CS in (y, 𝒪). 
Thus 𝒯 is 𝒩ga-CF. The following example demonstrate reversal of this 
theorem is not necessary true.
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Example 2.8 : Assume y ={u}, 𝒪 ={ 0𝒩 , A1, 1𝒩 } is a (NT) on (y, 𝒪), A1 =⟨ x, 
(0.4, 0.6, 0.7) ⟩ and 𝛶 ={u}, 𝒲 ={0𝒩 , 𝓑1, 1𝒩 }is a (NT) on (𝛶, 𝒲), 𝓑1 =⟨ y, (0.7, 
0.4, 0.6) ⟩.

Define 𝒯: (y, 𝒪) → (𝛶, 𝒲) by 𝒯(u) = u. 𝒩ga-CS of (y, 𝒪) =⟨ x, (0.6, 0.6, 
0.7) ⟩. Here 𝒯−1(𝓑1 )

c is not 𝒩*ga-CS in (y, 𝒪). Therefore 𝒯 is not 𝒩*ga-CF. 
However 𝒯 is 𝒩ga-CF.

Theorem 2.9 : Any 𝒩*ga-CF is 𝒩ag-CF.

Proof : Assume 𝓑 is a (NCS) of (𝛶, 𝒲). Since 𝒯 is 𝒩*ga-CF, 𝒯−1(𝓑) is 𝒩*ga-CS 
in (y, 𝒪). But any 𝒩*ga-CS is a 𝒩ag-CS. Hence 𝒯−1(𝓑) is 𝒩ag-CS in (y, 𝒪). 
Thus 𝒯 is 𝒩ag-CF.

The following example demonstrate reversal of this theorem is not 
necessary true.

Example 2.10 : Assume y ={u}, 𝒪 ={0𝒩 , A1, 1𝒩 } is a (NT) on (y, 𝒪), A1 =⟨ x, 
(0.2, 0.2, 0.3) ⟩ and 𝛶 ={u}, 𝒲 ={0𝒩 , 𝓑1, 1𝒩 } is a (NT) on(𝛶, 𝒲), 𝓑1 =⟨ y, (0.4, 
0.8, 0.6) ⟩.

Define 𝒯: (y, 𝒪) → (𝛶, 𝒲) by 𝒯(u) = u. 𝒩ag-CS of (y, 𝒪) =⟨ x, (0.6, 0.2, 
0.4) ⟩. Here 𝒯−1(𝓑1 )

c is not 𝒩*ga-CS in (y, 𝒪). Therefore 𝒯 is not 𝒩*ga-CF. 
However 𝒯 is 𝒩ag-CF.

Theorem 2.11 : Any 𝒩*ga-CF is 𝒩gs-CF.

Proof : Assume 𝓑 is a (NCS) of (𝛶, 𝒲). Since 𝒯 is 𝒩*ga-CF, 𝒯−1(𝓑) is 𝒩*ga-CS 
in (y, 𝒪). But any 𝒩*ga-CS is a 𝒩gs-CS. Hence 𝒯−1(𝓑) is 𝒩gs-CS in (y, 𝒪). 
Thus 𝒯 is 𝒩gs-CF.

The following example demonstrate reversal of this theorem is not 
necessary true.

Example 2.12 : Assume y ={u}, 𝒪 ={0𝒩 , A1, 1𝒩 } is a (NT) on (y, 𝒪), A1 =⟨ 
x, (0.8, 0.6, 0.7) ⟩ and 𝛶 ={u}, 𝒲 ={0𝒩 , 𝓑1, 1𝒩 } is a (NT) on (𝛶, 𝒲), 𝓑1 =⟨ y, 
(0.7, 0.5, 0.7) ⟩

Define 𝒯: (y, 𝒪) → (𝛶, 𝒲) by 𝒯(u) = u. 𝒩gs-CS of (y, 𝒪) =⟨ x, (0.7, 0.5, 
0.7) ⟩. Here 𝒯−1(𝓑1 )

c is not 𝒩*ga-CS in (y, 𝒪).Therefore 𝒯 is not 𝒩*ga-CF. 
However 𝒯 is 𝒩gs-CF.

Theorem 2.13 : Any 𝒩*ga-CF is 𝒩gsp-CF.
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Proof : Assume 𝓑 is a (NCS) of (𝛶, 𝒲). Since 𝒯 is 𝒩*ga-CF, 𝒯−1(𝓑) is 𝒩*ga-CS 
in (y, 𝒪). But any𝒩*ga-CS is a 𝒩gsp-CS. Hence 𝒯−1(𝓑) is𝒩gsp-CS in(y, 𝒪). 
Thus 𝒯 is 𝒩gsp-CF.

The following example demonstrate reversal of this theorem is not 
necessary true.

Example 2.14 : Assume y ={u}, 𝒪 ={0𝒩 , A1, 1𝒩 } is a (NT) on (y, 𝒪), A1 =⟨ x, 
(0.5, 0.5, 0.6) ⟩ and𝛶 ={u}, 𝒲 ={0𝒩 , 𝓑1, 1𝒩 } is a (NT) on (𝛶, 𝒲), 𝓑1 =⟨ y, (0.7, 
0.3, 0.6) ⟩.Define 𝒯: (y, 𝒪) → (𝛶, 𝒲) by 𝒯(u) = u. 𝒩gsp-CS of (y, 𝒪) =⟨ x, (0.6, 
0.7, 0.7) ⟩. Here 𝒯−1(𝓑1 )

c is not 𝒩*ga-CS in (y, 𝒪). Therefore 𝒯 is not 𝒩*ga-CF. 
However 𝒯 is 𝒩gsp-CF.

Theorem 2.15 : Any 𝒩*ga-CF is 𝒩gpr-CF.

Proof : Assume 𝓑 is a (NCS) of (𝛶, 𝒲). Since 𝒯 is 𝒩*ga-CF, 𝒯−1(𝓑) is 𝒩*ga-CS 
in (y, 𝒪). But any 𝒩*ga-CS is a 𝒩gpr-CS. Hence 𝒯−1(𝓑) is 𝒩gpr-CS in (y, 𝒪). 
Thus 𝒯 is 𝒩gpr-CF. The following example demonstrate reversal of this 
theorem is not necessary true.

Example 2.16 : Assume y ={u}, 𝒪 ={0𝒩 , A1, 1𝒩 } is a (NT) on (y, 𝒪), A1 =⟨ 
x, (0.5, 0.3, 0.6) ⟩ and 𝛶 ={u}, 𝒲 ={0𝒩 , 𝓑1, 1𝒩 } is a (NT) on (𝛶, 𝒲), 𝓑1 =⟨ y, 
(0.7, 0.9, 0.2) ⟩.

Define 𝒯: (y, 𝒪) → (𝛶, 𝒲) by 𝒯(u) = u. 𝒩gpr-CS of (y, 𝒪) =⟨ x, (0.2, 0.1, 
0.7) ⟩. Here 𝒯−1(𝓑1 )

c is not 𝒩*ga-CS in (y, 𝒪). Therefore 𝒯 is not 𝒩*ga-CF. 
However 𝒯 is 𝒩gpr-CF.

Theorem 2.17 : Any 𝒩*ga-CF is 𝒩gp-CF.

Proof : Assume 𝓑 is a (NCS) of (𝛶, 𝒲). Since 𝒯 is 𝒩*ga-CF, 𝒯−1(𝓑) is 𝒩*ga-CS 
in (y, 𝒪). But any 𝒩*ga-CS is a 𝒩gp-CS. Hence 𝒯−1(𝓑) is 𝒩gp-CS in (y, 𝒪). 
Thus 𝒯 is 𝒩gp-CF.

The following example demonstrate reversal of this theorem is not 
necessary true.

Example 2.18 : Assume y ={u}, 𝒪 ={0𝒩 , A1, 1𝒩 } is a (NT) on (y, 𝒪), A1 =⟨ 
x, (0.4, 0.4, 0.6) ⟩ and 𝛶 ={u}, 𝒲 ={0𝒩 , 𝓑1, 1𝒩 } is a (NT) on (𝛶, 𝒲), 𝓑1 =⟨ y, 
(0.6, 0.8, 0.2) ⟩.

Define 𝒯: (y, 𝒪) → (𝛶, 𝒲) by 𝒯(u) = u. 𝒩gp-CS of (y, 𝒪) =⟨ x, (0.2, 0.2, 
0.6) ⟩. Here 𝒯−1(𝓑1 )

c is not 𝒩*ga-CS in (y, 𝒪). Therefore 𝒯 is not 𝒩*ga-CF. 
However 𝒯 is 𝒩gp-CF.



682 A. R. NIVETHA, M. VIGNESHWARAN, N. M. A. ABBAS AND S. M. KHALIL

Remark 2.19 : The composition of two 𝒩*ga-CF need not be a 𝒩*ga-CF. It 
can be seen from the following example.

Example 2.20 : Assume y ={u}, 𝒪 ={0𝒩 , A1, 1𝒩 } is a (NT) on (y, 𝒪), A1 =⟨ 
x, (0.4, 0.5, 0.6) ⟩ and 𝛶 = 𝛸 ={u}, 𝒲={0𝒩 , 𝓑1, 1𝒩 }, 𝒵={0𝒩 , 𝒞1, 1𝒩 }is a (NT) 
on (𝛶, 𝒲), (𝛸, 𝒵), 𝓑1 =⟨ y, (0.3, 0.5, 0.4) ⟩ 𝒞1 =⟨ z, (0.6, 0.5, 0.3) ⟩ respectively. 
Define 𝒯: (y, 𝒪) → (𝛶, 𝒲) by 𝒯(u) = u and 𝒮: (𝛶, 𝒲) → (𝛸, 𝒵) by 𝒮(u) = u. 
The 𝒯 and 𝒮 are 𝒩*ga-CF. But 𝒮 ◦ 𝒯 is not 𝒩*ga-CF.

Remark 2.21 : 𝒩*ga-continuity is independent of 𝒩semi-CF and 𝒩a-CF. 
The proof is based on the following examples.

Example 2.22 : From Example 2.4. It can be seen that 𝒩*ga-CS of (y, 𝒪) 
=⟨ x, (0.2, 0.6, 0.7) ⟩. Here 𝒯−1(𝓑1)

c is not 𝒩 semi-CS and 𝒩a-CS in (y, 𝒪). 
Therefore 𝒯 is not 𝒩 semi-CF and 𝒩α-CF. However 𝒯 is 𝒩*ga-CF.

Example 2.23 : From Example 2.6. It can be seen that NCS of (y, 𝒪) =⟨ 
x, (0.7, 0.7, 0.8) ⟩.Here 𝒯−1(𝓑1)

c is not 𝒩*ga-CS in (y, 𝒪). But 𝒯−1(𝓑1)
c is 𝒩 

semi-CS and 𝒩α-CS in (y, 𝒪). Therefore T is not 𝒩*ga-CF. However 𝒩 
semi-CF and 𝒩α-CF. 

Remark 2.24 : The figure 1 shows the relationship between 𝒩*ga-CF and 
other CF’s stated in the above theorems. A → B represents A implies B. 
Where the other one represents the independent relation.

Figure 1
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