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Abstract

This paper introduces the novel concept of neutro-d-
algebra. In neutro-d-algebra, the outcome of any given
two elements under an underlying operation (neutro-
sophication procedure) has three cases, such as: Ap-
purtenance, non-appurtenance, or indeterminate and for
an axiom: Equal, non-equal, or indeterminate. This
study investigates the neutro-d-algebra and shows that
neutro-d-algebra is different from d-algebra. The nota-
tion of neutro-d-algebra generates a new concept of neu-
tro poset. Finally, we introduce a notation of neutro
d-homomorphism and extend the structure of neutro-d-
algebras.
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1 Introduction

Neutrosophy, as a newly-born science, is a branch of philosophy that studies the origin, nature,
and scope of neutralities, as well as their interactions with different ideational spectra. It can be
defined as the incidence of the application of a law, an operation, an axiom, an idea, a conceptual
accredited construction on an unclear, indeterminate phenomenon, contradictory to the purpose
of making it intelligible. Neutrosophic sets and systems international journal (which is in Scopus
and Web of Science) is a tool for publications of advanced studies in neutrosophy, neutrosophic set,
neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neu-
trosophic integral, and so on, studies that started in 1995 and their applications in any field, such as
the neutrosophic structures developed in algebra, geometry, topology, etc. Recently, Smarandache
[9], generalized the classical algebraic structures to neutro-algebraic structures (neutro-algebras)
and anti-algebraic structures (anti-algebras) and he proved that the neutro-algebra is a general-
ization of partial algebra [9]. He considered 〈A〉 as an item (concept, attribute, idea, proposition,
theory, etc.). Through the process of neutrosphication, he split the non-empty space and worked
onto three regions two opposite ones corresponding to 〈A〉 and 〈antiA〉, and one corresponding to
neutral (indeterminate) 〈neutA〉 (also denoted 〈neutroA〉) between the opposites, regions that may
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or may not be disjoint - depending on the application, but they are exhaustive (their union equals
the whole space). A neutro-algebra is an algebra that has at least one neutro-operation

(
operation

that is well-defined (also called inner-defined) for some elements, indeterminate for others, and
outer-defined for the others or one neutro-axiom (axiom that is true for some elements, indeter-
minate for other elements, and false for the other elements

)
. A partial algebra is an algebra that

has at least one partial operation (well-defined for some elements, and indeterminate for other
elements), and all its axioms are classical (i.e., the axioms are true for all elements). Through
a theorem he proved that neutro-algebra is a generalization of partial algebra, and examples of
neutro-algebras that are not partial algebras were given. Also, the neutro-function and neutro-
operation were introduced [9]. Unlike the abstract algebraic structures, from pure mathematics,
constructed on a given perfect space (set), where the axioms (laws, rules, theorems, results etc.)
are totally (100%) true for all space’s elements, our world and reality consist of approximations,
imperfections, vagueness, and partialities. Most of mathematical models are too rigid to com-
pletely describe the imperfect reality. Many axioms are actually neutro-axioms (i.e. axioms that
are true for some space’s elements, indeterminate for other space’s elements, and false for other
space’s elements). This makes that neutro-algebras be important in the real world.

Regarding these points, we now introduce the concept of neutro-d-algebras based on axioms
of d-subalgebras, but having a different outcome. In the system of d-subalgebras, the operation is
totally well-defined for any two given elements, but in neutro-d-subalgebras its outcome may be
well-defined, outer-defined, or indeterminate. Any d-subalgebra is a system that considers that all
its axioms are true, but we weaken the conditions that the axioms are not necessarily totally true,
but also partially false, and partially indeterminate. So, one of our main motivations is a weak
coverage of the classical axioms of d-subalgebras. This causes new partially ordered relations on
a non-empty set, such as neutro posets. In final, we define the notation of d-homomorphisms and
extend the structures of neutro-d-subalgebras.

2 Preliminaries

In this section, we recall some definitions and results from [9], which are needed throughout the
paper.

Let n ∈ N. Then an n-ary operation ◦ : Xn → Y is called a neutro-operation if it has x ∈ Xn

for which ◦(x) is well-defined (degree of truth (T)), x ∈ Xn for which ◦(x) is indeterminate (degree
of indeterminacy (I)), and x ∈ Xn for which ◦(x) is outer-defined (degree of falsehood (F)), where
T, I, F ∈ [0, 1], with (T, I, F ) 6= (1, 0, 0) that represents the n-ary (total, or classical) operation,
and (T, I, F ) 6= (0, 0, 1) that represents the n-ary anti-operation. Again, in this definition “neutro”
stands for neutrosophic, which means the existence of outer-ness, or undefined-ness, or unknown-
ness, or indeterminacy in general. In this regards, for any given set X, we classify n-ary operation
on Xn by (i); (classical) operation is an operation well-defined for all set’s elements, (ii); neutro
operation is an operation partially well-defined, partially indeterminate, and partially outer-defined
on the given set and (iii); anti-operation is an operation outer-defined for all set’s elements.

Moreover, we have (i); a (classical) axiom defined on a non-empty set is an axiom that is
totally true (i.e. true for all set’s elements), (ii); neutro-axiom (or neutrosophic axiom) defined on
a non-empty set is an axiom that is true for some elements (degree of true = T), indeterminate for
other elements (degree of indeterminacy = I), and false for the other elements (degree of falsehood
= F), where T, I, F are in [0, 1] and (T, I, F ) is different from (1, 0, 0) i.e., different from totally
true axiom, or classical axiom and (T, I, F ) is different from (0, 0, 1) i.e., different from totally false
axiom, or anti-axiom. (iii); an anti-axiom of type C defined on a non-empty set is an axiom that
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is false for all set’s elements.
Based on the above definitions, there is a classification of algebras as follows. Let X be a

non-empty set and O be a family of binary operations on X. Then (A,O) is called

(i) a (classical) algebra of type C, if O is the set of all total operations (i.e. well-defined for
all set’s elements) and (A,O) is satisfied by (classical) axioms of type C (true for all set’s
elements);

(ii) a neutro-algebra (or neutro-algebraic structure) of type C, if O has at least one neutro-
operation (or neutro-function), or (A,O) is satisfied by at least one neutro-axiom of type C
that is referred to the set’s (partial-, neutro-, or total-) operations or axioms;

(iii) an anti-algebra (or anti-algebraic structure) of type C, if O has at least one anti-operation
or (A,O) is satisfied by at least one anti-axiom of type C.

Definition 2.1. [3] Let X be a non-empty set with a binary operation “ ∗ ” and a constant “0”.
Then, (X, ∗, 0) is called a BCK-algebra if it satisfies the following conditions:

(BCI-1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(BCI-2) (x ∗ (x ∗ y)) ∗ y = 0,
(BCI-3) x ∗ x = 0,
(BCI-4) x ∗ y = 0 and y ∗ x = 0 imply x = y,
(BCK-5) 0 ∗ x = 0.

Definition 2.2. [5] Let X be a non-empty set with a binary operation “ ∗ ” and a constant “0”.
Then, (X, ∗, 0) is called a d-algebra if it satisfies the following conditions:

(D-1) x ∗ x = 0,
(D-2) 0 ∗ x = 0,
(D-3) x ∗ y = 0 and y ∗ x = 0 imply x = y.

Definition 2.3. [2] Let X be a non-empty set, 0 ∈ X be a constant, and “∗” be a binary operation
on X. An algebra (X, ∗, 0) of type (2, 0) is said to be a neutro-BCK-algebra, if it satisfies at least
one of the following neutro-axioms (while the others are classical BCK-axioms):

(NBCI-1) there exist x, y, z ∈ X such that ((x∗y)∗(x∗z))∗(z∗y) = 0 and there exist x, y, z ∈
X such that ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) 6= 0 or indeterminate;

(NBCI-2) there exist x, y ∈ X such that (x ∗ (x ∗ y)) ∗ y = 0 and there exist x, y ∈ X such
that (x ∗ (x ∗ y)) ∗ y 6= 0 or indeterminate;

(NBCI-3) there exists x ∈ X such that x ∗ x = 0 and there exists x ∈ X such that x ∗ x 6= 0
or indeterminate;

(NBCI-4) there exist x, y ∈ X, such that if x∗y = y∗x = 0, then x = y and there exist x, y ∈
X, such that if x ∗ y = y ∗ x = 0, then x 6= y;

(NBCK-5) there exists x ∈ X such that 0 ∗ x = 0 and there exists x ∈ X such that 0 ∗ x 6= 0
or indeterminate.

Each above neutroAxiom has a degree of equality (T ), degree of non-equality (F ), and degree
of indeterminacy (I), where (T, I, F ) /∈ {(1, 0, 0), (0, 0, 1)}.

If (X, ∗, 0) is a neutro algebra and satisfies the conditions (NBCI-1) to (NBCI-4) and (NBCK-
5), then we call it is a neutro-BCK-algebra of Type 5 (i.e. it satisfies 5 neutro-axioms).
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Definition 2.4. [2] Let X be a non-empty set and R be a binary relation on X. Then R is called
a

(i) neutro-reflexive if there exists x ∈ X such that (x, x) ∈ R (degree of truth T ), and there exists x ∈
X such that (x, x) is indeterminate (degree of indeterminacy I), and there exists x ∈ X such
that (x, x) 6∈ R (degree of falsehood F );

(ii) neutro-antisymmetric if there exist x, y ∈ X such that (y, x) ∈ R and (x, y) ∈ R imply x = y
(degree of truth T ), and there exist x, y ∈ X such that (x, y) or (y, x) are indeterminate in
R (degree of indeterminacy I), and there exist x, y ∈ X such that (x, y) ∈ R and (y, x) ∈ R
imply x 6= y (degree of falsehood F );

(iii) neutro-transitive if there exist x, y, z ∈ X such that (x, y) ∈ R, (y, z) ∈ R imply (x, z) ∈ R
(degree of truth T ), and there exist x, y, z ∈ X such that (x, y) or (y, z) are indeterminate in
R (degree of indeterminacy I), and there exist x, y, z ∈ X such that (x, y) ∈ R, (y, z) ∈ R, but
(x, z) 6∈ R (degree of falsehood F ). In all above neutro-axioms (T, I, F ) /∈ {(1, 0, 0), (0, 0, 1)}.

(iv) neutro-partially ordered binary relation if the relation satisfies at least one of the above neutro-
axioms neutro-reflexivity, neutro-antisymmetry, neutro-transitivity, while the others (if any)
are among the classical axioms reflexivity, antisymmetry, transitivity.

If R is a neutro-partially ordered relation on X, then we call (X,R) by neutro-poset. We denote,
the related diagram to neutro-poset (X,R) by neutro-Hass diagram.

3 Neutro d-algebras

In this section, we define neutro-d-algebras and investigate their properties.

Definition 3.1. Let X be a non-empty set, 0 ∈ X be a constant and “ ∗ ” be a binary operation
on X. An algebra (X, ∗, 0) of type (2, 0) is said to be a neutro-d-algebra if it satisfies at least one
of the following neutro-axioms (while the others are classical D-axioms):

(ND-1) there exists x ∈ X such that x ∗ x = 0 and there exists x ∈ X such that x ∗ x 6= 0 or
indeterminate;

(ND-2) there exists x ∈ X such that 0 ∗ x = 0 and there exists x ∈ X such that 0 ∗ x 6= 0 or
indeterminate;

(ND-3) there exist x, y ∈ X, such that if x∗y = y ∗x = 0, then x = y and there exist x, y ∈ X,
such that if x ∗ y = y ∗ x = 0, then x 6= y.

Each above neutro-axiom has a degree of equality (T ), degree of non-equality (F ), and degree
of indeterminacy (I), where (T, I, F ) /∈ {(1, 0, 0), (0, 0, 1)}. If (X, ∗, 0) is a neutro-algebra and
satisfies the conditions (ND-1) to (ND-3), then sometimes we call it as a neutro-d-algebra of
Type 3 (i.e. it satisfies 3 neutro-axioms).

Example 3.2. (i) (Z, ∗, 0) is a neutro-d-algebra, but (Z,−, 0) is not a neutro-d-algebra, where
“−” is the ordinary substraction of real numbers, “·” is the ordinary product of real numbers and
for x, y ∈ Z, x ∗ y = x− y + xy.

(ii) (Z, ∗, 1) is a neutro-d-algebra, but (Z,−, 1) is not a neutro-d-algebra, where “−” is the
ordinary substraction of real numbers, “·” is the ordinary product of real numbers and for x, y ∈
Z, x ∗ y = x− y + xy.

(iii) Let X be a non-empty set. Then the system of algebraics (P (X),∩, ∅), (P (X),∩, X),
(P (X),∪, ∅), (P (X), \, ∅), (P (X), \, X) and (P (X),∪, X) are not neutro-d-algebras, where P (X) =
{Y | Y ⊆ X}.
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Theorem 3.3. Let (X, ∗, 0) be a neutro-d-algebra and 0 ∗ 0 = 0. Then there exist x, y, z, w ∈ X
such that (x ∗ y) ∗ (z ∗ w) = 0.

Proof. Since (X, ∗, 0) is a neutro d-algebra, we get there exists a ∈ X such that a ∗ a = 0 and
there exists b ∈ X such that b ∗ b 6= 0 or indeterminate and there exists c ∈ X such that 0 ∗ c = 0
and there exists d ∈ X such that 0 ∗ d 6= 0 or indeterminate. Thus there exist x, y, z, w ∈ X such
that (x ∗ y) ∗ (z ∗ w) = 0 ∗ 0 = 0, when x = 0, y = c, z = w = a.

Theorem 3.4. Let X be a non-empty set. Then the following statements are equivalent:

(i) (X, ∗, 0) is a neutro-BCK-algebra,

(ii) (X, ∗, 0) is a neutro-d-algebra and the conditions (NBCI−1), (NBCI−2) hold.

Proof. It is clear by definition.

Let X be a non-empty set and ∗ : X × X → X be a map. Then (X, ∗) is called a neutro
groupoid if there exist x, y ∈ X such that x ∗ y ∈ X and there exist x, y ∈ X such that x ∗ y 6∈ X
or indeterminate. For instance, (N, ∗) is a neutro groupoid, where for x < y, define x − y is
indeterminate.

Theorem 3.5. Let (X, ∗, 0) be a neutro d-algebra and (Y, ∗) be a neutro groupoid, where Y ⊂ X.
Then (Y, ∗) is a neutro-d-algebra.

Proof. Since (Y, ∗) is a neutro groupoid, there exists x, y ∈ X such that x ∗ y ∈ X and there
exists x, y ∈ X such that x ∗ y 6∈ X or indeterminate. Thus there exists x ∈ X such that
x ∗ x = 0 ∈ Y and there exists x ∈ X such that x ∗ x 6= 0 or indeterminate. It follows that
0 ∈ Y and so there exists x ∈ X such that 0 ∗ x = x ∈ Y and there exists x ∈ X such that
0 ∗ x 6= x or indeterminate. Since 0 ∈ Y and Y ⊂ X, we get that there exist x, y ∈ X, such that if
x ∗ y = y ∗ x = 0, then x = y and there exist x, y ∈ X, such that if x ∗ y = y ∗ x = 0, then x 6= y.
Therefore, (Y, ∗) is a neutro-d-algebra.

Example 3.6. Consider the neutro-d-algebra (Z, ∗, 0) in Example 3.2. Let Y = {2, 3} ⊆ Z.
Clearly (Y, ∗) is not a neutro groupoid and is not a neutro d-algebra.

A neutro groupoid (X, ∗, 0), is called a (right)left neutro monoid if there exists x ∈ X such
that x ∗ 0 = 0 and there exists x ∈ X such that x ∗ 0 6= 0 or indeterminate, there exists x ∈ X
such that 0∗x = 0 and there exists x ∈ X such that 0∗x 6= 0 or indeterminate. A neutro-groupoid
(X, ∗, 0), is called a neutro-monoid if it is right and left neutro-monoid. For instance, (Z, ∗, 1) in
Example 3.2, is a neutro-monoid.

Corollary 3.7. Let (X, ∗, 0) be a neutro-d-algebra. Then (X, ∗, 0) is a left neutro-monoid.

Theorem 3.8. Let (G, ∗, e) be a group. If there exists x ∈ G such that x ∗ x 6= e, then (G, ∗, e) is
a neutro-d-algebra.

Proof. Let x ∈ G. Then
(ND-1) there exists e ∈ G such that e ∗ e = e and by hypothesis, there exists x ∈ G such that

x ∗ x 6= e.
(ND-2) there exists e ∈ G such that e ∗ e = e and for any x 6= e, we have e ∗ x = x 6= e.
(ND-3) there exist x = e and y = e ∈ G, such that x ∗ y = y ∗ x = e, and so x = y and

there exist x 6= e, y 6= e ∈ G, such that x ∗ y = y ∗ x = e, and so x 6= x−1.
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Corollary 3.9. The Klein four-group (G, ∗, e) is not a neutro-d-algebra.

Example 3.10. Consider neutro-d-algebra (X, ∗, 0) in Example 3.2. There exists some x ∈ X
such that x ∗ x 6= 0, but (X, ∗, 0) is not a group.

Proof. Since for all x ∈ G, x−1 = x, the condition (ND-3) does not hold.

Let X 6= ∅ be a finite set. We denote ND(X) and NND(X) by the set of all neutro-d-algebras
and neutro-d-algebras of Type 3 that are constructed on X, respectively.

Theorem 3.11. Let (X, ∗, 0) be a neutro d-algebra. Then

(i) If |X| = 1, then (X, ∗, 0) is a trivial d-algebra.

(ii) If |X| = 2, then |ND(X)| = 2 and |NND(X)| >∞.

(iii) If |X| = 3, then there exists ∅ 6= Y ⊆ X, such that (Y, ∗′, 0) is a nontrivial or trivial d-algebra.

Proof. We consider only cases (ii) and (iii), because the others are immediate.
(ii) Let X = {0, x}. Then we have 2 trivial neutro-d-algebras (X, ∗1), (X, ∗2) and an infinite

number of trivial neutro-d-algebras of Type 3 (X, ∗, 0) in Tables 1 and , where w 6∈ X.

Table 1: Neutro-d-algebras of orders 2

∗1 0 x

0 0 x
x 0 x

,

∗2 0 x

0 x 0
x x 0

,

∗ 0 x

0 x 0
x w 0

(iii) Let X = {0, x, y}. Now consider Y = {0, x} and define a neutro-d-algebra (X, ∗′, 0) as the
following table. Clearly (Y, ∗′, 0) is a non-trivial d-algebra.

Table 2: Neutro-d-algebras of orders 3
∗′ 0 x y

0 0 0 y
x x 0 0
y 0 y x

.

Theorem 3.12. Every d-algebra can be extended to a neutro-d-algebra.

Proof. Let (X, ∗, 0) be a d-algebra, α 6∈ X, and U be the universe of discourse that strictly includes
X ∪ {α}. For all x, y ∈ X ∪ {α}, define ∗α on X ∪ {α} by x ∗α y = x ∗ y where, x, y ∈ X and
if α ∈ {x, y}, define x ∗α y as indeterminate or x ∗α y /∈ X ∪ {α}. Then (X ∪ {α}, ∗α, 0) is a
neutro-d-algebra.

Example 3.13. Let X = {0, 1, 2, 3, 4, 5} and consider Table 3.
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Table 3: Neutro-d-algebras and neutro-d-algebra of Type 3

∗1 0 1 2 3 4 5

0 0 0 0 0 2 0
1 2 0 a 2 0 3
2 1 1 0 0 2 0
3 3 0 1 2 0 5
4 0 4 0 1 4 0
5 4 0 1 0 2 3

,

∗2 0 1 2 3 4 5

0 0 0 0 0 2 0
1 1 0 0 0 0 5
2 2 2 0 0 5 0
3 3 3 3 0 0 2
4 0 1 0 4 1 2
5 5 0 4 0 0 x

and

∗3 0 1 2 3 4 5

0 0 0 0 0 0 5
1 1 0 t 0 s 0
2 2 2 0 y 0 3
3 3 1 3 0 z 0
4 4 4 4 4 0 1
5 0 2 0 2 0 w

.

Then
(i) If a = 2, then (X, ∗1, 0) is a neutro-d-algebra and (X \ {3, 4, 5}, ∗1, 0) is a d-algebra.
(ii) (X, ∗2, 0) is a neutro-d-algebra and (X \ {4, 5}, ∗2, 0) is a d-algebra.
(iii) If s = t = y = z = 0, w = 3, then (X, ∗3, 0) is a neutro-d-algebra and for s = t = 1, y =

2, z = 3, (X \ {5}, ∗3, 0) is a d-algebra. If s = t = y = z = 0, w =
√

2, then (X, ∗3, 0) is a
neutro-d-algebra of Type 3 where s, t ∈ {0, 1}, x ∈ {4, 5}, y ∈ {2, 0}, z ∈ {3, 0} and w ∈ {3,

√
2}.

Definition 3.14. Let (X, ∗, 0) be a neutro d-algebra. If there exist x, y, z ∈ X such that x ∗ y = 0
and y ∗ z = 0 imply x ∗ z = 0 and there exist x, y, z ∈ X such that x ∗ y = 0 and y ∗ z = 0 imply
x ∗ z 6= 0 or indeterminate, then (X, ∗, 0) is called a neutro transitive d-algebra. For instance,
neutro d-algebra (X, ∗1, 0) in Example 3.13, is a neutro transitive d-algebra, which a = 2.

Theorem 3.15. Let (X, ∗, 0) be a neutro d-algebra and x, y ∈ X. Then (X, ∗, 0) is transitive if
and only if (X,≤X) is a neutro-poset, which x ≤X y if and only if x ∗ y = 0.

Proof. Since (X, ∗, 0) is a neutro-d-algebra, by (ND-1), there exists x ∈ X such that x ∗ x = 0
and there exists x ∈ X such that x ∗ x 6= 0 or indeterminate. It concludes that x ≤X x. If x ≤X y
and y ≤X x, then x ∗ y = 0 and y ∗ x = 0. Now, by (ND-3), we have x = y or x 6= y. If x ≤X y
and y ≤X z, then x ∗ y = 0 and y ∗ z = 0. Since (X, ∗, 0) is a neutro transitive d-algebra, we get
x ∗ z = 0 or x ∗ z 6= 0. Thus (X,≤X) is a neutro-poset.

Convesely, let (X,≤X) be a neutro-poset. Then there exist x, y, z ∈ X such that x ∗ y = 0 and
y ∗ z = 0 imply x ∗ z = 0 and there exist x′, y′, z′ ∈ X such that x′ ∗ y′ = 0 and y′ ∗ z′ = 0 imply
x′ ∗ z′ 6= 0.

Theorem 3.16. An algebra (X, ∗, 0) is a neutro-d-algebra if and only if it satisfies the following
conditions:

(ND-1′) there exist x, y ∈ X such that x ≤X x and there exist x, y ∈ X such that x 6≤X x,
(ND-2′) there exist x, y ∈ X such that 0 ≤X x and there exist x, y ∈ X such that 0 6≤X x,
(ND-3′) there exist x, y ∈ X if x ≤X y and y ≤X x, then x = y and there exist x, y ∈ X if

x ≤X y and y ≤X x, then x 6= y.

Proof. (ND-1′) ⇔ (ND-1) Let (X, ∗, 0) be a neutro-d-algebra. If there exists x ∈ X such that
x ∗ x = 0 and there exists x ∈ X such that x ∗ x 6= 0 or indeterminate, then by definition,
there exists x ∈ X such that x ≤X x) and there exists x ∈ X such that x 6≤X x. The converse is
similar. By a similar way, we can see that (ND-2′)⇔ (ND-2) and (ND-3′)⇔ (ND-3).
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4 Extension of neutro d-algebras

In this section, we construct neutro d-algebras by Cartesian product and some operations.

Let (X, ∗, 0) be a neutro d-algebra. For all x, y ∈ X, define x ∗′ y =

{
x if x ∗ y 6= 0

0 otherwise
.

Theorem 4.1. Let (X, ∗, 0) be a neutro d-algebra. Then (X, ∗′, 0) is a neutro d-algebra.

Proof. By definition, the proof is clear.

Definition 4.2. Let (X1, ∗1, 01) and (X2, ∗2, 02) be d-algebras, where X1 ∩ X2 = ∅. For some
x, y ∈ X = X1 ∪X2, define an operation ∗ as follows:

x ∗ y =


x ∗1 y if x, y ∈ X1 \X2

x ∗2 y if x, y ∈ X2 \X1

01 if x ∈ X1, y ∈ X2

02 if x ∈ X2, y ∈ X1

,

where 01 ∗ 02 = 02 and 02 ∗ 01 = 01.

Example 4.3. Consider (X1 = {01, a1}, ∗1, 01) and (X2 = {02, a2}, ∗2, 02) are neutro-d-algebras.
Then we have neutro-d-algebras (X1 ∪X2, ∗, 01) and (X1 ∪X2, ∗, 02) in Table 4.

Table 4: Neutro-d-algebras of orders 2 and 4

∗1 01 a1
01 01 a1
a1 01 a1

,

∗2 02 a2
02 a2 02
a2 a2 02

, and

∗ 01 02 a1 a2
01 01 01 a1 01
02 02 a2 02 02
a1 01 01 a1 01
a2 02 a2 02 02

.

Theorem 4.4. Let (X1, ∗1, 01) and (X2, ∗2, 02) be d-algebras, where X1∩X2 = ∅ and X = X1∪X2.
Then

(i) (X, ∗, 01) is a neutro-d-algebra;

(ii) (X, ∗, 02) is a neutro-d-algebra.

Proof. (i) We only prove (ND-3). Let x ∗ y = 01. It follows that x ∈ X1 and y ∈ X2 or x, y ∈ X1.
If x, y ∈ X1, then since (X1, ∗1, 01) is a d-algebra, y ∗ x = 01 implies x = y. But for x ∈ X1 and
y ∈ X2, we have y ∗ x 6= 01 so (ND-3) is valid in any cases. Other items are clear.

(ii) It is similar to item (i).

Example 4.5. Let X1 = {a, b} and X2 = {w, x, y, z}. Then (X1, ∗, a) and (X2, ∗, w) are d-
algebras. So by Theorem 4.4, (X1 ∪ X1, ∗, a) and (X1 ∪ X1, ∗, w) are neutro-d-algebras in Table
5.
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Table 5: d-algebras and neutro-d-algebra
∗ a b w x y z

a a a w a a a
b b a a a a a
w a w w w w w
x w w x w w w
y w w y x w w
z w w z x x w

.

Definition 4.6. Let (X1, ∗1, 01) and (X2, ∗2, 02) be two neutro-d-algebras, where X1 ∩ X2 = ∅.

Define ∗ on X1 ∪X2, by x ∗ y =


x ∗1 y if x, y ∈ X1 \X2

x ∗2 y if x, y ∈ X2 \X1

y otherwise

.

Theorem 4.7. Let (X1, ∗1, 01) and (X2, ∗2, 02) be two neutro-d-algebras. Then

(i) (X1 ∪X2, ∗, 01) is a neutro-d-algebra;

(ii) (X1 ∪X2, ∗, 02) is a neutro-d-algebra.

Proof. It is obvious.

Definition 4.8. Let (X1, ∗1, 01) and (X2, ∗2, 02) be two neutro-d-algebras. Define ∗ on X1 ×X2,
by (x, y) ∗ (x′, y′) = (x ∗1 x′, y ∗2 y′), where (x, y), (x′, y′) ∈ X1 ×X2.

Theorem 4.9. Let (X1, ∗1, 01) and (X2, ∗2, 02) be two neutro-d-algebras. Then (X1×X2, ∗, (01, 02))
is a neutro-d-algebra.

Proof. We prove only the item (ND-3). Since (X1, ∗1, 01) is a neutro-d-algebra, there exist x1, x
′
1 ∈

X1 and y1, y
′
1 ∈ X1 such that if x1 ∗1 x′1 = x′1 ∗1 x1 = 01 and y1 ∗1 y′1 = y′1 ∗1 y1 = 01, then x1 = x′1

and y1 6= y′1. By the similar way, (X2, ∗2, 02) is a neutro-d-algebra, so there exist x2, x
′
2 ∈ X2

and y2, y
′
2 ∈ X2 such that if x2 ∗2 x′2 = x′2 ∗2 x2 = 02 and y2 ∗2 y′2 = y′2 ∗2 y2 = 02, then x2 = x′2

and y2 6= y′2. It follows that there exist (x1, x2), (x
′
1, x
′
2), (y1, y2), (y

′
1, y
′
2) ∈ X1 × X2 such that if

(x1, x2) ∗ (x′1, x
′
2) = (x′1, x

′
2) ∗ (x1, x2) = (01, 02) and (y1, y2) ∗ (y′1, y

′
2) = (y′1, y

′
2) ∗ (y1, y2) = (01, 02),

then (x1, x2) = (x′1, x
′
2) and (y1, y2) 6= (y′1, y

′
2).

Definition 4.10. Let (X1, ∗1, 01) and (X2, ∗2, 02) be two neutro-d-algebras. A map f : (X1, ∗1, 01)→
(X2, ∗2, 02) is called a neutro d-homomorphism, if there exist x, y ∈ X such that f(x ∗1 y) =
f(x) ∗2 f(y) and there exist x, y ∈ X such that f(x ∗1 y) 6= f(x) ∗2 f(y) and f(01) = 02.

Theorem 4.11. Let (X1, ∗1, 01) and (X2, ∗2, 02) be two neutro-d-algebras. Then

(i) the projection mappings πX1 and πX2 are neutro d-homomorphisms;

(ii) the inclusion mappings iX1 and iX2 are neutro d-homomorphisms.

Proof. The proof is straightforward.

Definition 4.12. Let (X, ∗, 0) be a neutro-d-algebra and Y ⊆ X. Then Y is called a neutro-d-
subalgebra if (Y, ∗, 0) is a neutro-d-algebra.
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Let (X, ∗, 0) be a neutro-d-algebra and Y ⊆ X. If Y is a neutro-d-subalgebra of X, then
(X, ∗, 0) is only trivial neutro-d-subalgebra of X.

Corollary 4.13. Let (X, ∗, 0) be a neutro-d-algebra and |X| = n. Then there exist m ≤ n and
x1, x2, . . . , xm ∈ X such that ({0, x1, x2, . . . , xm}, ∗, 0) is a neutro-d-subalgebra of X.

Theorem 4.14. Let f : (X1, ∗1, 01)→ (X2, ∗2, 02) be a neutro d-homomorphism. Then

(i) if 01 ∗1 01 = 01, then 02 ∗2 02 = 02;

(ii) if there exists x, y ∈ X1 such that x ∗1 y = 01, then f(x) ∗2 f(y) = 02;

(iii) if 02 ∗2 02 = 02 and x ∈ Ker(f) = {x ∈ X1 | f(x) = 02}, then x ∗1 x ∈ Ker(f);

(iv) if 02 ∗2 02 = 02 and f is a one to one map, then Ker(f) is not a neutro-d-subalgebra of X1.

Proof. (i) Let 01 ∗1 01 = 01. Since f : (X1, ∗1, 01)→ (X2, ∗2, 02) is a neutro d-homomorphism, we
get

02 = f(01) = f(01 ∗1 01) = f(01) ∗2 f(01) = 02 ∗2 02.

It follows that 02 ∗2 02 = 02.
(ii) Let x, y ∈ X1. Then x ∗1 y = 01 implies 02 = f(01) = f(x ∗1 y) = f(x) ∗2 f(y).
(iii) Since x ∈ Ker(f), we get that 02 = 02 ∗2 02 = f(x) ∗2 f(x) = f(x ∗1 x). It follows that

x ∗1 x ∈ Ker(f).
(iv) Let x ∈ Ker(f). Then by item (i), f(01) = 02 = f(x ∗1 x). Since f is a one to one map,

we get that for all x ∈ Ker(f), x ∗1 x = 01 and so Ker(f) is not a neutro-d-subalgebra of X1.

Theorem 4.15. Let f : (X1, ∗1, 01)→ (X2, ∗2, 02) be a neutro d-homomorphism. Then

(i) if Y is a neutro d-subalgebra of X1, then f(Y ) is a neutro d-subalgebra of X2;

(ii) if Z is a neutro d-subalgebra of X2 and f is bijective, then f−1(Z) is a neutro d-subalgebra
of X1.

Proof. (i) Since f(01) = 02 ∈ f(Y ), get f(Y ) 6= ∅. If a, b ∈ f(Y ), then there exist x, y ∈ X1 such
that a ∗2 b = f(x) ∗2 f(y) = f(x ∗1 y) ∈ f(Y ) and so f(Y ) a neutro d-subalgebra of X2. Since
there exists x ∈ Y such that x ∗1 x = 01 and there exists y ∈ Y such that y ∗1 y 6= 01, we get
f(x) ∗2 f(x) = f(x ∗1 x) = f(01) = 02 and f(y) ∗2 f(y) = f(y ∗1 y) 6= f(01) = 02, so (ND-1) is
valid. The proof of other items is similar.

(ii) It is similar to part (i).

5 Conclusions

To conclude, the current paper has introduced the nove concept of neutro d-subalgebra and inves-
tigated some its properties. We showed that neutro BCK-subalgebras are neutro d-subalgebras
and under some conditions, neutro d-subalgebras can be neutro BCK-subalgebras. Although the
underlying set of any neutro d-subalgebra is finite set, it is presented that the class of neutro
d-subalgebras has infinite cardinal, so it makes a fundamental different between of d-subalgebras
and neutro d-subalgebras. We wish this research is important for next studies in neutro logical
hyperalgebras. In our future studies, we hope to obtain more results regarding neutro (hyper)d-
subalgebras and their applications.
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