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ABSTRACT

ON NEUTROSOPHIC EXTENDED TRIPLET GROUP ACTION 

SHALLA, Moges Mekonnen 

M.Sc. in Mathematics 

Supervisor: Assoc. Prof. Dr. Necati OLGUN 

July 2019  

61 pages 

 

This thesis discusses neutrosophic extended triplet (NET) direct product, semi-direct 

product and NET group actions. The aim is to give a clear introduction that provides 

a solid foundation for further studies into the subject. We introduce NET internal and 

external direct and semi-direct products for NET group by utilizing the notion of 

NET set theory of Smarandache. We also give examples and discuss their difference 

with the classical one. The action of NETG N on a NET set X is given and the 

difference between right and left NETG actions are briefly discussed. Then, we 

define fixed points, orbits and stabilizers on NET set with examples. We show that 

all units modulo n isn’t NETG. Furthermore, we give and proof the fundamental 

theorem about NETG actions. Finally, we give conclusions. 

 

 

 

 

 

 

Key Words: NET set, Direct Products of NETG, NET Internal Direct Product, NET 

                      External Direct Product, NET Semi-Direct Product, NETG Action,  

                      Fundamental Theorem About NETG Actions, Burnside’s Lemma. 



 
 

 
 

ÖZET 

NÖTROSOFİK GENİŞLETİLMİŞ ÜÇLÜ GRUP ETKİSİ ÜZERİNE 

SHALLA, Moges Mekonnen 

Yüksek Lisans Tezi, Matematik 

Danışman: Doç. Dr. Necati OLGUN 

Temmuz 2019  

61 sayfa 

 

Bu tezde, nötrosofik genişletilmiş üçlü (NET) direkt çarpımı, yarı-direkt çarpımı ve 

NET grup etkilerini tartışılmaktadır. Amaç, konuyla iligili daha ileri çalışmalar için 

sağlam bir temel sağlayan net bir giriş yapmaktır. Smarandache’in NET küme 

teorisini kullanarak NETG için NET iç ve dış direkt ve yarı-direkt çarpımlarını 

tanıtırız. Ayrıca örnekler vererek klasik ile aralarındaki farklarını tartışırız. N NET 

grubun X kümesi üzerindeki etkisi verilmiş ve sağ ve sol NETG etkileri arasındaki 

fark kısaca tartışılmıştır. Daha sonra, NET küme üzerinde sabit noktalar, yörüngeler 

ve dengeleyeciler tanımlanmıştır. Modulo n’nin bütün birimlerinin NETG olduğunu 

gösterilmiştir. Ayrıca, NETG etkileri ile ilgili temel teoremi verilmiş ve ispat 

edilmiştir. Son olarak, sonuçlar verilmiştir. 

 

 

 

 

 

 

 

Anahtar Kelimeler: NET küme, NETG’nun Direkt Çarpımları, NET Dış Direkt 

Çarpım, NET İç Direkt Çarpım, NET Yarı-Direkt Çarpım, 

NETG Etkisi İle İlgili Temel Teorem, Burniside Lemması. 
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CHAPTER I 

 

INTRODUCTION 

 

 

1.1 Motivation of Study 

Galois is well known as the first researcher associating group theory and field theory, 

along the theory particularily called Galois theory. The concept of groupoid gives a 

more flexible and powerful approach to the concept of symmetry (see [1]). 

Symmetry groups come out in the review of combinatorics outline and algebraic 

number theory, along with physics and chemistry. For instance, Burnside’s lemma 

can be utilized to compute combinatorial objects related along symmetry groups. A 

group action is a precise method of solving the technique wither the elements of a 

group meet transformations of any space in a method such protects the structure of a 

certain space. Just as there is a natural similarity among the set of a group elements 

and the set of space transformations, a group can be explained as acting on the space 

in a canonical way. A familiar method of defining no-canonical groups is to express 

a homomorphism f from  a group G  to the group of symmetries ( an object is 

invariant to some of different transformations; including reflection, rotation) of a set 

.X The action of an element g G  on a point x X  is supposed to be similiar to the 

action of its image ( ) ( )f g Sym X  on the point .x  The stabilizers of the action are 

the vertex groups, and the orbits of the action are the elements, of the action 

groupoid. Some other facts about group theory can be revealed in [2-5]. 

Neutrosophy is a new branch of philosophy, presented by Florentic Smarandache [6] 

in 1980, which studies the interactions with different ideational spectra in our 

everyday life. A NET is an object of the structure ( ) ( )( , , ),neut x anti xx e e  for ,x N was 

firstly presented by Florentin Smarandache [7-9] in 2016. In this theory,  the 

extended neutral and the extended opposites can similar or non-identical from the 

classical unitary element and inverse element respectively. The NETs  are depend on 
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real triads : (friend, neutral, enemy), (pro, neutral, against), (accept, pending, reject), 

and in general ( , ( ), ( ))x neut x anti x as in neutrosophy is a conclusion of Hegel’s 

dialectics that is depend on x and  ( )anti x . This theory acknowledges every concept 

or idea x together along its opposite ( )anti x  and along their spectrum of neutralities 

( )neut x  among them. Nutrosophy is the foundation of neutrosophic logic, 

neutrosophic set, neutrosophic probablity, and neutrosophic statistics that are utilized 

or applied in engineering (like software and information fusion), medicine, military, 

airspace, cybernetics, physics. Kandasamy and Smarandache [10] introduced many 

new neutrosophic notions in graphs and applied it to the case of neutrosophic 

cognitive and relational maps. The same researchers [11] were introduced the 

concept of neutrosophic algebraic structures for groups, loops, semigroups and 

groupoids and also their N algebraic structures in 2006. Smarandache and Mumtaz 

Ali [12] proposed neutrosophic triplets and by utilizing these they defined NTG and 

the application areas of NTGs. They also define NT field [13] and NT in physics 

[14]. Smarandache investigated physical structures of hybrid NT ring [15]. Zhang et 

al [16] examined the Notion of cancellable NTG and group coincide in 2017. Şahın 

and Kargın [17], [18] firstly introduced new structures called NT normed space and 

NT inner product respectively. Smarandache et al [19] studied new algebraic 

structure called NT G-module which is constructed on NTGs and NT vector spaces. 

This work deals with direct and semi-direct products of NETGs and NETG action. 

We provide basic definitions, notations, facts, and examples about NETs which play 

an important role to define and build new algebraic structures. Then, the concept of 

NET internal and external direct and semi-direct products are given and their 

difference between the classical structures are briefly discussed. Furthermore, we 

define the action of NETG N on a NET set X and deal about the difference between 

left and right NETG actions. Then, NET fixed point, orbit, stabilizer, centralizer and 

conjugation are defined. Finally, the fundamental theorem about NETG actions and 

Burnside’s lemma are given and proved.  
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CHAPTER 2 

PRELIMINARIES 

Since some properties of NETs are used in this work, it is important to have a keen 

knowlege of NETs. We will point out some few NETs and concepts of NET group, 

NT normal subgroup, and NT cosets according to what needed in this work. 

2.1 Neutrosophic Triplet 

Definition 2.1.1 [12,14] A NT has a form     ,  ,  ,x neut x anti x for

    , , Nx neut x anti x  , accordingly  neut x  and  anti x N  are neutral and 

opposite of ,x  that is different from the unitary element, thus : 

( ) ( )x neut x neut x x x     and ( ) ( ) ( )x anti x anti x x neut x     respectively. In 

general, x  may have  one or more than one neut's and one or more than one anti's. 

 

Example 2.1.1 Let’s construct the table for (x) modulo 14. 

Table 2.1 The table of of (x) modulo 14. 

* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

2 0 2 4 6 8 10 12 0 2 4 6 8 10 12 

3 0 3 6 9 12 1 4 7 10 13 2 5 8 11 

4 0 4 8 12 2 6 10 0 4 8 12 2 6 8 

5 0 5 10 1 6 11 2 7 12 3 8 13 4 9 

6 0 6 12 4 10 2 8 0 6 12 4 10 2 8 

7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 

8 0 8 2 10 4 12 6 0 8 2 10 4 12 6 

9 0 9 4 13 8 3 12 7 2 11 6 1 10 5 

10 0 10 6 2 12 8 4 0 10 6 2 12 8 4 

11 0 11 8 5 2 13 10 7 4 1 12 9 6 3 
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12 0 12 10 8 6 4 2 0 12 10 8 6 4 2 

13 0 13 12 11 10 9 8 7 6 5 4 3 2 1 

 

The neutrosophic triplets of (x) modulo 14 are  

(0,0,0), (0,0,1), (0,0,2), (0,0,3), (0,0,4), (0,0,5), (0,0,6), (0,0,7), (0,0,8), (0,0,9), (0,0,10),

(0,0,11), (0,0,12), (0,0,13), (2,8,4), (2,8,11), (4,8,9), (4,8,12), (4,8,13), (6,8,6), (6,8,13),

(7,7,7), (8,8,8), (9,1,11), (10,8,5), (10,8,12), (11,1,9), (12,8,3), (12,8,10), (13,1,13).

 

Note: Here U  is a universe of discourse and ( , )N   is a set included in it, endowed 

with well defined binary law. 

 

2.2 Neutrosophic Extended Triplet 

Definition 2.2.1 [8, 14] A NET is a NT, defined as definition 1, but where the neutral 

of x  (symbolized by ( )neut xe  and called "extended neutral") is equal to the classical 

unitary element. As a consequence, the "extended opposite" of  x , symbolized by 

( )anti xe  is also same to the classical inverse element. Thus, a NET has a  form 

( ) ( )( , , )neut x anti xx e e , for ,x N where ( )neut xe  and ( )anti xe   in N  are the extended neutral 

and negation of x  respectively, thus : 

( ) ( ) ,neut x neut xx e e x x     

which can be the same or non-identical from the classical unitary element if any and  
( ) ( ) ( ).anti x anti x neut xx e e x e     

Generally, for each x ∊ N there are one or more ( )neut xe 's and ( )anti xe 's. 

 

Example 2.2.1 The neutrosophic extended triplets of (x) modulo 14 from example 

2.2.1 are : 

(0,0,0), (0,0,1), (0,0,2), (0,0,3), (0,0,4), (0,0,5), (0,0,6), (0,0,7), (0,0,8), (0,0,9), (0,0,10),

(0,0,11), (0,0,12), (0,0,13), (1,1,1), (2,8, 4), (2,8,11), (4,8,9), (4,8,12), (4,8,13), (6,8,6),

(6,8,13), (7,7,7), (8,8,8), (9,1,11), (10,8,5), (10,8,12), (11,1,9), (12,8,3), (12,8,10), (13,1,13).

 

2.3 Neutrosophic Triplet Group 

Definition 2.3.1 [12, 14] Suppose ( , )N   is a NT set. Subsequently ( , )N   is called a 

NTG, if the axioms given below are holds. 

 



 
 

5 
 

(1) ( , )N  is well-defined, i.e. for and  

( , ( ), ( )), ( , ( ), ( ) ,x neut x anti x y neut y anti y N  

one    has ( , ( ), ( )) ( , ( ), ( ) .x neut x anti x y neut y anti y N   

 

(2)  ( , )N   is associative, i.e. for any  

 

one has  

( , ( ), ( )) ( , ( ), ( ) ( , ( ), ( )) .x neut x anti x y neut y anti y z neut z anti z N    

Example 2.3.1 Let’s construct the table for (x) modulo 8 under addition. 

Table 2.3 The table of of (x) modulo 8 

 

  0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 1 2 3 4 5 6 7 0 

2 2 3 4 5 6 7 0 1 

3 3 4 5 6 7 0 1 2 

4 4 5 6 7 0 1 2 3 

5 5 6 7 0 1 2 3 4 

6 6 7 0 1 2 3 4 5 

7 7 0 1 2 3 4 5 6 

 

The neutrosophic triplet sets of (x) modulo 8 are : 

 (0,0,0),(1,0,7),(2,0,6),(3,0,5),(4,0,4), (5,0,3),(6,0,2),(7,0,1) .  Thus, each 

elements of (x) modulo 8 has neutral and anti-neutral element. We can easily see that 

the given operation is well defined and it also holds associativity. 

 

Generally, NTG is not a group, for the reason that, it doesn’t include the unitary 

element, nor inverse elements of group theory. We assume, that the neutrosophic 

neutrals are used instead of unitary element, and the neutrosophic negation used 

instead of inverse elements. In other hand, all NETGs are a group in classical way. 
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Theorem 2.3.1 [22] Let ( , )N   be a commutative NET relating to   and 

( , ( ), ( )), ( , ( ), ( ))a neut a anti a b neut b anti b N ; 

 

 (i)    ( ) ( ) ( );neut a neut b neut a b    

 (ii)  ( ) ( ) ( );anti a anti b anti a b    

 

2.4 Neutrosophic Extended Triplet Group 

Definition 2.4.1 [8, 14] Assume ( , )N   is a NET strong set. Subsequently ( , )N   is 

called a NETG, if the axioms given below are holds. 

 

(1)  ( , )N   is well-defined, i.e. for any 

( , ( ), ( )), ( , ( ), ( ) ,x neut x anti x y neut y anti y N  

one has ( , ( ), ( )) ( , ( ), ( ) .x neut x anti x y neut y anti y N    

(2)  ( , )N   is associative,  

i.e. for any ( , ( ), ( )), ( , ( ), ( )), ( , ( ), ( )) ,x neut x anti x y neut y anti y z neut z anti z N  

one has 

 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).

x neut x anti x y neut y anti y z neut z anti z

x neut x anti x y neut y anti y z neut z anti z

 

  
 

 

Example 2.4.1 Let’s construct the table for (x) modulo 8 under multiplication. 

Table 2.4 The table of of (x) modulo 8. 

  0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 

2 0 2 4 6 0 2 4 6 

3 0 3 6 1 4 7 2 5 

4 0 4 0 4 0 4 0 4 

5 0 5 2 7 4 1 6 3 

6 0 6 4 2 0 6 4 2 

7 0 7 6 5 4 3 2 1 
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Here, each elements of (x) modulo 8  does not satisfy the rules given above. 

Therefore let’s see the elements of units modulo 8. 

Consider the set of integers t  meeting the following conditions of units modulo n. 

i. 1 8.t   

ii. t  and 8 are relatively prime. 

So the  (8) 1,3,5,7u  is a NETG under multiplication modulo 8. Let’s construct a 

NETG table for (8).u  

Table 2.5 The table of (8).u  

  1 3 5 7 

1 1 3 5 7 

3 3 1 7 5 

5 5 7 1 3 

7 7 5 3 1 

 

The NETs of (8)u are (1,1,1), (3,1,3), (5,1,5), (7,1,7).  Thus, each elements of (8)u has 

extended neutral and  extended anti-neutral element. We can easily see that the given 

operation is well defined and it also holds associativity. 

 

In NETG, the ( )neut xe ’s replace the unitary element, and the ( )anti xe ’s replace the 

inverse elements of group. In so when NETG includes a group, subsequently NETG 

enriches the structure of a group, since there may be elements along two or more 

( )neut xe ’s and two or more ( )anti xe ’s. 

 

2.5 Neutro-homomorphism 

Definition 2.5.1 [23] Assume that 
1

( , )N   and 
2

( , )N  are two NETG’s. A 

mapping 
1 2

:f N N  is called a neutro-homomorphism if: 

 

(1)  For any 
1

( , ( ), ( )), ( , ( ), ( ) ,x neut x anti x y neut y anti y N we have 

 

   

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))

f x neut x anti x y neut y anti y

f x neut x anti x f y neut y anti y



 
 

 (2)  If ( , ( ), ( ))x neut x anti x is a NET from 
1
,N Then 
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   ( ) ( )f neut x neut f x and    ( ) ( ) .f anti x anti f x  

 

2.6 Neutrosophic Extended Triplet Subgroup 

Definition 2.6.1 [21] Assume that 
1

( , )N  is  a NETG and H is a subset of 
1
.N  H

is called a NET subgroup of N  if itself forms a NETG under .  On other hand it 

means : 

 

  (1)  ( )neut xe lies in .H  

  (2)  For any ( , ( ), ( )), ( , ( ), ( ) ,x neut x anti x y neut y anti y H  

( , ( ), ( )) ( , ( ), ( ) .x neut x anti x y neut y anti y H   

  (3)  If ( , ( ), ( )) ,x neut x anti x H  then ( ) .anti xe H   

We write H N when ever H  is a NET subgroup of .N     H N   holding the 

axioms (2) and (3) above will be a NET subgroup as we may take 

( , ( ), ( ))x neut x anti x H  and then (2) gives ( )anti xe H  after which (3) gives 

( ) ( ) .anti x neut xx e e H    

 

Example 2.6.1 Let’s construct the table for (x) modulo 4 under addition. 

Table 2.6 Table of (x) modulo 4 

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

 

The NETs are : (0,0,0), (1,0,3), (2,0,2), (3,0,1).  (0,0,0), (2,0, 2) ,    is a NET 

subgroup of 
4
, .z     

 

2.7 Neutrosophic Extended Triplet Normal Subgroup 

Definition 2.7.1 [21] A NET subgroup H  of a NETG N  is called a NT normal 

subgroup of N  if 



 
 

9 
 

( , ( ), ( )) ( , ( ), ( )), ( , ( ), ( ))x neut x anti x H H x neut x anti x x neut x anti x N   and we 

represent it as .H N   

Example 2.7.1 The Cayley table for a NETG N is shown below. 

Table 2.7 The Cayley table of N. 

* e a b c d f g h i j k l 

e e a b c d f g h i j k l 

a a b e k f l h j c g i d 

b b e a i l d j g k h c f 

c c l g d e i k a j f b h 

d d h k e c j b l f i g a 

f f j i a k g e d l c h b 

g g c l j h e f k b a d i 

h h k d g j a l i e b f c 

i i f j l b k c e h d a g 

j j i f h g b d c a e l k 

k k d h f a c i b g l e j 

l l g c b i h a f d k j e 

 

The NETs of N  are ; 

                 

     

, , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,  , , ,  

, , ,  , , ,  , , .

e e e a e b b e a c e d d e c f e g g e f h e i i e h

j e j k e k l e l

Now let’s take the subset         , , ,  , , ,  , , ,  , ,e e e j e j k e k l e lH  is  a NET 

subgroup of N . Then, let’s show that H is NT normal in N. 

 

Note : A NET subgroup H of N is NT normal if its left and right NT cosets coexist, 

that is  

( , ( ), ( )) ( , ( ), ( ))n neut n anti n H H n neut n anti n  

for all ( , ( ), ( ))n neut n anti n in N. We have obtained 

left NT cosets 

 ( , , ) ( , , ), ( , , ), ( , , ), ( , , )e e e H e e e j e j k e k l e l  

 ( , , ) ( , , ), ( , , ), ( , , ), ( , , )a e b H a e b g e f i e h d e c  
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 ( , , ) ( , , ), ( , , ), ( , , ), ( , , )b e a H b e a h e i c e d f e g  

right NT cosets 

 ( , , ) ( , , ), ( , , ), ( , , ), ( , , )H e e e e e e j e j k e k l e l  

 ( , , ) ( , , ), ( , , ), ( , , ), ( , , )H a e b a e b i e h d e c g e f  

 ( , , ) ( , , ), ( , , ), ( , , ), ( , , )H b e a b e a f e g h e i c e d  

 

Hence, 

( , ( ), ( )) ( , ( ), ( ))n neut n anti n H H n neut n anti n  

for all ( , ( ), ( )) .n neut n anti n N  Therefore, H  is NT normal in .N  

 

2.8 Neutrosophic Triplet Cosets 

Definition 2.8.1 [21] Suppose N  is a NETG and .H N  

( , ( ), ( )) ,x neut x anti x N  the NET set 

( , ( ), ( ))( , ( ), ( )) / ( , ( ), ( ))x neut x anti x h neut h anti h h neut h anti h H  is represented by 

( , ( ), ( )) .x neut x anti x H  Similarily,  

 

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )) / ( , ( ), ( ))H x neut x anti x x neut x anti x h neut h anti h h neut h anti h H 

 

and  

   1

1

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) / ( , ( ), ( )) .

x neut x anti x H x neut x anti x x neut x anti x h neut h anti h

x neut x anti x h neut h anti h H









 

Where as ( , ( ), ( ))  ,h neut h anti h N  ( , ( ), ( ))x neut x anti x H  is called the left NT 

coset of H N  involving ( , ( ), ( )),x neut x anti x  and ( , ( ), ( ))H x neut x anti x  is called 

the right NT coset of H N  involving ( , ( ), ( )).x neut x anti x  If so the element 

( , ( ), ( ))x neut x anti x  is called the NT coset representative of ( , ( ), ( ))x neut x anti x H  or 

( , ( ), ( )).H x neut x anti x  ( , ( ), ( ))x neut x anti x H and ( , ( ), ( ))H x neut x anti x  are 

utilized to represent the number of elements in ( , ( ), ( ))x neut x anti x H  or 

( , ( ), ( )),H x neut x anti x  respectively.  
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Example 2.8.1 Consider the NET subgroup  (0,0,0),(2,0,6),(4,0,4),(6,0,2)H  of 

8
N z (which is an additive NETG in example 2.3.1) with NETs 

 (0,0,0),(1,0,7),(2,0,6),(3,0,5),(4,0,4), (5,0,3),(6,0,2),(7,0,1) .N  The left NT 

cosets are  

     

   

(0,0,0) / (2,0,6) / (4,0,4) /

(6,0,2) / (0,0,0), (2,0,6), (4,0,4), (6,0,2) ,

h h H h h H h h H

h h H

       

   
 

     

   

(1,0,7) / (3,0,5) / (5,0,3) /

(7,0,1) / (1,0,7), (3,0,5), (5,0,3), (7,0,1) ,

h h H h h H h h H

h h H

       

   
 

so     (1,0,7),(3,0,5),(5,0,3),(7,0,1) .(0,0,0),(2,0,6),(4,0,4),(6,0,2, )/G H   

The right cosets are 

     

   

(0,0,0) / (2,0,6) / (4,0,4) /

(6,0,2) / (0,0,0), (2,0,6), (4,0,4), (6,0,2) ,

h h H h h H h h H

h h H

       

   
 

     

   

(1,0,7) / (3,0,5) / (5,0,3) /

(7,0,1) / (1,0,7), (3,0,5), (5,0,3), (7,0,1) ,

h h H h h H h h H

h h H

       

   
 

so     (0,0,0),(2,0,6),(4,0,4),(6,0,2) ., (1,0,7),(3,0,5),(5,0,3),(7,0,1/ )H G   
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CHAPTER 3 

DIRECT PRODUCTS OF NEUTROSOPHIC EXTENDED TRIPLET GROUP 

The notion of a direct product of  groups are one of the vital notions of group theory. 

It plays a vital position in the study of the structure of a groups. It is an operation that 

proceeds two groups G and H and builds another group, generally symbolized 

.G H  Just as a direct product of groups play a vital position in the classical group 

theory, direct products of NETG play the same role in the theory of NETs. In this 

section, we define NET internal and external direct products. Then, we give 

propositions and proof them. 

3.1 Direct Products Of NETG 

Definition 3.1.1 Assume that we have two neutrosophic extended triplet groups H 

and K, and N H K   is the NET cartesian product of H and K, in other words 

 

   

( , ( ), ( )),2 2 2
, ( ), ( )),( , ( ), ( )) ,( 1 1 1 1 11 ( , ( ), ( ))2 2 2

, ( ), ( ) , , ( ), ( ) .1 2 1 2 1 2 1 2 1 2 1 2

neut antih h h
N neut anti neut antih h h k k k

neut antik k k

neut anti neut anti H Kh h h h h h k k k k k k

 
  

 

        

 

Clearly N is closed under multiplication, it is obvious to see associativity and it has a 

neutral element denoted by  

( , )1 1 1N H K  

and the anti neutrals of  ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k is 

 ( )), ( )) ,anti h anti k respectively. 

Definition 3.1.2 Suppose that ,H K  are two NETGs. The NETG N H K  with 

binary operation described componentwise as denoted in definition (3.1.1) is called 

the “neutrosophic extended triplet direct product” of H and K . 
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Example 3.1.1 Find the NET direct product of two NETG 2z and .3z  Since 

 
2

0,1z  and  
3

0,1,3 ,z   the NETs 
2z is (0,0,0), (1,0,1) and the NETs of 

3z is 

(0,0,0), (1,0,2), (2,0,1).  The NET direct products are 

       

   2 3

(0,0,0), (0,0,0) , (0,0,0), (1,0,2) , (0,0,0), (2,0,1) , (1,0,1), (0,0,0) ,
.

(1,0,1), (1,0,2) , (1,0,1), (2,0,1)
z z

  
   

  

 

3.2 Neutrosophic Extended triplet internal direct product 

Definition 3.2.1 If a NETG N contains neutrosophic triplet normal subgroups H and 

K as shown N HK and  ,1H K N  we call N is the “neutrosophic triplet 

internal direct product” of H and .K  

Example 3.2.1 Examine the NETG 
6
, )(z  and the following NET subgroups: 

{(0,0,0), (2,0, 4), (4,0, 2)}

{(0,0,0), (3,0,3)}.

H

K




 

Note that 

( , ( ), ( )) ( , ( ), ( )) : ( , ( ), ( )) ,

( , ( ), ( ))

.

h neut h anti h k neut k anti k h neut h anti h H

k neut k anti k K

N

  
 

 



 

That means (0,0,0),(2,0,4),(4,0,2) + (0,0,0),(3,0,3)  

 (0,0,0),(1,0,5),(2,0,4),(3,0,3),(4,0,2), (5,0,1) .  

So the first condition is met. Also the neutral for 6z is 0N and 

 (0,0,0)0H K N   so the second condition is met. Lastly 
6z is an abelian so the 

third condition is met. 

Table 3.2 The table of 
6z  

+ 0 1 2 3 4 5 

0 0 1 2 3 4 5 
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1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

 

The formed NETs of 
6z is  (0,0,0),(1,0,5),(2,0,4),(3,0,3),(4,0,2), (5,0,1) .  

Proposition 3.2.1 If N is the neutrosophic triplet internal direct product of H and 

,K  subsequently N is neutro-isomorphic to the neutrosophic triplet external direct 

product .H K  

Proof  To put on  that N is neutro-isomorphic to ,H K we describe the 

succeeciding map 

: ,f H K N   

 ( , ( ), ( )), ( , ( ), ( ))f h neut h anti a k neut k anti k
 

 , ( ), ( ) ...(1)h k neut h k anti h k     

First remark that if    ( , ( ), ( ) , , ( ), ( ) ,h neut h anti h H k neut k anti k K  then  

 

 

( , ( ), ( )

( , ( ), ( ) .

h k neut h k anti h k

k h neut k h anti k h

  

   
 

Actually, we have utilizing that both NETGs K and H are neutrosophic triplet 

normal that 

   
1 1

( , ( ), ( ))( , ( ), ( ) , ( ), ( ) ( , ( ), ( ) ,h neut h anti h k neut k anti k h neut h anti h k neut k anti k K
 


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   
1 1

( , ( ), ( ))( , ( ), ( ) , ( ), ( ) ( , ( ), ( )h neut h anti h k neut k anti k h neut h anti h k neut k anti k H
 



 

Implying that 

   

 

1 1
( , ( ), ( ))( , ( ), ( ) , ( ), ( ) ( , ( ), ( )

.1

h neut h anti h k neut k anti k h neut h anti h k neut k anti k

K H N

 

  

At the same time let us show that f is a NETG neutro-isomorphism. 

1. This a NETG neutro-homomorphism onwards 

' ' ' ' '

'

( , ( ), ( )), ( , ( ), ( )), ( , ( ), ( )), ( , ( ),

( ))

h neut h anti h k neut k anti k h neut h anti h k neut k
f

anti k

 
  
 

 ' ' ' ' ' '( , ( ), ( )),( , ( ), ( ))f h h neut h h anti h h k k neut k k anti k k        by . .. (1) 

 ' ' ' ' ' '( , ( ), ( )) ( ), ( ), ( )) ( , ( ), ( ))h neut h anti h h k neut h k anti h k k neut k anti k     

 ' ' ' ' ' '( , ( ), ( )) ( ), ( ), ( )) ( , ( ), ( ))h neut h anti h k h neut k h anti k h k neut k anti k     

 
' ' '

' ' '

( , ( ), ( )),
( , ( ), ( )), ( , ( ), ( )) .

( , ( ), ( ))

h neut h anti h
f h neut h anti h k neut k anti k f

k neut k anti k

 
   

 

 

2. Let us show that the map f  is injective. First we have to check that its 

neutro-kernel is trivial. Actually, if 

 ( , ( ), ( )), ( , ( ), ( ) 1f h neut h anti h k neut k anti k N  

Then 

 ( , ( ), ( )), ( , ( ), ( ) 1h neut h anti h k neut k anti k N  

   
1

, ( ), ( ) , ( ), ( )h neut h anti h k neut k anti k


   

 

   

, ( ), ( )

, ( ), ( ) 1

h neut h anti h K

h neut h anti h H K N

 

   
 

We have then that  

 , ( ), ( )h neut h anti h =  , ( ), ( )k neut k anti k  1N  

which proves that the neutro-kernel is  ( , ) .1 1N N  
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3. Lastly it’s obvious to see that f is surjective since .N HK  Briefly record 

that the definitions of NET external and internal are assuredly unlimited to 

two NETGs. We can totally describe them for n NETGs as ,..., .1H H n  

3.3 Neutrosophic Extended Triplet External Direct Product 

Definition 3.3.1 If ,...,1H H n  are randomNETGs the NET external direct product of 

,...,1H H n  is  

...1 2N H H Hn     

which is the NET cartesian product with  componentwise multiplication. 

Example 3.3.1 Let NETG  (8) 1,3,5,7u  from example 2.4.1 and 

 (12) 1,5,7,11u   under multiplication modulo 8 and mudulo 12 respectively. Let’s 

construct a NETG table for (12).u  

Table 3.3 The table of (12)u  

  1 5 7 11 

1 1 5 7 11 

5 5 1 11 7 

7 7 11 1 5 

11 11 7 5 1 

 

The NETs of (8)u are (1,1,1), (3,1,3), (5,1,5), (7,1,7)  and the NETs of (12)u are 

(1,1,1), (5,1,5), (7,1,7), (11,1,11).   

Now let’s see the NET external direct products of 

       

         

   

(8) (12) (1,1,1), (1,1,1) , (1,1,1), (5,1,5) , (1,1,1), (7,1,7) , (1,1,1), (11,1,11) ,

(3,1,3), (1,1,1) , (3,1,3), (5,1,5) , (3,1,3), (7,1,7) , (3,1,3), (11,1,11) , (5,1,5), (1,1,1) ,

(5,1,5), (5,1,5) , (5,1,5), (7,1,7) , (5,1,5), (

u u 

     

     

11,1,11) , (7,1,7), (1,1,1) , (7,1,7), (3,1,3) ,

(7,1,7), (5,1,5) , (7,1,7), (7,1,7) , (7,1,7), (11,1,11) .

 

Definition 3.3.2 If N contains NET normal subgroups ,...,1H H n as shown  
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...1N H Hn  

and every n  can be symbolized as  

   , ( ), ( ) ... , ( ), ( )h neut h anti h neut antih h hn n n  

particularly, we call  N is the neutrosophic extended triplet internal direct product of 

,..., .1H H n  

There is a small distiniction between neutrosophic extended triplet internal product 

as we see in the definition, since in this instance of two NET subgroups, the 

condition dedicated briefly record that each  n can be symbolized particularly as  

  , ( ), ( ) , ( ), ( ) ,1 1 1 2 2 2neut anti neut antih h h h h h  

but alternately that the intersection of of the two NET subgroups is  ( ) .1N  The 

following proposition indicates the relation among those two points of view. 

Proposition 3.3.1 Assume that ...1N H Hn  thus every H i  is a NET normal 

subgroup of .N  The succeecing axioms are equivalent. 

I. N  is the neutrosophic extended triplet direct product of the .H i   

II.  ... ,11 2 1H H H Hi i N   1,..., .i n   

Proof Let’s show . .    

. .    Let’s suppose that N is the neutrosophic extended triplet internal direct 

product of the H i , in other words all element in N can be inscribed particularly as a 

product of elements in  H i . Let’s assume  

    , ( ), ( ) ... .11 2 1n neut n anti n H H H Hi i N    

We obtain that  

 , ( ), ( ) ... ,1 2 1n neut n anti n H H Hi   

this is particularly expressed as  
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    

   

, ( ), ( ) , ( ), ( ) , ( ), ( ) ...1 1 1 2 2 2

, ( ), ( ) ... , , ( ), ( ) .1 11 1 1

n neut n anti n neut anti neut antih h h h h h

neut anti neut antih h h h h hH H HN i N n ji i i j j j



  

 

On the other hand,  

 , ( ), ( )n neut n anti n Hi  

thus  

     , ( ), ( ) ...1 11 1n neut n anti n n nH HN N i   

and  by unicity of the representation, we have  

   , ( ), ( ) 1neut antih h h Nj j j   for all j and    , ( ), ( ) .1n neut n anti n N  

. .    conversely, let us assume that  

 , ( ), ( )n neut n anti n N  

can be written either   

    

   

, ( ), ( ) , ( ), ( ) , ( ), ( ) ...1 1 1 2 2 2

, ( ), ( ) , , ( ), ( ) ,

n neut n anti n neut anti neut antih h h h h h

neut anti neut antih h h h h h H jn n n j j j




 

or 

    

   

, ( ), ( ) , ( ), ( ) , ( ), ( ) ...1 1 1 2 2 2

, ( ), ( ) , , ( ), ( ) .

n neut n anti n neut anti neut antik k k k k k

neut anti neut antik k k k k k H jn n n j j j




 

Remember that whereby every H j are NET normal subgroups, subsequantly  

  , ( ), ( ) , ( ), ( )neut anti neut antih h h h h hi i i j j j  

    

 

, ( ), ( ) , ( ), ( ) , , ( ), ( ) ,

, ( ), ( ) .

neut anti neut anti neut antih h h h h h h h h Hij j j i i i i i i

neut antih h h H jj j j

 


 

In other words,  we can do the succeeding manipulations. 
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    , ( ), ( ) , ( ), ( ) ... , ( ), ( )1 1 1 2 2 2neut anti neut anti neut antih h h h h h h h hn n n  

    , ( ), ( ) , ( ), ( ) ... , ( ), ( )1 1 1 2 2 2neut anti neut anti neut antik k k k k k k k kn n n  

   , ( ), ( ) ... , ( ), ( )2 2 2neut anti neut antih h h h h hn n n  

     

 

1
, ( ), ( ) ... , ( ), ( ) , ( ), ( ) ...1 1 1 1 1 1 2 2 2

, ( ), ( )

neut anti neut anti neut antih h h k h h k k k

neut antik k kn n n

  
 

   , ( ), ( ) ... , ( ), ( )3 3 3neut anti neut antih h h h h hn n n  

   
 

 

   

1
, ( ), ( )1 2 2 2, ( ), ( ) ... , ( ), ( )1 1 1 1 1 1
, ( ), ( )2 2 2

, ( ), ( ) ... , ( ), ( )3 3 3

neut antih h h
neut anti neut antih h h k h h

neut antik k k

neut anti neut antik k k k k kn n n

 
   

  
 

 

and likewise and then so long as we achieve 

   1
, ( ), ( ) , ( ), ( )neut anti neut antih h h k k kn n n n n n


. . . (1) 

     

 

11
, ( ), ( ) , ( ), ( ) ... , ( ), ( )1 1 1 1 1 1 1 1 1

, ( ), ( ) .1 1 1

neut anti neut anti neut antih h h k k k h h hn n n

neut antik k kn n n


   

  

 

Until now the left handside (1) refers to H n although the right handside refers to  

... ,1 1   H H n  we obtain such  

    1
, ( ), ( ) , ( ), ( ) ... 11 1neut anti neut antih h h k k k H H Hn n Nn n n n n n


    

signfying that  

 , ( ), ( )neut antih h hn n n =  , ( ), ( ) .neut antik k kn n n  

We end this by repeating the procedure. Let’s prove this for the conditions of two 

NETGs. We’ve noticed overhead that the NET cartesian product of two NETGs H

and K endowed in relation to a NETG structure by taking in mind componentwise 

binary operartion  

   , ( ), ( ) , , ( ), ( )1 1 1 1 1 1neut anti neut antih h h k k k  
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   , ( ), ( ) , , ( ), ( ) .1 1 1 1 1 1 1 1 1 1 1 1neut anti neut anti H Kh h h h h h k k k k k k          

The preference of this binary operation of course decides the structures of 

,N H K   and exceptionaly, we’ve noticed such the neutro-isomorphic duplicates 

of NETGs H and K  in N  are NET normal subgroups. Contrarily that one may 

describe a NET internal direct product, we have to suppose that we’ve two NET 

normal subgroups. 

Now let’s examine a further overall setting, thus the NET subgroup  K  does’t need 

to be NET normal, for whatever we have to describe another binary operation on the 

NET cartesian product  .H K  This’ll take us to the definition of NET internal and 

external semi-direct product. 

Remember that a neutro-automorphism of a NETG H is a bijective NETG neutro-

homomorphism from .H H  It’s obvious to realize such the set of neutro-

automorphism of H shapes a NETG according to the composition of maps and 

identify element the neutrality map .1H  We symbolize it by ( ).1Aut H  

Proposition 3.3.2 Suppose that H and K are NETGs, and   

   : ( ), , ( ), ( ) , ( ), ( )K Aut H k neut k anti k k neut k anti k   

are a  NETG neutro-homomorphism. Subsequently the binary operation  

      ,H K H K H K      

 
' ' ' ' '

'

( , ( ), ( )), ( , ( ),
( , ( ), ( )), ( , ( ), ( )) ,

( ))

h neut h anti h k neut k
h neut h anti h k neut k anti k

anti k

 
  
 

 

 ' ' '

' ' '

( , ( ), ( )) (( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k k neut k anti k

 
 
 
 

 

endows  H K  with a NETG structure, with neutral element  , .1 1H K  

Proof  let’s realize such the closure property is holds. 

1) Neutrality  : Let’s prove that   ,1 1H K  is the neutral element. We have  
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  1( , ( ), ( )),( , ( ), ( ))   ,1h neut h anti h k neut k an Ht k Ki  

  ( , ( ), ( )) ( , ( ), ( )) ,( , ( ), ( ))1h neut h anti h k neut k anti k k neut k anti kH  

 ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k for all ( , ( ), ( )) ,h neut h anti h H

( , ( ), ( )) ,k neut k anti k K whereby ( , ( ), ( ))k neut k anti k  

is a NETG neutro-homomorphism. We also have  

  ' ' ' ' ' ', ( , ( ), ( )),( , ( ), ( ))1 1 h neut h anti h k neut k anti kH K  

 ' ' ' ' ' '( , ( ), ( )),( , ( ), ( ))1 h neut h anti h k neut k anti kH  

 ' ' ' ' ' '( , ( ), ( )),( , ( ), ( ))h neut h anti h k neut k anti k   

for all ' ' ' ' ' '( , ( ), ( )) , ( , ( ), ( )) ,h neut h anti h H k neut k anti k K  wherby  being a NETG 

neutro-homomorphism, it maps 1K to .1 ( ) 1NAut K H  

2) Anti-neutrality : Let  ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k H K   

and let us show that  

   
1

11 ( , ( ), ( )) , , ( ), ( )
( , ( ), ( ))

h neut h anti h k neut k anti k
k neut k anti k


  

 
 

is the anti-neutral of  

 ( , ( ), ( )), ( , ( ), ( )) .h neut h anti h k neut k anti k  

We have  

 

 

1
, ( )

1
( , ( ), ( )) , ( )( , ( ), ( )),( , ( ), ( ))

1
, ( ), ( )

h neut h

k neut k anti k anti hh neut h anti h k neut k anti k

k neut k anti k



 
    

  
 

 
 

 

 
 

1
( , ( ), ( ))

, ( ), ( ) ( , ( ), ( ))
1

, ( ), ( ) ,1

k neut k anti k
h neut h anti h k neut k anti k

h neut h anti h K




 
 
  
 

 

     1
, ( ), ( ) , ( ), ( ) , , .1 1 1h neut h anti h h neut h anti h K H K


   

We also have  
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   

 

1 11 , ( ), ( ) , , ( ), ( )
( , ( ), ( )

( , ( ), ( ))( , ( ), ( )

h neut h anti h k neut k anti k
k neut k anti k

h neut h anti h k neut k anti k


   

   

   

 

11 1, ( ), ( ) , ( ), ( )( , ( ), ( )

, ( ), ( ) ,1

h neut h anti h k neut k anti kk neut k anti k

h neut h anti h K


  

 
  
 

 

     

     

11 1, ( ), ( ), ( ), ( ) , ( ), ( )
.

1 1, ( ), ( ) , ( ), ( ) ,1, ( ), ( )

h neut h anti hk neut k anti k k neut k anti k

h neut h anti h h neut h anti h Kk neut k anti k

 



  
 

  
  

 

 

Using that  

   
1 1

, ( ), ( ), ( ), ( ) k neut k anti kk neut k anti k
   

whereby  is a NETG neutro-homomorphism. Instantly  

     

 

11 1, ( ), ( ), ( ), ( ) , ( ), ( )

, ( ), ( ) ,1

h neut h anti hk neut k anti k k neut k anti k

h neut h anti h K

 
  

 
 
 

 

      11 , ( ), ( ) , ( ), ( ) ,1, ( ), ( ) h neut h anti h h neut h anti h Kk neut k anti k
  

    1 ,1 1, ( ), ( ) H Kk neut k anti k   

 ,1 1H K  

using that   1
, ( ), ( )k neut k anti k   is a NETG neutro-homomorphism for all 

 , ( ), ( ) .k neut k anti k K  

3) Associativity : Lastly let’s check that the following condition holds,   we’ve  

 

( , ( ), ( )), ( , ( ), ( )), ( ', ( '), ( ')),

( ', ( '), ( '))

( '', ( ''), ( '')), ( '', ( ''), ( ''))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k

h neut h anti h k neut k anti k

 
 
   

 

( , ( ), ( )), ( , ( ), ( )), ( ', ( '), ( ')),

( , ( ), ( )), ( ', ( '), ( '))

( '', ( ''), ( '')), ( '', ( ''), ( ''))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k k neut k anti k

h neut h anti h k neut k anti k

 
  
   
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( , ( ), ( )) ,( ', ( '), ( ')),( , ( ), ( ))

( ', ( '), ( '))( , ( ), ( ))

( '', ( ''), ( '')), ( , ( ), ( )), ( ', ( '), ( ')),

( '', ( ''),

h neut h anti h h neut h anti hk neut k anti k

k neut k anti kk neut k anti k

h neut h anti h k neut k anti k k neut k anti k

k neut k an





 
 
 
 

,
( ''))ti k

 
 
 

 

while conversely  

( ', ( '), ( ')), ( ', ( ')

(( , ( ), ( )), ( , ( ), ( ))) , ( '))( '', ( ''), ( '')),

( '', ( ''), ( ''))

h neut h anti h k neut k

h neut h anti h k neut k anti k anti k h neut h anti h

k neut k anti k

 
 
 
 
 

 

(( , ( ), ( )), ( , ( ), ( )))

( ', ( '), ( ')), ( '', ( ''),( ', ( '), ( '))

( '')), ( ', ( '), ( '))( '', ( ''), ( ''))

h neut h anti h k neut k anti k

h neut h anti h h neut hk neut k anti k

anti h k neut k anti k k neut k anti k





 
 
 
 

 

 

 

( ', ( '),( ', ( '), ( '))

( '))( , ( ), ( )) ,( , ( ), ( ))
( '', ( ''), ( ''))

( , ( ), ( )) ( ', ( '), ( '))( '', ( ''), ( ''))

k neut kh neut h anti h

anti kh neut h anti h k neut k anti k
h neut h anti h

k neut k anti k k neut k anti k k neut k anti k





  
  
  

   
  


 



 

whereby K  is a NETG, we have 

 

 

( , ( ), ( ))( ', ( '), ( ')) ( '', ( ''), ( ''))

( , ( ), ( )) ( ', ( '), ( '))( '', ( ''), ( '')) .

k neut k anti k k neut k anti k k neut k anti k

k neut k anti k k neut k anti k k neut k anti k
 

Mark that by seeing at the first component 

( , ( ), ( ))( ', ( '), ( '))

( , ( ), ( )) ( ', ( '), ( '))

k neut k anti k k neut k anti k

k neut k anti k k neut k anti k



 
 

utilizing that   is a NETG neutro-homomorphism, therefore 

 

 

( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

( ', ( '), ( ') ( '', ( ''), ( ''))( , ( ), ( ))

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k h neut h anti hk neut k anti k




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 

 

( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

( ', ( '), ( '))
.( , ( ), ( )) ( , ( ), ( ))

( '', ( ''), ( '')

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k
k neut k anti k k neut k anti k

h neut h anti h




 



 
 
 
 

 

Furthermore, ( , ( ), ( ))k neut k anti k is a NETG neutro-homomorphism, yielding 

 

  

( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

( '', ( ''), ( ''))( , ( ), ( )) ( ', ( '), ( '))

h neut h anti h h neut h anti hk neut k anti k

h neut h anti hk neut k anti k k neut k anti k



 
 

 

( ', ( '), ( '))

( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( '))

( '', ( ''), ( ''))

h neut h anti h

h neut h anti h k neut k anti k k neut k anti k

h neut h anti h

 

 
 
 
 
 
 

 

which  concludes the proof. Now let’s define the first NET semi-direct product. 
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CHAPTER 4 

SEMI-DIRECT PRODUCTS OF NEUTROSOPHIC EXTENDED TRIPLET 

GROUP 

In general, the NET direct product is not enough because the operation between 

elements of the two NET subgroups is always commutative. On other hand, if N is a 

NETG, H is a NT normal subgroup, K is a NET subgroup ( K need not be NT 

normal like in a NET direct product), ,1K N N   then N must be a NET semi-

direct product. (The operation between elements of H and K need not be 

commutative.) So, we can argue that the NET semi-direct product classifies all 

NETGs constructed in this way. 

4.1 NETG external semi-direct Product 

Definition 4.1.1 Suppose that H and K are two NETGs, and 

: ( )K Aut H   

is a NETG neutro-homomorphism. The set H K endowed in a relation to the binary 

operation 

  

 

( , ( ), ( )), ( , ( ), ( )) ( ', ( '), ( ')), ( ', ( '), ( '))

( , ( ), ( )) ( ', ( '), ( ')) ,( , ( ), ( ))

( , ( ), ( ))( ', ( '), ( '))

h neut h anti h k neut k anti k h neut h anti h k neut k anti k

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k k neut k anti k

 
 

 
 

is a NETG N called a “NET external semi-direct product of NETGs H and K ” b 

, symbolized by .N H Kx 
  

Example 4.1.1 The NET set ,L H N  where ,H N are NETGs and N AutH is 

the NET external semi-direct product of H and N when equipped with the following 

operation, defined by the action 

: :N AutH   

 ( , ( ), ( )),( , ( ), ( ))1 1 1 1 1 1neut anti neut antih h h n n n  
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 ( , ( ), ( )) ( , ( ), ( )) ,1 1 1 ( , ( ), ( )) 2 2 21 1 1

( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut antih h h h h hneut antin n n

neut anti neut antin n n n n n

 
 
 
 

 

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) ,1 1 1 1 1 1 2 2 2
,

( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut anti neut antih h h n n n h h h

neut anti neut antin n n n n n

 
  
 

 

for all ( , ( ), ( )),( , ( ), ( ))1 1 1 2 2 2neut anti neut anti Hh h h h h h  and all 

( , ( ), ( )),1 1 1neut antin n n ( , ( ), ( )) .2 2 2neut anti Nn n n   

Definition 4.1.2 Let N be a NETG in a relation to NET subgroups H and .K We say 

that N is the “NET internal semi-direct product of H and K ” if H is a NET normal 

subgroup of ,N thus HK N and  .1H K N  It is symbolized by 

N H ⋊ .K  

Example 4.1.2 Let’s show that the dihedral NETG 2D n  is the NET internal semi-

direct product of two of its NET subgroups : the NET subgroup of rotations of a 

regular n gon, and the NET subgroup generated by a single reflection of the same 

regular n gon. If ( , ( ), ( )),( , ( ), ( )) ,2 a neut a anti a x neut x anti xD n   where 

( , ( ), ( ))a neut a anti a generates the NET subgroup ( , ( ), ( ))a neut a anti a   of rotations 

and ( , ( ), ( ))x neut x anti x generates the NET subgroup ( , ( ), ( )) ,x neut x anti x  then 

we know that ( , ( ), ( )) 1
na neut a anti a N and 

2( , ( ), ( )) ,1x neut x anti x N  where 1N  is 

the neutral symmetry. We know that 

  ( , ( ), ( )) ( , ( ), ( )) ;1 a neut a anti a x neut x anti xN     we also know that, if x  is a 

reflection and a  a rotation, then  

1( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).nx neut x anti x a neut a anti a a neut a anti a x neut x anti x  

Being 2D n the NETG of all symmetries of a regular n gon, it contains all and only 

the rotations and reflections of the n gon itself; this fact, combined with the fact 

that   ( , ( ), ( )) ( , ( ), ( )) ,1 a neut a anti a x neut x anti xN     allows us to deduce 

( , ( ), ( )) ( , ( ), ( )) .2a neut a anti a x neut x anti x D n   
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Since ( , ( ), ( )) ( , ( ), ( )) ,2a neut a anti a x neut x anti x D n    it follows 

( , ( ), ( )) ( , ( ), ( )) .2a neut a anti a x neut x anti x D n    Finally, we obtain  

1

1

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ;n

x neut x anti x a neut a anti a x neut x anti x

a neut a anti a a neut a anti a



  
 

thus, ( , ( ), ( ))a neut a anti a   is NT normal. Therefore  

( , ( ), ( )) ( , ( ), ( )) .2 a neut a anti a x neut x anti xD n     

Lemma 4.1.1 Assume that N is a NETG with NET subgroups H and .K  Assume 

that N HK and  .1H K N  Subsequently all element ( , ( ), ( ))n neut n anti n of N

can be inscribed particularly in the form ( , ( ), ( ))( , ( ), ( )),h neut h anti h k neut k anti k for 

( , ( ), ( ))h neut h anti h H and ( , ( ), ( )) .k neut k anti k K  

Proof Since ,N HK we know that ( , ( ), ( ))n neut n anti n can be written as 

( , ( ), ( ))( , ( ), ( )).h neut h anti h k neut k anti k  Assume it can also be inscribed 

( ', ( '), ( '))( ', ( '), ( ')).h neut h anti h k neut k anti k Then 

( , ( ), ( ))( , ( ), ( )) ( ', ( '), ( '))( ', ( '), ( '))h neut h anti h k neut k anti k h neut h anti h k neut k anti k  

so 

 

1 1( ', ( '), ( ')) ( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))

.1

h neut h anti h h neut h anti h k neut k anti k k neut k anti k

H K N

 

  

In case  

( , ( ), ( )) ( ', ( '), ( '))h neut h anti h h neut h anti h  

and 

( , ( ), ( )) ( ', ( '), ( ')).k neut k anti k k neut k anti k  

The NET internal and external direct products were two sides of the similar objects, 

consequently are the NET internal and external semi-direct products. If N H Kx 


is the NET external semi-direct product of NETGS H and ,K  subsequently 

 1H H  is a NET normal subgroup of N and it’s obvious that N is the NET 
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internal semi-direct product of  1H  and  1 .K  Because of this we can go from 

NET external to internal semi-direct products. The following conclusion goes in the 

another way, from NET internal to external semi-direct products. 

Proposition 4.1.1 Suppose that N is a NETG with NET subgroups H and ,K and 

N is the NET internal semi-direct product of H and .K  Then N H Kx 
where  

: ( )K Aut H   

is stated by  

 

 
1

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ,

h neut h anti h k neut k anti k h neut h anti hk neut k anti k

k neut k anti k







( , ( ), ( )) , ( , ( ), ( )) .h neut h anti h H k neut k anti k K   

Proof Note that ( , ( ), ( ))k neut k anti k refers to ( )Aut H where H is NET normal. By 

the lemma 4.1.1, all element ( , ( ), ( ))n neut n anti n of N can be inscribed particularly 

in terms of 

( , ( ), ( ))( , ( ), ( )),h neut h anti h k neut k anti k  

with ( , ( ), ( ))h neut h anti h H and ( , ( ), ( )) .k neut k anti k K So that, the map 

: ,H K Nx
   

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))h neut h anti h k neut k anti k h neut h anti h k neut k anti k   

is a bijection. It only remains to prove such this bijection is a neutro-homomorphism. 

Stated 

 ( , ( ), ( )), ( , ( ), ( ))h neut h anti h k neut k anti k  

and 

 ( ', ( '), ( ')), ( ', ( '), ( '))h neut h anti h k neut k anti k in .H Kx 
 

We have  
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 
( ', ( '), ( ')), ( ', ( '),

( , ( ), ( )), ( , ( ), ( ))
( '))

h neut h anti h k neut k
h neut h anti h k neut k anti k

anti k

  
  

  
 

 ( , ( ), ( )) ( ', ( '), ( ')) ,( , ( ), ( ))

( , ( ), ( ))( ', ( '), ( '))

h neut h anti h h neut h anti hk neut k anti k

k neut k anti k k neut k anti k



  
   
  
  

 

1

( , ( ), ( ))( , ( ), ( ))( ', ( '), ( '))

( , ( ), ( )) , ( , ( ), ( ))( ', ( '), ( '))

h neut h anti h k neut k anti k h neut h anti h

k neut k anti k k neut k anti k k neut k anti k




 
  

 
 

( , ( ), ( ))( , ( ), ( ))( ', ( '), ( '))( ', ( '), ( '))h neut h anti h k neut k anti k h neut h anti h k neut k anti k  

 
( ', ( '), ( ')),

( , ( ), ( )), ( , ( ), ( )) .
( ', ( '), ( '))

h neut h anti h
h neut h anti h k neut k anti k

k neut k anti k
 

 
  

 
 

Therefore   is a NETG neutro-homomorphism, which ends the proof. Shortly, we 

obtain such all NET  internal semi-direct product is neutro-isomorphic to any NET 

external semi-direct product, when  is conjugation. 
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CHAPTER 5 

NEUTROSOPHIC EXTENDED TRIPLET GROUP ACTION 

A NETG action is a representation of the elements of a NETG as a symmetries of a 

NET set. It is a precise method of solving the technique in which the elements of a 

NETG meet  transformations of any space in a method that maintains the structure of 

that space. Just as a  group action plays an important role in the classical group 

theory, NETG action enacts identical role in the theory of NETG theory. 

5.1 Left NETG Action 

Definition 5.1.1 An action of N on X (left NETG action) is a map N X X 

denoted  

 ( , ( ), ( )), ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))n neut n anti n x neut x anti x n neut n anti n x neut x anti x

 

as shown 

1( , ( ), ( )) ( , ( ), ( ))x neut x anti x x neut x anti x  

and 

 

 

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n h neut h anti h x neut x anti x

n neut n anti n h neut h anti h x neut x anti x
 

for all ( , ( ), ( ))x neut x anti x in X and ( , ( ), ( )), ( , ( ), ( ))n neut n anti n h neut h anti h in .N

Given a NET action of N on ,X we call X a N set. A N map between N sets 

X and Y is a map :f X Y of NET sets that respects the N action, meaning that, 

 

 

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))

f n neut n anti n x neut x anti x

n neut n anti n f x neut x anti x
 

for all ( , ( ), ( ))x neut x anti x in X and ( , ( ), ( ))n neut n anti n in .N To give a NET action 

of N on X is equivalent to giving a NETG neutro-homomorphism from N to the 
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NETG of bijections of .X  

Note that a NETG action is not the same thing as a binary structure, we combine two 

elements of X to get a third element of X (we combine two apples and get an apple). 

In a NETG action, we combine an element of N with an element of X to get an 

element of X (we combine an apple and an orange and get another orange). 

It is critical to note that 

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n h neut h anti h x neut x anti x  has two actions of N

on elements of .X Under other conditions 

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))n neut n anti n h neut h anti h x neut x anti x  

has one multiplication in the NETG  ( , ( ), ( ))( , ( ), ( ))n neut n anti n h neut h anti h and 

then one action of an element of N on .X  

Example 5.1.1 For a NET subgroup ,H N  consider the left NT coset space 

 ( , ( ), ( )) : ( , ( ), ( )) .N a neut a anti a H a neut a anti a N
H
   (We do not care wether or 

not ,H N  as we are just thinking about N
H

as a set.) Let N act on N
H

 by left 

multiplication. That is for ( , ( ), ( ))n neut n anti n N and a left NT coset 

( , ( ), ( ))a neut a anti a H ( ( , ( ), ( ))a neut a anti a N ), set  

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( )) :
.

( , ( ), ( )) ( , ( ), ( ))

n neut n anti n a neut a anti a H n neut n anti n a neut a anti a H

n neut n anti n y neut y anti y

y neut y anti y a neut a anti a H

 

 
  

 

 

This is an action of N on ,N
H

 since  

( , ( ), ( )) ( , ( ), ( ))1 a neut a anti a H a neut a anti a HN   

and  

 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut anti a neut a anti a Hn n n n n n

neut anti neut anti a neut a anti a Hn n n n n n

 

 
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 

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) .1 1 1 2 2 2

neut anti neut anti a neut a anti a Hn n n n n n

neut anti neut anti a neut a anti a Hn n n n n n




 

Note (Groups acting independently by multiplication). 

All NETG acts independently like so, NET set N N and .X N Then for  

( , ( ), ( ))n neut n anti n N  

and  

( , ( ), ( )) ,n neut n anti n X N   

we define  ( , ( ), ( )) ( , ( ), ( ))n neut n anti n n neut n anti n  

 ( , ( ), ( )) ( , ( ), ( )) .n neut n anti n n neut n anti n X N    

Example 5.1.2 Each NETG N  acts independently  X N by left multiplication 

functions. In other words, we set  

:( , ( ), ( )) N Nn neut n anti n   

by  

 ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) h neut h anti h n neut n anti n h neut h anti hn neut n anti n   

for all ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .h neut h anti h H  Subsequently,  the 

axioms for being a NETG action are  

( , ( ), ( )) ( , ( ), ( ))1 h neut h anti h h neut h anti hN   

for all ( , ( ), ( ))h neut h anti h N and  

 ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )1 1 1 2 2 2neut anti neut anti h neut h anti hn n n n n n  

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut anti h neut h anti hn n n n n n  

for all ( , ( ), ( )),( , ( ), ( )),( , ( ), ( )) ,1 1 1 2 2 2neut anti neut anti h neut h anti h Nn n n n n n  which 

are both true whereby 1N  is a neutrality and multiplication in N is associative. 
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The notation for the NET effect of N is  

( , ( ), ( ))n neut n anti n  

or 

 ( , ( ), ( ))( , ( ), ( )) x neut x anti xn neut n anti n  

simply as  

( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x  

or 

( , ( ), ( ))( , ( ), ( )).n neut n anti n x neut x anti x  

In this explanation, the conditions for the left NETG action take the succeeding 

shape : 

i. for all ( , ( ), ( )) , ( , ( ), ( )) ( , ( ), ( )).1x neut x anti x X x neut x anti x x neut x anti xN   

ii. for every ( , ( ), ( )),( , ( ), ( ))1 1 1 2 2 2neut anti neut anti Nn n n n n n  and 

( , ( ), ( )) ,x neut x anti x X  

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )).1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

Theorem 5.1.1 Let a NETG action N act on the NET set .X  If 

( , ( ), ( )) , ( , ( ), ( )) ,x neut x anti x X n neut n anti n N  and  

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )),y neut y anti y n neut n anti n x neut x anti x  

then  

1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).x neut x anti x n neut n anti n y neut y anti y   

If  

( , ( ), ( )) ( ', ( '), ( '))x neut x anti x x neut x anti x   

then 
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( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( ', ( '), ( ')).

n neut n anti n x neut x anti x

n neut n anti n x neut x anti x



 
 

Proof From ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))y neut y anti y n neut n anti n x neut x anti x  we get  

 

1

1

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

n neut n anti n y neut y anti y

n neut n anti n n neut n anti n x neut x anti x








 

 1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n n neut n anti n x neut x anti x  

( , ( ), ( ))1 x neut x anti xN  

( , ( ), ( )).x neut x anti x  

To show ( , ( ), ( )) ( ', ( '), ( '))x neut x anti x x neut x anti x   

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( ', ( '), ( ')),n neut n anti n x neut x anti x n neut n anti n x neut x anti x  

we show the contrapositive : if  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( ', ( '), ( '))n neut n anti n x neut x anti x n neut n anti n x neut x anti x  

then applying 1( , ( ), ( ))n neut n anti n  to both sides gives  

 

 

1

1

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( '))

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n n neut n anti n x neut x anti x





 

  
 

so  

 

 

1

1

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( '))

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n n neut n anti n x neut x anti x







 
 

so  

( , ( ), ( )) ( ', ( '), ( ')).x neut x anti x x neut x anti x  

On the other hand to imagine action of a NETG on a NET set is such it’s a definite 

neutro-homomorphism. On hand are the facts. 
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Theorem 5.1.2 Actions of the NETG N on the NET set X are indentical NETG 

neutro-homomorphisms from ( ),N Sym X  the NETG of permutaions of .X  

Proof  Assume we’ve an action of N on the NET set .X  We observe 

( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x as a function of ( , ( ), ( ))x neut x anti x (with 

( , ( ), ( ))n neut n anti n fixed). That is, for each ( , ( ), ( ))n neut n anti n N we have a 

function  

:( , ( ), ( )) X Xn neut n anti n   

by 

 
( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).
n neut n anti n

x neut x anti x n neut n anti n x neut x anti x    

The axiom ( , ( ), ( )) ( , ( ), ( ))1 x neut x anti x x neut x anti xN  says 1 is the neutrality 

function on .X  The axiom 

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

says  

( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2

,( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut antin n n n n n

neut anti neut antin n n n n n

 


 

so structure of functions on X match multiplication in .N Additionally, 

( , ( ), ( ))n neut n anti n is an invertible function whereby 1( , ( ), ( ))1 1 1neut antin n n  is 

an anti-neutral: the composite of ( , ( ), ( ))1 1 1neut antin n n and 

1( , ( ), ( ))1 1 1neut antin n n  is ,1 which is the neutral function on .X Therefore, 

1 1 1
( , ( ), ( ))

( )
neut anti

Sym X
n n n  and 

1 1 1
( , ( ), ( ))

( , ( ), ( ))
neut anti

n neut n anti n
n n n is a neutro-

homomorphism ( ).N Sym X  

Contrariwise, assume we’ve a homomorphism : ( ).f N Sym X  For every 

( , ( ), ( )),n neut n anti n  we have a permutation  ( , ( ), ( ))f n neut n anti n  on ,X  and  
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 ( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2f neut anti neut antin n n n n n  

   ( , ( ), ( )) ( , ( ), ( )) .1 1 1 2 2 2f neut anti f neut antin n n n n n  

Setting  

( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x  

  ( , ( ), ( )) ( , ( ), ( ))f n neut n anti n x neut x anti x  

introduces a NETG action of  N on ,X whereby the neutro-homomorphism 

properties of f submits the defining properties of a NETG action. From this view 

point, the NET set of ( , ( ), ( ))n neut n anti n N  that act trivially  

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x x neut x anti x   

for all ( , ( ), ( ))x neut x anti x X is straightforwardly the neutrosophic kernel of the 

neutro-homomorphism ( )N Sym X related to the action. Consequently the above 

mentioned ( , ( ), ( ))n neut n anti n such act trivially on X are assumed to lie in the 

neutrosophic kernel of the action. 

Example 5.1.3 To build N act independently by conjugation, take X N  and let  

( , ( ), ( )) ( , ( ), ( ))

1( , ( ), ( ))( , ( ), ( )) .( , ( ), ( ))

n neut n anti n x neut x anti x

n neut n anti n x neut x anti x n neut n anti n




 

Here, ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .x neut x anti x N  Since  

( , ( ), ( ))1

1( , ( ), ( ))1 1

( , ( ), ( ))

x neut x anti xN

x neut x anti xN N

x neut x anti x







 

and  
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 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( ))1 1 1

1( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 2 2 2

( , ( ), ( ))1 1 1

( , ( ), ( ))2 2 2

neut anti neut anti x neut x anti xn n n n n n

neut antin n n

neut anti x neut x anti x neut antin n n n n n

neut antin n n

neut antin n n

 

 





 

 

 

1( , ( ), ( ))( , ( ), ( ))2 2 2

1( , ( ), ( ))1 1 1

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2

1
( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( )1 1 1

x neut x anti x neut antin n n

neut antin n n

neut anti neut anti x neut x anti xn n n n n n

neut anti neut antin n n n n n

neut antin n n









  )( , ( ), ( )) ( , ( ), ( )),2 2 2neut anti x neut x anti xn n n 

 

neutrosophic conjugation is a NET action. 

Definition 5.1.2 Assume such N is a NETG and X is a NET set. A right NETG 

action of N on X is a rule for merging elements ( , ( ), ( ))n neut n anti n N and 

elements ( , ( ), ( )) ,x neut x anti x X symbolized by  

( , ( ), ( )) ( , ( ), ( )),n neut n anti n x neut x anti x

 ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x X  for all ( , ( ), ( ))x neut x anti x X  

and 

( , ( ), ( )) .n neut n anti n N We also need the succeecing conditionss. 

i. ( , ( ), ( )) ( , ( ), ( ))1x neut x anti x x neut x anti xN for all ( , ( ), ( )) .x neut x anti x X  

ii. 
 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 1 1 1

x neut x anti x neut anti neut antin n n n n n

x neut x anti x neut anti neut antin n n n n n

 


 

for all ( , ( ), ( ))x neut x anti x X  

and 

( , ( ), ( )),( , ( ), ( )) .1 1 1 2 2 2neut anti neut anti Nn n n n n n   

Remark 5.1.1 Left NETG actions are not very distinct from right NETG actions. 

The only distinction exists in condition (ii). 
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 For left NETG actions, implementing ( , ( ), ( ))2 2 2neut antin n n to an element and 

then applying ( , ( ), ( ))1 1 1neut antin n n to the result is the same as applying 

( , ( ), ( ))( , ( ), ( )) .1 1 1 2 2 2neut anti neut anti Nn n n n n n   

 For right NETG actions applying ( , ( ), ( ))2 2 2neut antin n n and then 

( , ( ), ( ))1 1 1neut antin n n is the same as applying 

( , ( ), ( ))( , ( ), ( )) .2 2 2 1 1 1neut anti neut anti Nn n n n n n   

Let us see the example of a right NETG action (beyond the Rubik’s cube example, 

which as we wrote things is a right NETG action). Also it is easy to do matrices 

multplying vectors from the right. 

Example 5.1.4 (A NETG acting on a NET set of NT cosets). Assume such N is a 

NETG and H is a NET subgroup. Examine the NET set 

 / ( , ( ), ( ))X Ha a neut a anti a N  of right NT cosets of .H Subsequently N acts 

on X by right multiplication, That is, we describe 

 

 

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

H a neut a anti a n neut n anti n

H a neut a anti a n neut n anti n




 

for ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .H a neut a anti a X First let’s chect that this 

is well defined, hence assume such ( , ( ), ( )) ( ', ( '), ( ')),H a neut a anti a H a neut a anti a

then 1( ', ( '), ( '))( , ( ), ( )) .a neut a anti a a neut a anti a H  Now, we have to prove that  

 

 

( , ( ), ( ))( , ( ), ( ))

( ', ( '), ( '))( , ( ), ( ))

H a neut a anti a n neut n anti n

H a neut a anti a n neut n anti n
 

for any ( , ( ), ( )) .n neut n anti n N But 1( ', ( '), ( '))( , ( ), ( ))a neut a anti a a neut a anti a H 

so that  

 

 

1

( ', ( '), ( '))( , ( ), ( ))

( , ( ),
( ', ( '), ( '))( , ( ), ( ))

( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

a neut a anti a n neut n anti n

a neut a
a neut a anti a a neut a anti a

anti a n neut n anti n

H a neut a anti a n neut n anti n

  
  

 


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So that 

( , ( ), ( ))( , ( ),
( ', ( '), ( '))( , ( ), ( )) .

( ))

a neut a anti a n neut n
a neut a anti a n neut n anti n H

anti n

 
  

 
 

But certainly  ( ', ( '), ( '))( , ( ), ( ))H a neut a anti a n neut n anti n also contains  

 ( ', ( '), ( '))( , ( ), ( ))1

( ', ( '), ( '))( , ( ), ( )).

a neut a anti a n neut n anti nN

a neut a anti a n neut n anti n
 

Thus the two cosets  

 ( , ( ), ( ))( , ( ), ( ))H a neut a anti a n neut n anti n  

and  

 ( ', ( '), ( '))( , ( ), ( ))H a neut a anti a n neut n anti n  

have the elements ( ', ( '), ( '))( , ( ), ( ))a neut a anti a n neut n anti n in common. This proves 

that  

 

 

( , ( ), ( ))( , ( ), ( ))

( ', ( '), ( '))( , ( ), ( ))

H a neut a anti a n neut n anti n

H a neut a anti a n neut n anti n
 

since NT cosets are either same or separate.  

Now we’ve proved that this is well defined, we have to show it is also an action. 

Definetly axiom (i) is holds since  

   ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).1 1H a neut a anti a H a neut a anti a H a neut a anti aN N   

Lastly, we have to show axiom (ii). Assume such  

( , ( ), ( )),( , ( ), ( )) .1 1 1 2 2 2neut anti neut anti Nn n n n n n    

Then  
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  

  

  

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1

(

H a neut a anti a neut anti neut antin n n n n n

H a neut a anti a neut anti neut antin n n n n n

H a neut a anti a neut anti neut antin n n n n n

H

 

 



   

   

, ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 1 1 1

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 1 1 1

a neut a anti a neut anti neut antin n n n n n

H a neut a anti a neut anti neut antin n n n n n 

 

which proves (ii) and ends the proof. 

 Of course, N also acts on the set of left NT cosets of H by multiplication on the left.  

Definition 5.1.3 A NETG action of N on X is called NET faithful if distinct 

elements of N act on X in dis-similar methods: when  

( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut antin n n n n n  

in ,N  there is an ( , ( ), ( ))x neut x anti x X such that  

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).1 1 1 2 2 2neut anti x neut x anti x neut anti x neut x anti xn n n n n n  

 

Note that when we say 
1 1 1

( , ( ), ( ))neut antin n n and 
2 2 2

( , ( ), ( ))neut antin n n act 

distinctly, we signfy they act distinctly somewhere, not all place. This is consistent 

with what it signfys to say two functions are disjoint. They take distinct values 

somewhere, not all place. 

Example 5.1.5 The action of N independently by left multiplication is faithful : 

distinct elements send 1N  to distinct places.  

Example 5.1.6 When H is a NET subgroup of N and N acts on /N H left 

multiplication ( , ( ), ( ))1 1 1neut antin n n  and ( , ( ), ( ))2 2 2neut antin n n  in N act in the 

similar method on /N H exactly when 

( , ( ), ( ))( , ( ), ( ))1 1 1

( , ( ), ( ))( , ( ), ( ))2 2 2

neut anti n neut n anti n Hn n n

neut anti n neut n anti n Hn n n
 

for all ( , ( ), ( )) ,n neut n anti n N which means  
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1

1( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1 ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) .

neut anti neut antin n n n n n
n neut n anti n

N n neut n anti n H n neut n anti n 

 



 

So the left multiplication action of N on /N H is NET faithful in the case that the 

NET subgroups 1( , ( ), ( )) ( , ( ), ( ))n neut n anti n H n neut n anti n   (as ( , ( ), ( ))n neut n anti n  

varies) have trivial intersection. 

Viewing NETG actions as neutro-homomorphisms, a NET faithful action of N on X

is an injective neutro-homomorphism ( ).N Sym X Non faithful actions are not 

injective as NETG neutro-homomorphisms, and many important homomorphisms 

are not injective. 

Remark 5.1.2 What we’ve been calling a NETG action could be a left and right 

NETG action. The difference among left and right actions is how a product 

( , ( ), ( ))( ', ( '), ( '))n neut n anti n n neut n anti n  acts : in a left action ( ', ( '), ( '))n neut n anti n

acts first and ( , ( ), ( ))n neut n anti n acts second, while in a right action 

( , ( ), ( ))n neut n anti n acts first and ( ', ( '), ( '))n neut n anti n acts second. 

We can  introduce the NET conjugate of ( , ( ), ( ))h neut h anti h  by ( , ( ), ( ))n neut n anti n

as  

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))n neut n anti n h neut h anti h n neut n anti n  

instead  

1( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) ,n neut n anti n h neut h anti h n neut n anti n   

and this convention fits well with the right NET conjugation action but not left action 

: setting 

( , ( ), ( ))

1

( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

n neut n anti nh neut h anti h

n neut n anti n h neut h anti h n neut n anti n
 

we have  

1( , ( ), ( )) ( , ( ), ( ))Nh neut h anti h h neut h anti h  

and  
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 
( , ( ), ( ))2 2 2

1 1 1

1 1 1 2 2 2

( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( )) .

neut antin n n

neut anti

neut anti neut anti

n n nh neut h anti h

n n n n n nh neut h anti h

 

The distinction among left and right actions of a NETG is mostly unreal, whereby 

subsetituting ( , ( ), ( ))n neut n anti n with 1( , ( ), ( ))n neut n anti n  in the NETG changes 

left actions into right actions and contrarily since inversion backwards the order of 

multiplication in .N So for us “NETG action” means “left NETG action”. 

5.2 NET Orbit and Stabilizers 

Definition 5.2.1 Let a NETG N act on NET set .X For each ( , ( ), ( )) ,x neut x anti x X

its orbit is  

 ( , ( ), ( ))( , ( ), ( )):( , ( ), ( ))( , ( ), ( )) n neut n anti n x neut x anti x n neut n anti n NOrb x neut x anti x

X

 



 

and its stabilizer is  

 ( , ( ), ( )) :( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

.

n neut n anti n N n neut n anti n x neut x anti xStab x neut x anti x

N

 



 

(The stabilizer of NET ( , ( ), ( ))x neut x anti x is symbolized by ( , ( ), ( ))N x neut x anti x , 

where N is NETG.) 

We call ( , ( ), ( ))x neut x anti x  a NET fixed point for the action when 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x x neut x anti x   

for every ( , ( ), ( )) ,n neut n anti n N that is, when  

 ( , ( ), ( ))( , ( ), ( )) x neut x anti xOrb x neut x anti x   

(or equivalently, when ).( , ( ), ( )) NStab x neut x anti x   The orbit of NETs of a point is a 

geometric notion: it is the NET set of places where the points can be moved by the 

NETG action. Under other conditions, the stabilizer of a NET of a point is an 

algebraic notion: it is the NET set of NETG elements that fix the point. Mostly we’ll 
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denote the elements of X as points and we’ll denote the size of a NET orbit as its 

length. 

Definition 5.2.2 Let N be a NETG, ( , ( ), ( )) ,n neut n anti n N and let H be a NET 

subgroup of .N   

1

1

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) :

( , ( ), ( ))

a neut a anti a H a neut a anti a

a neut a anti a h neut h anti h a neut a anti a

h neut h anti h H



 
  

 

 

is called a NET conjugate of H and the NET center of N is 

( , ( ), ( )) :( , ( ), ( ))( , ( ), ( ))
.

( , ( ), ( ))( , ( ), ( )): ( , ( ), ( ))

a neut a anti a N a neut a anti a n neut n anti n
Z N

n neut n anti n a neut a anti a n neut n anti n N

 
 

   
 

Remark 5.2.1 When we imagine about a NET set as a geometric object, it is useful 

to describe to its elements as points. For instance, when we imagine about /N H as a 

NET set on which N acts, it is helpful to imagine about the NT cosets of ,H which 

are the elements / ,N H as the points in / .N H  Simultaneously, though, a NT coset 

is a NET subset of .N  

All of our applications of NETG actions to group theory will flow from the 

similarities among NET orbits, stabilizers, and fixed points, which we now build 

explicit in our the following fundamental examples of NETG actions. 

Example 5.2.1 When a NETG N acts independently by conjugation,  

a) the NET orbit of ( , ( ), ( ))a neut a anti a is 

( , ( ), ( ))( , ( ), ( ))
,( , ( ), ( )) 1( , ( ), ( )) :( , ( ), ( ))

n neut n anti n a neut a anti a
Orb a neut a anti a

n neut n anti n n neut n anti n N

  
     

 

which is the conjugacy class of ( , ( ), ( )),a neut a anti a  

 

b) 

( , ( ), ( )):( , ( ), ( ))

1( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

n neut n anti n n neut n anti n

a neut a anti a n neut n anti nStab a neut a anti a

a neut a anti a

 
    
 
  
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c) 



( , ( ), ( ))
( , ( ), ( ))

:( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

n neut n anti n
Z a neut a anti a

n neut n anti n a neut a anti a

a neut a anti a n neut n anti n


 




 

is the NET centralizer of ( , ( ), ( )).a neut a anti a  

d) ( , ( ), ( ))a neut a anti a is a NET fixed point when it commutes with all elements 

of ,N and thus the NET fixed points of conjugation form the NET center of 

,N  and thus the NET fixed points of NET conjugation form the center of .N  

Example 5.2.2 When H acts on N by conjugation,  

i. the orbit of ( , ( ), ( ))a neut a anti a is  

( , ( ), ( ))( , ( ), ( ))
,( , ( ), ( )) 1( , ( ), ( )) :( , ( ), ( ))

h neut h anti h a neut a anti a
Orb a neut a anti a

h neut h anti h h neut h anti h H

  
     

 

which has no special name (elements of N that are H  conjugate to 

( , ( ), ( ))a neut a anti a ), 

ii. 







1

( , ( ), ( )) :( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( )) : ( , ( ), ( ))( , ( ), ( ))

( , ( ), (

h neut h anti hStab a neut a anti a

h neut h anti h a neut a anti a h neut h anti h

h neut h anti h

h neut h anti h h neut h anti h a neut a anti a

a neut a anti a









 ))( , ( ), ( ))h neut h anti h

 

is the elements of H commuting with ( , ( ), ( ))a neut a anti a (this is 

 ( , ( ), ( ))H Z a neut a anti a is the NET centralizer of ( , ( ), ( ))a neut a anti a in N ). 

iii. ( , ( ), ( ))a neut a anti a  is a NET fixed point when it commutes with all 

elements of ,H so the NET fixed points of H  conjugation on N shape 

the NET centralizer of H in .N  

5.3 The Fundamental Theorem About NETG Actions 

Theorem 5.3.1 Let a NETG N act on a NET set .X  

a. Different NET orbits of the action are disjoint and form a partion of .X  
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b. For each ( , ( ), ( )) , ( , ( ), ( ))x neut x anti x X Stab x neut x anti x is a NET subgroup 

of N and  

1

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti nStab n neut n anti n x neut x anti x

n neut n anti nStab Stabx neut x anti x n neut n anti n



 

for all ( , ( ), ( )) .n neut n anti n N  

c. For each ( , ( ), ( )) ,x neut x anti x X there is a bijection  

/( , ( ), ( )) ( , ( ), ( ))NOrb Stabx neut x anti x x neut x anti x  

by  

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) .( , ( ), ( ))

n neut n anti n x neut x anti x

n neut n anti n Stab x neut x anti x
 

More concretely, 

( , ( ), ( ))( , ( ), ( ))

( ', ( '), ( '))( , ( ), ( ))

n neut n anti n x neut x anti x

n neut n anti n x neut x anti x
 

in the case that ( , ( ), ( ))n neut n anti n and ( ', ( '), ( '))n neut n anti n lie in the similar NET 

coset of ,( , ( ), ( ))Stab x neut x anti x and different NT left cosets of 

( , ( ), ( ))Stab x neut x anti x correspond to different points in .( , ( ), ( ))Orb x neut x anti x  In 

particular, if ( , ( ), ( ))x neut x anti x and ( , ( ), ( ))y neut y anti y are in the same NET orbit 

then  

( , ( ), ( )) : ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

n neut n anti n N n neut n anti n x neut x anti x

y neut y anti y

 
 
 

 

is a NT left coset of ,( , ( ), ( ))Stab x neut x anti x  

and  

: .( , ( ), ( )) ( , ( ), ( ))NOrb Stabx neut x anti x x neut x anti x
 
 

 

Parts b and c Show the role of conjugate NET subgroups and neutrosophic triplet 

cosets of a NET subgroup when working with NETG actions. The formula in part c 
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that relates the length of a NET orbit to the index in N of a NET stabilizer for a point 

in the NET orbit, is named the NET orbit-stabilzer formula. 

Proof : 

a. We show distinct NET orbits in a NETG action are not equal by showing that 

two NET orbits that overlap must coexist. 

Assume ( , ( ), ( ))Orb x neut x anti x and ( , ( ), ( ))Orb y neut y anti y have a common element 

( , ( ), ( )).z neut z anti z  

1 1 1

2 2 2

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )).

z neut z anti z neut anti x neut x anti x

z neut z anti z neut anti y neut y anti y

n n n

n n n




 

We want to show ( , ( ), ( ))Orb x neut x anti x and .( , ( ), ( ))Orb y neut y anti y  It suffices to 

show ,( , ( ), ( )) ( , ( ), ( ))Orb Orbx neut x anti x y neut y anti y  since then we can switch the 

roles of ( , ( ), ( ))x neut x anti x and ( , ( ), ( ))y neut y anti y to obtain the converse insertion. 

For each point ( , ( ), ( )) ,( , ( ), ( ))u neut u anti u Orb x neut x anti x write  

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))u neut u anti u n neut n anti n x neut x anti x  

for some ( , ( ), ( )) .n neut n anti n N Since  

( , ( ), ( ))

1( , ( ), ( )) ( , ( ), ( )), ( , ( ), ( ))1 1 1

x neut x anti x

neut anti z neut z anti z u neut u anti un n n


 

 1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1u neut u anti u neut anti z neut z anti zn n n
  

 

 

1( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1

( , ( ), ( ))2 2 21( , ( ), ( ))( , ( ), ( ))1 1 1
( , ( ), ( ))

1( , ( ), ( ))( , ( ), ( )) (1 1 1 2

n neut n anti n neut anti z neut z anti zn n n

neut antin n n
n neut n anti n neut antin n n

y neut y anti y

n neut n anti n neut antin n n



   
 

 , ( ), ( ))2 2

( , ( ), ( )),

neut antin n n

y neut y anti y

 

which shows us that ( , ( ), ( )) .( , ( ), ( ))u neut u anti u Orb y neut y anti y Therefore 

.( , ( ), ( )) ( , ( ), ( ))Orb Orbx neut x anti x y neut y anti y  Every element of X is in some 



 
 

47 
 

NET orbit (its own NET orbits), so the NET orbits partition X into disjoint NET 

subsets. 

b. To see that ( , ( ), ( ))Stab x neut x anti x is a NET subgroup of ,N we’ve 

1 ( , ( ), ( ))StabN x neut x anti x since ( , ( ), ( )) ( , ( ), ( )),1 x neut x anti x x neut x anti xN 

and if ( , ( ), ( )),( , ( ), ( )) ,1 1 1 2 2 2 ( , ( ), ( ))neut anti neut antin n n n n n Stab x neut x anti x  

then 

 

 

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( ))( , ( ), ( ))1 1 1

( , ( ), ( )),

neut anti neut anti x neut x anti xn n n n n n

neut anti neut anti x neut x anti xn n n n n n

neut anti x neut x anti xn n n

x neut x anti x







 

so ( , ( ), ( ))( , ( ), ( )) .1 1 1 2 2 2 ( , ( ), ( ))neut anti neut antin n n n n n Stab x neut x anti x  Thus 

( , ( ), ( ))Stab x neut x anti x is closed under multiplication. 

Lastly,  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1neut anti x neut x anti x x neut x anti xn n n   

 1

1

1

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )),

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n x neut x anti x

x neut x anti x n neut n anti n x neut x anti x











 

 

so ( , ( ), ( ))Stab x neut x anti x is closed under inversion. 

To prove 

1

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ,( , ( ), ( ))

Stab n neut n anti n x neut x anti x

n neut n anti n n neut n anti nStab x neut x anti x


 

for all ( , ( ), ( ))x neut x anti x X and ( , ( ), ( )) ,n neut n anti n N  

observe that 
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  

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

h neut h anti h Stab n neut n anti n x neut x anti x

h neut h anti h n neut n anti n x neut x anti x

n neut n anti n x neut x anti x



 



 

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

h neut h anti h n neut n anti n x neut x anti x

n neut n anti n x neut x anti x




 

 

 

1

1

1

( , ( ), ( ))( , ( ), ( ))
( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ),

h neut h anti h n neut n anti n
n neut n anti n

x neut x anti x

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n h neut h anti h n neut n ant







 
  

 



  ( ))

( , ( ), ( )) ( , ( ), ( ))

1( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , (

i n

x neut x anti x x neut x anti x

n neut n anti n h neut h anti h n neut n anti n

Stab x neut x anti x

h neut h anti h n neut n anti n Stab x neut x anti x

n neut n







 

1), ( )) ,anti n 

 

So 

 
1

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) .( , ( ), ( ))

x neut x anti xStab x neut x anti x

n neut n anti n n neut n anti nStab x neut x anti x


 

c. The condition 

( , ( ), ( ))( , ( ), ( ))

( ', ( '), ( '))( , ( ), ( ))

n neut n anti n x neut x anti x

n neut n anti n x neut x anti x
 

is equivalent to  

 1

( , ( ), ( ))

( , ( ), ( )) ( ', ( '), ( ')) ( , ( ), ( )),

x neut x anti x

n neut n anti n n neut n anti n x neut x anti x
 

which means 1( , ( ), ( )) ( ', ( '), ( ')) ,( , ( ), ( ))n neut n anti n n neut n anti n Stab x neut x anti x
  or  

( ', ( '), ( ')) ( , ( ), ( )) .( , ( ), ( ))n neut n anti n n neut n anti n Stab x neut x anti x   

Therefore ( , ( ), ( ))n neut n anti n and ( ', ( '), ( '))n neut n anti n have the same effect on 

( , ( ), ( ))x neut x anti x  in the case that ( , ( ), ( ))n neut n anti n and ( ', ( '), ( '))n neut n anti n lie 
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in the similar NT coset of .( , ( ), ( ))Stab x neut x anti x  (Recall that for all NET 

subgroups H and 

, ( ', ( '), ( ')) ( , ( ), ( ))N n neut n anti n n neut n anti n H   

( ', ( '), ( ')) ( , ( ), ( )) .n neut n anti n H n neut n anti n H ) 

Whereby ( , ( ), ( ))Orb x neut x anti x consists of the points 

( , ( ), ( ))( , ( ), ( ))n neut n anti n x neut x anti x for varying ( , ( ), ( )),n neut n anti n and we 

showed elements of N have the similar effect on ( , ( ), ( ))x neut x anti x if and only if 

they lie in the similar NT left coset of ,( , ( ), ( ))Stab x neut x anti x we get a bijection 

between the points in the NET orbit of ( , ( ), ( ))x neut x anti x and the NT left cosets of 

( , ( ), ( ))Stab x neut x anti x by  

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) .( , ( ), ( ))

n neut n anti n x neut x anti x

n neut n anti n Stab x neut x anti x
 

Therefore the cardinality of the NET orbit of ( , ( ), ( )),x neut x anti x which is 

( , ( ), ( ))Orb x neut x anti x  equals the cardinality of the NT left cosets of 

( , ( ), ( ))Stab x neut x anti x in .N   

Remark 5.3.1 That the NET orbits of a NETG action are a partition results in a 

NETG theory : conjugacy  classes are a partitioning of a NETG and the NT left 

cosets of a NET subgroup partition the NETG. The first result utilizes the action of a 

NETG independently by NET conjugation, having NET conjugacy classes as its 

NET orbits. The second result utilizes the right inverse multiplication action of the 

NET subgroup on the NETG. 

Corollary 5.3.1 Let a finite NETG act on a NET set. 

a)   The length of every NET orbit divides the size of .N  

b)   Points in a common NET orbit have conjugate stabilizers, and in particular 

the size of the NET stabilizer is the similar for all points in a NET orbit. 

Proof  a)  The length of NET orbit is an index of a NET subgroup, so it divides .N   
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            b)  If ( , ( ), ( ))x neut x anti x and ( , ( ), ( ))y neut y anti y are in the same NET orbit, 

write  

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )).y neut y anti y n neut n anti n x neut x anti x  

Then 

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

1( , ( ), ( )) ( , ( ), ( )) ,( , ( ), ( ))

x neut x anti xStab Staby neut y anti y n neut n anti n

n neut n anti n n neut n anti nStab x neut x anti x




 

so the NET stabilizers of ( , ( ), ( ))x neut x anti x and ( , ( ), ( ))y neut y anti y are conjugate 

NET subgroups. 

A converse of part b is not generally true : points with NET conjugate stabilizers 

need not be in the same NET orbit. Even points with the same NET stabilizer need 

nor be in the same NET orbit. For example, if N  acts on itself trivially then all 

poiints have NET stabilizer N and all orbits have size 1. 

Corollary 5.3.2 Let a NETG N acts on a NET set ,X where X is finite. Let the 

distinct NET orbits of X be symbolized by 

( , ( ), ( )),...,( , ( ), ( )).1 1 1neut anti neut antix x x x x xt t t Then  

1 1

( , ( ), ( )) : ( , ( ), ( )) .
t t

i i i i i i
i i

X Orb neut anti N Stab neut antix x x x x x
 

       

Proof The NET set X can be written as the union of its NET orbits, which are 

mutually disjoint. The NET orbit-stabilizer formula tells us how large each NET 

orbit is. 

Example 5.3.1  As an application of the NET orbit-stabilizer formula we describe 

why 
H K

HK
H K




 for NET subgroups H and K of a finite NETG .N  At 

this point 

( , ( ), ( )), ( , ( ), ( )) : ( , ( ), ( )) ,

( , ( ), ( ))

h neut h anti h k neut k anti k h neut h anti h H
HK

K neut K anti K K

 
  

 
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is the NET set of products, which ususally is just a subset of .N  To count the size of 

,HK  let the direct product of NETG H K act on the NET set HK like this :  

 
1

( , ( ), ( )), ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) ,

h neut h anti h k neut k anti k x neut x anti x

h neut h anti h x neut x anti x h neut h anti h 




 

which gives us a NETG action (the NETG is H K and the NET set is HK ). There 

is only 1 NET orbit wherby  

1 1 1 HKN N N   

and  

 
( , ( ), ( )), ( , ( ), ( ))

1( , ( ), ( )),( , ( ), ( )) .1

h neut h anti h k neut k anti k

h neut h anti h k neut k anti k N
 

 

So that the NET orbit-stabilizer formula shows us  

1

H K
HK

Stab N


  

 
.

( , ( ), ( )),( , ( ), ( )) :( , ( ), ( )),( , ( ), ( )) 1

1

H K

h neut h anti h k neut k anti k h neut h anti h k neut k anti k N

N


   
 
  

 

The condition  ( , ( ), ( )),( , ( ), ( )) 1 1h neut h anti h k neut k anti k N N   means 

1( , ( ), ( ))( , ( ), ( )) ,1h neut h anti h k neut k anti k N
   

so  

  ( , ( ), ( ))( , ( ), ( )) :( , ( ), ( )) .1Stab h neut h anti h h neut h anti h h neut h anti h H KN    

So that 

1Stab H KN    

and  
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.
H K

HK
H K




 

Theorem 5.3.2 Burnside’s Lemma 

 Let a finite NETG N act on a finite NET set X in relation to  r NET orbits. 

Subsequently r is the average number of NET fixed points of the elements of the 

NETG. 

 
1

,( , ( ), ( ))
( , ( ), ( ))

r Fix Xn neut n anti nN n neut n anti n N

 


 

where 

 
( , ( ), ( )) :( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

x neut x anti x X n neut n anti n
Fix X

n neut n anti n x neut x anti x x neut x anti x

 
  

 
 

is the NET set of elements of X fixed by ( , ( ), ( )).n neut n anti n  

Don’t confuse the NET set  ( , ( ), ( ))n neut n anti nFix X in relation to the NET fixed points of 

the action :  ( , ( ), ( ))n neut n anti nFix X is only the points fixed by the elements 

( , ( ), ( )).n neut n anti n  The NET set of NET fixed points for the action of N is the 

intersection of the NET sets  ( , ( ), ( ))n neut n anti nFix X as ( , ( ), ( ))n neut n anti n runs over the 

NETG. 

Proof We will count  

 ( , ( ), ( )), ( , ( ), ( )) :

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n x neut x anti x N X

n neut n anti n x neut x anti x x neut x anti x

   
 

  

 

in two ways. 

By counting over ( , ( ), ( ))n neut n anti n ’s first we have to add up the number of 

( , ( ), ( )) 'x neut x anti x s with  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )),n neut n anti n x neut x anti x x neut x anti x  

so  
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 ( , ( ), ( )), ( , ( ), ( )) :

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n x neut x anti x N X

n neut n anti n x neut x anti x x neut x anti x

   
 

  
 

( ) .( , ( ), ( ))
( , ( ), ( ))

Fix Xn neut n anti n
n neut n anti n N

 


 

Next we count over the ( , ( ), ( ))x neut x anti x ’s and have to add up the number of 

( , ( ), ( ))n neut n anti n ’s with  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )),n neut n anti n x neut x anti x x neut x anti x  

i.e., with  

( , ( ), ( ))( , ( ), ( )) :x neut x anti xn neut n anti n Stab  

 ( , ( ), ( )), ( , ( ), ( )) :

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n x neut x anti x N Y

n neut n anti n x neut x anti x x neut x anti x

   
 

  
 

.( , ( ), ( ))

( , ( ), ( ))

Stab x neut x anti x

X neut X anti X X

 



 

Equating these two counts gives  

( )( , ( ), ( ))
( , ( ), ( ))

.( , ( ), ( ))

( , ( ), ( ))

Fix Xn neut n anti n
n neut n anti n N

Stab x neut x anti x

X neut X anti X X

 


 



 

By the NET orbit-stabilizer formula, 

( , ( ), ( )) ( , ( ), ( )) ,x neut x anti x x neut x anti x

N

Stab Orb
 

so  
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( )( , ( ), ( ))
( , ( ), ( ))

.

( , ( ), ( ))( , ( ), ( ))

Fix Xn neut n anti n
n neut n anti n N

N

Orb x neut x anti xX neut X anti X X




 



 

Divide by :N  

1
( )( , ( ), ( ))

( , ( ), ( ))

1
.

( , ( ), ( )) ( , ( ), ( ))

Fix Xn neut n anti nN n neut n anti n N

Orbx neut x anti x X x neut x anti x




 


 

Let’s examine the benefaction to the right side from points in a single NET orbit. If a 

NET orbit has n points in it, subsequently the sum over the points in that NET orbit 

is a sum of 
1

n
for n terms, and in other words equal to 1. Consequently the part of the 

sum over points in a NET orbit is 1, which makes the sum on the right side equal to 

the number of NET orbits, which is .r  

Definition 5.3.1 Two actions of NETG N on a NET sets X  and Y are called NET 

equivalent if there is a bijection :f X Y as shown  

 

 

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))

f n neut n anti n x neut x anti x

n neut n anti n f x neut x anti x
 

for all ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .x neut x anti x X  

Actions of N on two NET sets are equivalent when N permutes elements in the 

similar method on the two NET sets following matching up the NET sets properly. 

When :f X Y is a NET equivalence of NETG actions on X  and ,Y  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x x neut x anti x  

if and only if  

    ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )) ,n neut n anti n f x neut x anti x f x neut x anti x  
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so the NET stabilizer subgroups of ( , ( ), ( ))x neut x anti x X and 

( , ( ), ( ))f x neut x anti x Y are the same. 

Example 5.3.2 Let H and K be NET subgroup of .N  The NETG N acts by left 

multiplication on N
H

 and .N
K

 If H and K  are NET conjugate subgroups then 

these actions are equivalent: fix a representation 

1( , ( ), ( )) ( , ( ), ( ))0 0 0 0 0 0K neut anti H neut antin n n n n n
 for some 

( , ( ), ( ))0 0 0neut anti Nn n n  and let 

: N Nf
H K
  

by  

  1

0 0 0
( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )) .f n neut n anti n H n neut n anti n neut anti Kn n n

  

This is well-defined (independent of the NT coset representatives for 

( , ( ), ( ))n neut n anti n H ) since, for ( , ( ), ( )) ,h neut h anti h H  

 ( , ( ), ( )) , ( ), ( ))

1( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))0 0 0

1( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))0 0 0

1( , ( ), ( ))0 0 0

( , (

f n neut n anti n h neut h anti h H

n neut n anti n h neut h anti h neut anti Kn n n

n neut n anti n h neut h anti h neut antin n n

H neut antin n n

n neut







 1), ( )) ( , ( ), ( ))0 0 0

1( , ( ), ( ))( , ( ), ( )) .0 0 0

n anti n H neut antin n n

n neut n anti n neut anti Kn n n





 

There can be multiple equivalences between two equivalent NETG actions, just as 

there can be multiple neutro-isomorphisms between two isomorphic NETGs. If H

and K  are not NET conjugate then the actions have the same NET stabilizer 

subgroup, but the NET stabilizer subgroups of left NT cosets in N
H

are NET 

conjugate to ,K  and none of the former and the latter are equal. 

Theorem 5.3.3 An action of N that has one NET orbit is equivalent to the left 

multiplication action of N on some left NT coset space of .N  
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Proof Assume that N acts on the NET set X in relation to one NET orbit. 

0 0 0
( , ( ), ( ))neut anti

Fix X
x x x

 and let 
0 0 0

( , ( ), ( ))
.

neut anti
H Stab

x x x
  We will Show the action of 

N on X is equivalent to the left multiplication action of N on .N
H

 

  Every ( , ( ), ( ))x neut x anti x X has the form 

( , ( ), ( ))( , ( ), ( ))0 0 0n neut n anti n neut antix x x for some ( , ( ), ( )) ,n neut n anti n N and all 

elements in a left NT coset ( , ( ), ( ))n neut n anti n H have the same effect on 

( , ( ), ( )):0 0 0neut antix x x for all ( , ( ), ( )) ,h neut h anti h H  

  

 

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))0 0 0

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )) .0 0 0

n neut n anti n h neut h anti h neut antix x x

n neut n anti n h neut h anti h neut antix x x
 

Let : Nf X
H
 by 

 ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )).0 0 0f n neut n anti n H n neut n anti n neut antix x x  

This is well defined, as we just saw. Moreover,  

 

 

( , ( ), ( )) ( ', ( '), ( '))

( , ( ), ( )) ( ', ( '), ( '))

n neut n anti n n neut n anti n H

n neut n anti n f n neut n anti n H




 

since both sides equal  

 ( , ( ), ( ))( ', ( '), ( ')) ( , ( ), ( )) ( , ( ), ( )) .0 0 0n neut n anti n n neut n anti n n neut n anti n neut antix x x  

We will show f is a bijection. Since X has one NET orbit, 

 

  

( , ( ), ( ))( , ( ), ( )):( , ( ), ( ))0 0 0

( , ( ), ( )) : ( , ( ), ( )) ,

X n neut n anti n neut anti n neut n anti n Nx x x

f n neut n anti n H n neut n anti n N

 

 
 

so f is onto.  

If    ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2f neut anti H f neut anti Hn n n n n n then  

( , ( ), ( ))( , ( ), ( ))1 1 1 0 0 0

( , ( ), ( ))( , ( ), ( )),2 2 2 0 0 0

neut anti neut antin n n x x x

neut anti neut antin n n x x x
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so  

1( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 1 1 1 0 0 0

( , ( ), ( )).0 0 0

neut anti neut anti neut antin n n n n n x x x

neut antix x x




 

Since ( , ( ), ( ))0 0 0neut antix x x has NET stabilizer ,H  

1( , ( ), ( )) ( , ( ), ( )) ,2 2 2 1 1 1neut anti neut anti Hn n n n n n
   

so  

( , ( ), ( )) ( , ( ), ( )) .1 1 1 2 2 2neut anti H neut anti Hn n n n n n  

Consequently f is one – to –one. 

A special condition of this theorem tells that an action of N is equivalent to the left 

multiplication action of N independently in the case that the action has one NET 

orbit and the NET stabilizer subgroup are trivial.  
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

The most important point of this thesis is first to define the NETs and subsequently 

use these NETs to describe the NET internal and external direct and semi-direct 

products of NETG. As in classical group theory, in neutrosophic extended triplet 

group  building blocks for finite NET groups is simple NET groups. One way to 

make this simple NETG to larger group is NET direct product. We also explained 

some special properties of this newly born algebraic structures and their application 

to NETG. Then, NETG action as a reprsentation of the elementsof a NET group as a 

symmetries of a NET set is introduced and the fundamental theorem about NETG 

actions is given and proved. Furthermore, we defined orbits, stabilizers, fixed points, 

conjugation and centralizer for NETG. As an addition, we allow rise to a new field 

called NT Structures (such as neutrosophic extended triplet direct product, semi-

direct product, and neutrosophic extended triplet group action. Another researchers 

can work on the application of NETG theory to NT vector spaces (representation of 

the NETG), number theory, analysis, geometry, and topological spaces. 
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