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Abstract. In recent years, the theory of neutrosophic set and its hybrid models have captured 

the attention of many researchers. The concept of Q-neutrosophic set was introduced as an 

extension of neutrosophic set to handle two-dimensional uncertain, indeterminate and 

inconsistent information. This paper focuses on developing the algebraic structure pertaining to 

subring for the Q-neutrosophic set model. Properties of Q-neutrosophic subring are proposed 

and results are discussed. 

1.  Introduction 

The theory of fuzzy set theory founded by Zadeh [1] is an important aspect in the study of uncertainty. 

This idea has brought about many extensions of fuzzy set such as the intuitionistic fuzzy set [2], interval-

valued fuzzy set [3], vague set [4], and hesitant fuzzy set [5]. Smarandache [6, 7] established a new model 

called neutrosophic set theory which refers to neutral knowledge. It was further extended to Q-

neutrosophic set [8] in order to handle two-dimensional neutral knowledge. Henceforth, the theory of 

fuzzy set and its hybrid models became an energetic area of research [9-29]. The fuzzy algebraic 

structures play a noted role in mathematics with wide applications in many other branches such as 

theoretical physics, computer science, control engineering, information science, group theory, real 

analysis and others. The study of the fuzzy algebraic structures started with fuzzy subgroups and fuzzy 

ideals by Rosenfeld [30]. Solairaju and Nagarajan [31] introduced the notion of Q-fuzzy groups. 

Thiruveni and Solairaju defined the concept of neutrosophic Q-fuzzy subgroups [32], while Rasuli 

[33] established the notion of Q-fuzzy subrings and anti Q- fuzzy subrings. Recently, many researchers 

have applied different hybrid models of fuzzy set to multi-fuzzy sets [34-36], several algebraic structures 

such as groups, semigroups, rings, fields and BCK/BCI-algebras [37-39], neutrosophy [40], abstract 

algebra [41] and genetics [42-44]. Research on decision making are no longer limited to 

programming [45-52] or discrete forms [53-65]. In this paper we define the notion of Q-neutrosophic 

subring and investigate some of its properties. 

2.  Preliminaries 

In this section, we recall the notions of neutrosophic set and Q-neutrosophic set with some basic 

properties which are relevant to this paper. 

 

Definition 1. [6] A neutrosophic set   on the universe   is defined as 

  {〈  (  ( )    ( )    ( ))〉    }   
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where           -     ,  and       ( )    ( )     ( )   
   

Definition 2. [40] Let   and   be two neutrosophic sets. Then we say that 

1)     if and only if   ( )    ( )   ( )    ( ) and   ( )    ( ) for all    . 

2)     *〈  (   *  ( )   ( ) +    *  ( )    ( )+     *  ( )   ( ) +)〉     +. 
3)     *〈  (   *  ( )   ( ) +    *  ( )    ( )+     *  ( )   ( ) +)〉     +. 

 

Definition 3. [40] The complement of a neutrosophic set   in the universe   is denoted by   , where 

   {〈  (    ( )      ( )      ( ))〉     }  

The neutrosophic empty set    in the universe   is    *〈  (     )〉+. 
 

Definition 4. [8] Let   be a universal set and   be a nonempty set. A Q-neutrosophic set    in   and 

  is an object of the form      {〈  .    (   )      (   )      (   )/〉          }  

 

where                      - 
    ,  are the true membership function, indeterminacy membership    

function and false membership function, respectively with                      
   

3.  Q-neutrosophic subring 

In this section, we define the notion of Q-neutrosophic subring and investigate some of its properties. 

Throughout this paper, we will denote the ring (     ) simply as  . 

 

Definition 5. Let   be a ring and    be a Q-neutrosophic subset of  . Then   is called a Q-

neutrosophic subring of    if for all       and     the following conditions are satisfied: 

1)    (     )     {   (   )    (   ) }     (     )     {   (   )     (   )}  

   (     )     {   (   )    (   ) }  

2)    (    )     (   )    (    )     (   )     (    )     (   )  

3)     (    )     {   (   )    (   ) }     (    )     {   (   )     (   )}  

   (    )     {   (   )    (   ) }  

 

Example 1. Let   be a ring. Let     be a Q-neutrosophic set in   defined by  

 

   (   )  {

                
 

 
              

 

 

   (   )  {

 

 
               

               
 

 

   (   )  {

 

 
               

               
 

for all      By routine calculations we know that    is a Q-neutrosophic subring of    
 

Lemma 1. Let    be a Q-neutrosophic subring of    Then for all       and     we have 

   (   )     (   )    (   )     (   ) and    (   )     (   )  
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Proof. For all    , we have    (   )     (     )     {   (   )    (   )}     (   )  

Now,     (   )     (     )     {   (   )    (   )}     (   )   Similarly, we can obtain 

   (   )     (   )  

 

Theorem 1. Let    be a Q-neutrosophic subset of  . Then    is called a Q-neutrosophic subring of   if 

and only if for all       and    , the following conditions hold: 

i.    (     )     {   (   )    (   ) }     (     )     {   (   )     (   )}  

   (     )     {   (   )    (   ) }  

ii.    (    )     {   (   )    (   ) }     (    )     {   (   )     (   )}  

   (    )     {   (   )    (   ) }  

 

Proof. Suppose that    is a Q-neutrosophic subring of  . Then for       and    , by Definition 5 

we have 

   (     )     (  (  )  )     {   (   )    (    ) }      {   (   )    (   ) }   

   (     )     (  (  )  )     {   (   )    (    ) }      {   (   )    (   ) }   

   (     )     (  (  )  )     { (   )    (    ) }      {   (   )    (   ) }   

Therefore, (i) holds.  

Now, since    is a Q-neutrosophic subring of  , then (ii) automatically holds. 

Conversely, suppose that (i) and (ii) hold. Then, from Lemma 1 we have    (   )     (   ) 

   (   )     (   ) and    (   )     (   ) for all        and    . 

 Now,  

   (    )     (     )     {   (   )    (   ) }      {   (   )    (   ) }     (   )  

   (    )     (     )     {   (   )    (   ) }      {   (   )    (   ) }     (   )  

   (    )     (     )     {   (   )    (   ) }      {   (   )    (   ) }

    (   )  

Also, 

    (     )     (  (  )  )     {   (   )    (    ) }     {   (   )    (   ) }  

   (     )     (  (  )  )     {   (   )    (    ) }     {   (   )    (   ) }  

   (     )     (  (  )  )     {   (   )    (    ) }     {   (   )    (   ) }  

Thus, conditions (1) and (2) of Definition 5 hold. Now, condition (3) of Definition 5 automatically 

holds using (ii). Hence,     is a Q-neutrosophic subring of  . 

 

Theorem 2. The intersection of any two Q-neutrosophic subrings of   is also a Q- neutrosophic 

subring. 

 

Proof. Let    and    be two Q-neutrosophic subrings of  . Let                and    . 

Then 
  (     )     (     )     (     )

                                                                              {(     )    (     )    (     )    (     ) }  
 

Now,  
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   (     )     {   (     )    (     )}

                                                                           {   {   (   )    (   )}     {   (   )    (   )}}

 
                                                                         {   {   (   )    (   )}     {   (   )    (   )}}

         {   (   )    (   )}

 

and 

   (     )     {   (     )    (     )}

                                                                           {   {   (   )    (   )}     {   (   )    (   )}}

 
                                                                         {   {   (   )    (   )}     {   (   )    (   )}}

         {   (   )    (   )}  

 

 

Similarly, we can show that    (     )     {   (   )    (   )}  Also,  

  (    )     (    )     (    )

                                                             {(    )    (    )    (    )    (    ) }  
 

 

Now,

   (    )     {   (    )    (    )}

                                                                           {   {   (   )    (   )}     {   (   )    (   )}}

 
                                                                         {   {   (   )    (   )}     {   (   )    (   )}}

         {   (   )    (   )}

 

and  

   (    )     {   (    )    (    )}

                                                                           {   {   (   )    (   )}     {   (   )    (   )}}

 
                                                                         {   {   (   )    (   )}     {   (   )    (   )}}

         {   (   )    (   )}  

 

Similarly, we can show that    (     )     {   (   )    (   )}. This completes the proof. 

 

Definition 6. Let    be a Q-neutrosophic subset of  . Let       ,   - with          

Then  ,  - (     ) is a Q-level subset of     defined by ,  - (     )  {           (   )  

     (   )       (   )   }  

 

Theorem 3. [41] Let   be a ring. A non-empty subset   of    is a subring of   if and only if       
and      for all        

 

Theorem 4. Let    be a Q-neutrosophic subring of  . Then for all       ,   -   ,  - (     )    is a 

subring of  . 
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Proof. Let       and      Then 

   (     )     {   (   )    (   ) }  *   +     

   (     )     {   (   )    (   ) }  *   +     

   (     )     {   (   )    (   ) }  *   +     

Hence,      ,  - (     )  Also, 

   (    )     {   (   )    (   ) }  *   +     

   (    )     {   (   )    (   ) }  *   +     

   (    )     {   (   )    (   ) }  *   +     

Therefore,       ,  - (     )  Thus ,  - (     ) is a subring of   by Theorem 3. 

4.  Conclusion 

We have introduced the notion of Q-neutrosophic subring and developed its algebraic structure. 

Properties of the Q-neutrosophic subring were proposed and discussed. 
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