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ABSTRACT
In this paper, the notion of single-valued neutrosophic proximity
spaces which is a generalisation of fuzzy proximity spaces [Katsaras
AK. Fuzzy proximity spaces. Anal and Appl. 1979;68(1):100–110.] and
intuitionistic fuzzy proximity spaces [Lee SJ, Lee EP. Intuitionistic
fuzzy proximity spaces. Int JMathMath Sci. 2004;49:2617–2628. ]was
introduced and some of their properties were investigated. Then, it
was shown that a single-valued neutrosophic proximity on a set X
induced a single-valued neutrosophic topology on X. Furthermore,
the existence of initial single-valued neutrosophic proximity struc-
ture is proved. Finally, basedon this fact, the product of single-valued
neutrosophic proximity spaces was introduced.
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1. Introduction

In 1998, F. Smarandache [1] introduced the concept of neutrosophic set which is a mathe-
matical tool for handling problems involving incomplete, indeterminate and inconsistent
information in real world. The neutrosophic sets are characterised by three membership
functions independently: truth, indeterminacy and falsity, which are within the real stan-
dard or nonstandard unit interval ]−0, 1+[. Therefore, this notion is a generalisation of the
theory of fuzzy sets [2] and intuitionistic fuzzy sets [3]. Salama and Alblowi [4] introduced
and studied neutrosophic topological spaces and its continuous functions.

The neutrosophic set generalises the sets from a philosophical point of view. But, from
a scientific or an engineering point of view, the neutrosophic set operators need to be
specified. Because, it is not convenient to apply neutrosophic sets to practical problems
in the real-life applications. So, Wang et al. [5] introduced the single-valued neutrosophic
sets (SVNSs) by simplifying neutrosophic sets (NSs). SVNSs are also a generalisation of intu-
itionistic fuzzy sets, in which three membership functions are independent and their value
belong to the unit interval [0, 1].

Neutrosophic set theory is widely studied by many researchers. It is used in many
real application area, such as medical diagnosis [6], image processing [7], fault diagnosis
[8] and multi-criteria decision making [9], which are over-cited research topics in various
fields.

Proximity spaces were introduced by Efremovich during the first part of 1930s and later
axiomatised [10, 11]. He characterised the proximity relation ‘A is near B’ for subsets A and
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B of any set X. Efremovich [11] defined the closure of a subset A of X to be the collection of
all points of X ‘close’ A. In this way, he showed that a topology (completely regular) can be
introduced in a proximity space. This theory was improved by Smirnov [12]. Hewas the first
to discover relationship between proximities and uniformities.

In 2007, Peters [13] extended the standard spatial proximity space to a descriptive prox-
imity space that examined the descriptive nearness of objects. The concept of descriptive
proximity is useful in identifying, analysing and classifying the parts of a digital image. In
recent years, several practical applications in many fields such as cytology (cell biology),
criminology, digital image processing have been published [14, 15].

The most comprehensive work on the proximity spaces theory was done by Naimpally
and Warrack [16]. All preliminary information about proximity spaces can be found in this
source.

The main objective of this paper is

(1) to introduce the concept of single-valued neutrosophic proximity spaces and investi-
gated some of their properties,

(2) to show that a single-valued neutrosophic proximity on a set X induced a single-valued
neutrosophic topology on X, and

(3) to define the initial single-valued neutrosophic proximity structure and the product of
single-valued neutrosophic proximity spaces.

2. Preliminaries

The following are some basic definitions and notations which we will use throughout the
paper.

Definition 2.1 ([4]): Let X be a nonempty fixed set. A neutrosophic set (NS for short) A
is an object having the form A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X} where the functions TA, IA
and FAwhich represent the degree ofmembership (namely TA(x)), the degree of indetermi-
nacy (namely IA(x)) and the degree of nonmembership (namely FA(x)) respectively, of each
element x ∈ X to the set Awith the condition

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+

A neutrosophic set A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X} can be identified to an ordered
triple 〈TA, IA, FA〉 in ]−0, 1+[ (nonstandard unit interval) on X.

Remark 2.1 ([4]): Every intuitionistic fuzzy set (IFS for short) A is a nonempty set in X is
obviously on NS having the form A = {〈x, TA(x), 1 − (TA(x) + FA(x)), FA(x)〉 : x ∈ X}.

Definition 2.2 ([4]): The neutrosophic set 0N in X may be defined as

(01) 0N = {〈x, 0, 0, 1〉 : x ∈ X}
(02) 0N = {〈x, 0, 1, 1〉 : x ∈ X}
(03) 0N = {〈x, 0, 1, 0〉 : x ∈ X}
(04) 0N = {〈x, 0, 0, 0〉 : x ∈ X}.
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The neutrosophic set 1N in X may be defined as

(11) 1N = {〈x, 1, 0, 0〉 : x ∈ X}
(12) 1N = {〈x, 1, 0, 1〉 : x ∈ X}
(13) 1N = {〈x, 1, 1, 0〉 : x ∈ X}
(14) 1N = {〈x, 1, 1, 1〉 : x ∈ X}.

Definition 2.3 ([4]): Let A = 〈x, TA, IA, FA〉 be a NS on X, then the complement of the set A
(C(A) for short) may be defined as three kinds of complements:

(C1) C(A) = {〈x, 1 − TA(x), 1 − IA(x), 1 − FA(x)〉 : x ∈ X}
(C2) C(A) = {〈x, FA(x), IA(x), TA(x)〉 : x ∈ X}
(C3) C(A) = {〈x, FA(x), 1 − IA(x), TA(x)〉 : x ∈ X}.

One can define several relations and operations between neutrosophic sets follows:

Definition 2.4 ([4]): Let X be a nonempty set, and neutrosophic sets A and B in the form
A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X} and B = {〈x, TB(x), IB(x), FB(x)〉 : x ∈ X}. Then we may
consider two possible definitions for subsets.

A ⊆ Bmay be defined as

(1) A ⊆ B ⇐⇒ TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FA(x) ≥ FB(x),∀ x ∈ X
(2) A ⊆ B ⇐⇒ TA(x) ≤ TB(x), IA(x) ≥ IB(x) and FA(x) ≥ FB(x),∀ x ∈ X .

Proposition 2.5 ([4]): For any neutrosophic set A, then the following conditions hold:

(1) 0N ⊆ A, 0N ⊆ 0N
(2) A ⊆ 1N, 1N ⊆ 1N.

Definition 2.6 ([4]): Let X be a nonempty set, A = 〈x, TA(x), IA(x), FA(x)〉 and B =
〈x, TB(x), IB(x), FB(x)〉 are neutrosophic sets. Then

A ∩ Bmay be defined as

(1) A ∩ B = 〈x, TA(x) ∧ TB(x), IA(x) ∧ IB(x), FA(x) ∨ FB(x)〉
(2) A ∩ B = 〈x, TA(x) ∧ TB(x), IA(x) ∨ IB(x), FA(x) ∨ FB(x)〉

A ∪ Bmay be defined as

(1) A ∪ B = 〈x, TA(x) ∨ TB(x), IA(x) ∨ IB(x), FA(x) ∧ FB(x)〉
(2) A ∪ B = 〈x, TA(x) ∨ TB(x), IA(x) ∧ IB(x), FA(x) ∧ FB(x)〉

where ∨ and ∧ denote the maximum and minimum, respectively.

Since it is not convenient to apply neutrosophic sets to practical problems in the real
applications, Wang et al. [5] introduced the concept of single-valued neutrosophic sets
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(SVNSs for short), which is an instance of a neutrosophic set. SVNSs can be used in real
scientific and engineering applications.

Definition 2.7 ([5]): Let X be a space of points (objects), with a generic element in X
denoted by x. A single-valued neutrosophic set (SVNS) Ã in X is characterised by three
membership functions, a truth-membership function TÃ, an indeterminacy-membership
function ĨA, and a falsity-membership function FÃ. For each point x ∈ X , TÃ, ĨA, FÃ ∈ [0, 1].

A SVNS Ã can be denoted by

Ã = {〈x, TÃ(x), ĨA(x), FÃ(x)〉 : x ∈ X}.

Remark 2.2: For the sake of simplicity, we shall use the symbol Ã = 〈TÃ, ĨA, FÃ〉 for the
single-valued neutrosophic set Ã = {〈x, TÃ(x), ĨA(x), FÃ(x)〉 : x ∈ X}.

Remark 2.3: In SVNSs, we consider the neutrosophic set which takes the value from the
subset of the classical unit interval [0, 1] to apply neutrosophic set to science and technol-
ogy. But the neutrosophic set generalises the sets fromaphilosophical point of view to deal
with incomplete, indeterminate and inconsistent information in realworld. Therefore, some
neutrosophic components are off the interval [0, 1], i.e. some neutrosophic components
> 1 and some neutrosophic components < 0.

Example 2.8: In a factory a full-time worker works 40 hours per week. Considering the
period of last week, worker A worked only 32 hours part-time, worker B worked full time
40 hours, and worker C worked 48 hours, working 8 hours overtime. So the degrees of
membership of workers A, B and C are 32/40 = 0.8 < 1, 40/40 = 1 and 48/40 = 1.2 > 1,
respectively. We need tomake distinction betweenworkers whowork overtime, and those
who work full-time or part-time. That’s why we need to associate a degree of membership
greater than 1 to the overtime workers. Similarly, worker Dwas absent without pay for the
whole week, and worker E did not come to work last week, but also caused damage which
was estimated at a value half of the weekly salary. The membership degree of worker E
has to be less than the worker D’s. So the degrees of membership of workers D and E are
0/40 = 0 and −20/40 = −0.5 < 0, respectively. Consequently, the membership degrees
can be off the interval [0, 1] in NSs.

An empty SVNS 0̃, a full SVNS 1̃ and the operators such as complement, containment,
union, intersection in the single-valued neutrosophic sets can be defined in different forms
as given in the above definitions for neutrosophic sets. We use the following definitions for
these concepts:

Definition 2.9: Let Ã = 〈TÃ, ĨA, FÃ〉 and B̃ = 〈T̃B, ĨB, F̃B〉 be SVNSs on a nonempty set X. Then
Empty SVNS 0̃ and full SVNS 1̃ are defined as

• 0̃ = {〈x, 0, 0, 1〉 : x ∈ X}
• 1̃ = {〈x, 1, 1, 0〉 : x ∈ X}
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Complement of the SVNS Ã (C(̃A) for short) is defined as

• C(̃A) = {〈x, 1 − TÃ(x), 1 − ĨA(x), 1 − FÃ(x)〉 : x ∈ X}

Ã ⊆ B̃ is defined as

• Ã ⊆ B̃ ⇐⇒ TÃ(x) ≤ T̃B(x), ĨA(x) ≤ ĨB(x) and FÃ(x) ≥ F̃B(x),∀x ∈ X .

Union and intersection operators are defined as

• Ã ∪ B̃ = {〈x, TÃ(x) ∨ T̃B(x), ĨA(x) ∨ ĨB(x), FÃ(x) ∧ F̃B(x)〉 : x ∈ X}
• Ã ∩ B̃ = {〈x, TÃ(x) ∧ T̃B(x), ĨA(x) ∧ ĨB(x), FÃ(x) ∨ F̃B(x)〉 : x ∈ X}.

Example 2.10: Let X = {x1, x2}, Ã = {〈x1, 0.3, 1, 0.6〉, 〈x2, 0.8, 0.3, 0.5〉} and B̃ = {〈x1, 0.4, 0.5,
0.9〉, 〈x2, 0, 0.7, 0.2〉} be SVNSs on X. Then,

C(̃A) = {〈x1, 0.7, 0, 0.4〉, 〈x2, 0.2, 0.7, 0.5〉}
C(̃B) = {〈x1, 0.6, 0.5, 0.1〉, 〈x2, 1, 0.3, 0.8〉}
Ã ∪ B̃ = {〈x1, 0.4, 1, 0.6〉, 〈x2, 0.8, 0.7, 0.2〉}
Ã ∩ B̃ = {〈x1, 0.3, 0.5, 0.9〉, 〈x2, 0, 0.3, 0.5〉}.

Proposition 2.11: For any SVNSs Ã and B̃, then the following conditions hold:

(1) 0̃ ⊆ Ã ⊆ 1̃
(2) Ã ∪ 0̃ = Ã, Ã ∪ 1̃ = 1̃ and Ã ∩ 0̃ = 0̃, Ã ∩ 1̃ = Ã
(3) Ã ∪ B̃ = B̃ ∪ Ã and Ã ∩ B̃ = B̃ ∩ Ã
(4) Ã = B̃ ⇐⇒ Ã ⊆ B̃ and B̃ ⊆ Ã
(5) Ã ⊆ Ã ∪ B̃, B̃ ⊆ Ã ∪ B̃ and Ã ∩ B̃ ⊆ Ã, Ã ∩ B̃ ⊆ B̃
(6) Ã ⊆ B̃ ⇐⇒ Ã ∪ B̃ = B̃ and Ã ⊆ B̃ ⇐⇒ Ã ∩ B̃ = Ã
(7) C(̃0) = 1̃ and C(̃1) = 0̃
(8) C(C(̃A)) = Ã
(9) C(̃A ∪ B̃) = C(̃A) ∩ C(̃B)

(10) C(̃A ∩ B̃) = C(̃A) ∪ C(̃B).

Definition 2.12: Let X and Y be two nonempty sets and f : X → Y a function.

(i) If B̃ = {〈y, T̃B(y), ĨB(y), F̃B(y)〉 : y ∈ Y} is an SVNS in Y, then the preimage of B̃ under f is
defined by

f−1(̃B) = {〈x, f−1(T̃B)(x), f
−1(ĨB)(x), f

−1(F̃B)(x)〉 : x ∈ X},

where f (x) = y and f−1(T̃B)(x) = T̃B(f (x)), f
−1(ĨB)(x) = ĨB(f (x)), f

−1(F̃B)(x) = F̃B(f (x)).
(ii) If Ã = {〈x, TÃ(x), ĨA(x), FÃ(x)〉 : x ∈ X} is a SVNS in X, then the image of Ã under f is

defined by

f (̃A) = {〈y, f (TÃ)(y), f (ĨA)(y), (1 − f (1 − FÃ))(y)〉 : y ∈ Y},
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where

f (TÃ)(y) =
{
supx∈f−1(y) TÃ(x), if f−1(y) �= ∅
0, otherwise

,

f (ĨA)(y) =
{
supx∈f−1(y) ĨA(x), if f−1(y) �= ∅
0, otherwise

and

(1 − f (1 − FÃ))(y) =
{
infx∈f−1(y) FÃ(x), if f−1(y) �= ∅
0, otherwise.

The concept of single-valued neutrosophic topological space is defined as follows:

Definition 2.13 ([17]): A single-valued neutrosophic topology (SVNT for short) on a
nonempty set X is a family τ̃ of SVNSs in X satisfying the following axioms:

(̃τ1) 0̃, 1̃ ∈ τ̃

(̃τ2) G̃1 ∩ G̃2 ∈ τ̃ for any G̃1, G̃2 ∈ τ̃

(̃τ3)
⋃

G̃i ∈ τ̃ for every {̃Gi : i ∈ J} ⊆ τ̃ .

In this case, the pair (X , τ̃ ) is called a single-valued neutrosophic topological space
(SVNTS for short). The elements of τ̃ are called single-valued neutrosophic open sets
(SVNOSs for short).

Example 2.14: Let X = {x1, x2, x3} and

Ã = {〈x1, 0.4, 0.2, 0.5〉, 〈x2, 0.5, 0.8, 0.3〉, 〈x3, 0.7, 0.5, 1〉}
B̃ = {〈x1, 0.8, 0.8, 0.3〉, 〈x2, 0.7, 1, 0.1〉, 〈x3, 0.9, 0.9, 0.7〉}
C̃ = {〈x1, 0.2, 0.1, 0.6〉, 〈x2, 0.3, 0.7, 0.4〉, 〈x3, 0.6, 0.3, 1〉}
D̃ = {〈x1, 0.6, 0.4, 0.4〉, 〈x2, 0.5, 1, 0.2〉, 〈x3, 0.8, 0.7, 0.8〉}

Then the family τ̃ = {̃0, 1̃, Ã, B̃, C̃, D̃} of single-valued neutrosophic sets in X is SVNT on X.

Definition 2.15: The complement of Ã of SVNOS is called a single-valued neutrosophic
closed set (SVNCS for short) in X.

Definition 2.16: Let (X , τ̃ ) and (Y , σ̃ ) be SVNTSs. A map f : X → Y is said to be continuous
if f−1(̃B) is an SVNOS in X, for each SVNOS B̃ in Y, or equivalently, f−1(̃B) is an SVNCS in X, for
each SVNCS B̃ in Y.

Single-valued neutrosophic interior and closure operations in SVNTSs are defined as
follows:
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Definition2.17 ([17]): Let (X , τ̃ )beanSVNTSand ÃbeanSVNS inX. Then the single-valued
neutrosophic interior and closure of Ã are defined by

int(̃A) =
⋃

{̃G : G̃ is an SVNOS in X and G̃ ⊆ Ã}

cl(̃A) =
⋂

{̃F : F̃ is an SVNCS in X and Ã ⊆ F̃}.

It can be also shown that int(̃A) is an SVNOS and cl(̃A) is an SVNCS in X.

(1) Ã is SVNOS if and only if Ã = int(̃A)

(2) Ã is SVNCS if and only if Ã = cl(̃A).

Proposition 2.18: For any SVNS Ã in (X , τ̃ ),we have

(1) int(C(̃A)) = C(cl(̃A))

(2) cl(C(̃A)) = C(int(̃A)).

Proof: Let Ã be an SVNS in (X , τ̃ ).

(1) int(C(̃A)) =
⋃

{̃G : G̃ is an SVNOS in X and G̃ ⊆ C(̃A)}

=
⋃

{̃G : G̃ is an SVNOS in X and Ã ⊆ C(̃G)}

=
⋃

{C(̃F) : C(̃F) is an SVNOS in X and Ã ⊆ F̃}

=
⋃

{C(̃F) : F̃ is an SVNCS in X and Ã ⊆ F̃}

= C(
⋂

{̃F : F̃ is an SVNCS in X and Ã ⊆ F̃})
= C(cl(̃A)).

(2) Similarly to (1). �

Definition 2.19 ([16]): A proximity (Efremovich proximity) space is a pair (X , δ), where X is
a set and δ is a binary relation on the power set of X such that

(P1) A δ B iff B δ A;
(P2) A δ (B ∪ C) iff A δ B or A δ C;
(P3) A δ B implies A, B �= ∅;
(P4) A ∩ B �= ∅ implies A δ B;
(P5) A δ B implies there is an E ⊆ X such that A δ E and (X − E) δ B,

where A δ Bmeans it is not true that A δ B.

A function f : (X , δ) → (Y , δ′)between twoproximity spaces is called a proximitymapping
(or a p-map) if and only if f (A) δ′ f (B)whenever A δ B. It can easily be shown that f is a p-map
if and only if, for subsets C and D of Y, f−1(C) δ f−1(D) whenever C δ

′
D.
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3. Single-Valued Neutrosophic Proximity Spaces

In this section, we introduce the concept of neutrosophic proximity spaces as a generalisa-
tion of fuzzy proximity spaces [18] and intuitionistic fuzzy proximity spaces [19].

Definition 3.1: Let X be a nonempty set and t, i, f ∈ [0, 1]. The single-valued neutrosophic
set x̃t,i,f is called a single-valued neutrosophic point (SVNP for short) in X given by

x̃t,i,f (̃xp) =
{

(t, i, f ) , if x̃ = x̃p
(0, 0, 1) , if x̃ �= x̃p

for x̃p ∈ X is called the support of x̃t,i,f , where t denotes the degree of membership value, i
denotes the degree of indeterminacy and f denotes the degree of non-membership value
of x̃t,i,f .

Theorem 3.2 ([17]): Let (X , τ̃ ) be an SVNTS, SVNS(X) denote the set of all single-valued neu-
trosophic sets in X and cl : SVNS(X) → SVNS(X) the SVN closure in (X , τ̃ ). Then for any Ã, B̃ ∈
SVNS(X) the following properties hold:

(1) cl(̃0) = 0̃
(2) Ã ⊆ cl(̃A)

(3) cl(cl(̃A)) = cl(̃A)

(4) cl(̃A ∪ B̃) = cl(̃A) ∪ cl(̃B)
(5) If Ã ⊆ B̃, then cl(̃A) ⊆ cl(̃B).

Theorem 3.3 ([17]): Let (X , τ̃ ) be an SVNTS and the single-valued neutrosophic operator
cl : SVNS(X) → SVNS(X) satisfies the properties (1) –(4) in Theorem 3.2. Then there exists a
single-valued neutrosophic topology τ̃cl on X such that cl̃τcl = cl.

Definition 3.4: Let X be a nonempty set and SVNS(X) denote the set of all single-valued
neutrosophic sets in X. A single-valued neutrosophic proximity space (SVNPS for short) is a
pair (X , δ), where δ is a relation on SVNS(X) such that

(P̃1) Ã δ B̃ iff B̃ δ Ã;
(P̃2) Ã δ (̃B ∪ C̃) iff Ã δ B̃ or Ã δ C̃;
(P̃3) Ã δ B̃ implies Ã �= 0̃ and B̃ �= 0̃;
(P̃4) Ã ∩ B̃ �= 0̃ implies Ã δ B̃;
(P̃5) Ã δ B̃ implies there is an Ẽ ∈ SVNS(X) such that Ã δ Ẽ and C(̃E) δ B̃,

where Ã δ B̃means it is not true that Ã δ B̃.

Definition 3.5: Amap f : (X , δ) → (Y , δ′) between two single-valued neutrosophic proxim-
ity spaces is called a single-valued neutrosophic proximitymapping (or a p̃-map) if and only if
f (̃A) δ′ f (̃B) whenever Ã δ B̃.
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It can easily be shown that f is a p̃-map if and only if, for each C̃, D̃ ∈ SVNS(Y),
f−1(̃C) δ f−1(D̃) whenever C̃ δ

′
D̃.

We have easily the following lemma,which followdirectly fromaxioms (P̃1), (P̃2) and (P̃4)
of Definition 3.4.

Lemma 3.6: Let (X , δ) be a SVNPS. Then the following properties hold:

(1) If Ã δ B̃, Ã ⊆ C̃ and B̃ ⊆ D̃, then C̃ δ D̃
(2) Ã δ Ã and Ã δ 1̃ for each Ã �= 0̃

Theorem 3.7: Let (X , δ) be an SVNPS and define a map cl : SVNS(X) → SVNS(X) by cl(̃A) =⋂{C(̃B) ∈ SVNS(X) | Ã δ B̃} for each Ã ∈ SVNS(X). Then the following properties hold:

(1) cl(̃0) = 0̃
(2) Ã ⊆ cl(̃A)

(3) cl(cl(̃A)) = cl(̃A)

(4) cl(̃A ∪ B̃) = cl(̃A) ∪ cl(̃B)

Proof: (1) cl(̃0) = 0̃
cl(̃0) = ⋂{C(̃B) | B̃ δ 0̃} = (0, 0, 1) = 0̃ since 1̃ δ 0̃.

(2) Ã ⊆ cl(̃A)

Let Ã = (TÃ, ĨA, FÃ) ∈ SVNS(X). Take any B̃ = (T̃B, ĨB, F̃B) ∈ SVNS(X) such that Ã δ B̃. Then
Ã ∩ B̃ = 0̃ = (0, 0, 1) and hence min{TÃ, T̃B} = 0, min{ĨA, ĨB} = 0 and max{FÃ, F̃B} =
1. So TÃ + T̃B ≤ 1, ĨA + ĨB ≤ 1 and FÃ + F̃B ≥ 1. Thus TÃ ≤ 1 − T̃B, ĨA ≤ 1 − ĨB and
FÃ ≥ 1 − F̃B. Hence C(̃B) = (1 − T̃B, 1 − ĨB, 1 − F̃B) ⊇ (TÃ, ĨA, FÃ) = Ã. Therefore Ã ⊆⋂{C(̃B) | Ã δ B̃} = cl(̃A).

(3) cl(cl(̃A)) = cl(̃A)

It is sufficient to show that cl(̃A) δ B̃ iff Ã δ B̃ by the definition of closure.
If Ã δ B̃, then cl(̃A) δ B̃ obviously.
Conversely, suppose that Ã δ B̃ and cl(̃A) δ B̃. Then there exists an Ẽ ∈ SVNS(X) such that

B̃ δ Ẽ andC(̃E) δ Ã. Since cl(̃A) δ B̃and B̃ δ Ẽ, cl(̃A) � Ẽ and Tcl(̃A) � T̃E or Icl(̃A) � ĨE or Fcl(̃A) � F̃E .
So there exists an x ∈ X such that (i) Tcl(̃A)(x) > T̃E(x) or (ii) Icl(̃A)(x) > ĨE(x) or (iii) Fcl(̃A)(x) <

F̃E(x).

(i) If Tcl(̃A)(x) > T̃E(x), we choose a ∈ [0, 1] such that T̃E(x) < a < Tcl(̃A)(x). Define
K̃ : X −→ [0, 1] × [0, 1] × [0, 1] by

K̃(xp) =
{

(1 − a, 0, 1), if x = xp

(0, 0, 1), if x �= xp

Then K̃ ∈ SVNS(X) and K̃ ⊆ C(̃E) since TK̃(x) < TC(̃E)(x), ĨK(x) ≤ IC(̃E)(x) and FK̃(x) ≥
FC(̃E)(x). If K̃ δ Ã, then cl(̃A) ⊆ C(̃K) by the definition of closure and hence Tcl(̃A)(x) ≤
TC(̃K)(x) = a < Tcl(̃A)(x). This is a contradiction. Thus K̃ δ Ã. Since K̃ ⊆ C(̃E), Ã δ C(̃E).
This is a contradiction to the fact that C(̃E) δ Ã. Hence Tcl(̃A)(x) ≤ T̃E(x).
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(ii) If Icl(̃A)(x) > ĨE(x), we choose b ∈ [0, 1] such that ĨE(x) < b < Icl(̃A)(x). Define L̃ : X −→
[0, 1] × [0, 1] × [0, 1] by

L̃(xp) =
{

(0, 1 − b, 1), if x = xp
(0, 0, 1), if x �= xp.

Then L̃ ∈ SVNS(X) and L̃ ⊆ C(̃E) since T̃L(x) ≤ TC(̃E)(x), ĨL(x) < IC(̃E)(x) and F̃L(x) ≥
FC(̃E)(x). If L̃ δ Ã, then cl(̃A) ⊆ C(̃L) by the definition of closure and hence Icl(̃A)(x) ≤
IC(̃L)(x) = b < Icl(̃A)(x). This is a contradiction. Thus L̃ δ Ã. Since L̃ ⊆ C(̃E), Ã δ C(̃E). This
is a contradiction to the fact that C(̃E) δ Ã. Hence Icl(̃A)(x) ≤ ĨE(x).

(iii) If Fcl(̃A)(x) < F̃E(x), we choose c ∈ [0, 1] such that Fcl(̃A)(x) < c < F̃E(x). Define
M̃ : X −→ [0, 1] × [0, 1] × [0, 1] by

M̃(xp) =
{

(0, 0, 1 − c), if x = xp

(0, 0, 1), if x �= xp.

Then M̃ ∈ SVNS(X) and M̃ ⊆ C(̃E) since TM̃(x) ≤ TC(̃E)(x), IM̃(x) ≤ IC(̃E)(x) and FM̃(x) >

FC(̃E)(x). If M̃ δ Ã, then cl(̃A) ⊆ C(M̃) by the definition of closure and hence Fcl(̃A)(x) ≥
FC(M̃)(x) = c > Fcl(̃A)(x). This is a contradiction. Thus M̃ δ Ã. Since M̃ ⊆ C(̃E), Ã δ C(̃E).
This is a contradiction to the fact that C(̃E) δ Ã. Hence Fcl(̃A)(x) ≥ F̃E(x).

(4) cl(̃A ∪ B̃) = cl(̃A) ∪ cl(̃B)

Let Ã = (TÃ, ĨA, FÃ), B̃ = (T̃B, ĨB, F̃B) ∈ SVNS(X). Since TÃ ≤ TÃ ∨ T̃B, ĨA ≤ ĨA ∨ ĨB and FÃ ≤
FÃ ∨ F̃B, Ã ⊆ Ã ∪ B̃. So, from Theorem 3.2 (5), we have cl(̃A) ⊆ cl(̃A ∪ B̃). Similarly, cl(̃B) ⊆
cl(̃A ∪ B̃), and hence cl(̃A ∪ B̃) ⊇ cl(̃A) ∪ cl(̃B).

On the other hand, suppose cl(̃A ∪ B̃) � cl(̃A) ∪ cl(̃B). Then there exists an x ∈
X such that (i) Tcl(̃A∪̃B)(x) > Tcl(̃A)(x) ∨ Tcl(̃B)(x) or (ii) Icl(̃A∪̃B)(x) > Icl(̃A)(x) ∨ Icl(̃B)(x) or
(iii) Fcl(̃A∪̃B)(x) < Fcl(̃A)(x) ∧ Fcl(̃B)(x).

(i) Suppose Tcl(̃A∪̃B)(x) > Tcl(̃A)(x) ∨ Tcl(̃B)(x).We may assume Tcl(̃A)(x) ≥ Tcl(̃B)(x). Let
Tcl(̃A∪̃B)(x) = α. Then Tcl(̃A)(x) < α and hence there exists an ε > 0 such that Tcl(̃A)(x) <

α − ε. Since Tcl(̃A)(x) = ∧ {1 − TC̃(x) | C̃ δ Ã}, there exists a C̃ ∈ SVNS(X) such that
C̃ δ Ã and 1 − TC̃(x) < α − ε. Note that 1 − TC̃(x) ≥ Tcl(̃A)(x) ≥ Tcl(̃B)(x) > Tcl(̃B)(x) −
ε/2, and hence Tcl(̃B)(x) < 1 − TC̃(x) + ε/2. Since Tcl(̃B)(x) = ∧ {1 − TD̃(x) | D̃ δ B̃},
there exists a D̃ ∈ SVNS(X) such that D̃ δ B̃ and 1 − TD̃(x) < 1 − TC̃(x) + ε/2. Since
(̃C ∩ D̃) δ Ã and (̃C ∩ D̃) δ B̃, we have (̃C ∩ D̃) δ (̃A ∪ B̃). So, from the definition of clo-
sure, we have cl(̃A ∪ B̃) ⊆ C(̃C ∩ D̃). Also (1 − TC̃(x)) ∨ (1 − TD̃(x)) < 1 − TC̃(x) + ε/2.
Hence, by Proposition 2.11(10), α = Tcl(̃A∪̃B)(x) ≤ TC(̃C∩D̃)(x) = TC(̃C)(x) ∨ TC(D̃)(x) =
(1 − TC̃(x)) ∨ (1 − TD̃(x)) < 1 − TC̃(x) + ε/2 < α − ε + ε/2 = α − ε/2.
This is a contradiction.

(ii) Suppose Icl(̃A∪̃B)(x) > Icl(̃A)(x) ∨ Icl(̃B)(x).
We may assume Icl(̃A)(x) ≥ Icl(̃B)(x). Let Icl(̃A∪̃B)(x) = β . Then Icl(̃A)(x) < β and hence

there exists an ε > 0 such that Icl(̃A)(x) < β − ε. Since Icl(̃A)(x) = ∧ {1 − ĨC(x) | C̃ δ Ã},
there exists a C̃ ∈ SVNS(X) such that C̃ δ Ã and 1 − ĨC(x) < β − ε. Note that,
1 − ĨC(x) ≥ Icl(̃A)(x) ≥ Icl(̃B)(x) > Icl(̃B)(x) − ε/2, and hence Icl(̃B)(x) < 1 − ĨC(x) + ε/2.
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Since Icl(̃B)(x) = ∧ {1 − ĨD(x) | D̃ δ B̃}, there exists a D̃ ∈ SVNS(X) such that D̃ δ B̃

and 1 − ĨD(x) < 1 − ĨC(x) + ε/2. Since (̃C ∩ D̃) δ Ã and (̃C ∩ D̃) δ B̃, we have (̃C ∩
D̃) δ (̃A ∪ B̃). So, from the definition of closure, we have cl(̃A ∪ B̃) ⊆ C(̃C ∩ D̃). Also (1 −
ĨC(x)) ∨ (1 − ĨD(x)) < 1 − ĨC(x) + ε/2. Hence β = Icl(̃A∪̃B)(x) ≤ IC(̃C∩D̃)(x) = IC(̃C)(x) ∨
IC(D̃)(x) = (1 − ĨC(x)) ∨ (1 − ĨD(x)) < 1 − ĨC(x) + ε/2 < β − ε + ε/2 = β − ε/2.
This is a contradiction.

(iii) Suppose Fcl(̃A∪̃B)(x) < Fcl(̃A)(x) ∧ Fcl(̃B)(x).
We may assume Fcl(̃A)(x) ≤ Fcl(̃B)(x). Let Fcl(̃A∪̃B)(x) = γ . Then Fcl(̃A)(x) > γ and
hence there exists an ε > 0 such that Fcl(̃A)(x) > γ + ε. Since Fcl(̃A)(x) = ∨ {1 −
FC̃(x) | C̃ δ Ã}, there exists a C̃ ∈ SVNS(X) such that C̃ δ Ã and 1 − FC̃(x) > γ +
ε. Note that, 1 − FC̃(x) ≤ Fcl(̃A)(x) ≤ Fcl(̃B)(x) < Fcl(̃B)(x) + ε/2, and hence Fcl(̃B)(x) >

1 − FC̃(x) − ε/2. Since Fcl(̃B)(x) = ∨ {1 − FD̃(x) | D̃ δ B̃}, there exists a D̃ ∈ SVNS(X)

such that D̃ δ B̃ and 1 − FD̃(x) > 1 − FC̃(x) − ε/2. Since (̃C ∩ D̃) δ Ã and (̃C ∩ D̃) δ B̃,
we have (̃C ∩ D̃) δ (̃A ∪ B̃). So, from the definition of closure, we have cl(̃A ∪ B̃) ⊆
C(̃C ∩ D̃). Also (1 − FC̃(x)) ∧ (1 − FD̃(x)) > 1 − FC̃(x) − ε/2. Hence γ = Fcl(̃A∪̃B)(x) ≥
FC(̃C∩D̃)(x) = FC(̃C)(x) ∧ FC(D̃)(x) = (1 − FC̃(x)) ∧ (1 − FD̃(x)) > 1 − FC̃(x) − ε/2 > γ

+ ε − ε/2 = γ + ε/2.
This is a contradiction. �

Theorem 3.8: For an SVNPS (X , δ), the family

τ̃ (δ) = {̃A ∈ SVNS(X) | cl(C(̃A)) = C(̃A)}
is an SVN topology on X. This topology is called the SVN topology on X induced by the SVN
proximity δ.

Proof: It follows from Theorems 3.3 and 3.7. �

Theorem 3.9: Let (X , δ1) and (Y , δ2) be two single-valued neutrosophic proximity spaces. An
SVN proximity mapping f : (X , δ1) → (Y , δ2) is continuous with respect to the SVN topologies
τ̃ (δ1) and τ̃ (δ2).

Proof: Let Ã ∈ τ̃ (δ2). Then cl(C(̃A)) = C(̃A). We will show that cl(C(f−1(̃A))) = C(f−1(̃A)).
Clearly C(f−1(̃A)) ⊆ cl(C(f−1(̃A))).

Conversely, let B̃ δ2 C(̃A). Since f is a p̃-map, f−1(̃B) δ1 f−1(C(̃A)) = C(f−1(̃A)). So

cl(C(f−1(̃A))) =
⋂

{C(̃F) | F̃ δ1 C(f−1(̃A))} ⊆ C(f−1(̃B)).

Hence for any B̃ δ2 C(̃A), cl(C(f−1(̃A))) ⊆ C(f−1(̃B)). Thus we have

cl(C(f−1(̃A))) ⊆
⋂

{C(f−1(̃B)) | B̃ δ2 C(̃A)}

=
⋂

{f−1(C(̃B)) | B̃ δ2 C(̃A)}

= f−1(
⋂

{C(̃B) | B̃ δ2 C(̃A)})
= f−1(cl(C(̃A))) = f−1(C(̃A))

= C(f−1(̃A)).
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So cl(C(f−1(̃A))) = C(f−1(̃A)). Hence f−1(̃A) is open. Therefore, f : (X , τ̃ (δ1)) → (Y , τ̃ (δ2)) is
continuous. �

4. Initial Structures and Products

We prove the existences of initial single-valued neutrosophic proximity space. Then we
define the product of SVNPSs.

Theorem 4.1: Let X be a set, {(Xα , δα) | α ∈ 	} be a family of single-valued neutrosophic
proximity spaces, and for each α ∈ 	, let fα : X → Xα be a p̃-map. For any Ã, B̃ ∈ SVNS(X),
define

Ã δ B̃ iff for every finite families {̃Ai | i = 1, . . . , n} and {̃Bj | j = 1, . . . ,m}where Ã = ⋃n
i=1 Ãi

and B̃ = ⋃m
j=1 B̃j (i.e. finite covers of Ã and B̃ respectively), there exist an Ãi and a B̃j such that

fα(̃Ai) δα fα(̃Bj) for each α ∈ 	.
Then δ is the coarsest (initial) proximity structure of single-valued neutrosophic spaces on X

for which all mappings fα : (X , δ) → (Xα , δα) (α ∈ 	) are p̃-map.

Proof: We first prove that δ is an SVN proximity on X.

(P̃1) Ã δ B̃ iff B̃ δ Ã
Since δα is an SVN proximity structure for each α ∈ 	, it is clear that Ã δ B̃ iff B̃ δ Ã.

(P̃2) Ã δ (̃B ∪ C̃) iff Ã δ B̃ or Ã δ C̃
If Ã δ B̃, then Ã δ D̃ for each D̃ ⊇ B̃. Because every cover of D̃ is a cover of B̃. Therefore,
Ã δ B̃ or Ã δ C̃ implies Ã δ (̃B ∪ C̃).
Conversely, suppose Ã δ B̃ and Ã δ C̃. Then, there exist finite covers {̃Ai | i = 1, . . . , n}
and {̃Bj | j = 1, . . . ,m} of Ã and B̃ respectively such that fα(̃Ai) δα fα(̃Bj) for some
α = sij ∈ 	, where i = 1, . . . , n and j = 1, . . . ,m. Likewise, there are finite covers
{Ã′

k | k = 1, . . . , p} and {̃Bj | j = m + 1, . . . ,m + q} of Ã and C̃ respectively such that
fα(Ã′

k) δα fα(̃Bj) for some α = tkj ∈ 	, where k = 1, . . . , p and j = m + 1, . . . ,m + q.
Then, {̃Ai ∪ Ã′

k | i = 1, . . . , n; k = 1, . . . , p} and {̃Bj | j = 1, . . . ,m + q} are finite covers
of Ã and B̃ ∪ C̃, respectively. Hence, from the fact that fα(̃Ai ∪ Ã′

k) δα fα(̃Bj) for α = sij
or α = tkj, we conclude that Ã δ (̃B ∪ C̃).

(P̃3) Ã δ B̃ implies Ã �= 0̃ and B̃ �= 0̃
It is obvious.

(P̃4) Ã ∩ B̃ �= 0̃ implies Ã δ B̃
We will show that if Ã δ B̃, then Ã ∩ B̃ = 0̃. Suppose Ã δ B̃. Then, there exist finite
covers {̃Ai | i = 1, . . . , n} and {̃Bj | j = 1, . . . ,m} of Ã and B̃ respectively such that
fα(̃Ai) δα fα(̃Bj) for some α = sij ∈ 	, where i = 1, . . . , n and j = 1, . . . ,m. Since for
each α ∈ 	, δα is an SVN proximity structure on Xα , fα(̃Ai) ∩ fα(̃Bj) = 0̃. From this, it
follows that

fα(

n⋃
i=1

Ãi) ∩ fα(

m⋃
j=1

B̃j) = fα(̃A) ∩ fα(̃B) = 0̃.

So we have Ã ∩ B̃ = 0̃.
(P̃5) Ã δ B̃ implies there is an Ẽ ∈ SVNS(X) such that Ã δ Ẽ and C(̃E) δ B̃.
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If Ã δ B̃, then there exist finite covers {̃Ai | i = 1, . . . , n} and {̃Bj | j = 1, . . . ,m} of Ã
and B̃ respectively such that fα(̃Ai) δα fα(̃Bj) for some α = sij ∈ 	, where i = 1, . . . , n and
j = 1, . . . ,m. Since each (Xα , δα) is a single-valued neutrosophic proximity space, there
exist Ẽij such that fα(̃Ai) δα Ẽij and C(̃Eij) δα fα(̃Bj). Set Ẽj =

⋂m
i=1 f

−1
α (̃Eij) and Ẽ = ⋃n

j=1 Ẽj,
i.e. Ẽ = ⋃n

j=1
⋂m

i=1 f
−1
α (̃Eij). It follows that fα(̃Ej) = fα(

⋂m
i=1 f

−1
α (̃Eij)) ⊂ ⋂m

i=1 fα(f−1
α (̃Eij)) ⊂⋂m

i=1 Ẽij ⊂ Ẽij. Since fα(̃Ej) ⊂ Ẽij, we have fα(̃Ai) δα fα(̃Ej) for α = sij ∈ 	; that is, Ã δ Ẽ.
Let D̃ij = C(f−1

α (̃Eij)) = f−1
α (C(̃Eij)) and F̃j = C(̃Ej) = ⋃m

i=1 D̃ij. Then C(̃E) = ⋂n
j=1 F̃j,

i.e. C(̃E) = ⋂n
j=1

⋃m
i=1 C(f−1

α (̃Eij)). Since C(̃Eij) δα fα(̃Bj) and D̃ij = f−1
α (C(̃Eij)), we have

f−1
α (C(̃Eij)) δ f−1

α (fα(̃Bj)), i.e. by P̃2 of Definition 3.4, D̃ij δ B̃j for all i and j. This implies F̃j δ B̃j
for all j. Hence C(̃E) δ B̃j for all j, showing that C(̃E) δ B̃.

It is clear that all mappings fα : (X , δ) → (Xα , δα) (α ∈ 	) are p̃-map. Let δ′ be another
SVN proximity on X with respect to which each fα is a p̃-map. We shall show that δ′ is finer
than δ, which will complete the proof. Suppose Ã δ′ B̃ and consider any covers {̃Ai | i =
1, . . . , n} and {̃Bj | j = 1, . . . ,m} of Ã and B̃ respectively. Since (̃A1 ∪ · · · ∪ Ãn) δ′ B̃, by P̃2 of
Definition 3.4, there is an i ∈ {1, . . . , n} such that Ãi δ′ B̃. Similarly, Ãi δ′ (̃B1 ∪ · · · ∪ B̃m), by
P̃2 of Definition 3.4, there is an j ∈ {1, . . . ,m} such that Ãi δ′ B̃j. Since each fα is a p̃-mapwith
respect to δ′, it follows that fα(̃Ai) δα fα(̃Bj) for each α ∈ 	. Hence, we get Ã δ B̃, i.e. δ′ is finer
than δ. �

Definition 4.2: Let {(Xα , δα) | α ∈ 	} be a family of single-valued neutrosophic proximity
spaces, and X = ∏

α∈	 Xα . The product SVN proximity on X is defined to be the initial prox-
imity structure δ = ∏

α∈	 δα on X with respect to which each projection map Pα : (X , δ) →
(Xα , δα) (α ∈ 	) is a p̃-map. In that case (X , δ) is said to be the product SVNPS.

Corollary 4.3: A mapping f from an SVNPS (Y , δ∗) to (X = ∏
α∈	 Xα , δ), i.e. f : (Y , δ∗) →

(X , δ), is a p̃-map if and only if the composition fα ◦ f : (Y , δ∗) → (Xα , δα) is a p̃-map for every
α ∈ 	.

Proof: Let (Y , δ∗) be an SVNPS and f : (Y , δ∗) → (X , δ). It can easily be shown that if f is a
p̃-map, then for each α ∈ 	, fα ◦ f is a p̃-map.

Conversely, suppose that fα ◦ f is a p̃-map for each α ∈ 	. We will show that f is a p̃-
map. Let Ã, B̃ ⊂ X , Ã δ∗̃B and {̃Ai | i = 1, . . . , n} and {̃Bj | j = 1, . . . ,m} be finite covers of
f (̃A) and f (̃B) respectively. Then Ã = ⋃n

i=1 Ãi, B̃ = ⋃m
j=1 B̃j and we have Ã ⊆ ⋃n

i=1 f
−1(̃Ai),

B̃ ⊆ ⋃m
j=1 f

−1(̃Bj). Since Ã δ∗̃B, we obtain
⋃n

i=1 f
−1(̃Ai) δ∗ ⋃m

j=1 f
−1(̃Bj) and by P̃2 of

Definition 3.4, there exist i, j such that f−1(̃Ai) δ∗f−1(̃Bj). Since fα ◦ f ◦ f−1(̃Ai) ⊆ fα(̃Ai),
fα ◦ f ◦ f−1(̃Bj) ⊆ fα(̃Bj) and fα ◦ f is a p̃-map for each α ∈ 	, it follows that fα(̃Ai) δα fα(̃Bj)
for each α ∈ 	. This proves that f (̃A) δ f (̃B) so that f is a p̃-map. �

5. Conclusion

Proximity anduniformity are important concepts close to topology and theyhave rich topo-
logical properties. For this reason, in recent years, these notions constitute a significant
research area in the field of topological spaces. Also, these concepts have been studied
by many authors on the fuzzy, soft and neutrosophic sets. In this paper, we introduced the
single-valued neutrosophic proximity spaces and presented someof their properties. Then,
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we showed that each single-valued neutrosophic proximity determines a single-valued
neutrosophic topology. Also, we introduced the initial single-valued neutrosophic prox-
imity structure and hence we defined the products. We concluded that all the results of
classical proximity spaces are still valid on the single-valued neutrosophic proximity spaces.
We believe that these theoretical results will help the researchers to solve practical applica-
tions in various areas, to advance andpromoteother generalisations and the further studies
on SVNPSs.

In future studies, the single-valued uniform spaces can be introduced and the relation-
ships among the notions of single-valued uniform, proximity and topological spaces can
be investigated. Also, various topological notions such as separation, closedness, connect-
edness and compactness may be characterised in the single-valued topological spaces.
Furthermore, in [20–22], using new types of partial belong and total non-belong relations
on soft separation axioms anddecision-makingproblemwere investigated. In a similarway,
these can be used on the domain of single-valued neutrosophic topological spaces and
proximity spaces.
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