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Abstract: In this paper, Bol-Moufang types of a particular quasi neutrosophic triplet loop (BCI-algebra),
chritened Fenyves BCI-algebras are introduced and studied. 60 Fenyves BCI-algebras are introduced
and classified. Amongst these 60 classes of algebras, 46 are found to be associative and 14 are
found to be non-associative. The 46 associative algebras are shown to be Boolean groups. Moreover,
necessary and sufficient conditions for 13 non-associative algebras to be associative are also obtained:
p-semisimplicity is found to be necessary and sufficient for a F3, F5, F42 and F55 algebras to be
associative while quasi-associativity is found to be necessary and sufficient for F19, F52, F56 and F59

algebras to be associative. Two pairs of the 14 non-associative algebras are found to be equivalent
to associativity (F52 and F55, and F55 and F59). Every BCI-algebra is naturally an F54 BCI-algebra.
The work is concluded with recommendations based on comparison between the behaviour of identities
of Bol-Moufang (Fenyves’ identities) in quasigroups and loops and their behaviour in BCI-algebra.
It is concluded that results of this work are an initiation into the study of the classification of finite
Fenyves’ quasi neutrosophic triplet loops (FQNTLs) just like various types of finite loops have been
classified. This research work has opened a new area of research finding in BCI-algebras, vis-a-vis the
emergence of 540 varieties of Bol-Moufang type quasi neutrosophic triplet loops. A ‘Cycle of Algebraic
Structures’ which portrays this fact is provided.
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1. Introduction

BCK-algebras and BCI-algebras are abbreviated as two B-algebras. The former was raised in 1966
by Imai and Iseki [1], Japanese mathematicians, and the latter was put forward in the same year by
Iseki [2]. The two algebras originated from two different sources: set theory and propositional calculi.

There are some systems which contain the only implicational functor among logical functors,
such as the system of weak positive implicational calculus, BCK-system and BCI-system. Undoubtedly,
there are common properties among those systems. We know that there are close relationships
between the notions of the set difference in set theory and the implication functor in logical systems.
For example, we have the following simple inclusion relations in set theory:

(A− B)− (A− C) ⊆ C− B, A− (A− B) ⊆ B.
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These are similar to the propositional formulas in propositional calculi:

(p→ q)→ ((q→ r)→ (p→ r)), p→ ((p→ q)→ q),

which raise the following questions: What are the most essential and fundamental properties of these
relationships? Can we formulate a general algebra from the above consideration? How will we find
an axiom system to establish a good theory of general algebras? Answering these questions, K.Iseki
formulated the notions of two B-algebras in which BCI-algebras are a wider class than BCK-algebras.
Their names are taken from BCK and BCI systems in combinatory logic.

BCI-Algebras are very interesting algebraic structures that have generated wide interest among
pure mathematicians.

1.1. BCI-algebra, Quasigroups, Loops and the Fenyves Identities

We start with some definitions and examples of some varieties of quasi neutrosophic triplet loop.

Definition 1. A triple (X, ∗, 0) is called a BCI-algebra if the following conditions are satisfied for any
x, y, z ∈ X:

1. ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;
2. x ∗ 0 = x;
3. x ∗ y = 0 and y ∗ x = 0 =⇒ x = y.

We call the binary operation ∗ on X the multiplication on X, and the constant 0 in X the zero
element of X. We often write X instead of (X, ∗, 0) for a BCI-algebra in brevity. Juxtaposition xy will at
times be used for x ∗ y and will have preference over ∗ i.e., xy ∗ z = (x ∗ y) ∗ z.

Example 1. Let S be a set. Let 2S be the power set of S, − the set difference and ∅ the empty set. Then(
2S,−, ∅

)
is a BCI-algebra.

Example 2. Suppose (G, ·, e) is an abelian group with e as the identity element. Define a binary operation ∗ on
G by putting x ∗ y = xy−1. Then (G, ∗, e) is a BCI-algebra.

Example 3. (Z,−, 0) and (R− {0},÷, 1) are BCI-algebras.

Example 4. Let S be a set. Let 2S be the power set of S, M the symmetric difference and ∅ the empty set. Then(
2S,M, ∅

)
is a BCI-algebra.

The following theorems give necessary and sufficient conditions for the existence of a BCI-algebra.

Theorem 1. (Yisheng [3])
Let X be a non-empty set, ∗ a binary operation on X and 0 a constant element of X. Then (X, ∗, 0) is a

BCI-algebra if and only if the following conditions hold:

1. ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;
2. (x ∗ (x ∗ y)) ∗ y = 0;
3. x ∗ x = 0;
4. x ∗ y = 0 and y ∗ x = 0 imply x = y.

Definition 2. A BCI-algebra (X, ∗, 0) is called a BCK-algebra if 0 ∗ x = 0 for all x ∈ X.

Definition 3. A BCI-algebra (X, ∗, 0) is called a Fenyves BCI-algebra if it satisfies any of the identities of
Bol-Moufang type.

The identities of Bol-Moufang type are given below:
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F1: xy ∗ zx = (xy ∗ z)x
F2: xy ∗ zx = (x ∗ yz)x (Moufang identity)
F3: xy ∗ zx = x(y ∗ zx)
F4: xy ∗ zx = x(yz ∗ x) (Moufang identity)
F5: (xy ∗ z)x = (x ∗ yz)x
F6: (xy ∗ z)x = x(y ∗ zx) (extra identity)
F7: (xy ∗ z)x = x(yz ∗ x)
F8: (x ∗ yz)x = x(y ∗ zx)
F9: (x ∗ yz)x = x(yz ∗ x)
F10: x(y ∗ zx) = x(yz ∗ x)
F11: xy · xz = (xy ∗ x)z
F12: xy ∗ xz = (x ∗ yx)z
F13: xy ∗ xz = x(yx ∗ z) (extra identity)
F14: xy ∗ xz = x(y ∗ xz)
F15: (xy ∗ x)z = (x ∗ yx)z
F16: (xy ∗ x)z = x(yx ∗ z)
F17: (xy ∗ x)z = x(y ∗ xz) (Moufang identity)
F18: (x ∗ yx)z = x(yx ∗ z)
F19: (x ∗ yx)z = x(y ∗ xz) (left Bol identity)
F20: x(yx ∗ z) = x(y ∗ xz)
F21: yx ∗ zx = (yx ∗ z)x
F22: yx ∗ zx = (y ∗ xz)x (extra identity)
F23: yx ∗ zx = y(xz ∗ x)
F24: yx ∗ zx = y(x ∗ zx)
F25: (yx ∗ z)x = (y ∗ xz)x
F26: (yx ∗ z)x = y(xz ∗ x) (right Bol identity)
F27: (yx ∗ z)x = y(x ∗ zx) (Moufang identity)
F28: (y ∗ xz)x = y(xz ∗ x)
F29: (y ∗ xz)x = y(x ∗ zx)
F30: y(xz ∗ x) = y(x ∗ zx)

F31: yx ∗ xz = (yx ∗ x)z
F32: yx ∗ xz = (y ∗ xx)z
F33: yx ∗ xz = y(xx ∗ z)
F34: yx ∗ xz = y(x ∗ xz)
F35: (yx ∗ x)z = (y ∗ xx)z
F36: (yx ∗ x)z = y(xx ∗ z) (RC identity)
F37: (yx ∗ x)z = y(x ∗ xz) (C identity)
F38: (y ∗ xx)z = y(xx ∗ z)
F39: (y ∗ xx)z = y(x ∗ xz) (LC identity)
F40: y(xx ∗ z) = y(x ∗ xz)
F41: xx ∗ yz = (x ∗ xy)z (LC identity)
F42: xx ∗ yz = (xx ∗ y)z
F43: xx ∗ yz = x(x ∗ yz)
F44: xx ∗ yz = x(xy ∗ z)
F45: (x ∗ xy)z = (xx ∗ y)z
F46: (x ∗ xy)z = x(x ∗ yz) (LC identity)
F47: (x ∗ xy)z = x(xy ∗ z)
F48: (xx ∗ y)z = x(x ∗ yz) (LC identity)
F49: (xx ∗ y)z = x(xy ∗ z)
F50: x(x ∗ yz) = x(xy ∗ z)
F51: yz ∗ xx = (yz ∗ x)x
F52: yz ∗ xx = (y ∗ zx)x
F53: yz ∗ xx = y(zx ∗ x) (RC identity)
F54: yz ∗ xx = y(z ∗ xx)
F55: (yz ∗ x)x = (y ∗ zx)x
F56: (yz ∗ x)x = y(zx ∗ x) (RC identity)
F57: (yz ∗ x)x = y(z ∗ xx) (RC identity)
F58: (y ∗ zx)x = y(zx ∗ x)
F59: (y ∗ zx)x = y(z ∗ xx)
F60: y(zx ∗ x) = y(z ∗ xx)

Consequent upon this definition, there are 60 varieties of Fenyves BCI-algebras. Here are some
examples of Fenyves’ BCI-algebras:

Example 5. Let us assume the BCI-algebra (G, ∗, e) in Example 2. Then (G, ∗, e) is an F8-algebra, F19-algebra,
F29-algebra, F39-algebra, F46-algebra, F52-algebra, F54-algebra, F59-algebra.

Example 6. Let us assume the BCI-algebra
(
2S,−, ∅

)
in Example 1. Then (2S,−, ∅) is an F3-algebra,

F5-algebra, F21-algebra, F29-algebra, F42-algebra, F46-algebra, F54-algebra and F55-algebra.

Example 7. The BCI-algebra (2S,M, ∅) in Example 4 is associative.

Example 8. By considering the direct product of the BCI-algebras (G, ∗, e) and
(
2S,−, ∅

)
of Example 2 and

Example 1 respectively, we have a BCI-algebra
(

G× 2S, (∗,−), (e, ∅)
)

which is a F29-algebra and a F46-algebra.

Remark 1. Direct products of sets of BCI-algebras will result in BCI-algebras which are Fi-algebra for
distinct i’s.

Definition 4. A BCI-algebra (X, ∗, 0) is called associative if (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ X.

Definition 5. A BCI-algebra (X, ∗, 0) is called p-semisimple if 0 ∗ (0 ∗ x) = x for all x ∈ X .
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Theorem 2. (Yisheng [3]) Suppose that (X, ∗, 0) is a BCI-algebra. Define a binary relation 6 on X by which
x 6 y if and only if x ∗ y = 0 for any x, y ∈ X. Then (X,6) is a partially ordered set with 0 as a minimal
element (meaning that x 6 0 implies x = 0 for any x ∈ X).

Definition 6. A BCI-algebra (X, ∗, 0) is called quasi-associative if (x ∗ y) ∗ z ≤ x ∗ (y ∗ z) for all x, y, z ∈ X.

The following theorems give equivalent conditions for associativity, quasi-associativity and
p-semisimplicity in a BCI-algebra:

Theorem 3. (Yisheng [3])
Given a BCI-algebra X, the following are equivalent x, y, z ∈ X:

1. X is associative.
2. 0 ∗ x = x.
3. x ∗ y = y ∗ x ∀ x, y ∈ X.

Theorem 4. (Yisheng [3])
Let X be a BCI-algebra. Then the following conditions are equivalent for any x, y, z, u ∈ X:

1. X is p-semisimple
2. (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u).
3. 0 ∗ (y ∗ x) = x ∗ y.
4. (x ∗ y) ∗ (x ∗ z) = z ∗ y.
5. z ∗ x = z ∗ y implies x = y. (the left cancellation law i.e., LCL)
6. x ∗ y = 0 implies x = y.

Theorem 5. (Yisheng [3])
Given a BCI-algebra X, the following are equivalent for all x, y ∈ X:

1. X is quasi-associative.
2. x ∗ (0 ∗ y) = 0 implies x ∗ y = 0.
3. 0 ∗ x = 0 ∗ (0 ∗ x).
4. (0 ∗ x) ∗ x = 0.

Theorem 6. (Yisheng [3])
A triple (X, ∗, 0) is a BCI-algebra if and only if there is a partial ordering 6 on X such that the following

conditions hold for any x, y, z ∈ X:

1. (x ∗ y) ∗ (x ∗ z) 6 z ∗ y;
2. x ∗ (x ∗ y) 6 y;
3. x ∗ y = 0 if and only if x 6 y.

Theorem 7. (Yisheng [3])
Let X be a BCI-algebra. X is p-semisimple if and only if one of the following conditions holds for any

x, y, z ∈ X:

1. x ∗ z = y ∗ z implies x = y. (the right cancellation law i.e., RCL)
2. (y ∗ x) ∗ (z ∗ x) = y ∗ z.
3. (x ∗ y) ∗ (x ∗ z) = 0 ∗ (y ∗ z).

Theorem 8. (Yisheng [3])
Let X be a BCI-algebra. X is p-semisimple if and only if one of the following conditions holds for any x, y ∈ X:

1. x ∗ (0 ∗ y) = y.
2. 0 ∗ x = 0 =⇒ x = 0.
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Theorem 9. (Yisheng [3]) Suppose that (X, ∗, 0) is a BCI-algebra. X is associative if and only if X is
p-semisimple and X is quasi-associative.

Theorem 10. (Yisheng [3]) Suppose that (X, ∗, 0) is a BCI-algebra. Then (x ∗ y) ∗ z = (x ∗ z) ∗ y for all
x, y, z ∈ X.

Remark 2. In Theorem 9, quasi-associativity in BCI-algebra plays a similar role to that which weak associativity
(i.e., the Fi identities) plays in quasigroup and loop theory.

We now move on to quasigroups and loops.

Definition 7. Let L be a non-empty set. Define a binary operation (·) on L . If x · y ∈ L for all x, y ∈ L, (L, ·)
is called a groupoid. If in a groupoid (L, ·), the equations:

a · x = b and y · a = b

have unique solutions for x and y respectively, then (L, ·) is called a quasigroup. If in a quasigroup (L, ·), there
exists a unique element e called the identity element such that for all x ∈ L, x · e = e · x = x, (L, ·) is called
a loop.

Definition 8. Let (L, ·) be a groupoid.
The left nucleus of L is the set Nλ(L, ·) = Nλ(L) = {a ∈ L : ax · y = a · xy ∀ x, y ∈ L}.
The right nucleus of L is the set Nρ(L, ·) = Nρ(L) = {a ∈ L : y · xa = yx · a ∀ x, y ∈ L}.
The middle nucleus of L is the set Nµ(L, ·) = Nµ(L) = {a ∈ L : ya · x = y · ax ∀ x, y ∈ L}.
The nucleus of L is the set N(L, ·) = N(L) = Nλ(L, ·) ∩ Nρ(L, ·) ∩ Nµ(L, ·).
The centrum of L is the set C(L, ·) = C(L) = {a ∈ L : ax = xa ∀ x ∈ L}.
The center of L is the set Z(L, ·) = Z(L) = N(L, ·) ∩ C(L, ·).

In the recent past, and up to now, identities of Bol-Moufang type have been studied on the
platform of quasigroups and loops by Fenyves [4], Phillips and Vojtechovsky [5], Jaiyeola [6–8],
Robinson [9], Burn [10–12], Kinyon and Kunen [13] as well as several other authors.

Since the late 1970s, BCI and BCK algebras have been given a lot of attention. In particular,
the participation in the research of polish mathematicians Tadeusz Traczyk and Andrzej Wronski
as well as Australian mathematician William H. Cornish, in addition to others, is causing this
branch of algebra to develop rapidly. Many interesting and important results are constantly
discovered. Now, the theory of BCI-algebras has been widely spread to areas such as general
theory which include congruences, quotient algebras, BCI-Homomorphisms, direct sums and direct
products, commutative BCK-algebras, positive implicative and implicative BCK-algebras, derivations
of BCI-algebras, and ideal theory of BCI-algebras ([1,14–17]).

1.2. BCI-Algebras as a Quasi Neutrosophic Triplet Loop

Consider the following definition.

Definition 9. (Quasi Neutrosophic Triplet Loops (QNTL), Zhang et al. [18])
Let (X, ∗) be a groupoid.

1. If there exist b, c ∈ X such that a ∗ b = a and a ∗ c = b, then a is called an NT-element with (r-r)-property.
If every a ∈ X is an NT-element with (r-r)-property, then, (X, ∗) is called a (r-r)-quasi NTL.

2. If there exist b, c ∈ X such that a ∗ b = a and c ∗ a = b, then a is called an NT-element with (r-l)-property.
If every a ∈ X is an NT-element with (r-l)-property, then, (X, ∗) is called a (r-l)-quasi NTL.

3. If there exist b, c ∈ X such that b ∗ a = a and c ∗ a = b, then a is called an NT-element with (l-l)-property.
If every a ∈ X is an NT-element with (l-l)-property, then, (X, ∗) is called a (l-l)-quasi NTL.
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4. If there exist b, c ∈ X such that b ∗ a = a and a ∗ c = b, then a is called an NT-element with (l-r)-property.
If every a ∈ X is an NT-element with (l-r)-property, then, (X, ∗) is called a (l-r)-quasi NTL.

5. If there exist b, c ∈ X such that a ∗ b = b ∗ a = a and a ∗ c = b, then a is called an NT-element
with (lr-r)-property. If every a ∈ X is an NT-element with (lr-r)-property, then, (X, ∗) is called a
(lr-r)-quasi NTL.

6. If there exist b, c ∈ X such that a ∗ b = b ∗ a = a and c ∗ a = b, then a is called an NT-element
with (lr-l)-property. If every a ∈ X is an NT-element with (lr-l)-property, then, (X, ∗) is called a
(lr-l)-quasi NTL.

7. If there exist b, c ∈ X such that a ∗ b = a and a ∗ c = c ∗ a = b, then a is called an NT-element
with (r-lr)-property. If every a ∈ X is an NT-element with (r-lr)- property, then, (X, ∗) is called a
(r-lr)-quasi NTL.

8. If there exist b, c ∈ X such that b ∗ a = a and a ∗ c = c ∗ a = b, then a is called an NT-element
with (l-lr)-property. If every a ∈ X is an NT-element with (l-lr)-property, then, (X, ∗) is called a
(l-lr)-quasi NTL.

9. If there exist b, c ∈ X such that a ∗ b = b ∗ a = a and a ∗ c = c ∗ a = b, then a is called an NT-element
with (lr-lr)-property. If every a ∈ X is an NT-element with (lr-lr)-property, then, (X, ∗) is called a
(lr-lr)-quasi NTL.

Consequent upon Definition 9 and the 60 Fenyves identities Fi, 1 ≤ i ≤ 60, there are 60
varieties of Fenyves quasi neutrosophic triplet loops (FQNTLs) for each of the nine varieties of
QNTLs in Definition 9. Thereby making it 540 varieties of Fenyves quasi neutrosophic triplet loops
(FQNTLs) in all. A BCI-algebra is a (r-r)-QNT, (r-l)-QNTL and (r-lr)-QNTL. Thus, any Fi BCI-algebra,
1 ≤ i ≤ 60 belongs to at least one of the following varieties of Fenyves quasi neutrosophic triplet
loops: (r-r)-QNTL, (r-l)-QNTL and (r-lr)-QNTL which we refer to as (r-r)-FQNTL, (r-l)-FQNTL
and (r-lr)-FQNTL respectively. Any associative QNTL will be called quasi neutrosophic triplet
group (QNTG).

The variety of quasi neutrosophic triplet loop is a generalization of neutrosophic triplet group
(NTG) which was originally introduced by Smarandache and Ali [19]. Neutrosophic triplet set (NTS)
is the foundation of neutrosophic triplet group. New results and developments on neutrosophic triplet
groups and neutrosophic triplet loop have been reported by Zhang et al. [18,20,21], and Smarandache
and Jaiyéo. lá [22,23].

It must be noted that triplets are not connected at all with intuitionistic fuzzy set. Neutrosophic
set [24] is a generalization of intuitionistic fuzzy set (a generalization of fuzzy set). In Intuitionistic
fuzzy set, an element has a degree of membership and a degree of non-membership, and the deduction
of the sum of these two from 1 is considered the hesitant degree of the element. These intuitionistic
fuzzy set components are dependent (viz. [25–28]). In the neutrosophic set, an element has three
independent degrees: membership (truth-t), indeterminacy (i), and non-membership (falsity-f),
and their sum is up to 3. However, the current paper utilizes the neutrosophic triplets, which are
not defined in intuitionistic fuzzy set, since there is no neutral element in intuitionistic fuzzy sets.
In a neutrosophic triplet set (X, ∗), for each element x ∈ X there exists a neutral element denoted
neut(x) ∈ X such that x ∗ neut(x) = neut(x) ∗ x = x, and an opposite of x denoted anti(x) ∈ X
such that anti(x) ∗ x = x ∗ anti(x) = neut(x). Thus, the triple (x, neut(x), anti(x)) is called a
neutrosophic triplet which in the philosophy of ‘neutrosophy’, can be algebraically harmonized
with (t, i, f ) in neutrosophic set and then extended for neutrosophic hesitant fuzzy [29] set as proposed
for (t, i, f )-neutrosophic structures [30]. Unfortunately, such harmonization is not readily defined in
intuitionistic fuzzy sets.

Theorem 11. (Zhang et al. [18]) A (r-lr)-QNTG or (l-lr)-QNTG is a NTG.

This present study looks at Fenyves identities on the platform of BCI-algebras. The main objective
of this study is to classify the Fenyves BCI-algebras into associative and non-associative types. It will
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also be shown that some Fenyves identities play the roles of quasi-associativity and p-semisimplicity ,
vis-a-vis Theorem 9 in BCI-algebras.

2. Main Results

We shall first clarify the relationship between a BCI-algebra, a quasigroup and a loop.

Theorem 12.

1. A BCI algebra X is a quasigroup if and only if it is p-semisimple.
2. A BCI algebra X is a loop if and only if it is associative.
3. An associative BCI algebra X is a Boolean group.

Proof. We use Theorem 3, Theorem 7 and Theorem 4.

1. From Theorems 7 and 4, p-semisimplicity is equivalent to the left and right cancellation laws,
which consequently implies that X is a quasigroup if and only if it is p-semisimple.

2. One of the axioms that a BCI-algebra satisfies is x ∗ 0 = x for all x ∈ X. So, 0 is already the right
identity element. Now, from Theorem 3, associativity is equivalent to 0 ∗ x = x for all x ∈ X. So,
0 is also the left identity element of X. The conclusion follows.

3. In a BCI-algebra, x ∗ x = 0 for all x ∈ X. And 0 is the identity element of X. Hence, every element
is the inverse of itself.

Lemma 1. Let (X, ∗, 0) be a BCI-algebra.

1. 0 ∈ Nρ(X).
2. 0 ∈ Nλ(X), Nµ(X) implies X is quasi-associative.
3. If 0 ∈ Nλ(X), then the following are equivalent:

(a) X is p-semisimple.
(b) xy = 0y · x for all x, y ∈ L.
(c) xy = 0x · y for all x, y ∈ L.

4. If 0 ∈ Nλ(X) or 0 ∈ Nµ(X), then X is p-semisimple if and only if X is associative.
5. If 0 ∈ N(X), then X is p-semisimple if and only if X is associative.
6. If (X, ∗, 0) is a BCK-algebra, then

(a) 0 ∈ Nλ(X).
(b) 0 ∈ Nµ(X) implies X is a trivial BCK-algebra.

7. The following are equivalent:

(a) X is associative.
(b) x ∈ Nλ(X) for all x ∈ X.
(c) x ∈ Nρ(X) for all x ∈ X.
(d) x ∈ Nµ(X) for all x ∈ X.
(e) 0 ∈ C(X).
(f) x ∈ C(X) for all x ∈ X.
(g) x ∈ Z(X) for all x ∈ X.
(h) 0 ∈ Z(X).
(i) X is a (lr-r)-QNTL.
(j) X is a (lr-l)-QNTL.
(k) X is a (lr-lr)-QNTL

8. If (X, ∗, 0) is a BCK-algebra and 0 ∈ C(X), then X is a trivial BCK-algebra.

Proof. This is routine by simply using the definitions of nuclei, centrum, center of a BCI-algebra and
QNTL alongside Theorems 3–10 appropriately.
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Remark 3. Based on Theorem 11, since an associative BCI-algebra is a (r-lr)-QNTG, then, an associative
BCI-algebra is a NTG. This corroborates the importance of the study of non-associative BCI-algebra i.e.,
weak associative laws (Fi-identities) in BCI-algebra, as mentioned earlier in the objective of this work.

Theorem 13. Let (X, ∗, 0) be a BCI-algebra. If X is any of the following Fenyves BCI-algebras, then X
is associative.

1. F1-algebra
2. F2-algebra
3. F4-algebra
4. F6-algebra
5. F7-algebra
6. F9-algebra
7. F10-algebra
8. F11-algebra
9. F12-algebra

10. F13-algebra

11. F14-algebra
12. F15-algebra
13. F16-algebra
14. F17-algebra
15. F18-algebra
16. F20-algebra
17. F22-algebra
18. F23-algebra
19. F24-algebra
20. F25-algebra

21. F26-algebra
22. F27-algebra
23. F28-algebra
24. F30-algebra
25. F31-algebra
26. F32-algebra
27. F33-algebra
28. F34-algebra
29. F35-algebra
30. F36-algebra

31. F37-algebra
32. F38-algebra
33. F40-algebra
34. F41-algebra
35. F43-algebra
36. F44-algebra
37. F45-algebra
38. F47-algebra
39. F48-algebra
40. F49-algebra

41. F50-algebra

42. F51-algebra

43. F53-algebra

44. F57-algebra

45. F58-algebra

46. F60-algebra

Proof.

1. Let X be an F1-algebra. Then xy ∗ zx = (xy ∗ z)x. With z = y, we have xy ∗ yx = (xy ∗ y)x which
implies xy ∗ yx = (xy ∗ x)y = (xx ∗ y)y = (0 ∗ y)y = 0 ∗ (y ∗ y) (since 0 ∈ Nλ(X); this is achieved
by putting y = x in the F1 identity) = 0 ∗ 0 = 0. This implies xy ∗ yx = 0. Now replacing x with y,
and y with x in the last equation gives yx ∗ xy = 0 implying that x ∗ y = y ∗ x as required.

2. Let X be an F2-algebra. Then xy ∗ zx = (x ∗ yz)x. With y = z, we have xz ∗ zx = (x ∗ zz)x =

(x ∗ 0) ∗ x = x ∗ x = 0 implying that xz ∗ zx = 0. Now replacing x with z, and z with x in the last
equation gives zx ∗ xz = 0 implying that x ∗ z = z ∗ x as required.

3. Let X be a F4-algebra. Then, xy ∗ zx = x(yz ∗ x). Put y = x and z = 0, then you get 0 ∗ 0x = x
which means X is p-semisimple. Put x = 0 and y = 0 to get 0z = 0 ∗ 0z which implies that X is
quasi-associative (Theorem 5). Thus, by Theorem 9, X is associative.

4. Let X be an F6-algebra. Then, (xy ∗ z)x = x(y ∗ zx). Put x = y = 0 to get 0z = 0 ∗ 0z which
implies that X is quasi-associative (Theorem 5). Put y = 0 and z = x, then we have 0 ∗ x = x.
Thus, X is associative.

5. Let X be an F7-algebra. Then (xy ∗ z)x = x(yz ∗ x). With z = 0, we have xy ∗ x = x(y ∗ x).
Put y = x in the last equation to get xx ∗ x = (x ∗ xx) implying 0 ∗ x = x.

6. Let X be an F9-algebra. Then (x ∗ yz)x = x(yz ∗ x). With z = 0, we have (x ∗ y) ∗ x = x(y ∗ x).
Put y = x in the last equation to get (x ∗ x)x = x(x ∗ x) implying 0 ∗ x = x.

7. Let X be an F10-algebra. Then, x(y ∗ zx) = x(yz ∗ x). Put y = x = z, then we have x ∗ 0x = 0. So,
0x = 0⇒ x = 0. which means that X is p-semisimple (Theorem 8(2)). Hence, X has the LCL by
Theorem 4. Thence, the F10 identity x(y ∗ zx) = x(yz ∗ x)⇒ y ∗ zx = yz ∗ x which means that X
is associative.

8. Let X be an F11-algebra. Then xy ∗ xz = (xy ∗ x)z. With y = 0, we have x ∗ xz = xx ∗ z. Put z = x
in the last equation to get x = 0 ∗ x as required.

9. Let X be an F12-algebra. Then xy ∗ xz = (x ∗ yx)z. With z = 0, we have xy ∗ x = x ∗ yx. Put y = x
in the last equation to get xx ∗ x = x ∗ xx implying 0 ∗ x = x as required.

10. Let X be an F13-algebra. Then xy ∗ xz = x(yx ∗ z). With z = 0, we have (x ∗ y)x = x ∗ yx which
implies (x ∗ x)y = x ∗ yx which implies 0 ∗ y = x ∗ yx. Put y = x in the last equation to get
0 ∗ x = x as required.

11. Let X be an F14-algebra. Then xy ∗ xz = x(y ∗ xz). With z = 0, we have xy ∗ x = x ∗ yx. Put y = x
in the last equation to get 0 ∗ x = x as required.

12. Let X be an F15-algebra. Then (xy ∗ x)z = (x ∗ yx)z. With z = 0, we have (xy ∗ x) = (x ∗ yx).
Put y = x in the last equation to get 0 ∗ x = x as required.

13. Let X be an F16-algebra. Then (xy ∗ x)z = x(yx ∗ z). With z = 0, we have (xy ∗ x) = (x ∗ yx).
Put y = x in the last equation to get 0 ∗ x = x as required.
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14. Let X be an F17-algebra. Then (xy ∗ x)z = x(y ∗ xz). With z = 0, we have (xy ∗ x) = x(y ∗ x).
Put y = x in the last equation to get 0 ∗ x = x as required.

15. Let X be an F18-algebra. Then (x ∗ yx)z = x(yx ∗ z). With y = 0, we have (x ∗ 0x)z = x(0x ∗ z).
Since 0 ∈ Nλ(X) and 0 ∈ Nµ(X), (these are obtained by putting x = 0 and x = y respectively
in the F18-identity), the last equation becomes (x0 ∗ x)z = x(0 ∗ xz) = x0 ∗ xz = x ∗ xz which
implies 0 ∗ z = x ∗ xz. Put x = z in the last equation to get 0 ∗ z = z as required.

16. This is similar to the proof for F10-algebra.
17. Let X be an F22-algebra. Then yx ∗ zx = (y ∗ xz)x. Put y = x, z = 0, then 0x = 0 ∗ 0x which

implies that X is quasi-associative. By Theorem 10, the F22 identity implies that yx ∗ zx = yx ∗ xz.
Substitute x = 0 to get yz = y ∗ 0z. Now, put y = z in this to get z ∗ 0z = 0. So, 0z = 0⇒ z = 0.
Hence, X is p-semisimple (Theorem 8(2)). Thus, by Theorem 9, X is associative.

18. Let X be an F23-algebra. Then yx ∗ zx = y(xz ∗ x). With z = 0, we have yx ∗ 0x = y(x ∗ x) which
implies yx ∗ 0x = y. Since 0 ∈ Nµ(X), (this is obtained by putting z = x in the F23-identity),
the last equation becomes (yx ∗ 0) ∗ x = y which implies (yx ∗ x) = y. Put x = y in the last
equation to get 0 ∗ y = y as required.

19. Let X be an F24-algebra. Then yx ∗ zx = y(x ∗ zx). With z = 0, we have yx ∗ 0x = y(x ∗ 0x).
Since 0 ∈ Nµ(X),(this is obtained by putting x = 0 in the F24-identity), the last equation becomes
((yx)0 ∗ x) = y(x0 ∗ x) which implies yx ∗ x = y. Put y = x in the last equation to get 0 ∗ y = y
as required.

20. Let X be an F25-algebra. Then (yx ∗ z)x = (y ∗ xz)x. Put x = 0, then yz = y ∗ 0z. Substitute z = y,
then y ∗ 0y = 0. So, 0y = 0⇒ y = 0. Hence, X is p-semisimple (Theorem 8(2)). Hence, X has the
RCL by Theorem 7. Thence, the F25 identity (yx ∗ z)x = (y ∗ xz)x implies yx ∗ z = y ∗ xz. Thus,
X is associative.

21. Let X be an F26-algebra. Then (yx ∗ z)x = y(xz ∗ x). With z = 0, we have yx ∗ x = y. Put x = y in
the last equation to get 0 ∗ y = y as required.

22. Let X be an F27-algebra. Then (yx ∗ z)x = y(x ∗ zx). Put z = x = y, then 0x ∗ x = 0 which implies
X is quasi-associative. Put x = 0 and y = z to get z ∗ 0z = 0. So, 0z = 0 ⇒ z = 0. Hence, X is
p-semisimple (Theorem 8(2)). Thus, by Theorem 9, X is associative.

23. Let X be an F28-algebra. Then (y ∗ xz)x = y(xz ∗ x). With z = 0, we have yx ∗ x = y. Put x = y in
the last equation to get 0 ∗ y = y as required.

24. The proof of this is similar to the proof for F10-algebra.
25. Let X be an F31-algebra. Then yx ∗ xz = (yx ∗ x)z. By Theorem 10, the F31 identity becomes F25

identity which implies that X is associative.
26. Let X be an F32-algebra. Then yx ∗ xz = (y ∗ xx)z. With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
27. Let X be an F33-algebra. Then yx ∗ xz = y(xx ∗ z). With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
28. Let X be an F34-algebra. Then yx ∗ xz = y(x ∗ xz). With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
29. Let X be an F35-algebra. Then (yx ∗ x)z = (y ∗ xx)z. With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
30. Let X be an F36-algebra. Then (yx ∗ x)z = y(xx ∗ z). With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
31. Let X be an F37-algebra. Then (yx ∗ x)z = y(x ∗ xz). With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
32. Let X be an F38-algebra. Then, yz = y ∗ 0z. Put z = y, then y ∗ 0y = 0. So, 0y = 0⇒ y = 0. Hence,

X is p-semisimple (Theorem 8(2)). Now, put y = x, then xz = x ∗ 0z. Now, substitute x = 0 to get
0z = 0 ∗ 0z which means that X is quasi-associative. Thus, by Theorem 9, X is associative.

33. Let X be an F40-algebra. By the F40 identity, y ∗ 0z = y(x ∗ xz). Put z = x = y to get 0 ∗ 0x = 0. So,
0x = 0⇒ x = 0. Hence, X is p-semisimple (Theorem 8(2)). Thus, X has the LCL by Theorem 4.
Thence, the F40 identity y(xx ∗ z) = y(x ∗ xz) becomes 0 ∗ z = x ∗ xz. Substituting z = x, we get
0x = x which means that X is associative.
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34. Let X be an F41-algebra. Then xx ∗ yz = (x ∗ xy)z. With z = 0, we have 0 ∗ y = x ∗ xy. Put y = x
in the last equation to get 0 ∗ x = x as required.

35. Let X be an F43-algebra. Then xx ∗ yz = x(x ∗ yz). With z = 0, we have 0 ∗ y = x(x ∗ y). Put x = y
in the last equation to get 0 ∗ y = y as required.

36. Let X be an F44-algebra. Then xx ∗ yz = x(xy ∗ z). With z = 0, we have 0 ∗ y = x(x ∗ y). Put x = y
in the last equation to get 0 ∗ y = y as required.

37. Let X be an F45-algebra. Then (x ∗ xy)z = (xx ∗ y)z. With z = 0, we have x ∗ xy = 0 ∗ y. Put x = y
in the last equation to get 0 ∗ y = y as required.

38. Let X be an F47-algebra. Then (x ∗ xy)z = x(xy ∗ z). With y = 0, we have 0 ∗ z = x(x ∗ z). Put
x = z in the last equation to get 0 ∗ z = z as required.

39. Let X be an F48-algebra. Then (xx ∗ y)z = x(x ∗ yz). With z = 0, we have 0 ∗ y = x ∗ xy. Put x = y
in the last equation to get 0 ∗ y = y as required.

40. Let X be an F49-algebra. Then (xx ∗ y)z = x(xy ∗ z). With y = 0, we have 0 ∗ z = x ∗ xz. Put x = z
in the last equation to get 0 ∗ z = z as required.

41. This is similar to the proof for F10-algebra.
42. Let X be an F51-algebra. Then yz ∗ xx = (yz ∗ x)x. With z = 0, we have y = (y ∗ x)x. Put x = y in

the last equation to get 0 ∗ y = y as required.
43. Let X be an F53-algebra. Then yz ∗ xx = y(zx ∗ x) which becomes yz = y(zx ∗ x). Put z = x to

get yx = y ∗ 0x. Substituting y = x, we get x ∗ 0x = 0. So, 0x = 0⇒ x = 0, which means that X
is p-semisimple (Theorem 8(2)). Now, put y = 0 in yx = y ∗ 0x to get 0x = 0 ∗ 0x. Hence, X is
quasi-associative. Thus, X is associative.

44. Let X be an F57-algebra. Then (yz ∗ x)x = y(z ∗ xx). With z = 0, we have yx ∗ x = y. Put x = y in
the last equation to get 0 ∗ y = y as required.

45. Let X be an F58-algebra. Then (y ∗ zx)x = y(zx ∗ x). Put y = x = z to get x ∗ 0x = 0. So,
0x = 0⇒ x = 0, which means that X is p-semisimple (Theorem 8(2)). Now, put z = x, y = 0 to
get 0x = 0 ∗ 0x. Hence, X is quasi-associative. Thus, X is associative.

46. Let X be an F60-algebra. Then y(zx ∗ x) = y(z ∗ xx). Put y = x = z to get x ∗ 0x = 0. So,
0x = 0⇒ x = 0, which means that X is p-semisimple (Theorem 8(2)). Hence, X has the LCL by
Theorem 4. Thence, the F10 identity becomes zx ∗ x = z ∗ xx. Now, substitute z = x to get 0x = x.
Thus, X is associative.

Corollary 1. Let (X, ∗, 0) be a BCI-algebra. If X is any of the following Fenyves’ BCI-algebras, then (X, ∗) is
a Boolean group.

1. F1-algebra
2. F2-algebra
3. F4-algebra
4. F6-algebra
5. F7-algebra
6. F9-algebra
7. F10-algebra
8. F11-algebra
9. F12-algebra

10. F13-algebra

11. F14-algebra
12. F15-algebra
13. F16-algebra
14. F17-algebra
15. F18-algebra
16. F20-algebra
17. F22-algebra
18. F23-algebra
19. F24-algebra
20. F25-algebra

21. F26-algebra
22. F27-algebra
23. F28-algebra
24. F30-algebra
25. F31-algebra
26. F32-algebra
27. F33-algebra
28. F34-algebra
29. F35-algebra
30. F36-algebra

31. F37-algebra
32. F38-algebra
33. F40-algebra
34. F41-algebra
35. F43-algebra
36. F44-algebra
37. F45-algebra
38. F47-algebra
39. F48-algebra
40. F49-algebra

41. F50-algebra

42. F51-algebra

43. F53-algebra

44. F57-algebra

45. F58-algebra

46. F60-algebra

Proof. This follows from Theorems 12 and 13.

Theorem 14. Let (X, ∗, 0) be a BCI-algebra.

1. Let X be an F3-algebra. X is associative if and only if x(x ∗ zx) = xz if and only if X is p-semisimple.
2. Let X be an F5-algebra. X is associative if and only if (xy ∗ x)x = yx.
3. Let X be an F21-algebra. X is associative if and only if (yx ∗ x)x = x ∗ y.
4. Let X be an F42-algebra. X is associative if and only if X is p-semisimple.
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5. Let X be an F55-algebra. X is associative if and only if [(y ∗ x) ∗ x] ∗ x = x ∗ y.
6. (a) X is an F5-algebra and p-semisimple if and only if X is associative.

(b) Let X be an F8-algebra. X is associative if and only if x(y ∗ zx) = yz.
7. Let X be an F19-algebra. X is associative if and only if quasi-associative.
8. X is an F39-algebra and obeys y(x ∗ xz) = zy if and only if X is associative.
9. Let X be a F46-algebra. X is associative if and only if 0(0 ∗ 0x) = x.

10. (a) X is an F52-algebra and F55-algebra if and only if X is associative.
(b) X is an F52-algebra and obeys (y ∗ zx)x = zy if and only if X is associative.
(c) X is an F55-algebra and p-semisimple if and only if X is associative.
(d) Let X be an F52-algebra. X is associative if and only if X is quasi-associative.

11. (a) X is an F59-algebra and F55-algebra if and only if X is associative.
(b) X is an F52-algebra and obeys (y ∗ zx)x = zy if and only if X is associative.
(c) Let X be a F56-algebra. X is associative if and only if X is quasi-associative.
(d) Let X be an F59-algebra. X is associative if and only if X is quasi-associative.

Proof.

1. Suppose X is a F3-algebra. Then, xy ∗ zx = x(y ∗ zx). Put y = x to get 0 ∗ zx = x(x ∗ zx).
Substituting x = 0, we have 0z = 0 ∗ 0z which means X is quasi-associative. Going by Theorem 9,
X is associative if and only if X is p-semisimple. Furthermore, by Theorem 4(3) and 0 ∗ zx =

x(x ∗ zx), an F3-algebra X is associative if and only if xy = x(x ∗ zx).
2. Suppose X is associative. Then 0 ∗ x = x. X is F5 implies (xy ∗ z)x = (x ∗ yz)x. With z = x,

we have (xy ∗ x)x = (x ∗ yx)x ⇒ (xy ∗ x)x = (x ∗ x)yx ⇒ (xy ∗ x)x = 0 ∗ yx ⇒ (xy ∗ x)x = yx
as required. Conversely, suppose (xy ∗ x)x = yx. Put z = x in (xy ∗ z)x = (x ∗ yz)x to get
(xy ∗ x)x = (x ∗ yx)x ⇒ (xy ∗ x)x = (x ∗ x)yx ⇒ (xy ∗ x)x = 0 ∗ yx ⇒ yx = 0 ∗ yx (since
(xy ∗ x)x = yx). So, X is associative.

3. Suppose X is associative. Then x ∗ y = y ∗ x. X is F21 implies yx ∗ zx = (yx ∗ z)x. With z = x,
we have (yx ∗ x)x = y ∗ x = x ∗ y as required. Conversely, suppose (yx ∗ x)x = x ∗ y. Put z = x
in F21 to get (yx ∗ x)x = y ∗ x. So, x ∗ y = y ∗ x as required.

4. Suppose X is associative. Then 0 ∗ z = z. X is F42 implies xx ∗ yz = (xx ∗ y)z. With y = 0,
we have 0 ∗ 0z = 0 ∗ z = z as required. Conversely, suppose 0 ∗ 0z = z. Put y = 0 in F42 to get
0 ∗ 0z = 0 ∗ z. So, 0 ∗ z = z as required.

5. Suppose X is associative. Then x ∗ y = y ∗ x. X is F55 implies [(y ∗ z) ∗ x] ∗ x = [y ∗ (z ∗ x)] ∗ x.
With z = x, we have [(y ∗ x) ∗ x] ∗ x = y ∗ x = x ∗ y as required. Conversely, suppose [(y ∗ x) ∗
x] ∗ x = x ∗ y. Put z = x in F55 to get y ∗ x = [(y ∗ x) ∗ x] ∗ x = x ∗ y. So, y ∗ x = x ∗ y as required.

The proofs of 6 to 11 follow by using the concerned Fi and Fj identities (plus p-simplicity by Theorem 12
in some cases) to get an Fk which is equivalent to associativity by Theorem 13 or which is not equivalent
to associativity by 1 to 5 of Theorem 14.

3. Summary, Conclusions and Recommendations

In this work, we have been able to construct examples of Fenyves’ BCI-algebras. We have also
obtained the basic algebraic properties of Fenyves’ BCI-algebras. Furthermore, we have categorized
the Fenyves’ BCI-algebras into a 46 member associative class (as captured in Theorem 13). Members
of this class include F1, F2, F4, F6, F7, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F20, F22, F23, F24, F25, F26,
F27, F28, F30, F31, F32, F33, F34, F35, F36, F37, F38, F40, F41, F43, F44, F45, F47, F48, F49, F50, F51, F53, F57, F58,
F60-algebras; and a 14 member non-associative class. Those Fenyves identities that are equivalent to
associativity in BCI-algebras are denoted by X in the fifth column of Table 1. For those that belong
to the non-associative class, we have been able to obtain conditions under which they would be
associative (as reflected in Theorem 14). This class includes F3, F5, F8, F19, F21,F29, F39 , F42, F46, F52, F54,
F55, F56, F59-algebras. In Table 1 which summarizes the results, members of this class are identified by
the symbol ‘‡’.

Other researchers who have studied Fenyves’ identities on the platform of loops, namely Phillips
and Vojtechovsky [5], Jaiyeola [6], Kinyon and Kunen (2004) found Moufang (F2, F4, F17, F27), extra
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(F6, F13, F22), F9, F15, left Bol (F19), right Bol (F26), Moufang (F4, F27), F30, F35, F36, C (F37), F38, F39, F40,
LC(F39, F41, F46, F48), F42, F43, F45, F51, RC(F36, F53, F56, F57), F54, and F60 Fenyves’ identities not to be
equivalent to associativity in loops. Interestingly, in our study, some of these identities, particularly
the extra identity (F6, F13, F22), F7, F9, F15, F17, right Bol (F26), Moufang (F4, F27), F30, F35, F38, F40,
RC (F36, F53, F57), C (F37), LC (F41, F48), F43, F45, F51 and F60 have been found to be equivalent to
associativity in BCI-algebras. In addition, the aforementioned researchers found F1, F3, F5, F7, F8,
F10, F11, F12, F14, F16, F18, F20, F21, F23, F24, F25, F28, F29, F31, F32, F33, F34, F44, F47, F49, F50, F52, F55,
F58 and F59 identities to be equivalent to associativity in loops. We have also found some (F7, F10,
F11, F12, F14, F16, F18,F20, F23, F24, F25, F28, F31, F32, F33, F44, F47, F49, F50, F58) of these identities to
be equivalent to associativity in BCI-algebras while some others (F3, F5, F8, F20, F21, F29,F55, F59)
were not equivalent to associativity in BCI-algebras.

In loop theory, it is well known that:

• A loop is an extra loop if and only if the loop is both a Moufang loop and a C-loop.
• A loop is a Moufang loop if and only if the loop is both a right Bol loop and a left Bol-loop.
• A loop is a C-loop if and only if the loop is both a RC-loop and a LC-loop.

In this work, we have been able to establish (as stated below) somewhat similar results for a few
of the Fenyves’ identities in a BCI-algebra X:

• X is an Fi-algebra and Fj-algebra if and only if X is associative, for the pairs: i = 52, j = 55,
i = 59, j = 55.

Fenyves [31], and Phillips and Vojtěchovský [32,33] found some of the 60 Fi identities to be
equivalent to associativity in quasigroups and loops (i.e., groups), and others to describe weak
associative laws such as extra, Bol, Moufang, central, flexible laws in quasigroups and loops. Their
results are summarised in the second, third and fourth columns of Table 1 with the use of X. In this
paper, we went further to establish that 46 Fenyves’ identities are equivalent to associativity in
BCI-algebras while 14 Fenyves’ identities are not equivalent to associativity in BCI-algebras. These
two categories are denoted by X and ‡ in the fifth column of Table 1.

After the works of [31–33], the authors in [34–38] did an extension by investigating and classifying
various generalized forms of the identities of Bol-Moufang types in quasigroups and one sided/two
sided loops into associative and non-associative categories. This answered a question originally posed
in [39] and also led to the study of one of the newly discovered generalized Bol-Moufang types of loop
in Jaiyéo. lá et al. [40]. While all the earlier mentioned research works on Bol-Moufang type identities
focused on quasigroups and loop, this paper focused on the study of Bol-Moufang type identities
(Fenyves’ identities) in special types of groupoids (BCI-algebra and quasi neutrosophic triplet loops)
which are not necessarily quasigroups or loops (as proved in Theorem 12). Examples of such well
known varieties of groupoids were constructed by Ilojide et al. [41], e.g., Abel-Grassmann’s groupoid.

The results of this work are an initiation into the study of the classification of finite Fenyves’ quasi
neutrosophic triplet loops (FQNTLs) just like various types of finite loops have been classified (e.g.,
Bol loops, Moufang loops and FRUTE loops). In fact, a library of finite Moufang loops of small order is
available in the GAPS-LOOPS package [42]. It will be intriguing to have such a library of FQNTLs.

Overall, this research work (especially for the non-associative Fi’s) has opened a new area of
research findings in BCI-algebras and Bol-Moufang type quasi neutrosophic triplet loops as shown in
Figure 1.
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Table 1. Characterization of Fenyves Identities in Quasigroups, Loops and BCI-Algebras by Associativity.

Fenyves Fi ≡ ASS Fi 6≡ ASS Quassigroup Fi + BCI
Identity Inaloop Inaloop ⇒ Loop ⇒ ASS

F1 X X X

F2 X X X

F3 X X ‡

F4 X X

F5 X ‡

F6 X X X

F7 X X

F8 X ‡

F9 X X

F10 X X

F11 X X X

F12 X X X

F13 X X X

F14 X X

F15 X X

F16 X X

F17 X X X

F18 X X X

F19 X ‡

F20 X X

F21 X X ‡

F22 X X X

F23 X X

F24 X X

F25 X X

F26 X X

F27 X X X

F28 X X X

F29 X ‡

F30 X X

F31 X X X

F32 X X X

F33 X X

F34 X X

F35 X X

F36 X X

F37 X X

F38 X X X
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Table 1. Cont.

Fenyves Fi ≡ ASS Fi 6≡ ASS Quassigroup Fi + BCI
Identity Inaloop Inaloop ⇒ Loop ⇒ ASS

F39 X ‡

F40 X X

F41 X X X

F42 X ‡

F43 X X

F44 X X

F45 X X

F46 X ‡

F47 X X X

F48 X X

F49 X X

F50 X X

F51 X X

F52 X ‡

F53 X X X

F54 X ‡

F55 X ‡

F56 X ‡

F57 X X

F58 X X X

F59 X ‡

F60 X X

Figure 1. New Cycle of Algebraic Structures.
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