Article

Ordinary Single Valued Neutrosophic Topological Spaces

Junhui Kim¹, Florentin Smarandache², Jeong Gon Lee³ and Kul Hur³

¹ Department of Mathematics Education, Wonkwang University, 460, Iksan-daero, Iksan-Si 54538, Jeonbuk, Korea
² Department of Mathematics and Science, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA
³ Department of Applied Mathematics, Wonkwang University, 460, Iksan-daero, Iksan-Si 54538, Jeonbuk, Korea
* Correspondence: junhikim@wku.ac.kr

Received: date; Accepted: date; Published: date

Abstract: We define an ordinary single valued neutrosophic topology and obtain some of its basic properties. In addition, we introduce the concept of an ordinary single valued neutrosophic subspace. Next, we define the ordinary single valued neutrosophic neighborhood system and we show that an ordinary single valued neutrosophic neighborhood system has the same properties in a classical neighborhood system. Finally, we introduce the concepts of an ordinary single valued neutrosophic base and an ordinary single valued neutrosophic subbase, and obtain two characterizations of an ordinary single valued neutrosophic base and one characterization of an ordinary single valued neutrosophic subbase.

Keywords: ordinary single valued neutrosophic (co)topology; ordinary single valued neutrosophic subspace; α-level; ordinary single valued neutrosophic neighborhood system; ordinary single valued neutrosophic base; ordinary single valued neutrosophic subbase

1. Introduction

In 1965, Zadeh [1] introduced the concept of fuzzy sets as the generalization of an ordinary set. In 1986, Chang [2] was the first to introduce the notion of a fuzzy topology by using fuzzy sets. After that, many researchers [3–13] have investigated several properties in fuzzy topological spaces.

However, in their definitions of fuzzy topology, fuzziness in the notion of openness of a fuzzy set was absent. In 1992, Samanta et al. [14,15] introduced the concept of gradation of openness (closedness) of fuzzy sets in X in two different ways, and gave definitions of a smooth topology and a smooth co-topology on X satisfying some axioms of gradation of openness and some axioms of gradation of closedness of fuzzy sets in X, respectively. After then, Ramadan [16] defined level sets of a smooth topology and smooth continuity, and studied some of their properties. Demirci [17] defined a smooth neighborhood system and a smooth Q-neighborhood system, and investigated their properties. Chattopadhyay and Samanta [18] introduced a fuzzy closure operator in smooth topological spaces. In addition, they defined smooth compactness in the sense of Lowen [8,9], and obtained its properties. Peters [19] gave the concept of initial smooth fuzzy structures and found its properties. He [20] also introduced a smooth topology in the sense of Lowen [8] and proved that the collection of smooth topologies forms a complete lattice. Al Tahan et al. [21] defined a topology such that the hyperoperation is pseudocontinuous, and showed that there is no relation in general between pseudotopological and strongly pseudotopological hypergroupoids. In addition, Onassanya and Hošková-Mayerová [22] investigated some topological properties of α-level subsets’
topology of a fuzzy subset. Moreover, Çoker and Demirci \[23\], and Samanta and Mondal \[24,25\] defined intuitionistic gradation of openness (in short IGO) of fuzzy sets in Šostak’s sense \[26\] by using intuitionistic fuzzy sets introduced by Atanassov \[27\]. They mainly dealt with intuitionistic gradation of openness of fuzzy sets in the sense of Chang. However, in 2010, Lim et al. \[28\] investigated intuitionistic smooth topological spaces in Lowen’s sense. Recently, Kim et al. \[29\] studied continuities and neighborhood systems in intuitionistic smooth topological spaces. In addition, Choi et al. \[30\] studied the concept of the topology (called a fuzzifying topology) considering the degree of openness of an ordinary subset of a set. In 2012, Lim et al. \[34\] studied general properties in ordinary smooth topological spaces. In addition, they \[35–37\] investigated closures, interiors and compactness in ordinary smooth topological spaces.

In 1998, Smarandache \[38\] defined the concept of a neutrosophic set as the generalization of an intuitionistic fuzzy set. Salama et al. \[39\] introduced the concept of a neutrosophic crisp set and neutrosophic crisp relation (see \[40\] for a neutrosophic crisp set theory). After that, Hur et al. \[41,42\] introduced categories $\text{NSet}(\mathcal{H})$ and $\text{NCSet}$ consisting of neutrosophic sets and neutrosophic crisp sets, respectively, and investigated them in a topological universe view-point. Smarandache \[43\] defined the notion of neutrosophic topology on the non-standard interval and Lupiáñez proved that Smarandache’s definitions of neutrosophic topology are not suitable as extensions of the intuitionistic fuzzy topology (see Proposition 3 in \[44,45\]). In addition, Salama and Alblowi \[46\] defined a neutrosophic topology and obtained some of its properties. Salama et al. \[47\] defined a neutrosophic crisp topology and studied some of its properties. Wang et al. \[48\] introduced the notion of a single valued neutrosophic set. Recently, Kim et al. \[49\] studied a single valued neutrosophic relation, a single valued neutrosophic equivalence relation and a single valued neutrosophic partition.

In this paper, we define an ordinary single valued neutrosophic topology and obtain some of its basic properties. In addition, we introduce the concept of an ordinary single valued neutrosophic subspace. Next, we define the ordinary single valued neutrosophic neighborhood system and we show that an ordinary single valued neutrosophic neighborhood system has the same properties in a classical neighborhood system. Finally, we introduce the concepts of an ordinary single valued neutrosophic base and an ordinary single valued neutrosophic subbase, and obtain two characterizations of an ordinary single valued neutrosophic base and one characterization of an ordinary single valued neutrosophic subbase.

2. Preliminaries

In this section, we introduce the concepts of single valued neutrosophic set, the complement of a single valued neutrosophic set, the inclusion between two single valued neutrosophic sets, the union and the intersection of them.

**Definition 1** \([43]\). Let $X$ be a non-empty set. Then, $A$ is called a neutrosophic set (in sort, NS) in $X$, if $A$ has the form $A = (T_A, I_A, F_A)$, where

$$T_A : X \rightarrow [0, 1], \quad I_A : X \rightarrow [0, 1], \quad F_A : X \rightarrow [0, 1].$$

Since there is no restriction on the sum of $T_A(x), I_A(x)$ and $F_A(x)$, for each $x \in X$,

$$0 \leq T_A(x) + I_A(x) + F_A(x) \leq 3.$$

Moreover, for each $x \in X$, $T_A(x)$ (resp., $I_A(x)$ and $F_A(x)$) represent the degree of membership (resp., indeterminacy and non-membership) of $x$ to $A$. 
From Example 2.1.1 in [17], we can see that every IFS (intuitionistic fuzzy set) \( A \) in a non-empty set \( X \) is an NS in \( X \) having the form

\[
A = (T_A, 1 - (T_A + F_A), F_A),
\]

where \((1 - (T_A + F_A))(x) = 1 - (T_A(x) + F_A(x))\).

**Definition 2** ([43]). Let \( A \) and \( B \) be two NSs in \( X \). Then, we say that \( A \) is contained in \( B \), denoted by \( A \subseteq B \), if, for each \( x \in X \), inf \( T_A(x) \leq \inf T_B(x) \), sup \( T_A(x) \leq \sup T_B(x) \), inf \( I_A(x) \geq \inf I_B(x) \), sup \( I_A(x) \geq \sup I_B(x) \), inf \( F_A(x) \geq \inf F_B(x) \) and sup \( F_A(x) \geq \sup F_B(x) \).

**Definition 3** ([48]). Let \( X \) be a space of points (objects) with a generic element in \( X \) denoted by \( x \). Then, \( A \) is called a single valued neutrosophic set (in short, SVNS) in \( X \), if \( A \) has the form \( A = (T_A, I_A, F_A) \), where \( T_A, I_A, F_A: X \to [0, 1] \).

In this case, \( T_A, I_A, F_A \) are called truth-membership function, indeterminacy-membership function, falsity-membership function, respectively, and we will denote the set of all SVNSs in \( X \) as SVNS(\( X \)).

Furthermore, we will denote the empty SVNS (resp. the whole SVNS) in \( X \) as 0\(_N\) (resp. 1\(_N\)) and define by \( 0_N(x) = (0, 1, 1) \) (resp. \( 1_N = (1, 0, 0) \)), for each \( x \in X \).

**Definition 4** ([48]). Let \( A \in \text{SVNS}(X) \). Then, the complement of \( A \), denoted by \( A^c \), is an SVNS in \( X \) defined as follows: for each \( x \in X \),

\[
T_{A^c}(x) = F_A(x), \quad I_{A^c}(x) = 1 - I_A(x) \quad \text{and} \quad F_{A^c}(x) = T_A(x).
\]

**Definition 5** ([50]). Let \( A, B \in \text{SVNS}(X) \). Then,

(i) \( A \) is said to be contained in \( B \), denoted by \( A \subseteq B \), if, for each \( x \in X \),

\[
T_A(x) \leq T_B(x), \quad I_A(x) \geq I_B(x) \quad \text{and} \quad F_A(x) \geq F_B(x),
\]

(ii) \( A \) is said to be equal to \( B \), denoted by \( A = B \), if \( A \subseteq B \) and \( B \subseteq A \).

**Definition 6** ([51]). Let \( A, B \in \text{SVNS}(X) \). Then,

(i) the intersection of \( A \) and \( B \), denoted by \( A \cap B \), is a SVNS in \( X \) defined as:

\[
A \cap B = (T_A \wedge T_B, I_A \vee I_B, F_A \vee F_B),
\]

where \((T_A \wedge T_B)(x) = T_A(x) \wedge T_B(x), (F_A \vee F_B) = F_A(x) \vee F_B(x)\), for each \( x \in X \),

(ii) the union of \( A \) and \( B \), denoted by \( A \cup B \), is an SVNS in \( X \) defined as:

\[
A \cup B = (T_A \vee T_B, I_A \wedge I_B, F_A \wedge F_B).
\]

**Remark 1.** Definitions 5 and 6 are different from the corresponding definitions in [48].

**Result 1** ([51], Proposition 2.1). Let \( A, B \in \text{SVNS}(X) \). Then,

1. \( A \subseteq A \cup B \) and \( B \subseteq A \cup B \),
2. \( A \cap B \subseteq A \) and \( A \cap B \subseteq B \),
3. \((A^c)^c = A^c \),
4. \((A \cup B)^c = A^c \cap B^c, (A \cap B)^c = A^c \cup B^c \).

The following are immediate results of Definitions 5 and 6.

**Proposition 1.** Let \( A, B, C \in \text{SVNS}(X) \). Then,

1. (Commutativity) \( A \cup B = B \cup A, A \cap B = B \cap A \),
Symmetry 2019, xx, 5

3. Ordinary Single Valued Neutrosophic Topology

Let $A$ be a nonempty set. Then, a mapping $\tau : 2^X \to I \times I \times I$ is called an ordinary single valued neutrosophic value. For two single valued neutrosophic values $a$ and $b$,

(i) $a \leq b$ iff $T_A \leq T_B$, $I_A \geq I_B$ and $F_A \geq F_B$,

(ii) $a < b$ iff $T_A < T_B$, $I_A > I_B$ and $F_A > F_B$.

In particular, the form $a^* = (a, 1 - a, 1 - a)$ is called a single valued neutrosophic constant.

We denote the set of all single valued neutrosophic values (resp. constant) as $SVNV$ (resp. $SVNC$) (see [49]).

Definition 8. Let $X$ be a nonempty set. Then, a mapping $\tau = (T_\tau, I_\tau, F_\tau) : 2^X \to I \times I \times I$ is called an ordinary single valued neutrosophic topology (in short, osvnt) on $X$ if it satisfies the following axioms:

For any $X$, $A \in 2^X$ and each $\{A_a\}_{a \in \Gamma} \subseteq SVNS(X)$.

(i) the union of $\{A_a\}_{a \in \Gamma}$, denoted by $\bigcup_{a \in \Gamma} A_a$, is a single valued neutrosophic set in $X$ defined as follows: for each $x \in X$,

$$\bigcup_{a \in \Gamma} A_a(x) = \bigvee_{a \in \Gamma} T_{A_a}(x), \bigwedge_{a \in \Gamma} I_{A_a}(x), \bigwedge_{a \in \Gamma} F_{A_a}(x).$$

(ii) the intersection of $\{A_a\}_{a \in \Gamma}$, denoted by $\bigcap_{a \in \Gamma} A_a$, is a single valued neutrosophic set in $X$ defined as follows: for each $x \in X$,

$$\bigcap_{a \in \Gamma} A_a(x) = \bigwedge_{a \in \Gamma} T_{A_a}(x), \bigvee_{a \in \Gamma} I_{A_a}(x), \bigvee_{a \in \Gamma} F_{A_a}(x).$$

(3) (Distributivity) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), A \cap (B \cap C) = (A \cap B) \cap (A \cap C)$,

(4) (Idempotency) $A \cup A = A, A \cap A = A$,

(5) (Absorption) $A \cup (A \cap B) = A, A \cap (A \cup B) = A$,

(6) (DeMorgan’s laws) $(A \cup B)^c = A^c \cap B^c, (A \cap B)^c = A^c \cup B^c$,

(7) $A \cap \emptyset = \emptyset, A \cup \emptyset = A$.

Proposition 2. Let $A \in SVNS(X)$ and let $\{A_a\}_{a \in \Gamma} \subseteq SVNS(X)$. Then,

(1) (Generalized Distributivity)

$$A \cup (\bigcap_{a \in \Gamma} A_a) = \bigcap_{a \in \Gamma} (A \cup A_a), \quad A \cap (\bigcup_{a \in \Gamma} A_a) = \bigcup_{a \in \Gamma} (A \cap A_a),$$

(2) (Generalized DeMorgan’s laws)

$$\bigcap_{a \in \Gamma} A_a^c = \bigcup_{a \in \Gamma} A_a^c, \quad \bigcup_{a \in \Gamma} A_a^c = \bigcap_{a \in \Gamma} A_a^c.$$
The pair \((X, \tau)\) is called an ordinary single valued neutrosophic topological space (in short, osvnts). We denote the set of all ordinary single valued neutrosophic topologies on \(X\) as \(\text{OSVNT}(X)\).

Let \(2 = \{0, 1\}\) and let \(\tau : 2^X \to 2 \times 2 \times 2\) satisfy the axioms in Definition 8. Since we can consider as \((1, 0, 0) = 1\) and \((0, 1, 1) = 0\), \(\tau \in T(X)\), where \(T(X)\) denotes the set of all classical topologies on \(X\). Thus, we can see that \(T(X) \subset \text{OSVNT}(X)\).

**Example 1.** (1) Let \(X = \{a, b, c\}\). Then, \(2^X = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\). We define the mapping \(\tau : 2^X \to I \times I \times I\) as follows:

\[
\begin{align*}
\tau(\phi) &= (1, 0, 0), \\
\tau(\{a\}) &= (0.7, 0.3, 0.4), \\
\tau(\{b\}) &= (0.6, 0.2, 0.3), \\
\tau(\{c\}) &= (0.8, 0.1, 0.2), \\
\tau(\{a, b\}) &= (0.6, 0.3, 0.4), \\
\tau(\{b, c\}) &= (0.7, 0.1, 0.2), \\
\tau(\{a, c\}) &= (0.8, 0.2, 0.3).
\end{align*}
\]

Then, we can easily see that \(\tau \in \text{OSVNT}(X)\).

(2) Let \(X\) be a nonempty set. We define the mapping \(\tau_\phi : 2^X \to I \times I \times I\) as follows: for each \(A \in 2^X\),

\[
\tau_\phi(A) = \begin{cases} 
(1, 0, 0) & \text{if either } A = \phi \text{ or } A = X, \\
(0, 1, 1) & \text{otherwise}.
\end{cases}
\]

Then, clearly, \(\tau_\phi \in \text{OSVT}(X)\).

In this case, \(\tau_\phi\) (resp. \((X, \tau_\phi)\)) is called the ordinary single valued neutrosophic indiscrete topology on \(X\) (resp. the ordinary single valued neutrosophic indiscrete space).

(3) Let \(X\) be a nonempty set. We define the mapping \(\tau_X : 2^X \to I \times I \times I\) as follows: for each \(A \in 2^X\),

\[
\tau_X(A) = (1, 0, 0).
\]

Then, clearly, \(\tau_X \in \text{OSVNT}(X)\).

In this case, \(\tau_X\) (resp. \((X, \tau_X)\)) is called the ordinary single valued neutrosophic discrete topology on \(X\) (resp. the ordinary single valued neutrosophic discrete space).

(4) Let \(X\) be a set and let \(\alpha = (T_\alpha, I_\alpha, F_\alpha) \in \text{SVNV}\) be fixed, where \(T_\alpha \in I_1\) and \(I_\alpha, F_\alpha \in I_0\). We define the mapping \(\tau : 2^X \to I \times I \times I\) as follows: for each \(A \in 2^X\),

\[
\tau(A) = \begin{cases} 
(1, 0, 0) & \text{if either } A = \phi \text{ or } A^c \text{ is finite}, \\
\alpha & \text{otherwise}.
\end{cases}
\]

Then, we can easily see that \(\tau \in \text{OSVNT}(X)\).

In this case, \(\tau\) is called the \(\alpha\)-ordinary single valued neutrosophic finite complement topology on \(X\) and will be denoted by \(\text{OSVNCof}(X)\). \(\text{OSVNCof}(X)\) is of interest only when \(X\) is an infinite set because if \(X\) is finite, then \(\text{OSVNCof}(X) = \tau_\phi\).

(5) Let \(X\) be an infinite set and let \(\alpha = (T_\alpha, I_\alpha, F_\alpha) \in \text{SVNV}\) be fixed, where \(T_\alpha \in I_1\) and \(I_\alpha, F_\alpha \in I_0\). We define the mapping \(\tau : 2^X \to I \times I \times I\) as follows: for each \(A \in 2^X\),

\[
\tau(A) = \begin{cases} 
(1, 0, 0) & \text{if either } A = \phi \text{ or } A^c \text{ is countable}, \\
\alpha & \text{otherwise}.
\end{cases}
\]

Then, clearly, \(\tau \in \text{OSVNT}(X)\).

In this case, \(\tau\) is called the \(\alpha\)-ordinary single valued neutrosophic countable complement topology on \(X\) and is denoted by \(\text{OSVNCoc}(X)\).
We have the following results:

**Theorem 1.** If $T$ is a topology on $X$, then

$$
\tau = T_T = \tau_{\tau_B}
$$

**Definition.** A mapping $f : OSVNT(X) \to OSVNT(X)$ and $g : OSVNT(X) \to OSVNT(X)$ respectively as follows:

$$
[f(\tau)](A) = \tau(A^c)
$$

and

$$
[g(\tau)](A) = \tau(A^c)
$$

Then, $f$ and $g$ are well-defined. Moreover, $g \circ f = 1_{OSVNT(X)}$ and $f \circ g = 1_{OSVNT(X)}$.

**Remark.** (1) For each $\tau \in OSVNT(X)$ and each $C \in OSVNT(X)$, let $f(\tau) = C_T$ and $g(C) = \tau_C$. Then, from Theorem 1, we can see that $\tau_{C_T} = \tau$ and $C_{\tau_C} = C$. 

**Proposition 3.** We define two mappings $f : OSVNT(X) \to OSVNT(X)$ and $g : OSVNT(X) \to OSVNT(X)$ respectively as follows:

$$
[f(\tau)](A) = \tau(A^c)
$$

and

$$
[g(\tau)](A) = \tau(A^c)
$$

Then, $f$ and $g$ are well-defined. Moreover, $g \circ f = 1_{OSVNT(X)}$ and $f \circ g = 1_{OSVNT(X)}$. 

**Remark.** (1) For each $\tau \in OSVNT(X)$ and each $C \in OSVNT(X)$, let $f(\tau) = C_T$ and $g(C) = \tau_C$. Then, from Proposition 3, we can see that $\tau_{C_T} = \tau$ and $C_{\tau_C} = C$. 

**Definition.** Let $X$ be a nonempty set. Then, a mapping $C = (\mu_C, \nu_C) : 2^X \to I \times I$ is called an ordinary single valued neutrosophic cotopology (in short, osvnct) on $X$ if it satisfies the following conditions: for any $A \in 2^X$,

$$
((\mu_C(A), \nu_C(A)) = (1 - F_T(A), I_T(A), F_T(A)).
$$

Then, it is easily seen that $\tau_T \in OSVNT(X)$. Moreover, we can see that if $T$ is the classical discrete topology, then $\tau_T = \tau_X$.

**Remark 2.** (1) If $I = 2$, then we can think that Definition 8 also coincides with the known definition of classical topology.

(2) Let $(X, \tau)$ be an osvnsts. We define two mappings $\mu : \tau, \nu : \tau : 2^X \to I \times I$, respectively, as follows: for each $A \in 2^X$,

$$
(\mu(\tau))(A) = (T_C(A), I_T(A), 1 - T_T(A)), \quad (\nu(\tau))(A) = (1 - F_T(A), I_T(A), F_T(A)).
$$

Then, we can easily see that $\mu, \nu \in OSVNT(X)$.

**Definition 9.** Let $X$ be a nonempty set. Then, a mapping $C = (\mu_C, \nu_C) : 2^X \to I \times I$ is called an ordinary single valued neutrosophic cotopological space (in short, osvnts) on $X$ if it satisfies the following conditions: for any $A, B \in 2^X$ and each $\{A_a\}_{a \in \Gamma} \subset 2^X$,

$$
(\text{OSVNCT1}) \quad C(\phi) = C(X) = (1, 0, 0),
$$

$$
(\text{OSVNCT2}) \quad T_C(A \cup B) \geq T_C(A) \wedge T_C(B), \quad I_C(A \cup B) \leq I_C(A) \vee I_C(B),
$$

$$
F_C(A \cup B) \leq F_C(A) \vee F_C(B),
$$

$$
(\text{OSVNCT3}) \quad T_C(\bigcap_{a \in \Gamma} A_a) \geq \bigwedge_{a \in \Gamma} T_C(A_a), \quad I_C(\bigcap_{a \in \Gamma} A_a) \leq \bigvee_{a \in \Gamma} I_C(A_a),
$$

$$
F_C(\bigcap_{a \in \Gamma} A_a) \leq \bigvee_{a \in \Gamma} F_C(A_a).
$$

The pair $(X, C)$ is called an ordinary single valued neutrosophic cotopological space (in short, osvnts).
(2) Let \((X, C)\) be an osvncts. We define two mappings \([ ]C, < > C : 2^X \rightarrow I \times I \times I\), respectively, as follows: for each \(A \in 2^X\),

\[
([ ]C)(A) = (T_C(A), I_C(A), 1 - T_C(A)), \quad (< > C)(A) = (1 - F_C(A), I_C(A), F_C(A)).
\]

Then, we can easily see that \([ ]C, < > C \in OSVNT(X)\).

Definition 10. Let \(\tau_1, \tau_2 \in OSVNT(X)\) and let \(C_1, C_2 \in OSVNT(X)\).

(i) We say that \(\tau_1\) is finer than \(\tau_2\) or \(\tau_2\) is coarser than \(\tau_1\), denoted by \(\tau_2 \leq \tau_1\), if \(\tau_2(A) \leq \tau_1(A)\), i.e.,

\[
T_2(A) \leq T_1(A), \quad I_2(A) \geq I_1(A), \quad F_2(A) \geq F_1(A).
\]

(ii) We say that \(C_1\) is finer than \(C_2\) or \(C_2\) is coarser than \(C_1\), denoted by \(C_2 \leq C_1\), if \(C_2(A) \leq C_1(A)\), i.e.,

\[
T_2(A) \leq T_1(A), \quad I_2(A) \geq I_1(A), \quad F_2(A) \geq F_1(A).
\]

We can easily see that \(\tau_1\) is finer than \(\tau_2\) if and only if \(C_{\tau_1}\) is finer than \(C_{\tau_2}\), and \((OSVNT(X), \leq)\) and \((OSVNT(X), \preceq)\) are posets, respectively.

From Example 1 (2) and (3), it is obvious that \(\tau_\emptyset\) is the coarsest ordinary single valued neutrosophic topology on \(X\) and \(T_X\) is the finest ordinary single valued neutrosophic topology on \(X\).

Proposition 4. If \(\{\tau_a\}_{a \in \Gamma} \subset OSVNT(X)\), then \(\bigcap_{a \in \Gamma} \tau_a \in OSVNT(X)\),

where \(\bigcap_{a \in \Gamma} \tau_a\) \(\equiv (\bigwedge_{a \in \Gamma} T_{\tau_a}(A), \bigvee_{a \in \Gamma} I_{\tau_a}(A), \bigvee_{a \in \Gamma} F_{\tau_a}(A))\), \(\forall A \in 2^X\).

Proof. Let \(\tau = \bigcap_{a \in \Gamma} \tau_a\) and let \(a \in \Gamma\). Since \(\tau_a \in OSVNT(X)\), \(\tau_a(X) = \tau_a(\emptyset) = (1, 0, 0)\), i.e.,

\[
T_{\tau_a}(X) = T_{\tau_a}(\emptyset) = 1, \quad I_{\tau_a}(X) = I_{\tau_a}(\emptyset) = 0, \quad F_{\tau_a}(X) = F_{\tau_a}(\emptyset) = 0.
\]

Then, \(T_{\tau}(X) = \bigwedge_{a \in \Gamma} T_{\tau_a}(X) = 1, \quad I_{\tau}(X) = \bigvee_{a \in \Gamma} I_{\tau_a}(X) = 0 = F_{\tau}(X)\). Similarly, we have \(I_{\tau}(\emptyset) = 1, \quad I_{\tau}(\emptyset) = 0 = F_{\tau}(\emptyset)\). Thus, the condition \((OSVNT1)\) holds.

Let \(A, B \in 2^X\). Then,

\[
T_{\tau}(A \cap B) = \bigwedge_{a \in \Gamma} T_{\tau_a}(A \cap B)
\]

\[
\geq \bigwedge_{a \in \Gamma} (T_{\tau_a}(A) \land T_{\tau_a}(B))
\]

\[
= (\bigwedge_{a \in \Gamma} T_{\tau_a}(A)) \land (\bigwedge_{a \in \Gamma} T_{\tau_a}(B))
\]

\[
= T_{\tau}(A) \land T_{\tau}(B)
\]

and

\[
I_{\tau}(A \cap B) = \bigvee_{a \in \Gamma} I_{\tau_a}(A \cap B)
\]

\[
\leq \bigvee_{a \in \Gamma} (I_{\tau_a}(A) \lor I_{\tau_a}(B))
\]

\[
= (\bigvee_{a \in \Gamma} I_{\tau_a}(A)) \lor (\bigvee_{a \in \Gamma} I_{\tau_a}(B))
\]

\[
= I_{\tau}(A) \lor I_{\tau}(B).
\]

Similarly, we have \(F_{\tau}(A \cap B) \leq F_{\tau}(A) \lor F_{\tau}(B)\). Thus, the condition \((OSVNT2)\) holds.

Now, let \(\{A_j\}_{j \in J} \subset 2^X\). Then,

\[
T_{\tau}(\bigcup_{j \in J} A_j) = \bigwedge_{a \in \Gamma} T_{\tau_a}(\bigcup_{j \in J} A_j)
\]

\[
\geq \bigwedge_{a \in \Gamma} (\bigwedge_{j \in J} T_{\tau_a}(A_j))
\]

\[
= \bigwedge_{j \in J} (\bigwedge_{a \in \Gamma} T_{\tau_a}(A_j))
\]

\[
= \bigwedge_{j \in J} T_{\tau}(A_j)
\]

and
\[ I_\tau(\bigcup_{j \in J} A_j) = \bigvee_{a \in I_\tau} I_\tau(\bigcup_{j \in J} A_j) \quad \text{[By the definition of } \tau \text{]} \\
\leq \bigvee_{a \in I_\tau} \big( \bigvee_{i \in I_\tau} I_\tau(A_i) \big) \quad \text{[Since } \tau_a \in \text{OSVNT}(X) \text{]} \\
= \bigvee_{i \in I_\tau} \big( \bigvee_{a \in I_\tau} I_\tau(A_i) \big) \quad \\
= \bigvee_{i \in I_\tau} (\bigcup_{a \in I_\tau} I_\tau(A_i)) \quad \text{[By the definition of } \tau \text{]} \\
\quad \text{Similarly, we have } F_\tau(\bigcup_{j \in J} A_j) \leq \bigvee_{j \in J} F_\tau(A_j). \text{ Thus, the condition (OSVNT3) holds. This completes the proof.} \]

From Definition 10 and Proposition 4, we have the following.

**Proposition 5.** (OSVNT(X), ⊆) is a meet complete lattice with the least element \( \tau_{\phi} \) and the greatest element \( \tau_X \).

**Definition 11.** Let \((X, \tau)\) be an osvnts and let \( \alpha \in \text{SVNV} \). We define two sets \( [\tau]_\alpha \) and \( [\tau]^* \) as follows, respectively:

(i) \( [\tau]_\alpha = \{ A \in 2^X : T_\tau(A) \geq T_\alpha, \ I_\tau(A) \leq I_\alpha, \ I_\tau(A) \leq F_\alpha \} \),

(ii) \( [\tau]^*_\alpha = \{ A \in 2^X : T_\tau(A) > T_\alpha, \ I_\tau(A) < I_\alpha, \ F_\tau(A) < F_\alpha \} \).

In this case, \( [\tau]_\alpha \) (resp. \( [\tau]^*_\alpha \)) is called the \( \alpha \)-level (resp. strong \( \alpha \)-level) of \( \tau \). If \( \alpha = (0,1,1) \), then \( [\tau]_{(0,1,1)} = 2^X \), i.e., \( [\tau]_{(0,1,1)} \) is the classical discrete topology on \( X \) and if \( \alpha = (1,0,0) \), then \( [\tau]^*_{(1,0,0)} = \phi \). Moreover, we can easily see that for any \( \alpha \in \text{SVNV} \), \( [\tau]_\alpha \subset [\tau]_\alpha \).

**Lemma 1.** Let \( \tau \in \text{OSVNT}(X) \) and let \( \alpha, \beta \in \text{SVNV} \). Then,

1. \( [\tau]_\alpha \subset T(X) \),
2. if \( \alpha \leq \beta \), then \( [\tau]_\beta \subset [\tau]_\alpha \),
3. \( [\tau]_\alpha = \bigcap_{\beta < \alpha} [\tau]_\beta \), where \( \alpha \in I_0 \times I_1 \times I_1 \),
4. \( [\tau]^*_\alpha \subset T(X) \), where \( \alpha \in I_1 \times I_0 \times I_0 \),
5. if \( \alpha \leq \beta \), then \( [\tau]^*_\beta \subset [\tau]^*_\alpha \),
6. \( [\tau]^*_\alpha = \bigcup_{\beta > \alpha} [\tau]^*_\beta \), where \( \alpha \in I_1 \times I_0 \times I_0 \).

**Proof.** The proofs of (1), (1)’, (2) and (2)’ are obvious from Definitions 8 and 11.

(3) From (2), \( \{ [\tau]_\alpha \}_{\alpha \in I_0 \times I_1 \times I_1} \) is a descending family of classical topologies on \( X \). Then, clearly, \( [\tau]_\alpha \subset \bigcap_{\beta < \alpha} [\tau]_\beta \), for each \( \alpha \in I_0 \times I_1 \times I_1 \).

Suppose \( A \notin [\tau]_\alpha \). Then, \( T_\tau(A) < T_\alpha \) or \( I_\tau(A) > I_\alpha \) or \( F_\tau(A) > F_\alpha \).

Thus, there exists \( T_\beta \in I_0 \) such that \( T_\tau(A) < T_\beta < T_\alpha \)

or

there exists \( I_\beta \in I_1 \) such that \( I_\tau(A) > I_\beta > I_\alpha \)

or

there exists \( F_\beta \in I_1 \) such that \( F_\tau(A) > F_\beta > F_\alpha \).

Thus, \( A \notin [\tau]_\beta \), for some \( \beta \in \text{SVNV} \) such that \( \beta < \alpha \), i.e., \( A \notin \bigcap_{\beta < \alpha} [\tau]_\beta \). Hence, \( [\tau]_\beta \subset [\tau]_\alpha \).

Therefore, \( [\tau]_\alpha = \bigcap_{\beta < \alpha} [\tau]_\beta \).

(3)’ The proof is similar to (3).
Remark 4. From (1) and (2) in Lemma 1, we can see that, for each \( \tau \in \text{OSVNT}(X) \), \( \{[\tau]_\alpha\}_{\alpha \in \text{SVNC}} \) is a family of descending classical topologies called the \( \alpha \)-level classical topologies on \( X \) with respect to \( \tau \).

The following is an immediate result of Lemma 1.

Corollary 1. Let \((X, \tau)\) be an osvnts. Then, \([\tau]_{\alpha^*} = \bigcap_{\beta < \alpha} [\tau]_{\beta^*}\) for each \( \alpha^* \in \text{SVNC} \), where \( \alpha \in I_0 \).

Lemma 2. (1) Let \( \{\tau_\alpha\}_{\alpha \in \text{SVNV}} \) be a descending family of classical topologies on \( X \) such that \( \tau_{(0,1,1)} \) is the classical discrete topology on \( X \). We define the mapping \( \tau : 2^X \to I \times I \times I \) as follows: for each \( A \in 2^X \),

\[
\tau(A) = \left( \bigvee_{\alpha \in \tau_\alpha} T_\alpha, \bigwedge_{\alpha \in \tau_\alpha} I_\alpha, \bigwedge_{\alpha \in \tau_\alpha} F_\alpha \right).
\]

Then, \( \tau \in \text{OSVNT}(X) \).

(2) If \( \tau_\alpha = \bigcap_{\beta < \alpha} \tau_{\beta^*} \), for each \( \alpha \in \text{SVNV} \) \( (\alpha \in I_0 \times I_1 \times I_2) \), then \( [\tau]_\alpha = \tau_\alpha \).

(3) If \( \tau_\alpha = \bigcup_{\beta > \alpha} \tau_{\beta^*} \), for each \( \alpha \in \text{SVNV} \) \( (\alpha \in I_1 \times I_0 \times I_0) \), then \( [\tau]_{\alpha^*} = \tau_\alpha \).

Proof. The proof is similar to Lemma 3.9 in [28].

The following is an immediate result of Lemma 2.

Corollary 2. Let \( \{\tau_{\alpha^*}\}_{\alpha \in I_0} \) be a descending family of classical topologies on \( X \) such that \( \tau_{(0,1,1)} \) is the classical discrete topology on \( X \). We define the mapping \( \tau : 2^X \to I \times I \times I \) as follows: for each \( A \in 2^X \),

\[
\tau(A) = \left( \bigvee_{\alpha \in \tau_{\alpha^*}} \alpha, \bigwedge_{\alpha \in \tau_{\alpha^*}} (1 - \alpha), \bigwedge_{\alpha \in \tau_{\alpha^*}} (1 - \alpha) \right).
\]

Then, \( \tau \in \text{OSVNT}(X) \) and \( [\tau]_{\alpha^*} = \bigcap_{\beta < \alpha} \tau_{\beta^*} = \tau_\alpha \) \( \forall \alpha \in I_0 \).

From Lemmas 1 and 2, we have the following result.

Proposition 6. Let \( \tau \in \text{OSVNT}(X) \) and let \([\tau]_\alpha\) be the \( \alpha \)-level classical topology on \( X \) with respect to \( \tau \).

We define the mapping \( \eta : 2^X \to I \times I \times I \) as follows: for each \( A \in 2^X \),

\[
\eta(A) = \left( \bigvee_{A \in [\tau]_\alpha} T_\alpha, \bigwedge_{A \in [\tau]_\alpha} I_\alpha, \bigwedge_{A \in [\tau]_\alpha} F_\alpha \right).
\]

Then, \( \eta = \tau \).

The fact that an ordinary single valued neutrosophic topological space fully determined by its decomposition in classical topologies is restated in the following theorem.

Theorem 1. Let \( \tau_1, \tau_2 \in \text{OSVNT}(X) \). Then, \( \tau_1 = \tau_2 \) if and only if \([\tau_1]_\alpha = [\tau_2]_\alpha \) for each \( \alpha \in \text{SVNV} \), or alternatively, if and only if \([\tau_1]_{\alpha^*} = [\tau_2]_{\alpha^*} \) for each \( \alpha \in \text{SVNV} \).

Remark 5. In a similar way, we can construct an ordinary single valued neutrosophic cotopology \( C \) on a set \( X \), by using the \( \alpha \)-levels,

\[
[C]_\alpha = \{ A \in I^X : T_c(A) \geq T_\alpha, I_c(A) \leq I_\alpha, F_c(A) \leq F_\alpha \}
\]

and

\[
[C]_{\alpha^*} = \{ A \in I^X : T_c(A) > T_\alpha, I_c(A) < I_\alpha, F_c(A) < F_\alpha \},
\]

for each \( \alpha \in \text{SVNV} \).
**Definition 12.** Let $T \in T(X)$ and let $\tau \in \text{OSVNT}(X)$. Then, $\tau$ is said to be compatible with $T$ if $T = S(\tau)$, where $S(\tau) = \{ A \in 2^X : T_\tau(A) > 0, I_\tau(A) < 1, F_\tau(A) < 1 \}$.

**Example 2.** (1) Let $\tau_\phi$ be the ordinary single valued neutrosophic indiscrete topology on a nonempty set $X$ and let $T_0$ be the classical indiscrete topology on $X$. Then, clearly,

$$S(\tau_\phi) = \{ A \in 2^X : T_\phi(A) > 0, I_\phi(A) < 1, F_\phi(A) < 1 \} = \{ \phi, X \} = T_0.$$ 

Thus, $\tau_\phi$ is compatible with $T_0$.

(2) Let $\tau_X$ be the ordinary single valued neutrosophic discrete topology on a nonempty set $X$ and let $T_1$ be the classical discrete topology on $X$. Then, clearly,

$$S(\tau_X) = \{ A \in 2^X : T_X(A) > 0, I_X(A) < 1, F_X(A) < 1 \} = 2^X = T_1.$$ 

Thus, $\tau_X$ is compatible with $T_1$.

(3) Let $X$ be a nonempty set and let $\alpha \in \text{SVNV}$ be fixed, where $\alpha \in I_0 \times I_1 \times I_1$. We define the mapping $\tau : 2^X \to I \times I \times I$ as follows: for each $A \in 2^X$,

$$\tau(A) = \begin{cases} 
(1,0,0) & \text{if either } A = \phi \text{ or } A = X, \\
\alpha & \text{otherwise.} 
\end{cases}$$

Then, clearly, $\tau \in \text{OSVNT}(X)$ and $\tau$ is compatible with $T_1$.

Furthermore, every classical topology can be considered as an ordinary single valued neutrosophic topology in the sense of the following result.

**Proposition 7.** Let $(X, \tau)$ be a classical topological space and and let $\alpha \in \text{SVNV}$ be fixed, where $\alpha \in I_0 \times I_1 \times I_1$. Then, there exists $\tau^\alpha \in \text{OSVNT}(X)$ such that $\tau^\alpha$ is compatible with $T$. Moreover, $[\tau^\alpha]_\alpha = \tau$.

In this case, $\tau^\alpha$ is called the $\alpha$-th ordinary single valued neutrosophic topology on $X$ and $(X, \tau^\alpha)$ is called the $\alpha$-th ordinary single valued neutrosophic topological space.

**Proof.** Let $\alpha \in \text{SVNV}$ be fixed, where $\alpha \in I_0 \times I_1 \times I_1$ and we define the mapping $\tau^\alpha : 2^X \to I \times I \times I$ as follows: for each $A \in 2^X$,

$$\tau^\alpha(A) = \begin{cases} 
(1,0,0) & \text{if either } A = \phi \text{ or } A = X, \\
\alpha & \text{if } A \in \tau \setminus \{ \phi, X \}, \\
(0,1,1) & \text{otherwise.} 
\end{cases}$$

Then, we can easily see that $\tau^\alpha \in \text{OSVNT}(X)$ and $[\tau^\alpha]_\alpha = \tau$. Moreover, by the definition of $\tau^\alpha$,

$$S(\tau^\alpha) = \{ A \in 2^X : T^\alpha(A) > 0, I^\alpha(A) < 1, F^\alpha(A) < 1 \} = \tau.$$ 

Thus, $\tau^\alpha$ is compatible with $\tau$. \qed

**Proposition 8.** Let $(X, T)$ be a classical topological space, let $C(T)$ be the set of all osvnts on $X$ compatible with $T$, let $\tilde{T} = T \setminus \{ \phi, X \}$ and let $(1 \times I \times I)^{\tilde{T}}_{(0,1,1)}$ be the set of all mappings $f : \tilde{T} \to I \times I \times I$ satisfying the following conditions: for any $A, B \in \tilde{T}$ and each $(A_j)_{j \in J} \subset \tilde{T}$,

1. $f(A) \neq (0,1,1)$,
2. $T_f(A \cap B) \geq T_f(A) \land T_f(B)$, $I_f(A \cap B) \leq I_f(A) \lor I_f(B)$, $F_f(A \cap B) \leq F_f(A) \lor F_f(B)$,
3. $T_f(\bigcup_{j \in J} A_j) \leq \bigcup_{j \in J} T_f(A_j)$, $I_f(\bigcup_{j \in J} A_j) \leq \bigcup_{j \in J} I_f(A_j)$, $F_f(\bigcup_{j \in J} A_j) \leq \bigcup_{j \in J} F_f(A_j)$.
Then, there is a one-to-one correspondence between $C(T)$ and $(I \times I \times I)^{\widehat{T}}_{(0,1,1)}$.

**Proof.** We define the mapping $F : (I \times I \times I)^{\widehat{T}}_{(0,1,1)} \rightarrow C(T)$ as follows: for each $f \in (I \times I \times I)^{\widehat{T}}_{(0,1,1)}$,

$$F(f) = \tau_f,$$

where $\tau_f : 2^X \rightarrow I \times I \times I$ is the mapping defined by: for each $A \in 2^X$,

$$\tau_f(A) = \begin{cases} 
(1,0,0) & \text{if either } A = \emptyset \text{ or } A = X, \\
(f(A), (1,0,1)) & \text{if } A \in \tilde{T}, \\
(0,1,1) & \text{otherwise}.
\end{cases}$$

Then, we easily see that $\tau_f \in C(T)$.

Now, we define the mapping $G : C(T) \rightarrow (I \times I \times I)^{\widehat{T}}_{(0,1,1)}$ as follows: for each $\tau \in C(T)$,

$$G(\tau) = f_\tau,$$

where $f_\tau : \tilde{T} \rightarrow I \times I \times I$ is the mapping defined by: for each $A \in \tilde{T}$,

$$f_\tau(A) = \tau(A).$$

Then, clearly, $f_\tau \in (I \times I \times I)^{\widehat{T}}_{(0,1,1)}$. Furthermore, we can see that $F \circ G = id_{C(T)}$ and $G \circ F = id_{(I \times I \times I)^{\widehat{T}}_{(0,1,1)}}$. Thus, $C(T)$ is equipotent to $(I \times I \times I)^{\widehat{T}}_{(0,1,1)}$. This completes the proof. □

**Proposition 9.** Let $(X, \tau)$ be an osvnts and let $Y \subset X$. We define the mapping $\tau_Y : 2^Y \rightarrow I \times I \times I$ as follows: for each $A \in 2^Y$,

$$\tau_Y(A) = (\bigvee_{B \in 2^X, A = B \cap Y} T_\tau(B), \bigwedge_{B \in 2^X, A = B \cap Y} I_\tau(B), \bigwedge_{B \in 2^X, A = B \cap Y} F_\tau(B)).$$

Then, $\tau_Y \in OSVNT(Y)$ and for each $A \in 2^Y$,

$$T_{\tau_Y}(A) \geq T_\tau(A), \quad I_{\tau_Y}(A) \leq I_\tau(A), \quad F_{\tau_Y}(A) \leq F_\tau(A).$$

In this case, $(Y, \tau_Y)$ is called an ordinary single valued neutrosophic subspace of $(X, \tau)$ and $\tau_Y$ is called the induced ordinary single valued neutrosophic topology on $A$ by $\tau$.

**Proof.** It is obvious that the condition (OSVNT1) holds, i.e., $\tau_Y(\emptyset) = \tau_Y(Y) = (1,0,0)$.

Let $A, B \in 2^Y$. Then, by proof of Proposition 5.1 in [34], $T_{\tau_Y}(A \cap B) \geq T_\tau(A) \wedge T_\tau(B)$.

Let us show that $I_{\tau_Y}(A \cap B) \leq I_{\tau_Y}(A) \vee I_{\tau_Y}(B)$. Then,

$$I_{\tau_Y}(A) \vee I_{\tau_Y}(B) = (\bigwedge_{C_1 \in 2^X, \ A = Y \cap C_1} I_\tau(C_1)) \cup (\bigwedge_{C_2 \in 2^X, \ B = Y \cap C_2} I_\tau(C_2)) = \bigwedge_{C_1, C_2 \in 2^X, \ A \cap B = Y \cap (C_1 \cap C_2)} [I_\tau(C_1) \cup I_\tau(C_2)] \geq \bigwedge_{C_1, C_2 \in 2^X, \ A \cap B = Y \cap (C_1 \cap C_2)} I_\tau(C_1 \cap C_2) = I_{\tau_Y}(A \cap B).$$

Similarly, we have $F_{\tau_Y}(A \cap B) \leq F_{\tau_Y}(A) \wedge F_{\tau_Y}(B)$. Thus, the condition (OSVNT2) holds.

Now, let $\{A_a\}_{a \in \Gamma} \subset 2^Y$. Then, by the proof of Proposition 5.1 in [34], $T_{\tau_Y}(\bigcup_{a \in \Gamma} A_a) \geq \bigwedge_{a \in \Gamma} T_{\tau_Y}(A_a)$. On the other hand,

$$I_{\tau_Y}(\bigcup_{a \in \Gamma} A_a) = \bigwedge_{B_a \in 2^X, \ (\bigcup_{a \in \Gamma} B_a) \cap Y = \bigcup_{a \in \Gamma} A_a} I_\tau(\bigcup_{a \in \Gamma} B_a) \leq \bigwedge_{B_a \in 2^X, \ (\bigcup_{a \in \Gamma} B_a) \cap Y = \bigcup_{a \in \Gamma} A_a} [\bigwedge_{a \in \Gamma} I_\tau(B_a)] = \bigwedge_{a \in \Gamma} \bigwedge_{B_a \in 2^X, \ (\bigcup_{a \in \Gamma} B_a) \cap Y = \bigcup_{a \in \Gamma} A_a} I_\tau(B_a)$$
Thus, \( \bigvee_{a \in \Gamma} I_{\gamma}(A_a) \).

Similarly, we have \( F_{\gamma}(\bigcup_{a \in \Gamma} A_a) \leq \bigwedge_{a \in \Gamma} F_{\gamma}(A_a) \). Thus, the condition (OSVNT3) holds. Thus, \( \tau_Y \in \text{OSVNT}(Y) \).

Furthermore, we can easily see that for each \( A \in 2^Y \),
\[
T_{\gamma}(A) \geq T_{\tau}(A), \quad I_{\gamma}(A) \leq I_{\tau}(A), \quad F_{\gamma}(A) \leq F_{\tau}(A).
\]

This completes the proof. \( \square \)

The following is an immediate result of Proposition 9.

**Corollary 3.** Let \((Y, \tau_Y)\) be an ordinary single valued neutrosophic subspace of \((X, \tau)\) and let \( A \in 2^X \).

1. \( C_Y(A) = (\bigvee_{B \in 2^X, A \in B \cap Y} T_Y(B), \bigwedge_{B \in 2^X, A \in B \cap Y} I_Y(B), \bigwedge_{B \in 2^X, A \in B \cap Y} F_Y(B)) \), where \( C_Y(A) = \tau_Y(Y - A) \).

2. If \( Z \subset Y \subset X \), then \( \tau_Z = (\tau_Y)_Z \).

4. **Ordinary Single Valued Neutrosophic Neighborhood Structures of a Point**

In this section, we define an ordinary single valued neutrosophic neighborhood system of a point, and prove that it has the same properties in a classical neighborhood system.

**Definition 13.** Let \((X, \tau)\) be an osvnts and let \( x \in X \). Then, a mapping \( N_x : 2^X \rightarrow I \times I \times I \) is called the ordinary single valued neutrosophic neighborhood system of \( x \) if, for each \( A \in 2^X \),
\[
A \in N_x := \exists B(\in \tau) \land (x \in B \subset A),
\]
i.e.,
\[
[A \in N_x] = N_x(A) = (\bigvee_{x \in B \subset A} T_\tau(B), \bigwedge_{x \in B \subset A} I_\tau(B), \bigwedge_{x \in B \subset A} F_\tau(B)).
\]

**Lemma 3.** Let \((X, \tau)\) be an osvnts and let \( A \in 2^X \). Then,
\[
\bigwedge_{x \in A} \bigvee_{x \in B \subset A} T_\tau(B) = T_\tau(A),
\]
\[
\bigvee_{x \in A} \bigwedge_{x \in B \subset A} I_\tau(B) = I_\tau(A)
\]
and
\[
\bigvee_{x \in A} \bigwedge_{x \in B \subset A} F_\tau(B) = F_\tau(A).
\]

**Proof.** By Theorem 3.1 in [33], it is obvious that \( \bigwedge_{x \in A} \bigvee_{x \in B \subset A} T_\tau(B) = T_\tau(A) \).

On the other hand, it is clear that \( \bigvee_{x \in A} \bigwedge_{x \in B \subset A} I_\tau(B) \geq I_\tau(A) \). Now, let \( B_{a} = \{ B \in 2^X : x \in B \subset A \} \) and let \( f \in \Pi_{x \in A} B_{a} \). Then, clearly, \( \bigcup_{x \in A} f(x) = A \). Thus,
\[
\bigvee_{x \in A} I_{\tau}(f(x)) \leq I_{\tau}(\bigcup_{x \in A} f(x)) = I_{\tau}(A).
\]
Thus,
\[
\bigvee_{x \in A} \bigwedge_{x \in B \subset A} I_{\tau}(B) = \bigwedge_{f \in \Pi_{x \in A}} \bigvee_{x \in A} I_{\tau}(f(x)) \leq I_{\tau}(A).
\]

Hence, \( \bigvee_{x \in A} \bigwedge_{x \in B \subset A} I_{\tau}(B) = I_{\tau}(A) \). Similarly, we have
\[
\bigvee_{x \in A} \bigwedge_{x \in B \subset A} F_{\tau}(B) = F_{\tau}(A).
\]
Theorem 2. Let \((X, \tau)\) be an osvnts, let \(A \in 2^X\) and let \(x \in X\). Then,

\[
\models (A \in \tau) \leftrightarrow \forall x \in A \rightarrow \exists B \in \mathcal{N}_x^\tau \land (B \subset A),
\]

i.e.,

\[
[A \in \tau] = [\forall x \in A \rightarrow \exists B \in \mathcal{N}_x^\tau \land (B \subset A)],
\]

i.e.,

\[
[A \in \tau] = (\bigwedge_{x \in A} \bigvee_{B \subset A} T_{\mathcal{N}_x^\tau}(B), \bigvee_{x \in A} I_{\mathcal{N}_x^\tau}(B), \bigvee_{x \in A} F_{\mathcal{N}_x^\tau}(B)).
\]

Proof. From Theorem 3.1 in [33], it is clear that \(T_\tau(A) = \bigwedge_{x \in A} \bigvee_{B \subset A} T_{\mathcal{N}_x^\tau}(B)\).

On the other hand,

\[
I_\tau(A) = \bigvee_{x \in A} \bigwedge_{C \subset A} I_\tau(C) = \bigvee_{x \in A} \bigwedge_{B \subset A} I_{\mathcal{N}_x^\tau}(B).
\]

Similarly, we have \(F_\tau(A) = \bigvee_{x \in A} \bigwedge_{B \subset A} F_{\mathcal{N}_x^\tau}(B)\). This completes the proof. \(\Box\)

Definition 14. Let \(A\) be a single valued neutrosophic set in a set \(2^X\). Then, \(A\) is said to be normal if there is \(A_0 \in 2^X\) such that \(A(A_0) = (1, 0, 0)\).

We will denote the set of all normal single valued neutrosophic sets in \(2^X\) as \((I \times I \times I)_N^{2^X}\).

From the following result, we can see that an ordinary single valued neutrosophic neighborhood system has the same properties in a classical neighborhood system.

Theorem 3. Let \((X, \tau)\) be an osvnts and let \(\mathcal{N} : X \rightarrow (I \times I \times I)_N^{2^X}\) be the mapping given by \(\mathcal{N}(x) = \mathcal{N}_x^\tau\), for each \(x \in X\). Then, \(\mathcal{N}\) has the following properties:

1. for any \(x \in X\) and \(A \in 2^X\), \(A \in \mathcal{N}_x^\tau \rightarrow x \in A\),
2. for any \(x \in X\) and \(A, B \in 2^X\), \(\models (A \in \mathcal{N}_x^\tau) \land (B \in \mathcal{N}_y^\tau) \rightarrow A \cap B \in \mathcal{N}_x^\tau\),
3. for any \(x \in X\) and \(A, B \in 2^X\), \(\models (A \subset B) \rightarrow (A \in \mathcal{N}_x^\tau) \rightarrow B \in \mathcal{N}_x^\tau\),
4. for any \(x \in X\), \(\models (A \in \mathcal{N}_x^\tau) \rightarrow \exists C ((C \in \mathcal{N}_x^\tau) \land (C \subset A) \land \forall y \in C \rightarrow C \in \mathcal{N}_y^\tau))\).

Conversely, if a mapping \(\mathcal{N} : X \rightarrow (I \times I \times I)_N^{2^X}\) satisfies the above properties (2) and (3), then there is an ordinary single valued neutrosophic topology \(\tau : 2^X \rightarrow I \times I \times I\) on \(X\) defined as follows: for each \(A \in 2^X\),

\[
A \in \tau := \forall x (x \in A \rightarrow A \in \mathcal{N}_x^\tau),
\]

i.e.,

\[
[A \in \tau] = \tau(A) = (\bigwedge_{x \in A} T_{\mathcal{N}_x^\tau}(A), \bigvee_{x \in A} I_{\mathcal{N}_x^\tau}(A), \bigvee_{x \in A} F_{\mathcal{N}_x^\tau}(A)).
\]

In particular, if \(\mathcal{N}\) also satisfies the above properties (1) and (4), then, for each \(x \in X\), \(\mathcal{N}_x^\tau\) is an ordinary single valued neutrosophic neighborhood system of \(x\) with respect to \(\tau\).

Proof. (1) Since \(A \in 2^X\), we can consider \(A\) as a special single valued neutrosophic set in \(x\) represented by \(A = (\chi_A, \chi_A^+, \chi_A^-)\). Then,

\[
[x \in A] = A(x) = (\chi_A(x), \chi_A^+(x), \chi_A^-(x)) = (1, 0, 0).
\]
On the other hand,
\[ [A \in \mathcal{N}_x] = (\bigvee_{x \in C \subseteq A} T_r(C), \bigwedge_{x \in C \subseteq A} \mathcal{I}_{r}(C), \bigwedge_{x \in C \subseteq A} F_r(C)) \leq (1, 0, 0). \]

Thus, \([A \in \mathcal{N}_x] \leq [x \in A] \).

(2) By the definition of \(\mathcal{N}_x\),
\[ [A \cap B \in \mathcal{N}_x] = (\bigvee_{x \in C \subseteq A \cap B} T_r(C), \bigwedge_{x \in C \subseteq A \cap B} \mathcal{I}_{r}(C), \bigwedge_{x \in C \subseteq A \cap B} F_r(C)). \]

From the proof of Theorem 3.2 (2) in [33], it is obvious that
\[ T_{\mathcal{N}_x}(A \cap B) \geq T_{\mathcal{N}_x}(A) \land T_{\mathcal{N}_x}(B). \]

Thus, it is sufficient to show that \(I_{\mathcal{N}_x}(A \cap B) \leq I_{\mathcal{N}_x}(A) \lor I_{\mathcal{N}_x}(B)\):
\[ I_{\mathcal{N}_x}(A \cap B) = \bigwedge_{x \in C \subseteq A \cap B} I_{r}(C) = \bigwedge_{x \in C \subseteq A \cap B} (I_{r}(C_1 \cap C_2)) \]
\[ \leq \bigwedge_{x \in C \subseteq A \cap B} (I_{r}(C_1) \lor I_{r}(C_2)) = I_{\mathcal{N}_x}(A) \lor I_{\mathcal{N}_x}(B). \]

Similarly, we have \(F_{\mathcal{N}_x}(A \cap B) \leq F_{\mathcal{N}_x}(A) \lor F_{\mathcal{N}_x}(B)\). On the other hand,
\[ [(A \in \mathcal{N}_x) \land (B \in \mathcal{N}_x)] = (T_{\mathcal{N}_x}(A) \land T_{\mathcal{N}_x}(B), I_{\mathcal{N}_x}(A) \lor I_{\mathcal{N}_x}(B), F_{\mathcal{N}_x}(A) \lor F_{\mathcal{N}_x}(B)). \]

Thus, \([A \cap B \in \mathcal{N}_x] \geq [(A \in \mathcal{N}_x) \land (B \in \mathcal{N}_x)]\).

(3) From the definition of \(\mathcal{N}_x\), we can easily show that \([A \in \mathcal{N}_x] \leq [B \in \mathcal{N}_x]\).

(4) It is clear that
\[ [\exists C((C \in \mathcal{N}_x) \land (C \subseteq A) \land \forall y(y \in C \rightarrow C \in \mathcal{N}_x))] = (V_{\mathcal{C}_A}(T_{\mathcal{N}_x}(C) \land \forall y \in C T_{\mathcal{N}_x}(C)), \lor_{\mathcal{C}_A}[I_{\mathcal{N}_x}(C) \lor V_{\mathcal{C}_A} I_{\mathcal{N}_x}(C)]), \]
\[ \lor_{\mathcal{C}_A}[F_{\mathcal{N}_x}(C) \lor V_{\mathcal{C}_A} F_{\mathcal{N}_x}(C))]. \]

Then, by the proof of Theorem 3.2 (4) in [33], it is obvious that
\[ \lor_{C \subseteq A} [T_{\mathcal{N}_x}(C) \land \forall y_{\in C} T_{\mathcal{N}_x}(C)] \geq T_{\mathcal{N}_x}(A). \]

From Lemma 3, \(V_{\mathcal{C}_A}(I_{\mathcal{N}_x}(C) = \lor_{\mathcal{C}_A} I_{\mathcal{N}_x}(C)) \leq \lor_{\mathcal{C}_A} I_{\mathcal{N}_x}(C) \). Thus,
\[ \lor_{\mathcal{C}_A}[I_{\mathcal{N}_x}(C) \lor V_{\mathcal{C}_A} I_{\mathcal{N}_x}(C)] = \lor_{\mathcal{C}_A}[I_{\mathcal{N}_x}(C) \lor I_{\mathcal{N}_x}(C)] \land_{\mathcal{C}_A} I_{\mathcal{N}_x}(C) \]
\[ \leq \lor_{\mathcal{C}_A} I_{\mathcal{N}_x}(C) = I_{\mathcal{N}_x}(A). \]

Similarly, we have \(\land_{\mathcal{C}_A}[F_{\mathcal{N}_x}(C) \lor V_{\mathcal{C}_A} F_{\mathcal{N}_x}(C)] \leq \land_{\mathcal{C}_A} F_{\mathcal{N}_x}(C) = F_{\mathcal{N}_x}(A). \)

Conversely, suppose \(\mathcal{N}\) satisfies the above properties (2) and (3) and let \(\tau : 2^X \rightarrow I \times I \times I\) be the mapping defined as follows: for each \(A \in 2^X\),
\[ \tau(A) = (\bigwedge_{x \in A} T_{\mathcal{N}_x}(A), \bigvee_{x \in A} I_{\mathcal{N}_x}(A), \bigvee_{x \in A} F_{\mathcal{N}_x}(A)). \]

Then, clearly, \(\tau(\emptyset) = (1, 0, 0)\). Since \(\mathcal{N}_x\) is single valued neutrosophic normal, there is \(A_0 \in 2^X\) such that \(\mathcal{N}_x(A_0) = (1, 0, 0)\). Thus, \(\mathcal{N}_x(X) = (1, 0, 0)\). Thus,
\[ \tau(X) = (\bigwedge_{x \in X} T_{\mathcal{N}_x}(X), \bigvee_{x \in X} I_{\mathcal{N}_x}(X), \bigvee_{x \in X} F_{\mathcal{N}_x}(X)) = (1, 0, 0). \]
Hence, $\tau$ satisfies the axiom (OSVNT1).

From the proof of Theorem 3.2 in [33], it is clear that $T_\tau(A \cap B) \geq T_\tau(A) \wedge T_\tau(B)$.

On the other hand,

\[ I_\tau(A \cap B) = \bigvee_{x \in A \cap B} I_{N_\tau}(A \cap B) = \bigvee_{x \in A \cap B} (I_{N_\tau}(A) \vee I_{N_\tau}(B)) \]

\[ \geq \bigvee_{x \in A \cap B} I_{N_\tau}(A) \vee \bigvee_{x \in A \cap B} I_{N_\tau}(B) \]

\[ = T_\tau(A) \vee T_\tau(B). \]

Similarly, we have $F_\tau(A \cap B) \leq F_\tau(A) \vee F_\tau(B)$. Then, $\tau$ satisfies the axiom (OSVNT2). Moreover, we can easily see that $\tau$ satisfies the axiom (OSVNT3). Thus, $\tau \in OSVNT(X)$.

Now, suppose $N$ satisfies additionally the above properties (1) and (4). Then, from the proof of Theorem 3.2 in [33], we have $T_{N_\tau}(A) = \bigvee_{x \in B \subset A} T_\tau(B)$ for each $x \in X$ and each $A \in 2^X$.

Let $x \in X$ and let $A \in 2^X$. Then, by property (4),

\[ I_{N_\tau}(A) \geq \bigwedge_{C \subset A} [I_{N_\tau}(C) \vee \bigvee_{y \in C} I_{N_\tau}(y)]. \]

From the property (1), $I_{N_\tau}(C) = 1$ for any $x \notin C$. Thus,

\[ I_{N_\tau}(A) \geq \bigwedge_{x \in C \subset A} [I_{N_\tau}(C) \vee \bigvee_{y \in C} I_{N_\tau}(y)] \]

\[ \geq \bigwedge_{x \in C \subset A} \bigvee_{y \in C} I_{N_\tau}(y) \]

\[ = \bigwedge_{x \in C \subset A} I_\tau(B). \]

Now, suppose $x \in C \subset A$. Then, clearly, $\bigvee_{y \in C} I_{N_\tau}(y) \geq I_{N_\tau}(C) \geq I_{N_\tau}(A).$ Thus,

\[ \bigwedge_{x \in C \subset A} I_\tau(B) = \bigwedge_{x \in C \subset A} \bigvee_{y \in C} I_{N_\tau}(y) \geq I_{N_\tau}(A). \]

Thus, $I_{N_\tau}(A) = \bigwedge_{x \in B \subset A} I_\tau(B)$. Similarly, we have $F_{N_\tau}(A) = \bigwedge_{x \in B \subset A} F_\tau(B)$. This completes the proof. \[ \square \]

5. Ordinary Single Valued Neutrosophic Bases and Subbases

In this section, we define an ordinary single valued neutrosophic base and subbase for an ordinary single valued neutrosophic topological space, and investigated general properties. Moreover, we obtain two characterizations of an ordinary single valued neutrosophic base and one characterization of an ordinary single valued neutrosophic subbase.

**Definition 15.** Let $(X, \tau)$ be an osonts and let $B : 2^X \rightarrow I \times I \times I$ be a mapping such that $B \leq \tau$, i.e., $T_B \leq T_\tau$, $I_B \leq I_\tau$, and $F_B \leq F_\tau$. Then, $B$ is called an ordinary single valued neutrosophic base for $\tau$ if, for each $A \in 2^X$,

\[ T_\tau(A) = \bigvee_{\{B_a\} \subset T_\tau : A = \bigcup_{a \in \Gamma} B_a} T_B(B_a), \]

\[ I_\tau(A) = \bigwedge_{\{B_a\} \subset T_\tau : A = \bigcup_{a \in \Gamma} B_a} I_B(B_a), \]

\[ F_\tau(A) = \bigvee_{\{B_a\} \subset T_\tau : A = \bigcup_{a \in \Gamma} B_a} F_B(B_a). \]

**Example 3.** (1) Let $X$ be a set and let $B : 2^X \rightarrow I \times I \times I$ be the mapping defined by:

\[ B(\{x\}) = (1, 0, 0) \quad \forall x \in X. \]

Then, $B$ is an ordinary single valued neutrosophic base for $\tau_X$. 

Theorem 4. Let \( X = \{a, b, c\} \), let \( \alpha \in \text{SVNV} \) be fixed, where \( \alpha \in I_1 \times I_0 \times I_0 \) and let \( B : 2^X \rightarrow I \times I \times I \) be the mapping as follows: for each \( A \in 2^X \),

\[
B(A) = \begin{cases} 
(1, 0, 0) & \text{if either } A = \{a, b\} \text{ or } \{b, c\} \text{ or } X, \\
\alpha & \text{otherwise.}
\end{cases}
\]

Then, \( B \) is not an ordinary single valued neutrosophic base for an osvnt on \( X \).

Suppose that \( B \) is an ordinary single valued neutrosophic base for an osvnt \( \tau \) on \( X \). Then, clearly, \( B \leq \tau \). Moreover, \( \tau(\{a, b\}) = \tau(\{b, c\}) = (1, 0, 0) \). Thus,

\[
T_\tau(\{b\}) = T_\tau(\{a, b\} \cap \tau(\{b, c\})) \geq T_\tau(\{a, b\} \land T_\tau(\{b, c\}) = 1
\]

and

\[
I_\tau(\{b\}) = I_\tau(\{a, b\} \cap \tau(\{b, c\})) \leq I_\tau(\{a, b\} \land I_\tau(\{b, c\}) = 0.
\]

Similarly, we have \( F_\tau(\{b\}) = 0 \). Thus, \( \tau(\{b\}) = (1, 0, 0) \). On the other hand, by the definition of \( B \),

\[
T_\tau(\{b\}) = \bigvee \{A_\alpha \}_{\alpha \in \Gamma < 2^X, \{b\} = \bigcup_{\alpha \in \Gamma} A_\alpha \in \Gamma}
\]

and

\[
I_\tau(\{b\}) = \bigwedge \{A_\alpha \}_{\alpha \in \Gamma < 2^X, \{b\} = \bigcup_{\alpha \in \Gamma} A_\alpha \in \Gamma}
\]

Similarly, we have \( F_\tau(\{b\}) = F_\alpha \). This is a contradiction. Hence, \( B \) is not an ordinary single valued neutrosophic base for an osvnt on \( X \).

**Theorem 4.** Let \( (X, \tau) \) be an osvnt and let \( B : 2^X \rightarrow I \times I \times I \) be a mapping such that \( B \leq \tau \). Then, \( B \) is an ordinary single valued neutrosophic base for \( \tau \) if and only if for each \( x \in X \) and each \( A \in 2^X \),

\[
T_{\gamma_X}(A) \leq \bigvee_{x \in B \subset A} T_B(B),
\]

\[
I_{\gamma_X}(A) \geq \bigwedge_{x \in B \subset A} I_B(B),
\]

\[
F_{\gamma_X}(A) \geq \bigwedge_{x \in B \subset A} F_B(B).
\]

**Proof.** \( (\Rightarrow) \): Suppose \( B \) is an ordinary single valued neutrosophic base for \( \tau \). Let \( x \in X \) and let \( A \in 2^X \). Then, by Theorem 4.4 in [34], it is obvious that \( T_{\gamma_X}(A) \leq \bigvee_{x \in B \subset A} T_B(B) \). On the other hand,

\[
I_{\gamma_X}(A) = \bigwedge_{x \in B \subset A} I_B(B) = \bigwedge_{x \in B \subset A, \{b_\alpha\}_{\alpha \in \Gamma < 2^X, B = \bigcup_{\alpha \in \Gamma} B_\alpha \in \Gamma}} I_B(B).
\]

[By Definition 13]

[By Definition 15]

If \( x \in B \subset A \) and \( B = \bigcup_{\alpha \in \Gamma} B_\alpha \), then there is \( a_0 \in \Gamma \) such that \( x \in B_{a_0} \). Thus,

\[
\bigwedge_{\alpha \in \Gamma} I_B(B_{a_0}) \geq I_B(B_{a_0}) \geq \bigwedge_{x \in B \subset A} I_B(B).
\]

Thus, \( I_{\gamma_X}(A) \geq \bigwedge_{x \in B \subset A} I_B(B) \). Similarly, we have \( F_{\gamma_X}(A) \geq \bigwedge_{x \in B \subset A} F_B(B) \). Hence, the necessary condition holds.

\( (\Leftarrow) \): Suppose the necessary condition holds. Then, by Theorem 4.4 in [34], it is clear that

\[
T_\tau(A) = \bigvee_{\{b_\alpha\}_{\alpha \in \Gamma < 2^X, A = \bigcup_{\alpha \in \Gamma} B_\alpha \in \Gamma}} T_B(B).
\]
Let $A \in 2^X$. Suppose $A = \bigcup_{a \in \Gamma} B_a$ and $\{B_a\} \subseteq 2^X$. Then,

\[
I_T(A) = \bigvee_{a \in \Gamma} I_T(B_a)
\]

\[
\leq \bigvee_{a \in \Gamma} I_B(B_a).
\]

Thus,

\[
I_T(A) \leq \bigwedge_{\{B_a\}_{a \in \Gamma} \subseteq 2^X, A = \bigcup_{a \in \Gamma} B_a} \bigvee I_B(B_a).
\]

On the other hand,

\[
I_T(A) = \bigvee_{x \in A} \bigwedge_{x \in B \subseteq A} I_T(B)
\]

\[
= \bigvee_{x \in A} I_B(A)
\]

\[
= \bigvee_{x \in A} \bigwedge_{x \in B \subseteq A} I_B(B)
\]

\[
= \bigwedge_{f \in \Pi x \in A} \bigvee_{x \in f} I_B(f(x)),
\]

where $B_x = \{B \in 2^X : x \in B \subseteq A\}$. Furthermore, $A = \bigcup_{x \in A} f(x)$ for each $f \in \Pi x \in A B_x$. Thus,

\[
\bigwedge_{f \in \Pi x \in A} \bigvee_{x \in A} I_B(f(x)) = \bigwedge_{\{B_a\}_{a \in \Gamma} \subseteq 2^X, A = \bigcup_{a \in \Gamma} B_a} \bigvee I_B(B_a).
\]

Hence,

\[
I_T(A) \geq \bigwedge_{\{B_a\}_{a \in \Gamma} \subseteq 2^X, A = \bigcup_{a \in \Gamma} B_a} \bigvee I_B(B_a).
\]

By (1) and (2), $I_T(A) = \bigwedge_{\{B_a\}_{a \in \Gamma} \subseteq 2^X, A = \bigcup_{a \in \Gamma} B_a} \bigvee I_B(B_a)$. Similarly, we have $F_T(A) = \bigwedge_{\{B_a\}_{a \in \Gamma} \subseteq 2^X, A = \bigcup_{a \in \Gamma} B_a} \bigvee F_B(B_a)$. Therefore, $B$ is an ordinary single valued neutrosophic base for $\tau$. \qed

**Theorem 5.** Let $B : 2^X \rightarrow I \times I \times I$ be a mapping. Then, $B$ is an ordinary single valued neutrosophic base for some oist on $X$ if and only if it has the following conditions:

1. $\bigvee_{\{B_a\}_{a \in \Gamma} \subseteq 2^X, x = \bigcup_{a \in \Gamma} B_a} \bigwedge_{a \in \Gamma} T_B(B_a) = 1$,
   $\bigwedge_{\{B_a\}_{a \in \Gamma} \subseteq 2^X, x = \bigcup_{a \in \Gamma} B_a} \bigvee_{a \in \Gamma} I_B(B_a) = 0$,
   $\bigwedge_{\{B_a\}_{a \in \Gamma} \subseteq 2^X, x = \bigcup_{a \in \Gamma} B_a} \bigvee_{a \in \Gamma} F_B(B_a) = 0$.
2. For any $A_1, A_2 \subseteq 2^X$ and each $x \in A_1 \cap A_2$,
   \[
   T_B(A_1) \wedge T_B(A_2) \leq \bigvee_{x \in A \subseteq A_1 \cap A_2} T_B(A),
   \]
   \[
   I_B(A_1) \vee I_B(A_2) \geq \bigwedge_{x \in A \subseteq A_1 \cap A_2} I_B(A),
   \]
   \[
   F_B(A_1) \vee F_B(A_2) \geq \bigwedge_{x \in A \subseteq A_1 \cap A_2} F_B(A).
   \]

In fact, $\tau : 2^X \rightarrow I \times I \times I$ is the mapping defined as follows: for each $A \subseteq 2^X$,

\[
T_\tau(A) = \begin{cases} 
1 & \text{if } A = \emptyset \\
\bigvee_{\{B_a\}_{a \in \Gamma} \subseteq 2^X, A = \bigcup_{a \in \Gamma} B_a} \bigwedge_{a \in \Gamma} T_B(B_a) & \text{otherwise,}
\end{cases}
\]

\[
I_\tau(A) = \begin{cases} 
0 & \text{if } A = \emptyset \\
\bigwedge_{\{B_a\}_{a \in \Gamma} \subseteq 2^X, A = \bigcup_{a \in \Gamma} B_a} \bigvee_{a \in \Gamma} I_B(B_a) & \text{otherwise,}
\end{cases}
\]

\[
F_\tau(A) = \begin{cases} 
0 & \text{if } A = \emptyset \\
\bigwedge_{\{B_a\}_{a \in \Gamma} \subseteq 2^X, A = \bigcup_{a \in \Gamma} B_a} \bigvee_{a \in \Gamma} F_B(B_a) & \text{otherwise.}
\end{cases}
\]

In this case, $\tau$ is called an ordinary single valued neutrosophic topology on $X$ induced by $B$. 

Thus, condition (2) holds.

From the definition of \( \tau \), it is obvious that \( \tau(\emptyset) = 0 \) and \( \tau(x) = 1 \) for any \( x \in 2^X \). Thus, the axiom (OSVNT1)

\[
\bigwedge_{x \in 2^X} (B_a \cup F_a) = T_\tau(x) = 1.
\]

Similarly, we have

\[
\bigwedge_{x \in 2^X} (B_a \cup F_a) = T_\tau(x) = 0.
\]

Thus, condition (1) holds.

Let \( A_1, A_2 \in 2^X \) and let \( x \in A_1 \cap A_2 \). Then, by the proof of Theorem 4.2 in [33], it is obvious that \( T_B(A_1) \wedge T_B(A_2) \leq \bigvee_{x \in A \cap A_1 \cap A_2} T_B(A) \). On the other hand,

\[
I_B(A_1) \vee I_B(A_2) \geq I_\tau(A_1) \vee I_\tau(A_2) \geq I_\tau(A_1 \cap A_2) \geq I_B(A_1 \cap A_2) \geq \bigwedge_{x \in A \cap A_1 \cap A_2} I_B(A).
\]

Thus,

\[
I_B(A_1) \vee I_B(A_2) \geq \bigwedge_{x \in A \cap A_1 \cap A_2} I_B(A).
\]

Similarly, we have

\[
F_B(A_1) \vee F_B(A_2) \geq \bigwedge_{x \in A \cap A_1 \cap A_2} F_B(A).
\]

Thus, condition (2) holds.

\((\Leftarrow)\): Suppose \( B \) is an ordinary single valued neutrosophic base for some osvnt \( \tau \) on \( X \). Then, by Definition 15 and the axiom (OSVNT1),

\[
\bigwedge_{x \in 2^X, A \in B} T_B(A) = T_\tau(x) = 1,
\]

\[
\bigwedge_{x \in 2^X} I_B(A) = I_\tau(x) = 0,
\]

\[
\bigwedge_{x \in 2^X} F_B(A) = F_\tau(x) = 0.
\]

From the definition of \( \tau \), it is obvious that \( \tau(x) = 1 \) for any \( x \in 2^X \). Thus, \( \tau \) satisfies the axiom (OSVNT1).

Let \( \{A_a\}_{a \in \Gamma} \subset 2^X \) and let \( B_a = \{B_{a_n} : \delta_a = 1\} \cup \bigcup_{\delta_a < 1} B_a \). Let \( f \in \Pi_{a \in \Gamma} B_a \). Then, clearly, \( \bigcup_{a \in \Gamma} B_a \cup f(1) = \bigcup_{a \in \Gamma} A_a \). Thus,

\[
I_\tau\left(\bigcup_{a \in \Gamma} A_a\right) = \bigwedge_{a \in \Gamma} I_B(\bigcup_{a \in \Gamma} A_a) = \bigwedge_{a \in \Gamma} I_B(A_a) \leq \bigwedge_{a \in \Gamma} \bigwedge_{\delta_a = 1} I_B(A_a) = \bigwedge_{a \in \Gamma} I_\tau(A_a).
\]

Similarly, we have

\[
F_\tau\left(\bigcup_{a \in \Gamma} A_a\right) \leq \bigwedge_{a \in \Gamma} F_B(A_a).
\]

Now, let \( A, B \in 2^X \) and suppose \( \tau(x) = I_\tau(A) < I_\tau(B) < I_\tau(x) = I_\tau(B) \) for \( x \in \Gamma \). Then, there are \( \{A_{\alpha_1} : \alpha_1 \in \Gamma_1\} \) and \( \{B_{\alpha_2} : \alpha_2 \in \Gamma_2\} \) such that \( \bigcup_{\alpha_1 \in \Gamma_1} A_{\alpha_1} = A, \bigcup_{\alpha_2 \in \Gamma_2} B_{\alpha_2} = B \) and \( I_B(A_{\alpha_1}) < I_\tau(A_{\alpha_1}) \) for each \( \alpha_1 \in \Gamma_1 \), \( I_B(B_{\alpha_2}) < I_\tau(B_{\alpha_2}) \) for each \( \alpha_2 \in \Gamma_2 \). Let \( x \in A \cap B \). Then, there are \( \alpha_1 \in \Gamma_1, \alpha_2 \in \Gamma_2, \) and \( x \in A_{\alpha_1} \cap B_{\alpha_2} \). Thus, from the assumption,

\[
I_B(A_{\alpha_1}) \vee I_B(B_{\alpha_2}) \geq I_B(C) \geq I_B(A_{\alpha_1}) \vee I_B(B_{\alpha_2}) \geq I_B(C).
\]
Moreover, there is $C_x$ such that $x \in C_x \subset A_{a1} \cap B_{a2} \subset A \cap B$ and $I_B(C_x) < I_a$. Since $\bigcup_{x \in A \cap B} C_x = A \cap B$, we obtain
\[
I_a \geq \bigvee_{x \in A \cap B} I_B(C_x) \geq \bigwedge_{\cup \in A \cap B} \bigvee_{a \in \Gamma} I_B(a) = I_\tau(A \cap B).
\]

Now, let $I_\tau = I_\tau(A) \lor I_\tau(B)$ and let $n$ be any natural number, where $I_\beta \leq I_\tau$. Then, $I_\tau(A) < I_\beta + 1/n$ and $I_\tau(B) < I_\beta + 1/n$. Thus, $I_\tau(A \cap B) \leq I_\beta + 1/n$. Thus, $I_\tau(A \cap B) \leq I_\beta = I_\tau(A) \lor I_\tau(B)$. Similarly, we have $F_\tau(A \cap B) \leq F_\tau(A) \lor F_\tau(B)$. Hence, $\tau$ satisfies the axiom (OSVNT2). This completes the proof. \(\square\)

**Example 4.** (1) Let $X = \{a, b, c\}$ and let $\alpha \in \text{SVNV}$ be fixed, where $\alpha \in I_1 \times I_0 \times I_0$. We define the mapping $B : 2^X \rightarrow I \times I \times I$ as follows: for each $A \in 2^X$,
\[
T_B(A) = \begin{cases} 1 & \text{if } A = \{b\} \text{ or } \{a, b\} \text{ or } \{b, c\} \\ T_a & \text{otherwise,} \end{cases}
\]
\[
I_B(A) = \begin{cases} 0 & \text{if } A = \{b\} \text{ or } \{a, b\} \text{ or } \{b, c\} \\ I_a & \text{otherwise,} \end{cases}
\]
\[
F_B(A) = \begin{cases} 0 & \text{if } A = \{b\} \text{ or } \{a, b\} \text{ or } \{b, c\} \\ F_a & \text{otherwise.} \end{cases}
\]

Then, we can easily see that $B$ satisfies conditions (1) and (2) in Theorem 5. Thus, $B$ is an ordinary single valued neutrosophic base for an osvnt $\tau$ on $X$. In fact, $\tau : 2^X \rightarrow I \times I \times I$ is defined as follows: for each $A \in 2^X$,
\[
T_\tau(A) = \begin{cases} 1 & \text{if } A = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X} \\ T_a & \text{otherwise,} \end{cases}
\]
\[
I_\tau(A) = \begin{cases} 0 & \text{if } A = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X} \\ I_a & \text{otherwise,} \end{cases}
\]
\[
F_\tau(A) = \begin{cases} 0 & \text{if } A = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X} \\ F_a & \text{otherwise.} \end{cases}
\]

(2) Let $\alpha \in \text{SVNV}$ be fixed, where $\alpha \in I_1 \times I_0 \times I_0$. We define the mapping $B : 2^\mathbb{R} \rightarrow I \times I \times I$ as follows: for each $A \in 2^\mathbb{R}$,
\[
T_B(A) = \begin{cases} 1 & \text{if } A = (a, b) \text{ for } a, b \in \mathbb{R} \text{ with } a \leq b \\ T_a & \text{otherwise,} \end{cases}
\]
\[
I_B(A) = \begin{cases} 0 & \text{if } A = (a, b) \text{ for } a, b \in \mathbb{R} \text{ with } a \leq b \\ I_a & \text{otherwise,} \end{cases}
\]
\[
F_B(A) = \begin{cases} 0 & \text{if } A = (a, b) \text{ for } a, b \in \mathbb{R} \text{ with } a \leq b \\ F_a & \text{otherwise.} \end{cases}
\]

Then, it can be easily seen that $B$ satisfies the conditions (1) and (2) in Theorem 5. Thus, $B$ is an ordinary single valued neutrosophic base for an osvnt $\tau_\alpha$ on $\mathbb{R}$.

In this case, $\tau_\alpha$ is called the $\alpha$-ordinary single valued neutrosophic usual topology on $\mathbb{R}$.

(3) Let $\alpha \in \text{SVNV}$ be fixed, where $\alpha \in I_1 \times I_0 \times I_0$. We define the mapping $B : 2^\mathbb{R} \rightarrow I \times I \times I$ as follows: for each $A \in 2^\mathbb{R}$,
\[
T_B(A) = \begin{cases} 1 & \text{if } A = (a, b) \text{ for } a, b \in \mathbb{R} \text{ with } a \leq b \\ T_a & \text{otherwise,} \end{cases}
\]
Theorem 6. Let \( \tau_1, \tau_2 \in \text{OSVNT}(X) \), and let \( B_1 \) and \( B_2 \) be ordinary single valued neutrosophic bases for \( \tau_1 \) and \( \tau_2 \), respectively. Then, \( B_1 \) and \( B_2 \) are said to be equivalent if \( \tau_1 = \tau_2 \).

Definition 16. Let \( \tau_1, \tau_2 \in \text{OSVNT}(X) \), and let \( B_1 \) and \( B_2 \) be ordinary single valued neutrosophic bases for \( \tau_1 \) and \( \tau_2 \) respectively. Then, \( \tau_1 \) is coarser than \( \tau_2 \), i.e.,

\[
T_{\tau_1} \leq T_{\tau_2}, \quad I_{\tau_1} \geq I_{\tau_2}, \quad F_{\tau_1} \geq F_{\tau_2}
\]

if and only if for each \( A \in 2^X \) and each \( x \in A \),

\[
T_{B_1}(A) \leq \bigvee_{x \in B \subseteq A} T_{B_2}(B), \quad I_{B_1}(A) \geq \bigwedge_{x \in B \subseteq A} I_{B_2}(B), \quad F_{B_1}(A) \geq \bigwedge_{x \in B \subseteq A} F_{B_2}(B).
\]

Proof. \( (\Rightarrow) \): Suppose \( \tau_1 \) is coarser than \( \tau_2 \). For each \( x \in X \), let \( x \in A \in 2^X \). Then, by Theorem 4.8 in [34], \( T_{B_1}(A) \leq \bigvee_{x \in B \subseteq A} T_{B_2}(B) \). On the other hand,

\[
I_{B_1}(A) \geq I_{\tau_1}(A) \quad \text{[since } B_1 \text{ is an ordinary single valued neutrosophic base for } \tau_1]\n\geq I_{\tau_2}(A) \quad \text{[By the hypothesis]}\n= \bigwedge_{A \subseteq A} \bigvee_{A \in \Gamma} I_{B_2}(A). \quad \text{[Since } B_2 \text{ is an ordinary single valued neutrosophic base for } \tau_2]\n\]

Since \( x \in A \) and \( A = \bigcup_{A \in \Gamma} A \), there is \( a_0 \in \Gamma \) such that \( x \in A_{a_0} \). Thus,

\[
\bigwedge_{A \subseteq A} \bigvee_{A \in \Gamma} I_{B_2}(A) \geq I_{B_2}(A_{a_0}) \geq \bigwedge_{x \in B} I_{B_2}(B).
\]

Thus, \( I_{B_1}(A) \geq \bigwedge_{x \in B \subseteq A} I_{B_2}(B) \). Similarly, we have \( F_{B_1}(A) \geq \bigwedge_{x \in B \subseteq A} F_{B_2}(B) \).

\( (\Leftarrow) \): Suppose the necessary condition holds. Then, by Theorem 4.8 in [34], \( T_{\tau_1} \leq T_{\tau_2} \). Let \( A \in 2^X \). Then,

\[
I_{\tau_1}(A) = \bigvee_{x \in A} \bigwedge_{x \in B \subseteq A} I_{B_2}(B) \quad \text{[By Lemma 3]}\n\geq \bigvee_{x \in A} \bigwedge_{x \in B \subseteq A} \bigwedge_{x \in C \subseteq B} I_{B_2}(C) \quad \text{[By the hypothesis]}\n= \bigwedge_{x \in A} I_{B_2}(C) \quad \text{[by the hypothesis]}\n= \bigwedge_{x \in A} \bigwedge_{x \in B} I_{B_2}(B) \quad \text{[by the hypothesis]}\n= I_{\tau_2}(A).
\]

Thus, \( I_{\tau_1} \geq I_{\tau_2} \). Similarly, we have \( F_{\tau_1} \geq F_{\tau_2} \). Thus, \( \tau_1 \) is coarser than \( \tau_2 \). This completes the proof. \( \square \)

The following is an immediate result of Definition 16 and Theorem 6.

Corollary 4. Let \( B_1 \) and \( B_2 \) be ordinary single valued neutrosophic bases for two ordinary single valued neutrosophic topologies on a set \( X \), respectively. Then,

\( B_1 \) and \( B_2 \) are equivalent if and only if the following two conditions hold:

\[
I_{B_1}(A) = I_{B_2}(A) \quad \text{and} \quad F_{B_1}(A) = F_{B_2}(A)
\]
(1) for each $B_1 \in 2^X$ and each $x \in B_1$,

$$T_{B_1}(B_1) \leq \bigvee_{x \in B_2 \subset B_1} T_{B_2}(B_2),$$

$$I_{B_1}(B_1) \geq \bigwedge_{x \in B_2 \subset B_1} I_{B_2}(B_2),$$

$$F_{B_1}(B_1) \geq \bigwedge_{x \in B_2 \subset B_1} F_{B_2}(B_2).$$

(2) for each $B_2 \in 2^X$ and each $x \in B_2$,

$$T_{B_2}(B_2) \leq \bigvee_{x \in B_1 \subset B_2} T_{B_1}(B_1),$$

$$I_{B_2}(B_2) \geq \bigwedge_{x \in B_1 \subset B_2} I_{B_1}(B_1),$$

$$F_{B_2}(B_2) \geq \bigwedge_{x \in B_1 \subset B_2} F_{B_1}(B_1).$$

It is obvious that every ordinary single valued neutrosophic topology itself forms an ordinary single valued neutrosophic base. Then, the following provides a sufficient condition for one to see if a mapping $B : 2^X \to I \times I \times I$ such that $T_B \leq T_\tau$, $I_B \geq I_\tau$ and $F_B \geq F_\tau$ is an ordinary single valued neutrosophic base for $\tau \in OSVNT(X)$.

Proposition 10. Let $(X, \tau)$ be an osnts and let $B : 2^X \to I \times I \times I$ be a mapping such that $T_B \leq T_\tau$, $I_B \geq I_\tau$ and $F_B \geq F_\tau$. For each $A \in 2^X$ and each $x \in A$, suppose $T_\tau(A) = \bigvee x \in B \subset A T_B(B)$, $I_\tau(A) \geq \bigwedge x \in B \subset A I_B(B)$ and $F_\tau(A) \geq \bigwedge x \in B \subset A F_B(B)$. Then, $B$ is an ordinary single valued neutrosophic base for $\tau$.

Proof. From the proof of Proposition 4.10 in [34], it is clear that the first part of the condition (1) of Theorem 5 holds, i.e., $\bigvee \{B_a\}_{a \in \tau} 2^X, x = \bigcup \alpha \in \tau B_a \wedge \alpha \in \tau T_B(B_a) = 1$. On the other hand,

$$\bigwedge \{B_a\}_{a \in \tau} 2^X, x = \bigcup \alpha \in \tau B_a \wedge \alpha \in \tau I_B(B_a) \geq \bigwedge \{B_a\}_{a \in \tau} 2^X, x = \bigcup \alpha \in \tau B_a \wedge \alpha \in \tau I_\tau(B_a) \geq I_\tau(X) = \bigvee x \in X \bigwedge x \in B \subset X I_\tau(B) \geq \bigwedge x \in X \bigwedge x \in B \subset X \bigwedge x \in C \subset B I_B(C) = \bigwedge x \in X I_B(C) = \bigwedge \{B_a\}_{a \in \tau} 2^X, x = \bigcup \alpha \in \tau B_a \wedge \alpha \in \tau I_B(B_a).$$

Since $\tau \in OSVNT(X)$, $I_\tau(X) = 0$. Thus, $\bigwedge \{B_a\}_{a \in \tau} 2^X, x = \bigcup \alpha \in \tau B_a \wedge \alpha \in \tau I_B(B_a) = 0$. Similarly, we have $\bigwedge \{B_a\}_{a \in \tau} 2^X, x = \bigcup \alpha \in \tau B_a \wedge \alpha \in \tau F_B(B_a) = 0$. Thus, condition (1) of Theorem 5 holds.

Now, let $A_1, A_2 \in 2^X$ and let $x \in A_1 \cap A_2$. Then, by the proof of Proposition 4.10 in [34], it is obvious that $T_B(A_1) \wedge T_B(A_2) \leq \bigvee x \in A_1 \cap A_2 T_B(A)$. On the other hand,

$$I_B(A_1) \vee I_B(A_2) \geq I_\tau(A_1) \vee I_\tau(A_2) \geq I_\tau(A_1 \cap A_2) \geq \bigwedge x \in A_1 \cap A_2 I_B(A) \geq \bigwedge x \in A_1 \cap A_2 I_\tau(A) \geq I_\tau(A_1 \cap A_2) \geq \bigwedge x \in A_1 \cap A_2 I_B(A).$$

Similarly, we have $F_B(A_1) \vee F_B(A_2) \geq \bigwedge x \in A_1 \cap A_2 F_B(A)$. Thus, condition (2) of Theorem 5 holds. Thus, by Theorem 5, $B$ is an ordinary single valued neutrosophic base for $\tau$. This completes the proof. □
**Definition 17.** Let \((X, \tau)\) be an osvnt and let \(\simeq : 2^X \to I \times I \times I\) be a mapping. Then, \(\varphi\) is called an ordinary single valued neutrosophic subbase for \(\tau\), if \(\varphi\) is an ordinary single valued neutrosophic base for \(\tau\), where \(\varphi : 2^X \to I \times I \times I\) is the mapping defined as follows: for each \(A \in 2^X\),

\[
\begin{align*}
T_{\varphi}(A) &= \bigvee_{\{B_a\} \in 2^X, \ A = \bigcap_{a \in \Gamma} B_a} \bigwedge_{a \in \Gamma} T_{\varphi}(B_a), \\
I_{\varphi}(A) &= \bigwedge_{\{B_a\} \in 2^X, \ A = \bigcap_{a \in \Gamma} B_a} \bigvee_{a \in \Gamma} I_{\varphi}(B_a), \\
F_{\varphi}(A) &= \bigwedge_{\{B_a\} \in 2^X, \ A = \bigcap_{a \in \Gamma} B_a} \bigvee_{a \in \Gamma} F_{\varphi}(B_a),
\end{align*}
\]

where \(\subseteq\) stands for “a finite subset of”.

**Example 5.** Let \(\alpha \in \text{SVNV}\) be fixed, where \(\alpha \in I_1 \times I_0 \times I_0\). We define the mapping \(\simeq : 2^\mathbb{R} \to I \times I \times I\) as follows: for each \(A \in 2^\mathbb{R}\),

\[
T_{\varphi}(A) = \begin{cases} 1 & \text{if } A = (a, \infty) \text{ or } (-\infty, b) \text{ or } (a, b) \\ T_\alpha & \text{otherwise,} \end{cases}
\]

\[
I_{\varphi}(A) = \begin{cases} 0 & \text{if } A = (a, \infty) \text{ or } (-\infty, b) \text{ or } (a, b) \\ I_\alpha & \text{otherwise,} \end{cases}
\]

\[
F_{\varphi}(A) = \begin{cases} 0 & \text{if } A = (a, \infty) \text{ or } (-\infty, b) \text{ or } (a, b) \\ F_\alpha & \text{otherwise,} \end{cases}
\]

where \(a, b \in \mathbb{R}\) such that \(a < b\). Then, we can easily see that \(\simeq\) is an ordinary single valued neutrosophic subbase for the \(\alpha\)-ordinary single valued neutrosophic usual topology \(\mathcal{U}_\alpha\) on \(\mathbb{R}\).

**Theorem 7.** Let \(\simeq : 2^X \to I \times I \times I\) be a mapping. Then, \(\simeq\) is an ordinary single valued neutrosophic subbase for some osvnt if and only if

\[
\bigvee_{\{B_a\} \in 2^X, \ A = \bigcap_{a \in \Gamma} B_a} \bigwedge_{a \in \Gamma} T_{\varphi}(B_a) = 1,
\]

\[
\bigwedge_{\{B_a\} \in 2^X, \ A = \bigcap_{a \in \Gamma} B_a} \bigvee_{a \in \Gamma} I_{\varphi}(B_a) = 0,
\]

\[
\bigwedge_{\{B_a\} \in 2^X, \ A = \bigcap_{a \in \Gamma} B_a} \bigvee_{a \in \Gamma} F_{\varphi}(B_a) = 0.
\]

**Proof.** \((\Rightarrow)\): Suppose \(\simeq\) is an ordinary single valued neutrosophic subbase for some osvnt. Then, by Definition 17, it is clear that the necessary condition holds.

\((\Leftarrow)\): Suppose the necessary condition holds. We only show that \(\varphi\) satisfies the condition (2) in Theorem 5. Let \(A, B \in 2^X\) and \(x \in A \cap B\). Then, by the proof of Theorem 4.3 in [33], it is obvious that \(T_{\varphi}(A) \land T_{\varphi}(B) \leq \bigvee_{x \in C \subseteq A \cap B} T_{\varphi}(C)\). On the other hand,

\[
I_{\varphi}(A) \lor I_{\varphi}(B)
\]

\[
= (\bigwedge_{a_1 \in \Gamma} B_{a_1} = A \lor a_1 \in \Gamma_1 I_{\varphi}(B_{a_1})) \lor (\bigwedge_{a_2 \in \Gamma_2} B_{a_2} = B \lor a_2 \in \Gamma_2 I_{\varphi}(B_{a_2}))
\]

\[
= \bigwedge_{a_1 \in \Gamma_1} B_{a_1} = A \land \bigwedge_{a_2 \in \Gamma_2} B_{a_2} = B \lor (a_1 \in \Gamma_1 I_{\varphi}(B_{a_1}) \lor a_2 \in \Gamma_2 I_{\varphi}(B_{a_2}))
\]

\[
\geq \bigwedge_{a \in \Gamma} B_a = A \cap B \lor a \in \Gamma I_{\varphi}(B_a)
\]

\[
= I_{\varphi}(A \cap B).
\]
Since \( x \in A \cap B \), \( I_{\theta}(A) \cup I_{\theta}(B) \geq I_{\theta}(A \cap B) \geq \bigwedge_{x \in C \subset A \cap B} I_{\theta}(C) \). Similarly, we have \( F_{\theta}(A) \cup F_{\theta}(B) \geq F_{\theta}(A \cap B) \geq \bigwedge_{x \in C \subset A \cap B} F_{\theta}(C) \). Thus, \( \phi \) satisfies the condition (2) in Theorem 5. This completes the proof. \( \square \)

**Example 6.** Let \( X = \{a, b, c, d, e\} \) and let \( a \in \text{SVNV} \) be fixed, where \( a \in I_1 \times I_0 \times I_0 \). We define the mapping \( \simeq : 2^X \rightarrow I \times I \times I \) as follows: for each \( A \in 2^X \),

\[
T_{\simeq}(A) = \begin{cases} 1 & \text{if } A \in \{a\}, \{a, b, c\}, \{b, c, d\}, \{c, e\} \\ T_a & \text{otherwise} \end{cases}
\]

\[
I_{\simeq}(A) = \begin{cases} 0 & \text{if } A \in \{a\}, \{a, b, c\}, \{b, c, d\}, \{c, e\} \\ I_a & \text{otherwise} \end{cases}
\]

\[
F_{\simeq}(A) = \begin{cases} 0 & \text{if } A \in \{a\}, \{a, b, c\}, \{b, c, d\}, \{c, e\} \\ F_a & \text{otherwise} \end{cases}
\]

Then, \( X = \{a\} \cup \{b, c, d\} \cup \{c, e\} \),

\[
T_{\theta}(\{a\}) = T_{\theta}(\{b, c, d\}) = T_{\theta}(\{c, e\}) = 1,
\]

\[
I_{\theta}(\{a\}) = I_{\theta}(\{b, c, d\}) = I_{\theta}(\{c, e\}) = 0.
\]

\[
F_{\theta}(\{a\}) = F_{\theta}(\{b, c, d\}) = F_{\theta}(\{c, e\}) = 0.
\]

Thus,

\[
\bigvee_{\{b_a\} \in 2^X, X = \bigcup_{a \in \Gamma} B_a} T_{\simeq}(B_a) = 1,
\]

\[
\bigwedge_{\{b_a\} \in 2^X, X = \bigcup_{a \in \Gamma} B_a} I_{\simeq}(B_a) = 0,
\]

\[
\bigwedge_{\{b_a\} \in 2^X, X = \bigcup_{a \in \Gamma} B_a} F_{\simeq}(B_a) = 0.
\]

Thus, by Theorem 7, \( \simeq \) is an ordinary single valued neutrosophic subbase for some osvnt.

The following is an immediate result of Corollary 4 and Theorem 7.

**Proposition 11.** \( \simeq_1, \simeq_2 : 2^X \rightarrow I \times I \times I \) be two mappings such that

\[
\bigvee_{\{b_a\} \in 2^X, X = \bigcup_{a \in \Gamma} B_a} T_{\simeq_1}(B_a) = 1,
\]

\[
\bigwedge_{\{b_a\} \in 2^X, X = \bigcup_{a \in \Gamma} B_a} I_{\simeq_1}(B_a) = 0,
\]

\[
\bigwedge_{\{b_a\} \in 2^X, X = \bigcup_{a \in \Gamma} B_a} F_{\simeq_1}(B_a) = 0
\]

and

\[
\bigvee_{\{b_a\} \in 2^X, X = \bigcup_{a \in \Gamma} B_a} T_{\simeq_2}(B_a) = 1,
\]

\[
\bigwedge_{\{b_a\} \in 2^X, X = \bigcup_{a \in \Gamma} B_a} I_{\simeq_2}(B_a) = 0,
\]

\[
\bigwedge_{\{b_a\} \in 2^X, X = \bigcup_{a \in \Gamma} B_a} F_{\simeq_2}(B_a) = 0.
\]

Suppose the two conditions hold:
(1) for each \( S_1 \in 2^X \) and each \( x \in S_1 \),

\[
T_{\simeq_1}(S_1) \leq \bigvee_{x \in S_2 \subseteq S_1} T_{\simeq_2}(S_2), \quad I_{\simeq_1}(S_1) \geq \bigwedge_{x \in S_2 \subseteq S_1} I_{\simeq_2}(S_2), \quad F_{\simeq_1}(S_1) \geq \bigwedge_{x \in S_2 \subseteq S_1} F_{\simeq_2}(S_2),
\]

(2) for each \( S_2 \in 2^X \) and each \( x \in S_2 \),

\[
T_{\simeq_2}(S_2) \leq \bigvee_{x \in S_1 \subseteq S_2} T_{\simeq_1}(S_1), \quad I_{\simeq_2}(S_2) \geq \bigwedge_{x \in S_1 \subseteq S_2} I_{\simeq_1}(S_1), \quad f_{\simeq_2}(S_2) \geq \bigwedge_{x \in S_1 \subseteq S_2} f_{\simeq_1}(S_1).
\]

Then, \( \simeq_1 \) and \( \simeq_2 \) are ordinary single valued neutrosophic subbases for the same ordinary single valued neutrosophic topology on \( X \).

6. Conclusions

In this paper, we defined an ordinary single valued neutrosophic topology and level set of an osvnst to study some topological characteristics of neutrosophic sets and obtained some their basic properties. In addition, we defined an ordinary single valued neutrosophic subspace. Next, the concepts of an ordinary single valued neutrosophic neighborhood system and an ordinary single valued neutrosophic base (or subbase) were introduced and studied. Their results are summarized as follows:

First, an ordinary single valued neutrosophic neighborhood system has the same properties in a classical neighborhood system (see Theorem 3).

Second, we found two characterizations of an ordinary single valued neutrosophic base (see Theorems 4 and 5).

Third, we obtained one characterization of an ordinary single valued neutrosophic subbase (see Theorem 7).

Finally, we expect that this paper can be a guidance for the research of separation axioms, compactness, connectedness, etc. in ordinary single valued neutrosophic topological spaces. In addition, one can deal with single valued neutrosophic topology from the viewpoint of lattices.

Author Contributions: All authors have contributed equally to this paper in all aspects. This paper was organized by the idea of Hur Kul. Junhui Kim and Jeong Gon Lee analyzed the related papers with this research, and they also wrote the paper. Florentin Smarandache checked the overall contents and mathematical accuracy.

Funding: This research received no external funding.

Acknowledgments: This paper was supported by Wonkwang University in 2017 (Junhui Kim).

Conflicts of Interest: The authors declare no conflict of interest.

References

40. Salama, A.A.; Smarandache, F. *Neutrosophic Crisp Set Theory*; The Educational Publisher Columbus: Columbus, OH, USA, 2015.


© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).