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Abstract: We define an ordinary single valued neutrosophic topology and obtain some of its basic
properties. In addition, we introduce the concept of an ordinary single valued neutrosophic subspace.
Next, we define the ordinary single valued neutrosophic neighborhood system and we show that
an ordinary single valued neutrosophic neighborhood system has the same properties in a classical
neighborhood system. Finally, we introduce the concepts of an ordinary single valued neutrosophic
base and an ordinary single valued neutrosophic subbase, and obtain two characterizations of an
ordinary single valued neutrosophic base and one characterization of an ordinary single valued
neutrosophic subbase.
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1. Introduction

In 1965, Zadeh [1] introduced the concept of fuzzy sets as the generalization of an ordinary set.
In 1986, Chang [2] was the first to introduce the notion of a fuzzy topology by using fuzzy sets.
After that, many researchers [3-13] have investigated several properties in fuzzy topological spaces.

However, in their definitions of fuzzy topology, fuzziness in the notion of openness of a fuzzy
set was absent. In 1992, Samanta et al. [14,15] introduced the concept of gradation of openness
(closedness) of fuzzy sets in X in two different ways, and gave definitions of a smooth topology and
a smooth co-topology on X satisfying some axioms of gradation of openness and some axioms of
gradation of closedness of fuzzy sets in X, respectively. After then, Ramadan [16] defined level sets
of a smooth topology and smooth continuity, and studied some of their properties. Demirci [17]
defined a smooth neighborhood system and a smooth Q-neighborhood system, and investigated
their properties. Chattopadhyay and Samanta [18] introduced a fuzzy closure operator in smooth
topological spaces. In addition, they defined smooth compactness in the sense of Lowen [8,9],
and obtained its properties. Peters [19] gave the concept of initial smooth fuzzy structures and
found its properties. He [20] also introduced a smooth topology in the sense of Lowen [8] and proved
that the collection of smooth topologies forms a complete lattice. Al Tahan et al. [21] defined a
topology such that the hyperoperation is pseudocontinuous, and showed that there is no relation in
general between pseudotopological and strongly pseudotopological hypergroupoids. In addition,
Onassanya and Hoskova-Mayerova [22] investigated some topological properties of a-level subsets’
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topology of a fuzzy subset. Moreover, Coker and Demirci [23], and Samanta and Mondal [24,25]
defined intuitionistic gradation of openness (in short IGO) of fuzzy sets in Sostak’s sense [26] by
using intuitionistic fuzzy sets introduced by Atanassov [27]. They mainly dealt with intuitionistic
gradation of openness of fuzzy sets in the sense of Chang. However, in 2010, Lim et al. [28] investigated
intuitionistic smooth topological spaces in Lowen’s sense. Recently, Kim et al. [29] studied continuities
and neighborhood systems in intuitionistic smooth topological spaces. In addition, Choi et al. [30]
studied an interval-valued smooth topology by gradation of openness of interval-valued fuzzy sets
introduced by Gorzalczany [31] and Zadeh [32], respectively. In particular, Ying [33] introduced
the concept of the topology (called a fuzzifying topology) considering the degree of openness of
an ordinary subset of a set. In 2012, Lim et al. [34] studied general properties in ordinary smooth
topological spaces. In addition, they [35-37] investigated closures, interiors and compactness in
ordinary smooth topological spaces.

In 1998, Smarandache [38] defined the concept of a neutrusophic set as the generalization of
an intuitionistic fuzzy set. Salama et al. [39] introduced the concept of a neutrosophic crisp set and
neutrosophic crisp relation (see [40] for a neutrosophic crisp set theory). After that, Hur et al. [41,42]
introduced categories NSet(H) and NCSet consisting of neutrosophic sets and neutrosophic crisp sets,
respectively, and investigated them in a topological universe view-point. Smarandache [43] defined the
notion of neutrosophic topology on the non-standard interval and Lupidfiez proved that Smarandache’s
definitions of neutrsophic topology are not suitable as extensions of the intuitionistic fuzzy topology
(see Proposition 3 in [44,45]). In addition, Salama and Alblowi [46] defined a neutrosophic topology
and obtained some of its properties. Salama et al. [47] defined a neutrosophic crisp topology and
studied some of its properties. Wang et al. [48] introduced the notion of a single valued neutrosophic
set. Recently, Kim et al. [49] studied a single valued neutrosophic relation, a single valued neutrosophic
equivalence relation and a single valued neutrosophic partition.

In this paper, we define an ordinary single valued neutrosophic topology and obtain some of
its basic properties. In addition, we introduce the concept of an ordinary single valued neutrosophic
subspace. Next, we define the ordinary single valued neutrosophic neighborhood system and we show
that an ordinary single valued neutrosophic neighborhood system has the same properties in a classical
neighborhood system. Finally, we introduce the concepts of an ordinary single valued neutrosophic
base and an ordinary single valued neutrosophic subbase, and obtain two characterizations of an
ordinary single valued neutrosophic base and one characterization of an ordinary single valued
neutrosophic subbase.

2. Preliminaries

In this section, we introduce the concepts of single valued neutrosophic set, the complement of a
single valued neutrosophic set, the inclusion between two single valued neutrosophic sets, the union
and the intersection of them.

Definition 1 ([43]). Let X be a non-empty set. Then, A is called a neutrosophic set (in sort, NS) in X, if A has
the form A = (Ta, Ia, Fa), where

Ta:X—]70,17, I1p:X—=]70,17] Fq:X—]70,17"]
Since there is no restriction on the sum of T4(x), L4 (x) and F4(x), for each x € X,
TO < Ta(x)+14(x) 4+ Fa(x) < 3t

Moreover, for each x € X, Ta(x) (resp., I5(x) and F4(x)) represent the degree of membership (resp.,
indeterminacy and non-membership) of x to A.
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From Example 2.1.1 in [17], we can see that every IFS (intutionistic fuzzy set) A in a non-empty
set X is an NS in X having the form

A= (TA,l — (TA + FA),FA),
where (1 — (Ta + Fa))(x) =1 — (Ta(x) + Fa(x)).

Definition 2 ([43]). Let A and B be two NSs in X. Then, we say that A is contained in B, denoted by A C B,
if, foreach x € X, inf Ta(x) < inf Tg(x), sup Ta(x) < sup Tg(x), inf I4(x) > inf Ig(x), sup [4(x) >
sup Ig(x), inf Fo(x) > inf Fg(x) and sup Fs(x) > sup Fp(x).

Definition 3 ([48]). Let X be a space of points (objects) with a generic element in X denoted by x. Then,
A is called a single valued neutrosophic set (in short, SVNS) in X, if A has the form A = (Ta,1a,Fa),
where Ty, 14, Fg : X — [0,1].
In this case, Ty, 14, Fa are called truth-membership function, indeterminacy-membership function,
falsity-membership function, respectively, and we will denote the set of all SVNSs in X as SVNS(X).
Furthermore, we will denote the empty SVNS (resp. the whole SVNS] in X as Oy (resp. 1n) and define by
On(x) = (0,1,1) (resp. 15 = (1,0,0)), for each x € X.

Definition 4 ([48]). Let A € SVNS(X). Then, the complement of A, denoted by A, is an SVNS in X defined
as follows: for each x € X,

Tac(x) = Fa(x), Iac(x) =1 —I4(x) and Fae(x) = Ta(x).

Definition 5 ([50]). Let A, B € SVNS(X). Then,
(i) A is said to be contained in B, denoted by A C B, if, for each x € X,

Ta(x) < Tp(x), Ia(x) > Ig(x) and F4(x) > Fp(x),
(ii) A is said to be equal to B, denoted by A = B, if A C Band B C A.

Definition 6 ([51]). Let A, B € SVNS(X). Then,
(i) the intersection of A and B, denoted by AN B, is a SVNS in X defined as:

ANB=(ToaNTg, 14V Ig FaV Fg),

where (Ty A Tg)(x) = Ta(x) A Tg(x), (Fa V Fg) = Fa(x) V Fg(x), for each x € X,
(ii) the union of A and B, denoted by AU B, is an SVNS in X defined as:

AUB = (TA VT, Ia NI, Fa /\FB).
Remark 1. Definitions 5 and 6 are different from the corresponding definitions in [48].

Result 1 ([51], Proposition 2.1). Let A, B € SVNS(X). Then,
(1) ACAUBand BC AUB,
2QANBC Aand ANB C B,
(3) (A) = 4,
(4) (AUB)" = A°N B, (ANB)° = A°UB".

The following are immediate results of Definitions 5 and 6.

Proposition 1. Let A, B, C € SVNS(X). Then,
(1) (Commutativity) AUB=BUA, ANB =BNA,
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(2) (Associativity) AU(BUC) = (AUB)UC, AN (BNC)=(ANB)NC,

(3) (Distributivity) AU (BN C) = (AUB)N(AUC), AN (BUC) = (ANB)U(ANC),
(4) (Idempotency) AUA =A, ANA=A,

(5) (Absorption) AU(ANB) =A, AN(AUB) = A,

(5) (DeMorgan’s laws) (AUB)¢ = AN B, (AN B)¢ = A°U B¢,
(7)f§rW0N’ZZONy/4LJ1N =1y,
®)AUOy = A, AN1y = A.

Definition 7 (see [46]). Let {Ay}uer C SVNS(X). Then,
(i) the union of { Ax }acr, denoted by Uyer Aa, is a single valued neutrosophic set in X defined as follows:

foreach x € X,
(U A (x) = (V Ta,(x), A\ Ia,(x), )\ Fa,(x
acl ael ael ael

(i) the intersection of {An}uer, denoted by Nyer Aa, is a single valued neutrosophic set in X defined
as follows: for each x € X,

() Ax)(x) = (A Ta,(x), \/ 14, (x), \/ Fa,(x

wel wel’ wel’ ael

The following are immediate results of the above definition.

Proposition 2. Let A € SVNS(X) and let { Ay }per C SVNS(X). Then,
(1) (Generalized Distributivity)

AU(N A) = N(AUA), ANn(U A) = U(ANAw),

ael wel ael wel

(2) (Generalized DeMorgan’s laws)

(U AIX)C: ﬂAgu (ﬂ Auc)C: UA;‘

ael wel’ ael ael

3. Ordinary Single Valued Neutrosophic Topology

In this section, we define an ordinary single valued neutrosophic topological space and obtain
some of its properties. Throughout this paper, we denote the set of all subsets (resp. fuzzy subsets) of
a set X as 2X (resp. 1%).

For Ty, In, Fy € I, « = (Ty, In, Fx) € I x I x I is called a single valued neutrosophic value. For two
single valued neutrosophic values « and B,

() a < Biff Ty < Tg, Iy > Igand Fy > Fp,

(i) « < Biff Ty < Tp, I > Ig and Fy > Fg.

In particular, the form a* = (a,1 — a,1 — ) is called a single valued neutrosophic constant.

We denote the set of all single valued neutrosophic values (resp. constant) as SVNV (resp. SVNC)
(see [49]).

Definition 8. Let X be a nonempty set. Then, a mapping T = (T¢, It, Fr) : 2X — I x I x I is called
an ordinary single valued neutrosophic topology (in short, osvnt) on X if it satisfies the following axioms:
forany A,B € 2X and each { Ay }aer C 2%,

(OSVNT1) t(¢) = 1(X) = (1,0,0),

(OSVNT2) T:(ANB)>T:(A)AT:(B), I:(ANB)<I(A)VI(B),
F:(ANB) < F:(A) V F:(B),

(OSVNT3) TT(UaeF AIX) > /\szF TT( /X)/ IT(UthF Aﬂt) < \/aer IT(ADC)/
FT(szeF A!X) < erel“ FT 06)
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The pair (X, T) is called an ordinary single valued neutrosophic topological space (in short, osvnts). We
denote the set of all ordinary single valued neutrosophic topologies on X as OSVNT(X).

Let2 = {0,1} and let T : 2X — 2 x 2 x 2 satisfy the axioms in Definition 8. Since we can consider
as (1,0,0) =1and (0,1,1) =0, T € T(X), where T(X) denotes the set of all classical topologies on X.
Thus, we can see that T(X) C OSVNT(X).

Example 1. (1) Let X = {a,b,c}. Then, 2% = {¢, X, {a},{b},{c}, {a,b},{a,c},{b,c}}. We define the
mapping T : 2X — I x I x I as follows:

T(¢) = T(X) = (1/ 0, 0)/
w({a}) = (07,03,04), T({b}) = (0.6,02,03), 7({c}) = (0.8,0.1,02),
T({a,b}) = (0.6,0.3, 0.4),1’({b,c}) = (0.7, 0.1,0.2),T({(Z,C}) = (0.8,0.2,0.3).

Then, we can easily see that T € OSVNT(X).
(2) Let X be a nonempty set. We define the mapping Ty : 2% — I x I x I as follows: for each A € 2%,

T (A) _ (1/0,0) z'feitherA:cp or A=X,
P T (0,1,1) othermwise.

Then, clearly, Ty € OSVT(X).

In this case, Ty (resp. (X, 7)) is called the ordinary single valued neutrosophic indiscrete topology on X
(resp. the ordinary single valued neutrosophic indiscrete spacel].

(3) Let X be a nonempty set. We define the mapping tx : 2X — I x I x I as follows: for each A € 2%,

x(A) = (1,0,0).

Then, clearly, Tx € OSVNT(X).

In this case, Tx (resp. (X, Tx)) is called the ordinary single valued neutrosophic discrete topology on X
(resp. the ordinary single valued neutrosophic discrete space].

(4) Let X be a set and let & = (T, In, Fx) € SVNV be fixed, where Ty € Iy and I, Fy € Iy. We define
the mapping T : 2X — I x I x I as follows: for each A € 2%,

{ (1,0,0) ifeither A = ¢ or A is finite,
T(A) = .
o otherwise.

Then, we can easily see that T € OSVNT(X).

In this case, T is called the a-ordinary single valued neutrosophic finite complement topology on X and will
be denoted by OSVNCof(X). OSVNCof(X) is of interest only when X is an infinite set because if X is finite,
then OSVNCof(X) = 1p.

(5) Let X be an infinite set and let « = (T, I, Fx) € SVNV be fixed, where T, € I and I, Fy € Io.
We define the mapping T : 2X — I x I x I as follows: for each A € 2%,

T(A) = (1,0,0) ifeither A = ¢ or A°is countable,
) o« otherwise.

Then, clearly, T € OSVNT(X).
In this case, T is called the a-ordinary single valued neutrosophic countable complement topology on X and
is denoted by OSVNCoc(X).
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(6) Let T be the topology generated by S = {(a,b] : a,b € R,a < b} as a subbase, let Ty be the family of all
open sets of R with respect to the usual topology on R and let w = (T, I, Fy) € SVNV be fixed, where T, € I
and I, Fy € Iy. We define the mapping T : 28 — I x I x I as follows: for each A € I¥,

(1,0,0) ifA €Ty,
T(A) =< «a ifAeT\Tp,
(0,1,1) otherwise.

Then, we can easily see that T € OSVNT(X).
(7) Let T € T(X). We define the mapping tr : 2X — I x I x I as follows : for each A € 2%,
(1,0,0) ifA€T,
A =
7r(4) { (0,1,1) otherwise.

Then, it is easily seen that Tr € OSVNT(X). Moreover, we can see that if T is the classical indiscrete
topology, then Tr = Ty and if T is the classical discrete topology, then Tr = Tx.

Remark 2. (1) If I = 2, then we can think that Definition 8 also coincides with the known definition of
classical topology.

(2) Let (X, T) be an osvnsts. We define two mappings [T, < > T:2% — I x I x I, respectively,
as follows : for each A € 2%,

([JD)(A) = (Te(A), I:(A), 1 = Te(A)), (< > 1)(A) = (1 = F(A), [r(A), F(A4)).
Then, we can easily see that [ |t, < > 1€ OSVNT(X).

Definition 9. Let X be a nonempty set. Then, a mapping C = (uc,ve) : 25X — I x I x I is called an
ordinary single valued neutrosophic cotopology (in short, osvnct) on X if it satisfies the following conditions:
forany A, B € 2X and each { Ay }aer C 2%,

(OSVNCT1) C(¢)=C(X)=(1,0,0),

(OSVNCT2) T¢(AUB) > Te(A)ATe(B), Ic(AUB)<Ic(A)VIc(B),
Fe(AUB) < Fe(A)V Fe(B),

(OSVNCT3)  Te(() An) > A\ Te(Aw)  Te(() Ad) < \/ Ie(Ad),

wel ael wel ael
FC(mAlx)S \/FC(Aoc)-
acl ael

The pair (X, C) is called an ordinary single valued neutrosophic cotopological space (in short, osvncts).
The following is an immediate result of Definitions 8 and 9.

Proposition 3. We define two mappings f : OSVNT(X) — OSVNCT(X) and g : OSVNCT(X) —
OSVNT(X) respectively as follows:

[f(T)](A) = T(A®) forany T € OSVNT(X) and any A € 2%

and
[g(C)](A) = C(A®) forany C € OSVNCT(X) and any A € 2%.

Then, f and g are well-defined. Moreover, g o f = 1ogynT(x) and f © g = logyner(x)-

Remark 3. (1) For each T € OSVNT(X) and each C € OSVNCT(X), let f(t) = Cr and g(C) = t¢. Then,
from Proposition 3, we can see that t¢, = T and Cy, = C.
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(2) Let (X,C) be an osvncts. We define two mappings [ 1C, < > C:2X — I x I x I, respectively,
as follows: for each A € 2%,

([1O)(A) = (Te(A), Ie(A),1 = Te(A)), (< > C)(A) = (1= Fe(A), Ie(A), Fe(A)).
Then, we can easily see that [ |C, < > C € OSVNCT(X).

Definition 10. Let 7,7, € OSVNT(X) and let C1,C; € OSVNCT(X).
(i) We say that T, is finer than T, or T, is coarser than T,, denoted by T, < 7, if T,(A) < 1,(A), ie.,
for each A € 2%,
Tr, (A) < Ty, (A), Ir,(A) = It (A), Fr,(A) = Fr (A).

(ii) We say that Cy is finer than Cy or Cy is coarser than Cy, denoted by C; < Cy, if C2(A) < C1(A), i.e.,
for each A € 2%,
Te,(A) < Te (A), Ie,(A) = Ic (A), Fe,(A) = Fe (A).

We can easily see that 7, is finer than 7, if and only if Cr, is finer than Cr,, and (OSVNT(X), <)
and (OSVNCT(X), =) are posets, respectively.

From Example 1 (2) and (3), it is obvious that 7y is the coarsest ordinary single valued neutrosophic
topology on X and Ty is the finest ordinary single valued neutrosophic topology on X.

Proposition 4. If {7, }yer C OSVNT(X), then Nyer 7, € OSVNT(X),
where [ﬂtxer Ta] (A) = (/\txer TTLV (A)/ Vael“ IT,X (A)/ szel" FT,X (A))/ VAEe ZX'

Proof. Let T = N,cr 7, and leta € I. Since 7, € OSVNT(X), 7, (X) = 7,(¢) = (1,0,0), i.e.,

43

TT,X(X) = TTa (4’) =1, ITa (X> = ITa (‘P) =0, FTa (X) = Fm (‘P) =0.

Then, To(X) = Ayer Tr, (X) = 1, t(X) = Vyer It (X) = 0 = Fr(X). Similarly, we have T:(¢) = 1,
I:(¢) = 0 = Fr(¢). Thus, the condition (OSVNT1) holds.
Let A, B € 2%, Then,

T:(ANB) = Ager Tr, (AN B) [By the definition of 7]
> Aaer(Tr, (A) A Te, (B)) [Since T, € OSVNT(X)]
= (Awer T, (A)) A (Aaer Tz, (B))
= Tr(A) A T¢(B) [By the definition of 7]

and

I:(ANB) = Vyer I, (ANB) [By the definition of 7]
< Vaer(Ir, (A) V I, (B)) [Since T, € OSVNT(X)]
= (Vaer I (A)) V (Vaer I (B))
= I;(A) vV I:(B). [By the definition of 7]

Similarly, we have F(A N B) < Fr(A) V Fr(B). Thus, the condition (OSVNT2) holds:
Now, let {A;}je] C 2X_ Then,

Te(Ujej Aj) = Aaer Tr, (Ujes 4)) [By the definition of 7]
> Awer(Ajej Tr, (45)) [Since T, € OSVNT(X)]
= /\je](/\aer TTa (Aj))
= AjejlNaer Tz, I (4)) [By the definition of 7]
= Vjej Te(4))

and



Symmetry 2019, xx, 5 8 of 26

I:(Ujes Aj) = Vaer I, (Ujes A)) [By the definition of 7]
< Vaer(Vjej I, (4))) [Since T, € OSVNT(X)]
= Vje](\/ael“ ITa (Aj))
= VjejlUger I, ] (4)) [By the definition of 7]

Similarly, we have Fr(Ujej 4j) < Vjej Fr(4)). Thus, the condition (OSVNT3) holds. This
completes the proof. O

From Definition 10 and Proposition 4, we have the following.

Proposition 5. (OSVNT(X), =) is a meet complete lattice with the least element T, and the greatest
element Tx.

Definition 11. Let (X, 7) be an osvnts and let « € SVNV. We define two sets [t|, and [t]} as
follows, respectively:

(i) [t]la = {A €2X : Tr(A) > Ty, I:(A) < I, I(A) < R},

(i) [7]5 = {A € 2X : T{(A) > Ty, It (A) < I, Fr(A) < Fy}.

In this case, [T]y (resp. [T]}) is called the a-level (resp. strong a-level] of 7. If « = (0,1,1),
then [t]g11) = 2%, ie., [1] (0,1,) is the classical discrete topology on X and if « = (1,0,0),
then [7] (10,0) = ¢- Moreover, we can easily see that for any « € SVNV, [Tl C [T]a-

Lemma 1. Let T € OSVNT(X) and let «, € SVNV. Then,

1) [t]a € T(X),

(2) if o < B, then [t]p C [T]a,

G) [tla = [ [t]p, wherea € Iy x I x I,

B<«

) [1]f € T(X), wherew € I x Iy X Iy,

(@) if a < B, then [1]; C [1];,
® [i= U (7], wherea € I x Iy x Io.

B>(a

Proof. The proofs of (1), (1)/, (2) and (2)/ are obvious from Definitions 8 and 11.

(3) From (2), {[7]a }aclyx1 x1, is @ descending family of classical topologies on X. Then, clearly,
[Tla C Np<alTlp, foreacha € Iy x I; x .

Suppose A ¢ [1]q. Then, Tr(A) < Ty or It (A) > I or Fr(A) > F,. Thus,

there exists Tg € I such that T:(A) < Tg < Ty
or

there exists Ig € I; such that I-(A) > Ig > Iy
or

there exists Fg € I; such that Fr(A) > Fg > Fy.

Thus, A ¢ [t]g, for some p € SVNV such that f < a,ie., A ¢ () [7]g. Hence, () [t]g C []a-
B<wa B<wa
Therefore, [t], = (] [7]p.
B<«
(3)/ The proof is similar to (3). O
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Remark 4. From (1) and (2) in Lemma 1, we can see that, for each T € OSVNT(X), {[T]a}xcsvnv IS a
family of descending classical topologies called the w-level classical topologies on X with respect to T.

The following is an immediate result of Lemma 1.

Corollary 1. Let (X, T) be an osonts. Then, [t]y = (] [t]p- for each a* € SVNC, where & € I.
B<a

Lemma 2. (1) Let {7y }sesvNv be a descending family of classical topologies on X such that 7o 1) is the
classical discrete topology on X. We define the mapping T : 2X — I x I x I as follows: for each A € 2%,

=(V T, A\ I, \ F).

A€ty A€ty A€ty

Then, T € OSVNT(X).
Q) Ifty = Np<a Ty, for each o € SVNV (« € Iy X I} X L), then [T]y = Tu.
) If tw = Upsa Tp, for each a € SVNV (a € Iy x Iy x L), then [T]; = Ta.

Proof. The proof is similar to Lemma 3.9 in [28]. O

The following is an immediate result of Lemma 2.

Corollary 2. Let {7y }uc1y be a descending family of classical topologies on X such that T 1) is the classical
discrete topology on X. We define the mapping T : 2X — I x I x I as follows: for each A € 2%,

= ( \/ Q, /\ (1—a), /\ (1—a)).

AETA,* AETD(* AGTI,‘*
Then, T € OSVNT(X) and [T]a* = Npen Tpr = Tar V& € .
From Lemmas 1 and 2, we have the following result.

Proposition 6. Let T € OSVNT(X) and let [T], be the a-level classical topology on X with respect to T.
We define the mapping n : 2X — I x I x I as follows: for each A € 2%,

(V T A\ L /\ Fa)-

A€[T]a A€lt]s A€t
Then, n = T.

The fact that an ordinary single valued neutrosophic topological space fully determined by its
decomposition in classical topologies is restated in the following theorem.

Theorem 1. Let 7,7, € OSVNT(X). Then, 1, = 1, if and only if [1,]x = [1,]« for each « € SVNV,
or alternatively, if and only if [t,]x = [t,] for each « € SVNV.

Remark 5. In a similar way, we can construct an ordinary single valued neutrosophic cotopology C on a set X,
by using the a-levels,

[Cla={Ae€T*:T,(A) > T, I,(A) < I, F,(A) < F,}

and
[Cli ={A€I*:T,(A) > Ty I.(A) < L, F,(A) < F},

foreach o« € SVNV.
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Definition 12. Let T € T(X) and let T € OSVNT(X). Then, T is said to be compatible with T if T = S(7),
where S(T) = {A € 2X 1 T;(A) > 0,I;(A) < 1, F;(A) < 1}.

Example 2. (1) Let Ty be the ordinary single valued neutrosophic indiscrete topology on a nonempty set X and
let Ty be the classical indiscrete topology on X. Then, clearly,

S(tp) = {A €2X: Tr (A) > 0,1, (A) <1, Fr, (A) <1} = {¢, X} = T.

Thus, Ty is compatible with Tp.
(2) Let tx be the ordinary single valued neutrosophic discrete topology on a nonempty set X and let Ty be
the classical discrete topology on X. Then, clearly,

S(tx) = {A € 2% : T (A) > 0,1, (A) < 1, Fr, (A) <1} =2X = Ty.
Thus, Tx is compatible with Ty.
(3) Let X be a nonempty set and let « € SVNV be fixed, where o € Iy x I; x 1. We define the mapping
7:2X — I x I x I as follows: for each A € 2%,

T(A) _ (1/ 0,0) ifeither A=¢ or A =X,
] o« otherwise.

Then, clearly, T € OSVNT(X) and T is compatible with Tj.

Furthermore, every classical topology can be considered as an ordinary single valued neutrosophic
topology in the sense of the following result.

Proposition 7. Let (X, T) be a classical topological space and and let « € SVNV be fixed, where « €
Ip x Iy x I. Then, there exists T € OSVNT(X) such that T* is compatible with T. Moreover, [T*], = T.

In this case, T* is called the a-th ordinary single valued neutrosophic topology on X and (X, t*)
is called the a-th ordinary single valued neutrosophic topological space.

Proof. Let « € SVNV be fixed, where « € I x I; x I; and we define the mapping 7 : 2X — I x I x I
as follows: for each A € 2%,

(1,0,0) ifeither A=¢orA =X,
T™"A)=¢ & ifAet\{¢ X},
(0,1,1) otherwise.

Then, we can easily see that 7* € OSVNT(X) and [t%], = T. Moreover, by the definition of 7%,
S(t") ={A€2X: Twu(A) >0, [m(A) <1, Fu(A) <1} = 1.
Thus, T is compatible with 7. [

Proposition 8. Let (X, T) be a classical topological space, let C(T) be the set of all osunts on X compatible

with T, let T = T\ {¢, X} and let (I x I x I)(To,l,l) be the set of all mappings f : T — I x I x I satisfying the

following conditions: for any A, B € T and each (Aj)jey C T,
M) f(A) #(0,1,1),
2) Tf(A N B) > Tf(A) N Tf(B), If(A N B) < If(A) V Tf(B),
Ff(ANB) < F;(A) V F(B),
@) Tr(Ujes Aj) = Ajey Tr(4)), Ir(Ujes Aj) < Vijes Ir(4)),
Fr(Ujer 4)) < Vie Fr(4))-
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Then, there is a one-to-one correspondence between C(T) and (I x I x I )(TO,M).
Proof. We define the mapping F : (I x I x I)(TO’M) — C(T) as follows: for each f € (I x I x I)Z),l,l)’

F(f) =15,
where 7, : 2X — I x I x [ is the mapping defined by: for each A € 2%,

(1,0,0) ifeither A=¢orA =X,
(A)=< f(A) ifA€eT,
(0,1,1) otherwise.

Then, we easily see that 7, € C(T).
Now, we define the mapping G : C(T) — (I x I x I)(TNO/M) as follows: for each T € C(T),

G(7) = fr,

where f; : T — I x I x I is the mapping defined by: for each A € T,

Then, clearly, fr € (I x I x I)(TNO 11)° Furthermore, we can see that Fo G = idC(T) and GoF =
id(IXIXI)Z),m' Thus, C(T) is equipotent to I x I x I)(To,l,l)' This completes the proof. [

Proposition 9. Let (X, T) be an osvnts and let Y C X. We define the mapping ty : 2¥ — I x I x I as follows:
for each A € 2Y,

TY(A) = ( \/ TT(B)/ /\ IT(B)/ /\ FT(B))'

Be2X, A=BNY Be2X, A=BNY Be2X, A=BNY

Then, Ty € OSVNT(Y) and for each A € 2V,
Ty, (A) > Te(A), I, (A) < I(A), Fr (A) < F(A).

In this case, (Y, Ty) is called an ordinary single valued neutrosophic subspace of (X, ) and Ty is
called the induced ordinary single valued neutrosophic topology on A by 7.

Proof. It is obvious that the condition (OSVNT1) holds, i.e., Ty (¢) = & (Y) = (1,0,0).
Let A, B € 2¥. Then, by proof of Proposition 5.1 in [34], Tr, (AN B) > Tr, (A) A T, (B).
Let us show that I, (AN B) < I, (A) V I, (B). Then,

Ity (A) V Iy (B) = (Acye2x, a=ync, 1e(C1)) V (Acyeax, =ync, Ir(C2))
= Ac,, ¢e2%, AnB=yn(c;nGy) U (C1) V I (Ca)]
> Ay, ¢y e2%, anB=yn(c;nG,) Ir(C1 N C2)
= I, (AN B).
Similarly, we have Fr, (AN B) < Fy, (A) V Fy, (B). Thus, the condition (OSVNT2) holds.
Now, let {Az}aer C 2Y. Then, by the proof of Proposition 5.1 in [34], Tr, (User Aa) >

Auer Try (Ag). On the other hand,
Lty (Uner Aa) = AB,c2X, (Uer Bo)nY=User Ay Ir(Uaer Be)

< ABye2X, (Uyer Ba)Y=Uper Aa Aaer It (Ba)]
= Naer[AB,e2%, (Uyer Bo)NY=Uper Aa It (Ba)]
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= Aaer ITy (Arx)'

Similarly, we have Fr, (Uyer Ax) < Axer Fry (Ag). Thus, the condition (OSVNT3) holds. Thus,
Ty € OSVNT(Y).
Furthermore, we can easily see that for each A € 2Y,

To (A) > Te(A), Iny(A) < I(A), Fr(A) < F:(A).

This completes the proof. [

The following is an immediate result of Proposition 9.

Corollary 3. Let (Y, Ty) be an ordinary single valued neutrosaophic subspace of (X, ) and let A € 2¥.

(1) Cy(A) = (Vpeax,a—pny Te(B), Apeax, a—pny le(B), Apeax, a—pny Fe(B)), where Cy(A) =
Ty(Y-—z4)
@IfZCcYcCX, thent, = (T

Y )Z :
4. Ordinary Single Valued Neutrosophic Neighborhood Structures of a Point

In this section, we define an ordinary single valued neutrosophic neighborhood system of a point,
and prove that it has the same properties in a classical neighborhood system.

Definition 13. Let (X, T) be an osvnts and let x € X. Then, a mapping Ny : 2% — I x I x [ is called the
ordinary single valued neutrosophic neighborhood system of x if, for each A € 2%,

AeN;:=3B(BeT)A(x€BCA)),

ie.,

[AeN:] = (V T«(B), A L(B), A F(B)

xeBCA xXeEBCA xeBCA

Lemma 3. Let (X, T) be an osvnts and let A € 2X. Then,

AV T(B) =T:(A),

xeAxeBCA
V' A (B)=L(A)
x€EAxEBCA

and

V' A E(B)=F(A).

xeAxeBCA

Proof. By Theorem 3.1 in [33], it is obvious that Ayea Vycpca Tc(B) = Tc(A).
On the other hand, it is clear that \/ e 4 Axepca Ir(B) > I:(A). Now, let By = {B€2X:x € B C A}
and let f € IT,c 4 Bx. Then, clearly, U,c 4 f(x) = A. Thus,

V L(f(x) < L({ f(x)) = L(A).

xX€EA xX€A

Thus,

VA KB = A VE(f(x) < k(A

X€EAXEBCA fellcp x€A

Hence, Vyea Axepca It (B) = Ir(A). Similarly, we have

V' A\ F(B)=F(A).

x€EAXEBCA
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O
Theorem 2. Let (X, T) be an osvnts, let A € 2X and let x € X. Then,
E(Aet)+ Vx(xe A— IB(BeNy)A(BCA)),

ie.,
[Aet]=[Vx(xe A— 3IB(BENy)A(BCA)),

[Aced=(A V Tv(B), \V A In(B), \/ /\ Ex.(B)

x€ABCA x€ABCA xeABCA

Proof. From Theorem 3.1 in [33], it is clear that T-(A) = Ayca Vpca Ta, (B).

On the other hand,
It(A) = Viea Arecca It(C) [By Lemma 3]
= VxeA /\BCA /\xeCCB IT(C)
= Vxea Aca v, (B). [By Definition 13]

Similarly, we have F;(A) = Vyca Apca En, (B). This completes the proof. [

Definition 14. Let A be a single valued neutrosophic set in a set 2X Then, A is said to be normal if there is
Ag € 2X such that A(Ag) = (1,0,0).
We will denote the set of all normal single valued neutrosophic sets in 2% as (I x I x I )%\?

From the following result, we can see that an ordinary single valued neutrosophic neighborhood
system has the same properties in a classical neighborhood system.

Theorem 3. Let (X, T) be an osonts and let N : X — (I x I x )% ~ be the mapping given by N'(x) = Ny,
for each x € X. Then, N has the following properties:
(1) foranyx € Xand A€2X, EAc Ny = x €A,
(2) forany x € Xand A,B €2X, = (A€ Ny)A(BENy) = ANB e N,
(3) forany x € Xand A,B€2X, = (ACB) = (A€ Ny = BEMN),
(@) foranyx € X, = (A€ Ny) = 3C((CeNy)AN(CCA)AVy(y € C— CeNy)).
Conversely, if a mapping N : X — (I x I x I )%\;( satisfies the above properties (2) and (3), then there is an
ordinary single valued neutrosophic topology T : 2X — I x I x I on X defined as follows: for each A € 2%,

ActT:=Vx(xe A= AeNy),

[Aet=1(A)= (A Tnv.(A), V N (A), V Fr.(4))
XEA XEA XEA

In particular, if N also satisfies the above properties (1) and (4), then, for each x € X, Ny is an ordinary
single valued neutrosophic neighborhood system of x with respect to T.

Proof. (1) Since A € 2%, we can consider A as a special single valued neutrosophic set in x represented
by A = (xa,Xac, Xac)- Then,

[x € Al = A(x) = (xa(x), xa:(x), xac(x)) = (1,0,0).
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On the other hand,

[AeN]=(\ T(C), N\ L), A FE(C)<(100).

xeCCA xeCCA xeCCA

Thus, [A € Ny] < [x € A].
(2) By the definition of Ny,

[ANBeMN]=( \ T(0), A Q) A FEQ).

xeCCANB xeCCANB xeCCANB

From the proof of Theorem 3.2 (2) in [33], it is obvious that
Tn.(ANB) = Ty, (A) A T, (B).

Thus, it is sufficient to show that I;, (AN B) < Iy, (A) V Ly, (B):

In,(ANB) = Aveccans It (C) = Axec,ca, xeCycB L(CiNG)
< /\xecch, XGCZCB(IT(Cl) \ IT(CZ))
= Arec,ca It(C1) V Avecye Ie(C2)
= In (A) V In, (B).

Similarly, we have Fyr,(AN B) < Ey,,(A) V Fyr,(B). On the other hand,
(A € Ny) A (B € No)] = (T (A) A T, (B), In (A) V L (B), E, (4) V Ev; (B)).

(3) From the definition of N, we can easily show that [A € N;| < [B € Ny].
(4) Tt is clear that

[BC((CeN)A(CCA)AVY(y e C— CeNy))]
= (VecalTh, (C) A Ayec Ty (O)], Accallng (C) V Vyec Ly, (C)],
NccalEn, (C) V Vyec En, (O))).
Then, by the proof of Theorem 3.2 (4) in [33], it is obvious that

V [Tni (O A A T (O)] = T, (A).
CcA yeC

From Lemma 3, V,cc Iy, (C) = Vyec Ayepcc Ir(D) = I(C). Thus,
Accalln (C) VVyec Iy, (C)] = Accalln, (C) V I:(C)] = Acca I (C)
< Axecca Ir(C) = Iy, (A)
Similarly, we have Acca[En;, (C) V Vyec En;, (C)] < Axecca Fr(C) = Ex;, (A). Thus,

[3C((C € Nx) A(CC A)AVy(y € C— C € N,))] > [A € Ni.

Conversely, suppose \ satisfies the above properties (2) and (3) and let T : 2X — I x I x I be the
mapping defined as follows: for each A € 2%,

= (A Tnvi(A), V I (4), V Exi (A

xeA x€A xX€A

Then, clearly, T(¢) = (1,0,0). Since N is single valued neutrosophic normal, there is Ay € 2%
such that Ny (Ag) = (1,0,0). Thus, Nx(X) = (1,0,0). Thus,

= (A Tv(X), V I (X), \/ Ex, (X)) = (1,0,0).
xeX xeX xeX
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Hence, T satisfies the axiom (OSVNT1).
From the proof of Theorem 3.2 in [33], it is clear that T-(A N B) > Tr(A) A T+(B).
On the other hand,

L(ANB) = Vieans v (ANB) < Vycans(In, (A) V In, (B))
= Vxeans v, (A)V Vieans IJ\/X(B)
< Vzealn, (A)V Vien Iy, (B)
= I;(A) V Iz(B).

Similarly, we have F-(A N B) < Fr(A) V Fr(B). Then, T satisfies the axiom (OSVNT2). Moreover,
we can easily see that 7 satisfies the axiom (OSVNT3). Thus, T € OSVNT(X).

Now, suppose N satisfies additionally the above properties (1) and (4). Then, from the proof of
Theorem 3.2 in [33], we have Ty, (A) = V/,epca Tr(B) for each x € X and each A € 2%.

Let x € X and let A € 2X. Then, by property (4),

Iv,(4) = A [ (C) v V Iy, (O]
CcA yeC

From the property (1), I, (C) =1 for any x ¢ C. Thus,

In (A) 2 Areccalln, (C) V VyeC INy(C)]
> Nxecca VyeC INy(C)

= NxeBca IT(B)-
Now, suppose x € C C A. Then, clearly, Vycc Ly, (C) = Ly, (C) = Ly, (A).
Thus,
A B = A V I,(C) > Ly, (A).
X€EBCA xeCCAyeC

Thus, In, (A) = Axepca Ic(B). Similarly, we have Fy, (A) = Aycpca Fr(B). This completes
the proof. O

5. Ordinary Single Valued Neutrosophic Bases and Subbases

In this section, we define an ordinary single valued neutrosophic base and subbase for an ordinary
single valued neutrosophic topological space, and investigated general properties. Moreover, we obtain
two characterizations of an ordinary single valued neutrosophic base and one characterization of an
ordinary single valued neutrosophic subbase.

Definition 15. Let (X, T) be an osvnts and let B : 2X — I x I x I be a mapping such that B < 7, i.e.,
Tp < Ty, Ip > I, Fg > Fr. Then, B is called an ordinary single valued neutrosophic base for T if, for each
Ae2X

Te(4) = \/ /\ T3(Ba),
{Ba}aerC2%, A=Upyer Bo #€T

IT(A) - /\ \/ I5(By),
{Ba}aer C2%, A=Uger Ba #€T

F(4) = A \/ Es(Bu).

{Ba}aerC2%, A=Uger Ba #€T
Example 3. (1) Let X be a set and let B : 2X — [ x I x I be the mapping defined by:
B({x}) = (1,0,0) Vx € X.

Then, B is an ordinary single valued neutrosophic base for tx.
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(2) Let X = {a,b,c}, let &« € SVNV be fixed, where a € I x Iy x Iy and let B : 2X — I x I x I be the
mapping as follows: for each A € 2%,

B(A) = (1,0,0) ifeither A = {a,b} or{b,c}orX,
] w otherwise.

Then, B is not an ordinary single valued neutrosophic base for an osvnt on X.
Suppose that B is an ordinary single valued neutrosophic base for an osvnt T on X. Then, clearly, B < T.
Moreover, T({a,b}) = t({b,c}) = (1,0,0). Thus,

To({b}) = Te({a, b} N T({b,c}) > Te({a,b} A Te({b,c} = 1

and
L({b}) = L({a, b} nt({b,c}) < L:({a,b} NI ({b,c} =0.
Similarly, we have Fr({b}) = 0. Thus, T({b}) = (1,0,0). On the other hand, by the definition of 5,
TT({b}) = \/ /\ Tp(Ax) = Ta
{Aa}uer 2%, {b}=Uper A 2€T
and

L({b}) = A \/ I5(As) = L.

{A,X }zxel" c2¥, {b}:UaeF Ay €T

Similarly, we have Fr({b}) = F,. This is a contradiction. Hence, B is not an ordinary single valued
neutrosophic base for an osvnt on X

Theorem 4. Let (X,T) be an osvnts and let B : 2X — I x I x I be a mapping such that B < 7. Then, B is an
ordinary single valued neutrosophic base for T if and only if for each x € X and each A € 2%,

Ty, (A) <\ Tg(B),
x€EBCA

Iv,(A) = A\ Is(B),
XEBCA

Ex,(A) = N\ Fs(B).
XEBCA

Proof. (=): Suppose B is an ordinary single valued neutrosophic base for 7. Let x € X and let A € 2X.
Then, by Theorem 4.4 in [34], it is obvious that T, (A) < Vepca T(B). On the other hand,
Iy (A) = Ayepea Ic(B) [By Definition 13]
= AxeBcA A(By},orc2X, B=U,.r B Vaer I5(Ba)- [By Definition 15]
If x € BC Aand B = Jyer B, then there is g € I' such that x € B,,. Thus,

V I5(Bx) = I5(Bs,) = N\ Is(B).
ael XEBCA

Thus, Iy, (A) > Axepca Ig(B). Similarly, we have Fyr (A) > Ayepca Fg(B). Hence, the necessary
condition holds.

(«<=): Suppose the necessary condition holds. Then, by Theorem 4.4 in [34], it is clear that

TT(A) = \/ /\ TB(Ba)'

{Bu}aerC2X, A=Upyer By 4€T
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Let A € 2X. Suppose A = Jyer By and {B,} C 2X. Then,

I:(A) < Vyer I:(By) [By the axiom (OSVNT3)]
< Vaer I5(Ba)- [Since B < 1]
Thus,
IT(A) < /\ \/ IB(Buc)~ (1)
{Bu}acr C2X, A=Uyer By #€T

On the other hand,
I:(A) = Vyea AveBca Ir(B) [By Lemma 3]
= Vyea v, (A) [By Definition 13]
= Viea Axepca I8(B) [By the hypothesis]

= Nfertye B; Vxea I8(f (%)),
where By = {B € 2X : x € B C A}. Furthermore, A = Uy f(x) for each f € I1,c4By. Thus,

AV Is(fx) = A \/ 15(Bx).

fellyeaBx x€A {Bu}aerC2X, A=Uper By #€T

Hence,
L(A)

Y

/\ \/ Ip (Boc)' 2)
{Ba}taer C2%, A=Uper By #€T
By (1) and (2), (A) = Agg,},rc2x, A—User Be Vaer I8(Bg).  Similarly, we have Fr(A) =
/\{Ba}aercle A=Uger Ba Vaer F8(By). Therefore, B is an ordinary single valued neutrosophic base
fort. O

Theorem 5. Let B :2X — I x I x I be a mapping. Then, B is an ordinary single valued neutrosophic base for
some oist T on X if and only if it has the following conditions:
00 V5,5 P TolBe) = 1
N{Bi}oerc2X, X=Uycr Ba Vaer 18(Bx) =0,
N(ByYacr 2%, X=Uper Bx Vaer FB(Ba) =0,
(2) forany Ay, Ay € 2X and each x € A1 N Ay,

Tp(A) ATp(A2) <\ Ts(A),
x€EACAINA)

(A1) VIg(A2) > N\ Is(A),
x€ACAINA)

Fg(A1)VFg(A) > N\ Fg(A).
YEACAINA,

In fact, T : 2X — I x I x I is the mapping defined as follows: for each A € 2%,

1 ifA=¢
T (A) = .
7(A) { V{Bu}aer 2%, A=Uyr Ba NaeT Tg(By) otherwise,
0 ifA=¢
I:(A) = .
=(A) { A{Batocrc2X, A=Uyer Ba Vaer I5(By) otherwise,
0 ifA=¢
F(A) = .
(A) { /\{Ba}angZX, A=Uper Ba Vaer F3(By)  otherwise.

In this case, T is called an ordinary single valued neutrosophic topology on X induced by B.
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Proof. (=): Suppose B is an ordinary single valued neutrosophic base for some osvnt T on X. Then,
by Definition 15 and the axiom (OSVNT1),

V A Ts(B) = Te(X) =1,
{Bu}aer C2%, X=Uper Ba 4€T

/\ \/ Ig(By)) = Ir(X) =0,
{Ba}aerC2%, X=Uger Bu #€T

A \/ Es(Ba)) = Fe(X) =0.

{Ba }aerC2%, X=Uger Bu #€T

Thus, condition (1) holds.
Let Ay, Ay € 2Xand let x € A; N Ajp. Then, by the proof of Theorem 4.2 in [33], it is obvious that
T(A1) ATp(A2) < Vieaca,na, T5(A). On the other hand,

IB(Al) V IB(Az) > IT(Al) V IT(AZ) > IT(Al N Az) > Iy, (Al N Az) > /\ IB(A).
x€ACA1NA)

Thus,

IB(Al)\/IB(AZ) > /\ IB(A).
Xx€ACAINA)

Similarly, we have
F3(A1)VF3(Ay) > N\ Eg(A).
XEACAINA,
Thus, condition (2) holds.
(«<=): Suppose the necessary conditions (1) and (2) are satisfied. Then, by the proof of Theorem 4.2
in [33], we can see that the following hold:

TT(X) = TT(‘P) =1
T:(ANB) > T;(A) A T¢(B) forany A, B € 2¥

and
Tr(Uger Aa) > Aner Tr(Ax) for each {Ag}yer C 2X,

From the definition of 7, it is obvious that I; (X) = I;(¢) = 0. Similarly, we have F;(X) = F:(¢) =
0. Thus, 7 satisfies the axiom (OSVNT1).

Let {Ax}uer C 2% and let By = {{Bs, : 0 € Tu} : Us,er, Bs, = A} Let f € IlyerBy. Then,
clearly, Uyer Up;, ef(a) Bsy = Uner Aa- Thus,

IT(U:XEF Aa) = /\Uéel" Bs=Upger A Vser IB(BzS>
< /\feHaerB‘,x Vaer \/sta cf(a) IB(Béa)
= Vaer A(ss, d,era)eB, Voer, 18(Bs,)
= Vaer It (Ad).-

Similarly, we have Fr(Uzer Aa) < Vaer Fr(Aa). Thus, T satisfies the axiom (OSVNT3).

Now, let A, B € 2X and suppose I;(A) < Iy and I;(B) < I, for « € SVNV. Then, there are
{Ay, a1 €T} and {By, : ap € T2} such that Uy, er, Ay; = A, Unyer, Ba, = B and I5(Aq,) < Iy for
each w; € I'y, Ig(Ba,) < I, for each ap € I'y. Let x € AN B. Then, there are oy, € I'y and apy € T'p such
that x € Ay, N By, . Thus, from the assumption,

Iy > Ig(Aay,) V I5(Be,,) > N 15(C).
xECCAalxﬂB‘XZx
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Moreover, there is Cy such that x € C, C Ay, N By, C ANBand I5(Cy) < Iy. Since Uyeanp Cx =

A N B, we obtain
Iy > \/ IB(CX) 2 /\ \/ IB(BlX) = IT(AQB)'
x€ANB User Be=ANB aeT

Now, let Ig = I:(A) V I:(B) and let n be any natural number, where I € I. Then, I:(A) < Ig+1/n
and I+(B) < Ig +1/n. Thus, It(ANB) < Ig + 1/n. Thus, I (AN B) < Iz = I;(A) V I(B). Similarly,
we have F-(ANB) < F(A) V F:(B). Hence, T satisfies the axiom (OSVNT2). This completes the
proof. O

Example 4. (1) Let X = {a,b,c} and let « € SVNV be fixed, where a € I x Iy x Iy. We define the mapping
B:2X — I x I x I as follows: for each A € 2%,

)1 ifA={b}or{ab}or{bc}
Ts(4) = { T, otherwise,

_J 0 ifA={b}or{ab}or{bc}
Is(4) = { I, otherwise,

0 if A={b}or{ab}or{bc}
Fz(A) =
5(4) { F, otherwise.

Then, we can easily see that B satisfies conditions (1) and (2) in Theorem 5. Thus, B is an ordinary single
valued neutrosophic base for an osont T on X. In fact, T : 2X — I x I x I is defined as follows: for each A € 2%,

T:(A) =
w(4) T, otherwise,

{ 1 ifAe{p {b},{ab} {bc} X}

L(A) = { 0 if A {p{b},{ab} {bc} X}

I, otherwise,

= {§, sl e o

(2) Let « € SVNV be fixed, where € Iy x Iy x Iy. We define the mapping B : 28 — I x I x I as follows:
for each A € 2R,
1 ifA=(ab)fora beRwitha<b
T, otherwise,

I5(A) = 0 ifA=(ab)fora, b e Rwitha<b
BVYY = I, otherwise,

Fg(A) = 0 ifA=(ab)fora, beRwitha<b
B ]| E, otherwise.

Then, it can be easily seen that B satisfies the conditions (1) and (2) in Theorem 5. Thus, I8 is an ordinary
single valued neutrosophic base for an osvnt T, on R.

In this case, T is called the a-ordinary single valued neutrosophic usual topology on R.

(3) Let « € SVNV be fixed, where o € Iy x Iy x Io. We define the mapping B : 28 — I x I x I as follows:
foreach A € R

1 ifA=]ab)fora beRwitha<b
Tg(A) =

5(4) { T, otherwise,
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I5(A) = 0 ifA=1{ab)fora, beRwitha<b
BV T I, otherwise,

0 ifA=1(ab)fora, beRwitha<b
Fg(A) =
5(4) { F, otherwise.

Then, we can easily see that B satisfies the conditions (1) and (2) in Theorem 5. Thus, B is an ordinary
single valued neutrosophic base for an osunt 7 on R.
In this case, 7y is called the a-ordinary single valued neutrosophic lower-limit topology on R.

Definition 16. Let 7, T» € OSVNT(X), and let By and BBy be ordinary single valued neutrosophic bases for
Ty and Ty, respectively. Then, By and By are said to be equivalent if 71 = 1.

Theorem 6. Let 7y, T € OSVNT(X), and let By and By be ordinary single valued neutrosophic bases for 1y
and T respectively. Then, Ty is coarser than Ty, i.e.,

TT] S TTZI ITl 2 IT2/ FT1 2 FTZ
if and only if for each A € 2% and each x € A,

Tz (A) < \/ T5(B), Ig(A)> A Is(B), Fs(A)> /A Fs(B).
XEBCA XEBCA XEBCA

Proof. (=): Suppose T; is coarser than 7,. Foreach x € X, letx € A € 2X. Then, by Theorem 4.8
in [34], T, (A) < Vyepca T, (B). On the other hand,
Ig,(A) > I (A) [since B; is an ordinary single valued neutrosophic base for T ]
> Ir,(A) [By the hypothesis]
= A{Au}aer 2%, A=Uper Ag Vaer 18, (Aa)-

[Since B; is an ordinary single valued neutrosophic base for 7]

Since x € A and A = et Aa, there is ag € I such that x € A,,. Thus,

/\ \/ IBZ(A/%) > IBz(AIX()) > /\ IBZ(B)-

{Ax}aerc2X, A=Uyer Aa 2€T XEBCA

Thus, Ig,(A) > Axepc a I, (B). Similarly, we have Fg, (A) > Aycpca Fs,(B).
(«<=): Suppose the necessary condition holds. Then, by Theorem 4.8 in [34], T; < Tr,. Let A € 2X,
Then,

It (A) = Vxea Axepca I8, (B) [By Lemma 3]
> Vxea AxeBca Axeccs 18,(C) [By the hypothesis]
= /\xECCA VxEA IBZ(C)
= /\{Cx}ngCZX, A=Uyen Cx Vyea s, (Cx)
= I (A).

Thus, Iy; > I;,. Similarly, we have F; > F;,. Thus, 7 is coarser than 7. This completes the
proof. O

The following is an immediate result of Definition 16 and Theorem 6.

Corollary 4. Let By and By be ordinary single valued neutrosophic bases for two ordinary single valued
neutrosophic topologies on a set X, respectively. Then,
By and B, are equivalent if and only if the following two conditions hold:
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(1) for each By € 2% and each x € By,

Ts,(B1) </ Tg,(Ba),
xX€B,CBy

Ip,(B1) > A Iz(By),
x€ByCBy

Fg,(B1) > /\ Fg,(B),
XEB,CBy

(2) for each B € 2X and each x € B,,

Tz, (B2) < \/ T (By),
x€B1CBy

Ig,(B2) > N I, (B1),
X€EB1CBy

Fz,(B2) > /\  Fg,(By).
x€B1CBy

It is obvious that every ordinary single valued neutrosophic topology itself forms an ordinary
single valued neutrosophic base. Then, the following provides a sufficient condition for one to see
if a mapping B : 2X — I x I x I such that Tz < Ty, Ig > I; and Fg > F; is an ordinary single valued
neutrosophic base for T € OSVNT(X).

Proposition 10. Let (X, T) be an osvnts and let B : 2X 5 IxIxIbea mapping such that Tg < Ty, Ig > Ir
and Fg > Fr. For each A € 2% and each x € A, suppose Tr(A) < Vyepea Ta(B), It(A) > Axcpea I(B)
and Fr(A) > Axepca Eg(B). Then, B is an ordinary single valued neutrosophic base for T.

Proof. From the proof of Proposition 4.10 in [34], it is clear that the first part of the condition (1) of
Theorem 5 holds, i.e., V(g }, 2%, x=U,.r B. Naer T8(Ba) = 1. On the other hand,

N(Bu}acrc2X, X=User B Vaer 18(Ba)

2 A(Buaer 2%, X=Uyer By Vaer Ir(Ba) [since I > I]
2 A (Bataerc2®, X=Uper Bx It (Uer Ba) [by the axiom (OSVNT3)]
= L(X)

= Viex Avepex Ir(B) [By Lemma 3]
> Vrex Avepcx Axeccr 18(C) [By the hypothesis]
= Axeccx Viex I8 (€)

= A{Bu}aerc2X, X=Uer By Vaer 18(Ba).-
Since T € OSVNT(X), It(X) = 0. Thus, Ap,}, _c2¥, x—,.r 5 Vaer I5(Ba) = 0. Similarly, we
have N{Bataer 2%, X=Uyer Ba Vaer Fz(By) = 0. Thus, condition (1) of Theorem 5 holds.
Now, let Aj, Ay € 2X and let x € A; N A. Then, by the proof of Proposition 4.10 in [34], it is
obvious that T(A1) A Tg(A2) < Vycaca,na, Ts(A). On the other hand,

Ig(A1) V Ig(Az) > Ir(A1) V Ir(A2) [Since Iz > I;]
> I:(A1NAy) [by the axiom (OSVNT2)]
> Areacayna, I8(A). [by the hypothesis]

Similarly, we have Fg(A1) V F5(A2) > Axcaca,na, F8(A). Thus, condition (2) of Theorem 5
holds. Thus, by Theorem 5, B is an ordinary single valued neutrosophic base for 7. This completes
the proof. O
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Definition 17. Let (X, T) be an osvnts and let ~ : 2X — [ x I x I be a mapping. Then, @ is called an ordinary
single valued neutrosophic subbase for T, if ¢'' is an ordinary single valued neutrosophic base for T, where
@' : 2% — I x I x I is the mapping defined as follows: for each A € 2%,

{B}C2¥, A=(ucr By a€T

Iq)ﬂ (A) = /\ \/ I:(le),
{Ba}2%, A=Nyer Bu €T

Fq)H(A) = /\ \/ Fg(B“),

{Ba}C2X, A=(ycr By #€T
where T stands for “a finite subset of”.

Example 5. Let « € SVNV be fixed, where « € Iy x Iy x Iy. We define the mapping ~ : 28 — I x I x I
as follows: for each A € 2R,

_J 1 if A= (a,0)o0r (—co,b)or(a,b)
T~(4) = { T, otherwise,

Io(A) = 0 if A= (a,0)or(—co,b)or(a,b)
= ] I, otherwise,

) 0 if A= (a,00)0r (—oco,b)or (a,b)
Fx(4) = { F, otherwise,

where a, b € R such that a < b. Then, we can easily see that >~ is an ordinary single valued neutrosophic
subbase for the n-ordinary single valued neutrosophic usual topology Uy on R.

Theorem 7. Let ~ : 2X — [ x I x I be a mapping. Then, ~ is an ordinary single valued neutrosophic subbase

V N T=(B) =1,

{Ba }aerC2%, X=Uper Bo 4€T

A \V L(Ba) =0,

{Bua}aerC2X, X=Uper Bo 4€T

A \/ F~(By) =0.

{Bu}aerC2X, X=Upyer By 4€T

for some osvnt if and only if

Proof. (=): Suppose ~~ is an ordinary single valued neutrosophic subbase for some osvnt. Then,
by Definition 17, it is clear that the necessary condition holds.

(<): Suppose the necessary condition holds. We only show that ¢'' satisfies the condition (2) in
Theorem 5. Let A, B € 2X and x € AN B. Then, by the proof of Theorem 4.3 in [33], it is obvious that
Ty (A) ATyn(B) < Vieccans Tn(C). On the other hand,

I(pﬂ (A) vV I(pl'l (B)

= (/\ﬂalerl By =A Vaer, I:(B”‘l)) Vv (/\ﬂa26r2 By,=B Vaer, [~ (B,))
- /\ﬂalerl By =A /\ﬂlxzerz BazzB(vﬂélGrl [~(Bay ) V Vaser, [~(Bs,))
> ANer Ba=4nB Vaer I~ (Ba)

= Iyn (ANB).
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Since x € ANB, I;1(A) VIn(B) > I,n(ANB) > Areccanslyn(C). Similarly, we have
Fyi(A) V Fyn(B) > Fyn (AN B) > Ayeccans Epn(C). Thus, ¢ satisfies the condition (2) in Theorem 5.
This completes the proof. [

Example 6. Let X = {a,b,c,d, e} and let & € SVNV be fixed, where « € I x Iy x Iy. We define the mapping
~:2X — I x I x I as follows: for each A € 2%,

1 ifAe{{a} {ab,c} {bcd}, {ce}}
T-(4) = { T, otherwise,

I, otherwise,

L(A) = { 0 ifAe{{a},{abc} {bcd}{ce}}

otherwise.

Fu(A) = { (; if4 € {{ap Aa b b e d} fee))

Then, X ={a}U{b,c,d}U{ce},
Ton({a}) = Tyn({b,¢,d}) = Tyn({c,e}) =1,
In({a}) = I,n({b,c,d}) = I,n({c,e}) = 0.
Fon({a}) = Fon({b,c,d}) = Fyrn({c,e}) = 0.
Thus,

\/ A T~(Bx) =1,

{Bua}aerC2X, X=Uper Bo 4€T

A \/ I~(By) =0,

{Bua}aerC2X, X=Upyer Bo 4€T
A \/ F~(By) =0.
{Bu}aer 2%, X=Uper By 4€T

Thus, by Theorem 7, >~ is an ordinary single valued neutrosophic subbase for some osvnt.
The following is an immediate result of Corollary 4 and Theorem 7.

Proposition 11. ~, ~; : 2X — I x [ x I be two mappings such that

\/ /\ Tzl (Brx) = 1/

{Ba}aer €2%, X=Uger Ba #€T

/\ \/ IZ](B!X) =0,

{Bua}aerC2X, X=Uper Bo 4€T
A \/ F~,(By) =0
{Bua}aer C2X, X=Uper By #€T

and

\/ /\ TEZ(B!X) =1,

{Ba}acr €2%, X=Uger Ba #€T

A V I, (B) =0,

{Ba}aer ©2%, X=Uger Ba #€T

A \/ F~,(Bx) = 0.

{Ba}aerCZX/ X:Uaer By ael

Suppose the two conditions hold:
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(1) for each Sy € 2% and each x € Sy,

Tﬁl (Sl> S \/ Tzz (52)/ 121 (Sl) 2 /\ 122(52)/ le (Sl) 2 /\ Fzz<52)/

XESzcsl XGSzcsl x652C51

(2) for each S, € 2X and each x € S,

T22(52) < \/ Tzl (Sl)/ 122(52) 2 /\ 121(51)/ f’iz(SZ) 2 /\ f:1(51).

xX€S51CSy X€S1CSy X€S1CSy

Then, ~1 and ~ are ordinary single valued neutrosophic subbases for the same ordinary single valued
neutrosophic topology on X.

6. Conclusions

In this paper, we defined an ordinary single valued neutrosophic topology and level set of
an osvnst to study some topological characteristics of neutrosophic sets and obtained some their
basic properties. In addition, we defined an ordinary single valued neutrosophic subspace. Next,
the concepts of an ordinary single valued neutrosophic neighborhood system and an ordinary single
valued neutrosophic base (or subbase) were introduced and studied. Their results are summarized
as follows:

First, an ordinary single valued neutrosophic neighborhood system has the same properties in a
classical neighborhood system (see Theorem 3).

Second, we found two characterizations of an ordinary single valued neutrosophic base
(see Theorems 4 and 5).

Third, we obtained one characterization of an ordinary single valued neutrosophic subbase
(see Theorem 7).

Finally, we expect that this paper can be a guidance for the research of separation axioms,
compactness, connectedness, etc. in ordinary single valued neutrosophic topological spaces.
In addition, one can deal with single valued neutrosophic topology from the viewpoint of lattices.
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