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Abstract: We define an ordinary single valued neutrosophic topology and obtain some of its basic
properties. In addition, we introduce the concept of an ordinary single valued neutrosophic subspace.
Next, we define the ordinary single valued neutrosophic neighborhood system and we show that
an ordinary single valued neutrosophic neighborhood system has the same properties in a classical
neighborhood system. Finally, we introduce the concepts of an ordinary single valued neutrosophic
base and an ordinary single valued neutrosophic subbase, and obtain two characterizations of an
ordinary single valued neutrosophic base and one characterization of an ordinary single valued
neutrosophic subbase.
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1. Introduction

In 1965, Zadeh [1] introduced the concept of fuzzy sets as the generalization of an ordinary set.
In 1986, Chang [2] was the first to introduce the notion of a fuzzy topology by using fuzzy sets.
After that, many researchers [3–13] have investigated several properties in fuzzy topological spaces.

However, in their definitions of fuzzy topology, fuzziness in the notion of openness of a fuzzy
set was absent. In 1992, Samanta et al. [14,15] introduced the concept of gradation of openness
(closedness) of fuzzy sets in X in two different ways, and gave definitions of a smooth topology and
a smooth co-topology on X satisfying some axioms of gradation of openness and some axioms of
gradation of closedness of fuzzy sets in X, respectively. After then, Ramadan [16] defined level sets
of a smooth topology and smooth continuity, and studied some of their properties. Demirci [17]
defined a smooth neighborhood system and a smooth Q-neighborhood system, and investigated
their properties. Chattopadhyay and Samanta [18] introduced a fuzzy closure operator in smooth
topological spaces. In addition, they defined smooth compactness in the sense of Lowen [8,9],
and obtained its properties. Peters [19] gave the concept of initial smooth fuzzy structures and
found its properties. He [20] also introduced a smooth topology in the sense of Lowen [8] and proved
that the collection of smooth topologies forms a complete lattice. Al Tahan et al. [21] defined a
topology such that the hyperoperation is pseudocontinuous, and showed that there is no relation in
general between pseudotopological and strongly pseudotopological hypergroupoids. In addition,
Onassanya and Hošková-Mayerová [22] investigated some topological properties of α-level subsets’
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topology of a fuzzy subset. Moreover, Çoker and Demirci [23], and Samanta and Mondal [24,25]
defined intuitionistic gradation of openness (in short IGO) of fuzzy sets in Šostak’s sense [26] by
using intuitionistic fuzzy sets introduced by Atanassov [27]. They mainly dealt with intuitionistic
gradation of openness of fuzzy sets in the sense of Chang. However, in 2010, Lim et al. [28] investigated
intuitionistic smooth topological spaces in Lowen’s sense. Recently, Kim et al. [29] studied continuities
and neighborhood systems in intuitionistic smooth topological spaces. In addition, Choi et al. [30]
studied an interval-valued smooth topology by gradation of openness of interval-valued fuzzy sets
introduced by Gorzalczany [31] and Zadeh [32], respectively. In particular, Ying [33] introduced
the concept of the topology (called a fuzzifying topology) considering the degree of openness of
an ordinary subset of a set. In 2012, Lim et al. [34] studied general properties in ordinary smooth
topological spaces. In addition, they [35–37] investigated closures, interiors and compactness in
ordinary smooth topological spaces.

In 1998, Smarandache [38] defined the concept of a neutrusophic set as the generalization of
an intuitionistic fuzzy set. Salama et al. [39] introduced the concept of a neutrosophic crisp set and
neutrosophic crisp relation (see [40] for a neutrosophic crisp set theory). After that, Hur et al. [41,42]
introduced categories NSet(H) and NCSet consisting of neutrosophic sets and neutrosophic crisp sets,
respectively, and investigated them in a topological universe view-point. Smarandache [43] defined the
notion of neutrosophic topology on the non-standard interval and Lupiáñez proved that Smarandache’s
definitions of neutrsophic topology are not suitable as extensions of the intuitionistic fuzzy topology
(see Proposition 3 in [44,45]). In addition, Salama and Alblowi [46] defined a neutrosophic topology
and obtained some of its properties. Salama et al. [47] defined a neutrosophic crisp topology and
studied some of its properties. Wang et al. [48] introduced the notion of a single valued neutrosophic
set. Recently, Kim et al. [49] studied a single valued neutrosophic relation, a single valued neutrosophic
equivalence relation and a single valued neutrosophic partition.

In this paper, we define an ordinary single valued neutrosophic topology and obtain some of
its basic properties. In addition, we introduce the concept of an ordinary single valued neutrosophic
subspace. Next, we define the ordinary single valued neutrosophic neighborhood system and we show
that an ordinary single valued neutrosophic neighborhood system has the same properties in a classical
neighborhood system. Finally, we introduce the concepts of an ordinary single valued neutrosophic
base and an ordinary single valued neutrosophic subbase, and obtain two characterizations of an
ordinary single valued neutrosophic base and one characterization of an ordinary single valued
neutrosophic subbase.

2. Preliminaries

In this section, we introduce the concepts of single valued neutrosophic set, the complement of a
single valued neutrosophic set, the inclusion between two single valued neutrosophic sets, the union
and the intersection of them.

Definition 1 ([43]). Let X be a non-empty set. Then, A is called a neutrosophic set (in sort, NS) in X, if A has
the form A = (TA, IA, FA), where

TA : X →]−0, 1+[, IA : X →]−0, 1+[, FA : X →]−0, 1+[.

Since there is no restriction on the sum of TA(x), IA(x) and FA(x), for each x ∈ X,

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Moreover, for each x ∈ X, TA(x) (resp., IA(x) and FA(x)) represent the degree of membership (resp.,
indeterminacy and non-membership) of x to A.
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From Example 2.1.1 in [17], we can see that every IFS (intutionistic fuzzy set) A in a non-empty
set X is an NS in X having the form

A = (TA, 1− (TA + FA), FA),

where (1− (TA + FA))(x) = 1− (TA(x) + FA(x)).

Definition 2 ([43]). Let A and B be two NSs in X. Then, we say that A is contained in B, denoted by A ⊂ B,
if, for each x ∈ X, in f TA(x) ≤ in f TB(x), sup TA(x) ≤ sup TB(x), in f IA(x) ≥ in f IB(x), sup IA(x) ≥
sup IB(x), in f FA(x) ≥ in f FB(x) and sup FA(x) ≥ sup FB(x).

Definition 3 ([48]). Let X be a space of points (objects) with a generic element in X denoted by x. Then,
A is called a single valued neutrosophic set (in short, SVNS) in X, if A has the form A = (TA, IA, FA),
where TA, IA, FA : X → [0, 1].

In this case, TA, IA, FA are called truth-membership function, indeterminacy-membership function,
falsity-membership function, respectively, and we will denote the set of all SVNSs in X as SVNS(X).

Furthermore, we will denote the empty SVNS (resp. the whole SVNS] in X as 0N (resp. 1N) and define by
0N(x) = (0, 1, 1) (resp. 1N = (1, 0, 0)), for each x ∈ X.

Definition 4 ([48]). Let A ∈ SVNS(X). Then, the complement of A, denoted by Ac, is an SVNS in X defined
as follows: for each x ∈ X,

TAc(x) = FA(x), IAc(x) = 1− IA(x) and FAc(x) = TA(x).

Definition 5 ([50]). Let A, B ∈ SVNS(X). Then,
(i) A is said to be contained in B, denoted by A ⊂ B, if, for each x ∈ X,

TA(x) ≤ TB(x), IA(x) ≥ IB(x) and FA(x) ≥ FB(x),

(ii) A is said to be equal to B, denoted by A = B, if A ⊂ B and B ⊂ A.

Definition 6 ([51]). Let A, B ∈ SVNS(X). Then,
(i) the intersection of A and B, denoted by A ∩ B, is a SVNS in X defined as:

A ∩ B = (TA ∧ TB, IA ∨ IB, FA ∨ FB),

where (TA ∧ TB)(x) = TA(x) ∧ TB(x), (FA ∨ FB) = FA(x) ∨ FB(x), for each x ∈ X,
(ii) the union of A and B, denoted by A ∪ B, is an SVNS in X defined as:

A ∪ B = (TA ∨ TB, IA ∧ IB, FA ∧ FB).

Remark 1. Definitions 5 and 6 are different from the corresponding definitions in [48].

Result 1 ([51], Proposition 2.1). Let A, B ∈ SVNS(X). Then,
(1) A ⊂ A ∪ B and B ⊂ A ∪ B,
(2) A ∩ B ⊂ A and A ∩ B ⊂ B,
(3) (Ac)c = A,
(4) (A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc.

The following are immediate results of Definitions 5 and 6.

Proposition 1. Let A, B, C ∈ SVNS(X). Then,
(1) (Commutativity) A ∪ B = B ∪ A, A ∩ B = B ∩ A,
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(2) (Associativity) A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C,
(3) (Distributivity) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
(4) (Idempotency) A ∪ A = A, A ∩ A = A,
(5) (Absorption) A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A,
(5) (DeMorgan’s laws) (A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc,
(7) A ∩ 0N = 0N , A ∪ 1N = 1N ,
(8) A ∪ 0N = A, A ∩ 1N = A.

Definition 7 (see [46]). Let {Aα}α∈Γ ⊂ SVNS(X). Then,
(i) the union of {Aα}α∈Γ, denoted by

⋃
α∈Γ Aα, is a single valued neutrosophic set in X defined as follows:

for each x ∈ X,
(
⋃

α∈Γ
Aα)(x) = (

∨
α∈Γ

TAα
(x),

∧
α∈Γ

IAα
(x),

∧
α∈Γ

FAα
(x)),

(ii) the intersection of {Aα}α∈Γ, denoted by
⋂

α∈Γ Aα, is a single valued neutrosophic set in X defined
as follows: for each x ∈ X,

(
⋂

α∈Γ
Aα)(x) = (

∧
α∈Γ

TAα
(x),

∨
α∈Γ

IAα
(x),

∨
α∈Γ

FAα
(x)).

The following are immediate results of the above definition.

Proposition 2. Let A ∈ SVNS(X) and let {Aα}α∈Γ ⊂ SVNS(X). Then,
(1) (Generalized Distributivity)

A ∪ (
⋂

α∈Γ
Aα) =

⋂
α∈Γ

(A ∪ Aα), A ∩ (
⋃

α∈Γ
Aα) =

⋃
α∈Γ

(A ∩ Aα),

(2) (Generalized DeMorgan’s laws)

(
⋃

α∈Γ
Aα)

c =
⋂

α∈Γ
Ac

α, (
⋂

α∈Γ
Aα)

c =
⋃

α∈Γ
Ac

α.

3. Ordinary Single Valued Neutrosophic Topology

In this section, we define an ordinary single valued neutrosophic topological space and obtain
some of its properties. Throughout this paper, we denote the set of all subsets (resp. fuzzy subsets) of
a set X as 2X (resp. IX).

For Tα, Iα, Fα ∈ I, α = (Tα, Iα, Fα) ∈ I × I × I is called a single valued neutrosophic value. For two
single valued neutrosophic values α and β,

(i) α ≤ β iff Tα ≤ Tβ, Iα ≥ Iβ and Fα ≥ Fβ,
(ii) α < β iff Tα < Tβ, Iα > Iβ and Fα > Fβ.
In particular, the form α∗ = (α, 1− α, 1− α) is called a single valued neutrosophic constant.
We denote the set of all single valued neutrosophic values (resp. constant) as SVNV (resp. SVNC)

(see [49]).

Definition 8. Let X be a nonempty set. Then, a mapping τ = (Tτ , Iτ , Fτ) : 2X → I × I × I is called
an ordinary single valued neutrosophic topology (in short, osvnt) on X if it satisfies the following axioms:
for any A, B ∈ 2X and each {Aα}α∈Γ ⊂ 2X ,

(OSVNT1) τ(φ) = τ(X) = (1, 0, 0),
(OSVNT2) Tτ(A ∩ B) ≥ Tτ(A) ∧ Tτ(B), Iτ(A ∩ B) ≤ Iτ(A) ∨ Iτ(B),

Fτ(A ∩ B) ≤ Fτ(A) ∨ Fτ(B),
(OSVNT3) Tτ(

⋃
α∈Γ Aα) ≥

∧
α∈Γ Tτ(Aα), Iτ(

⋃
α∈Γ Aα) ≤

∨
α∈Γ Iτ(Aα),

Fτ(
⋃

α∈Γ Aα) ≤
∨

α∈Γ Fτ(Aα).
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The pair (X, τ) is called an ordinary single valued neutrosophic topological space (in short, osvnts). We
denote the set of all ordinary single valued neutrosophic topologies on X as OSVNT(X).

Let 2 = {0, 1} and let τ : 2X → 2× 2× 2 satisfy the axioms in Definition 8. Since we can consider
as (1, 0, 0) = 1 and (0, 1, 1) = 0, τ ∈ T(X), where T(X) denotes the set of all classical topologies on X.
Thus, we can see that T(X) ⊂ OSVNT(X).

Example 1. (1) Let X = {a, b, c}. Then, 2X = {φ, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. We define the
mapping τ : 2X → I × I × I as follows:

τ(φ) = τ(X) = (1, 0, 0),
τ({a}) = (0.7, 0.3, 0.4), τ({b}) = (0.6, 0.2, 0.3), τ({c}) = (0.8, 0.1, 0.2),
τ({a, b}) = (0.6, 0.3, 0.4), τ({b, c}) = (0.7, 0.1, 0.2), τ({a, c}) = (0.8, 0.2, 0.3).

Then, we can easily see that τ ∈ OSVNT(X).
(2) Let X be a nonempty set. We define the mapping τφ : 2X → I × I × I as follows: for each A ∈ 2X ,

τφ(A) =

{
(1, 0, 0) if either A = φ or A = X,
(0, 1, 1) otherwise.

Then, clearly, τφ ∈ OSVT(X).
In this case, τφ (resp. (X, τφ)) is called the ordinary single valued neutrosophic indiscrete topology on X

(resp. the ordinary single valued neutrosophic indiscrete space].
(3) Let X be a nonempty set. We define the mapping τX : 2X → I × I × I as follows: for each A ∈ 2X ,

τX(A) = (1, 0, 0).

Then, clearly, τX ∈ OSVNT(X).
In this case, τX (resp. (X, τX)) is called the ordinary single valued neutrosophic discrete topology on X

(resp. the ordinary single valued neutrosophic discrete space].
(4) Let X be a set and let α = (Tα, Iα, Fα) ∈ SVNV be fixed, where Tα ∈ I1 and Iα, Fα ∈ I0. We define

the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0, 0) if either A = φ or Ac is finite,
α otherwise.

Then, we can easily see that τ ∈ OSVNT(X).
In this case, τ is called the α-ordinary single valued neutrosophic finite complement topology on X and will

be denoted by OSVNCo f (X). OSVNCo f (X) is of interest only when X is an infinite set because if X is finite,
then OSVNCo f (X) = τφ.

(5) Let X be an infinite set and let α = (Tα, Iα, Fα) ∈ SVNV be fixed, where Tα ∈ I1 and Iα, Fα ∈ I0.
We define the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0, 0) if either A = φ or Ac is countable,
α otherwise.

Then, clearly, τ ∈ OSVNT(X).
In this case, τ is called the α-ordinary single valued neutrosophic countable complement topology on X and

is denoted by OSVNCoc(X).
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(6) Let T be the topology generated by S = {(a, b] : a, b ∈ R, a < b} as a subbase, let T0 be the family of all
open sets of R with respect to the usual topology on R and let α = (Tα, Iα, Fα) ∈ SVNV be fixed, where Tα ∈ I1

and Iα, Fα ∈ I0. We define the mapping τ : 2R → I × I × I as follows: for each A ∈ IR,

τ(A) =


(1, 0, 0) if A ∈ T0,
α if A ∈ T \ T0,
(0, 1, 1) otherwise.

Then, we can easily see that τ ∈ OSVNT(X).
(7) Let T ∈ T(X). We define the mapping τT : 2X → I × I × I as follows : for each A ∈ 2X ,

τT(A) =

{
(1, 0, 0) if A ∈ T,
(0, 1, 1) otherwise.

Then, it is easily seen that τT ∈ OSVNT(X). Moreover, we can see that if T is the classical indiscrete
topology, then τT = τφ and if T is the classical discrete topology, then τT = τX .

Remark 2. (1) If I = 2, then we can think that Definition 8 also coincides with the known definition of
classical topology.

(2) Let (X, τ) be an osvnsts. We define two mappings [ ]τ, < > τ : 2X → I × I × I, respectively,
as follows : for each A ∈ 2X ,

([ ]τ)(A) = (Tτ(A), Iτ(A), 1− Tτ(A)), (< > τ)(A) = (1− Fτ(A), Iτ(A), Fτ(A)).

Then, we can easily see that [ ]τ, < > τ ∈ OSVNT(X).

Definition 9. Let X be a nonempty set. Then, a mapping C = (µC , νC) : 2X → I × I × I is called an
ordinary single valued neutrosophic cotopology (in short, osvnct) on X if it satisfies the following conditions:
for any A, B ∈ 2X and each {Aα}α∈Γ ⊂ 2X ,

(OSVNCT1) C(φ) = C(X) = (1, 0, 0),
(OSVNCT2) TC(A ∪ B) ≥ TC(A) ∧ TC(B), IC(A ∪ B) ≤ IC(A) ∨ IC(B),

FC(A ∪ B) ≤ FC(A) ∨ FC(B),
(OSVNCT3) TC(

⋂
α∈Γ

Aα) ≥
∧

α∈Γ
TC(Aα), IC(

⋂
α∈Γ

Aα) ≤
∨

α∈Γ
IC(Aα),

FC(
⋂

α∈Γ
Aα) ≤

∨
α∈Γ

FC(Aα).

The pair (X, C) is called an ordinary single valued neutrosophic cotopological space (in short, osvncts).

The following is an immediate result of Definitions 8 and 9.

Proposition 3. We define two mappings f : OSVNT(X) → OSVNCT(X) and g : OSVNCT(X) →
OSVNT(X) respectively as follows:

[ f (τ)](A) = τ(Ac) for any τ ∈ OSVNT(X) and any A ∈ 2X

and
[g(C)](A) = C(Ac) for any C ∈ OSVNCT(X) and any A ∈ 2X .

Then, f and g are well-defined. Moreover, g ◦ f = 1OSVNT(X) and f ◦ g = 1OSVNCT(X).

Remark 3. (1) For each τ ∈ OSVNT(X) and each C ∈ OSVNCT(X), let f (τ) = Cτ and g(C) = τC . Then,
from Proposition 3, we can see that τCτ

= τ and CτC = C.
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(2) Let (X, C) be an osvncts. We define two mappings [ ]C, < > C : 2X → I × I × I, respectively,
as follows: for each A ∈ 2X ,

([ ]C)(A) = (TC(A), IC(A), 1− TC(A)), (< > C)(A) = (1− FC(A), IC(A), FC(A)).

Then, we can easily see that [ ]C, < > C ∈ OSVNCT(X).

Definition 10. Let τ1 , τ2 ∈ OSVNT(X) and let C1, C2 ∈ OSVNCT(X).
(i) We say that τ1 is finer than τ2 or τ2 is coarser than τ1 , denoted by τ2 � τ1 , if τ2(A) ≤ τ1(A), i.e.,

for each A ∈ 2X ,
Tτ2

(A) ≤ Tτ1
(A), Iτ2

(A) ≥ Iτ1
(A), Fτ2

(A) ≥ Fτ1
(A).

(ii) We say that C1 is finer than C2 or C2 is coarser than C1, denoted by C2 � C1, if C2(A) ≤ C1(A), i.e.,
for each A ∈ 2X ,

TC2
(A) ≤ TC1

(A), IC2
(A) ≥ IC1

(A), FC2
(A) ≥ FC1

(A).

We can easily see that τ1 is finer than τ2 if and only if Cτ1
is finer than Cτ2

, and (OSVNT(X),�)
and (OSVNCT(X),�) are posets, respectively.

From Example 1 (2) and (3), it is obvious that τφ is the coarsest ordinary single valued neutrosophic
topology on X and τX is the finest ordinary single valued neutrosophic topology on X.

Proposition 4. If {τα}α∈Γ ⊂ OSVNT(X), then
⋂

α∈Γ τα ∈ OSVNT(X),
where [

⋂
α∈Γ τα ](A) = (

∧
α∈Γ Tτα

(A),
∨

α∈Γ Iτα
(A),

∨
α∈Γ Fτα

(A)), ∀ A ∈ 2X .

Proof. Let τ =
⋂

α∈Γ τα and let α ∈ Γ. Since τα ∈ OSVNT(X), τα(X) = τα(φ) = (1, 0, 0), i.e.,

Tτα
(X) = Tτα

(φ) = 1, Iτα
(X) = Iτα

(φ) = 0, Fτα
(X) = Fτα

(φ) = 0.

Then, Tτ(X) =
∧

α∈Γ Tτα
(X) = 1, Iτ(X) =

∨
α∈Γ Iτα

(X) = 0 = Fτ(X). Similarly, we have Tτ(φ) = 1,
Iτ(φ) = 0 = Fτ(φ). Thus, the condition (OSVNT1) holds.

Let A, B ∈ 2X . Then,

Tτ(A ∩ B) =
∧

α∈Γ Tτα
(A ∩ B) [By the definition of τ]

≥ ∧
α∈Γ(Tτα

(A) ∧ Tτα
(B)) [Since τα ∈ OSVNT(X)]

= (
∧

α∈Γ Tτα(A)) ∧ (
∧

α∈Γ Tτα(B))
= Tτ(A) ∧ Tτ(B) [By the definition of τ]

and

Iτ(A ∩ B) =
∨

α∈Γ Iτα
(A ∩ B) [By the definition of τ]

≤ ∨
α∈Γ(Iτα

(A) ∨ Iτα
(B)) [Since τα ∈ OSVNT(X)]

= (
∨

α∈Γ Iτα(A)) ∨ (
∨

α∈Γ Iτα(B))
= Iτ(A) ∨ Iτ(B). [By the definition of τ]

Similarly, we have Fτ(A ∩ B) ≤ Fτ(A) ∨ Fτ(B). Thus, the condition (OSVNT2) holds:
Now, let {Aj}j∈J ⊂ 2X . Then,

Tτ(
⋃

j∈J Aj) =
∧

α∈Γ Tτα
(
⋃

j∈J Aj) [By the definition of τ]
≥ ∧

α∈Γ(
∧

j∈J Tτα
(Aj)) [Since τα ∈ OSVNT(X)]

=
∧

j∈J(
∧

α∈Γ Tτα
(Aj))

=
∧

j∈J [
⋂

α∈Γ Tτα
](Aj) [By the definition of τ]

=
∨

j∈J Tτ(Aj)

and
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Iτ(
⋃

j∈J Aj) =
∨

α∈Γ Iτα
(
⋃

j∈J Aj) [By the definition of τ]
≤ ∨

α∈Γ(
∨

j∈J Iτα
(Aj)) [Since τα ∈ OSVNT(X)]

=
∨

j∈J(
∨

α∈Γ Iτα
(Aj))

=
∨

j∈J [
⋃

α∈Γ Iτα
](Aj) [By the definition of τ]

=
∨

j∈J Iτ(Aj).

Similarly, we have Fτ(
⋃

j∈J Aj) ≤
∨

j∈J Fτ(Aj). Thus, the condition (OSVNT3) holds. This
completes the proof.

From Definition 10 and Proposition 4, we have the following.

Proposition 5. (OSVNT(X),�) is a meet complete lattice with the least element τφ and the greatest
element τX .

Definition 11. Let (X, τ) be an osvnts and let α ∈ SVNV. We define two sets [τ]α and [τ]∗α as
follows, respectively:

(i) [τ]α = {A ∈ 2X : Tτ(A) ≥ Tα, Iτ(A) ≤ Iα, Iτ(A) ≤ Fα},
(ii) [τ]∗α = {A ∈ 2X : Tτ(A) > Tα, Iτ(A) < Iα, Fτ(A) < Fα}.

In this case, [τ]α (resp. [τ]∗α) is called the α-level (resp. strong α-level] of τ. If α = (0, 1, 1),
then [τ](0,1,1) = 2X, i.e., [τ](0,1,1) is the classical discrete topology on X and if α = (1, 0, 0),
then [τ]∗(1,0,0) = φ. Moreover, we can easily see that for any α ∈ SVNV, [τ]∗α ⊂ [τ]α.

Lemma 1. Let τ ∈ OSVNT(X) and let α, β ∈ SVNV. Then,
(1) [τ]α ∈ T(X),
(2) if α ≤ β, then [τ]β ⊂ [τ]α,
(3) [τ]α =

⋂
β<α

[τ]β, where α ∈ I0 × I1 × I1,

(1)
′
[τ]∗α ∈ T(X), where α ∈ I1 × I0 × I0,

(2)
′

if α ≤ β, then [τ]∗β ⊂ [τ]∗α,

(3)
′
[τ]∗α =

⋃
β>(α

[τ]∗β, where α ∈ I1 × I0 × I0.

Proof. The proofs of (1), (1)
′
, (2) and (2)

′
are obvious from Definitions 8 and 11.

(3) From (2), {[τ]α}α∈I0×I1×I1 is a descending family of classical topologies on X. Then, clearly,
[τ]α ⊂

⋂
β<α[τ]β, for each α ∈ I0 × I1 × I1.

Suppose A /∈ [τ]α. Then, Tτ(A) < Tα or Iτ(A) > Iα or Fτ(A) > Fα. Thus,

there exists Tβ ∈ I0 such that Tτ(A) < Tβ < Tα

or

there exists Iβ ∈ I1 such that Iτ(A) > Iβ > Iα

or

there exists Fβ ∈ I1 such that Fτ(A) > Fβ > Fα.

Thus, A /∈ [τ]β, for some β ∈ SVNV such that β < α, i.e., A /∈
⋂

β<α

[τ]β. Hence,
⋂

β<α

[τ]β ⊂ [τ]α.

Therefore, [τ]α =
⋂

β<α

[τ]β.

(3)
′

The proof is similar to (3).
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Remark 4. From (1) and (2) in Lemma 1, we can see that, for each τ ∈ OSVNT(X), {[τ]α}α∈SVNV is a
family of descending classical topologies called the α-level classical topologies on X with respect to τ.

The following is an immediate result of Lemma 1.

Corollary 1. Let (X, τ) be an osvnts. Then, [τ]α∗ =
⋂

β<α

[τ]β∗ for each α∗ ∈ SVNC, where α ∈ I0.

Lemma 2. (1) Let {τα}α∈SVNV be a descending family of classical topologies on X such that τ(0,1,1) is the
classical discrete topology on X. We define the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) = (
∨

A∈τα

Tα,
∧

A∈τα

Iα,
∧

A∈τα

Fα).

Then, τ ∈ OSVNT(X).
(2) If τα =

⋂
β<α τα, for each α ∈ SVNV (α ∈ I0 × I1 × I1), then [τ]α = τα.

(3) If τα =
⋃

β>α τβ, for each α ∈ SVNV (α ∈ I1 × I0 × I0), then [τ]∗α = τα.

Proof. The proof is similar to Lemma 3.9 in [28].

The following is an immediate result of Lemma 2.

Corollary 2. Let {τα∗}α∈I0 be a descending family of classical topologies on X such that τ(0,1,1) is the classical
discrete topology on X. We define the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) = (
∨

A∈τα∗

α,
∧

A∈τα∗

(1− α),
∧

A∈τα∗

(1− α)).

Then, τ ∈ OSVNT(X) and [τ]α∗ =
⋂

β<α τβ∗ = τα∗ ∀ α ∈ I0.

From Lemmas 1 and 2, we have the following result.

Proposition 6. Let τ ∈ OSVNT(X) and let [τ]α be the α-level classical topology on X with respect to τ.
We define the mapping η : 2X → I × I × I as follows: for each A ∈ 2X ,

η(A) = (
∨

A∈[τ]α
Tα,

∧
A∈[τ]α

Iα,
∧

A∈[τ]α
Fα).

Then, η = τ.

The fact that an ordinary single valued neutrosophic topological space fully determined by its
decomposition in classical topologies is restated in the following theorem.

Theorem 1. Let τ1 , τ2 ∈ OSVNT(X). Then, τ1 = τ2 if and only if [τ1 ]α = [τ2 ]α for each α ∈ SVNV,
or alternatively, if and only if [τ1 ]

∗
α = [τ2 ]

∗
α for each α ∈ SVNV.

Remark 5. In a similar way, we can construct an ordinary single valued neutrosophic cotopology C on a set X,
by using the α-levels,

[C]α = {A ∈ IX : TC (A) ≥ Tα, IC (A) ≤ Iα, FC (A) ≤ Fα}

and
[C]∗α = {A ∈ IX : TC (A) > Tα, IC (A) < Iα, FC (A) < Fα},

for each α ∈ SVNV.
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Definition 12. Let T ∈ T(X) and let τ ∈ OSVNT(X). Then, τ is said to be compatible with T if T = S(τ),
where S(τ) = {A ∈ 2X : Tτ(A) > 0, Iτ(A) < 1, Fτ(A) < 1}.

Example 2. (1) Let τφ be the ordinary single valued neutrosophic indiscrete topology on a nonempty set X and
let T0 be the classical indiscrete topology on X. Then, clearly,

S(τφ) = {A ∈ 2X : Tτφ(A) > 0, Iτφ(A) < 1, Fτφ(A) < 1} = {φ, X} = T0.

Thus, τφ is compatible with T0.
(2) Let τX be the ordinary single valued neutrosophic discrete topology on a nonempty set X and let T1 be

the classical discrete topology on X. Then, clearly,

S(τX) = {A ∈ 2X : TτX (A) > 0, IτX (A) < 1, FτX (A) < 1} = 2X = T1.

Thus, τX is compatible with T1.
(3) Let X be a nonempty set and let α ∈ SVNV be fixed, where α ∈ I0 × I1 × I1. We define the mapping

τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0, 0) if either A = φ or A = X,
α otherwise.

Then, clearly, τ ∈ OSVNT(X) and τ is compatible with T1.

Furthermore, every classical topology can be considered as an ordinary single valued neutrosophic
topology in the sense of the following result.

Proposition 7. Let (X, τ) be a classical topological space and and let α ∈ SVNV be fixed, where α ∈
I0 × I1 × I1. Then, there exists τα ∈ OSVNT(X) such that τα is compatible with T. Moreover, [τα]α = τ.

In this case, τα is called the α-th ordinary single valued neutrosophic topology on X and (X, τα)

is called the α-th ordinary single valued neutrosophic topological space.

Proof. Let α ∈ SVNV be fixed, where α ∈ I0 × I1 × I1 and we define the mapping τα : 2X → I × I × I
as follows: for each A ∈ 2X ,

τα(A) =


(1, 0, 0) if either A = φ or A = X,
α if A ∈ τ \ {φ, X},
(0, 1, 1) otherwise.

Then, we can easily see that τα ∈ OSVNT(X) and [τα]α = τ. Moreover, by the definition of τα,

S(τα) = {A ∈ 2X : Tτα(A) > 0, Iτα(A) < 1, Fτα(A) < 1} = τ.

Thus, τα is compatible with τ.

Proposition 8. Let (X, T) be a classical topological space, let C(T) be the set of all osvnts on X compatible
with T, let T̃ = T \ {φ, X} and let (I × I × I)T̃

(0,1,1) be the set of all mappings f : T̃ → I × I × I satisfying the

following conditions: for any A, B ∈ T̃ and each (Aj)j∈J ⊂ T̃,
(1) f (A) 6= (0, 1, 1),
(2) Tf (A ∩ B) ≥ Tf (A) ∧ Tf (B), I f (A ∩ B) ≤ I f (A) ∨ Tf (B),

Ff (A ∩ B) ≤ Ff (A) ∨ Ff (B),
(3) Tf (

⋃
j∈J Aj) ≥

∧
j∈J Tf (Aj), I f (

⋃
j∈J Aj) ≤

∨
j∈J I f (Aj),

Ff (
⋃

j∈J Aj) ≤
∨

j∈J Ff (Aj).



Symmetry 2019, xx, 5 11 of 26

Then, there is a one-to-one correspondence between C(T) and (I × I × I)T̃
(0,1,1).

Proof. We define the mapping F : (I × I × I)T̃
(0,1,1) → C(T) as follows: for each f ∈ (I × I × I)T̃

(0,1,1),

F( f ) = τf ,

where τf : 2X → I × I × I is the mapping defined by: for each A ∈ 2X ,

τf (A) =


(1, 0, 0) if either A = φ or A = X,
f (A) if A ∈ T̃,
(0, 1, 1) otherwise.

Then, we easily see that τf ∈ C(T).

Now, we define the mapping G : C(T)→ (I × I × I)T̃
(0,1,1) as follows: for each τ ∈ C(T),

G(τ) = fτ ,

where fτ : T̃ → I × I × I is the mapping defined by: for each A ∈ T̃,

fτ(A) = τ(A).

Then, clearly, fτ ∈ (I × I × I)T̃
(0,1,1). Furthermore, we can see that F ◦ G = idC(T) and G ◦ F =

id
(I×I×I)T̃

(0,1,1)
. Thus, C(T) is equipotent to I × I × I)T̃

(0,1,1). This completes the proof.

Proposition 9. Let (X, τ) be an osvnts and let Y ⊂ X. We define the mapping τY : 2Y → I× I× I as follows:
for each A ∈ 2Y,

τY(A) = (
∨

B∈2X , A=B∩Y

Tτ(B),
∧

B∈2X , A=B∩Y

Iτ(B),
∧

B∈2X , A=B∩Y

Fτ(B)).

Then, τY ∈ OSVNT(Y) and for each A ∈ 2Y,

TτY (A) ≥ Tτ(A), IτY (A) ≤ Iτ(A), FτY (A) ≤ Fτ(A).

In this case, (Y, τY) is called an ordinary single valued neutrosophic subspace of (X, τ) and τY is
called the induced ordinary single valued neutrosophic topology on A by τ.

Proof. It is obvious that the condition (OSVNT1) holds, i.e., τY(φ) = τY(Y) = (1, 0, 0).
Let A, B ∈ 2Y. Then, by proof of Proposition 5.1 in [34], TτY (A ∩ B) ≥ TτY (A) ∧ TτY (B).
Let us show that IτY (A ∩ B) ≤ IτY (A) ∨ IτY (B). Then,

IτY (A) ∨ IτY (B) = (
∧

C1∈2X , A=Y∩C1
Iτ(C1)) ∨ (

∧
C2∈2X , B=Y∩C2

Iτ(C2))

=
∧

C1, C1∈2X , A∩B=Y∩(C1∩C2)
[Iτ(C1) ∨ Iτ(C2)]

≥ ∧
C1, C1∈2X , A∩B=Y∩(C1∩C2)

Iτ(C1 ∩ C2)

= IτY (A ∩ B).

Similarly, we have FτY (A ∩ B) ≤ FτY (A) ∨ FτY (B). Thus, the condition (OSVNT2) holds.
Now, let {Aα}α∈Γ ⊂ 2Y. Then, by the proof of Proposition 5.1 in [34], TτY (

⋃
α∈Γ Aα) ≥∧

α∈Γ TτY (Aα). On the other hand,

IτY (
⋃

α∈Γ Aα) =
∧

Bα∈2X , (
⋃

α∈Γ Bα)∩Y=
⋃

α∈Γ Aα
Iτ(

⋃
α∈Γ Bα)

≤ ∧
Bα∈2X , (

⋃
α∈Γ Bα)∩Y=

⋃
α∈Γ Aα

[
∧

α∈Γ Iτ(Bα)]

=
∧

α∈Γ[
∧

Bα∈2X , (
⋃

α∈Γ Bα)∩Y=
⋃

α∈Γ Aα
Iτ(Bα)]
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=
∧

α∈Γ IτY (Aα).

Similarly, we have FτY (
⋃

α∈Γ Aα) ≤
∧

α∈Γ FτY (Aα). Thus, the condition (OSVNT3) holds. Thus,
τY ∈ OSVNT(Y).

Furthermore, we can easily see that for each A ∈ 2Y,

TτY (A) ≥ Tτ(A), IτY (A) ≤ Iτ(A), FτY (A) ≤ Fτ(A).

This completes the proof.

The following is an immediate result of Proposition 9.

Corollary 3. Let (Y, τY) be an ordinary single valued neutrosaophic subspace of (X, τ) and let A ∈ 2Y.
(1) CY(A) = (

∨
B∈2X ,A=B∩Y TC(B),

∧
B∈2X ,A=B∩Y IC(B),

∧
B∈2X ,A=B∩Y FC(B)), where CY(A) =

τY(Y− A).
(2) If Z ⊂ Y ⊂ X, then τZ = (τY )Z .

4. Ordinary Single Valued Neutrosophic Neighborhood Structures of a Point

In this section, we define an ordinary single valued neutrosophic neighborhood system of a point,
and prove that it has the same properties in a classical neighborhood system.

Definition 13. Let (X, τ) be an osvnts and let x ∈ X. Then, a mapping Nx : 2X → I × I × I is called the
ordinary single valued neutrosophic neighborhood system of x if, for each A ∈ 2X ,

A ∈ Nx := ∃B(B ∈ τ) ∧ (x ∈ B ⊂ A)),

i.e.,
[A ∈ Nx] = Nx(A) = (

∨
x∈B⊂A

Tτ(B),
∧

x∈B⊂A
Iτ(B),

∧
x∈B⊂A

Fτ(B)).

Lemma 3. Let (X, τ) be an osvnts and let A ∈ 2X . Then,∧
x∈A

∨
x∈B⊂A

Tτ(B) = Tτ(A),

∨
x∈A

∧
x∈B⊂A

Iτ(B) = Iτ(A)

and ∨
x∈A

∧
x∈B⊂A

Fτ(B) = Fτ(A).

Proof. By Theorem 3.1 in [33], it is obvious that
∧

x∈A
∨

x∈B⊂A Tτ(B) = Tτ(A).
On the other hand, it is clear that

∨
x∈A

∧
x∈B⊂A Iτ(B) ≥ Iτ(A). Now, letBx = {B ∈ 2X : x ∈ B ⊂ A}

and let f ∈ Πx∈ABx. Then, clearly,
⋃

x∈A f (x) = A. Thus,∨
x∈A

Iτ( f (x)) ≤ Iτ(
⋃

x∈A
f (x)) = Iτ(A).

Thus, ∨
x∈A

∧
x∈B⊂A

Iτ(B) =
∧

f∈Πx∈A

∨
x∈A

Iτ( f (x)) ≤ Iτ(A).

Hence,
∨

x∈A
∧

x∈B⊂A Iτ(B) = Iτ(A). Similarly, we have∨
x∈A

∧
x∈B⊂A

Fτ(B) = Fτ(A).
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Theorem 2. Let (X, τ) be an osvnts, let A ∈ 2X and let x ∈ X. Then,

|= (A ∈ τ)↔ ∀x(x ∈ A→ ∃B(B ∈ Nx)∧ (B ⊂ A)),

i.e.,
[A ∈ τ] = [∀x(x ∈ A→ ∃B(B ∈ Nx)∧ (B ⊂ A))],

i.e.,
[A ∈ τ] = (

∧
x∈A

∨
B⊂A

TNx(B),
∨

x∈A

∧
B⊂A

INx(B),
∨

x∈A

∧
B⊂A

FNx(B)).

Proof. From Theorem 3.1 in [33], it is clear that Tτ(A) =
∧

x∈A
∨

B⊂A TNx(B).
On the other hand,

Iτ(A) =
∨

x∈A
∧

x∈C⊂A Iτ(C) [By Lemma 3]
=

∨
x∈A

∧
B⊂A

∧
x∈C⊂B Iτ(C)

=
∨

x∈A
∧

B⊂A INx(B). [By Definition 13]

Similarly, we have Fτ(A) =
∨

x∈A
∧

B⊂A FNx(B). This completes the proof.

Definition 14. Let A be a single valued neutrosophic set in a set 2X. Then, A is said to be normal if there is
A0 ∈ 2X such that A(A0) = (1, 0, 0).

We will denote the set of all normal single valued neutrosophic sets in 2X as (I × I × I)2X

N .

From the following result, we can see that an ordinary single valued neutrosophic neighborhood
system has the same properties in a classical neighborhood system.

Theorem 3. Let (X, τ) be an osvnts and let N : X → (I × I × I)2X

N be the mapping given by N (x) = Nx,
for each x ∈ X. Then,N has the following properties:

(1) for any x ∈ X and A ∈ 2X, |= A ∈ Nx → x ∈ A,
(2) for any x ∈ X and A, B ∈ 2X, |= (A ∈ Nx)∧ (B ∈ Nx)→ A∩ B ∈ Nx,
(3) for any x ∈ X and A, B ∈ 2X, |= (A ⊂ B)→ (A ∈ Nx → B ∈ Nx),
(4) for any x ∈ X, |= (A ∈ Nx)→ ∃C((C ∈ Nx)∧ (C ⊂ A)∧ ∀y(y ∈ C→ C ∈ Ny)).
Conversely, if a mappingN : X→ (I × I × I)2X

N satisfies the above properties (2) and (3), then there is an
ordinary single valued neutrosophic topology τ : 2X → I × I × I on X defined as follows: for each A ∈ 2X,

A ∈ τ := ∀x(x ∈ A→ A ∈ Nx),

i.e.,
[A ∈ τ] = τ(A) = (

∧
x∈A

TNx(A),
∨

x∈A
INx(A),

∨
x∈A

FNx(A)).

In particular, ifN also satisfies the above properties (1) and (4), then, for each x ∈ X,Nx is an ordinary
single valued neutrosophic neighborhood system of x with respect to τ.

Proof. (1) Since A ∈ 2X, we can consider A as a special single valued neutrosophic set in x represented
by A = (χA, χAc , χAc). Then,

[x ∈ A] = A(x) = (χA(x), χAc(x), χAc(x)) = (1, 0, 0).
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On the other hand,

[A ∈ Nx] = (
∨

x∈C⊂A
Tτ(C),

∧
x∈C⊂A

Iτ(C),
∧

x∈C⊂A
Fτ(C)) ≤ (1, 0, 0).

Thus, [A ∈ Nx] ≤ [x ∈ A].
(2) By the definition ofNx,

[A∩ B ∈ Nx] = (
∨

x∈C⊂A∩B
Tτ(C),

∧
x∈C⊂A∩B

Iτ(C)),
∧

x∈C⊂A∩B
Fτ(C)).

From the proof of Theorem 3.2 (2) in [33], it is obvious that

TNx(A∩ B) ≥ TNx(A)∧ TNx(B).

Thus, it is sufficient to show that INx(A∩ B) ≤ INx(A)∨ INx(B):

INx(A∩ B) =
∧

x∈C⊂A∩B Iτ(C) =
∧

x∈C1⊂A, x∈C2⊂B Iτ(C1 ∩ C2)

≤ ∧
x∈C1⊂A, x∈C2⊂B(Iτ(C1)∨ Iτ(C2))

=
∧

x∈C1⊂A Iτ(C1)∨
∧

x∈C2⊂B Iτ(C2)

= INx(A)∨ INx(B).

Similarly, we have FNx(A∩ B) ≤ FNx(A)∨ FNx(B). On the other hand,

[(A ∈ Nx)∧ (B ∈ Nx)] = (TNx(A)∧ TNx(B), INx(A)∨ INx(B), FNx(A)∨ FNx(B)).

Thus, [A∩ B ∈ Nx] ≥ [(A ∈ Nx)∧ (B ∈ Nx)].
(3) From the definition ofNx, we can easily show that [A ∈ Nx] ≤ [B ∈ Nx].
(4) It is clear that

[∃C((C ∈ Nx)∧ (C ⊂ A)∧ ∀y(y ∈ C→ C ∈ Ny))]

= (
∨

C⊂A[TNx(C)∧
∧

y∈C TNy(C)],
∧

C⊂A[INx(C)∨
∨

y∈C INy(C)],∧
C⊂A[FNx(C)∨

∨
y∈C FNy(C)]).

Then, by the proof of Theorem 3.2 (4) in [33], it is obvious that∨
C⊂A

[TNx(C)∧
∧

y∈C
TNy(C)] ≥ TNx(A).

From Lemma 3,
∨

y∈C INy(C) =
∨

y∈C
∧

y∈D⊂C Iτ(D) = Iτ(C). Thus,∧
C⊂A[INx(C)∨

∨
y∈C INy(C)] =

∧
C⊂A[INx(C)∨ Iτ(C)] =

∧
C⊂A Iτ(C)

≤ ∧
x∈C⊂A Iτ(C) = INx(A).

Similarly, we have
∧

C⊂A[FNx(C)∨
∨

y∈C FNy(C)] ≤
∧

x∈C⊂A Fτ(C) = FNx(A). Thus,

[∃C((C ∈ Nx)∧ (C ⊂ A)∧ ∀y(y ∈ C→ C ∈ Ny))] ≥ [A ∈ Nx].

Conversely, supposeN satisfies the above properties (2) and (3) and let τ : 2X → I × I × I be the
mapping defined as follows: for each A ∈ 2X,

τ(A) = (
∧

x∈A
TNx(A),

∨
x∈A

INx(A),
∨

x∈A
FNx(A)).

Then, clearly, τ(φ) = (1, 0, 0). Since Nx is single valued neutrosophic normal, there is A0 ∈ 2X

such thatNx(A0) = (1, 0, 0). Thus,Nx(X) = (1, 0, 0). Thus,

τ(X) = (
∧

x∈X
TNx(X),

∨
x∈X

INx(X),
∨

x∈X
FNx(X)) = (1, 0, 0).
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Hence, τ satisfies the axiom (OSVNT1).
From the proof of Theorem 3.2 in [33], it is clear that Tτ(A∩ B) ≥ Tτ(A)∧ Tτ(B).
On the other hand,

Iτ(A∩ B) =
∨

x∈A∩B INx(A∩ B) ≤ ∨
x∈A∩B(INx(A)∨ INx(B))

=
∨

x∈A∩B INx(A)∨∨
x∈A∩B INx(B)

≤ ∨
x∈A INx(A)∨∨

x∈B INx(B)
= Iτ(A)∨ Iτ(B).

Similarly, we have Fτ(A∩ B) ≤ Fτ(A)∨ Fτ(B). Then, τ satisfies the axiom (OSVNT2). Moreover,
we can easily see that τ satisfies the axiom (OSVNT3). Thus, τ ∈ OSVNT(X).

Now, supposeN satisfies additionally the above properties (1) and (4). Then, from the proof of
Theorem 3.2 in [33], we have TNx(A) =

∨
x∈B⊂A Tτ(B) for each x ∈ X and each A ∈ 2X.

Let x ∈ X and let A ∈ 2X. Then, by property (4),

INx(A) ≥
∧

C⊂A
[INx(C)∨

∨
y∈C

INy(C)].

From the property (1), INx(C) = 1 for any x 6∈ C. Thus,

INx(A) ≥ ∧
x∈C⊂A[INx(C)∨

∨
y∈C INy(C)]

≥ ∧
x∈C⊂A

∨
y∈C INy(C)

=
∧

x∈B⊂A Iτ(B).

Now, suppose x ∈ C ⊂ A. Then, clearly,
∨

y∈C INy(C) ≥ INx(C) ≥ INx(A).
Thus, ∧

x∈B⊂A
Iτ(B) =

∧
x∈C⊂A

∨
y∈C

INy(C) ≥ INx(A).

Thus, INx(A) =
∧

x∈B⊂A Iτ(B). Similarly, we have FNx(A) =
∧

x∈B⊂A Fτ(B). This completes
the proof.

5. Ordinary Single Valued Neutrosophic Bases and Subbases

In this section, we define an ordinary single valued neutrosophic base and subbase for an ordinary
single valued neutrosophic topological space, and investigated general properties. Moreover, we obtain
two characterizations of an ordinary single valued neutrosophic base and one characterization of an
ordinary single valued neutrosophic subbase.

Definition 15. Let (X, τ) be an osvnts and let B : 2X → I × I × I be a mapping such that B ≤ τ, i.e.,
TB ≤ Tτ, IB ≥ Iτ, FB ≥ Fτ. Then, B is called an ordinary single valued neutrosophic base for τ if, for each
A ∈ 2X,

Tτ(A) =
∨

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∧
α∈Γ

TB(Bα),

Iτ(A) =
∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨
α∈Γ

IB(Bα),

Fτ(A) =
∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨
α∈Γ

FB(Bα).

Example 3. (1) Let X be a set and let B : 2X → I × I × I be the mapping defined by:

B({x}) = (1, 0, 0) ∀x ∈ X.

Then, B is an ordinary single valued neutrosophic base for τX.
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(2) Let X = {a, b, c}, let α ∈ SVNV be fixed, where α ∈ I1 × I0 × I0 and let B : 2X → I × I × I be the
mapping as follows: for each A ∈ 2X,

B(A) =

{
(1, 0, 0) if either A = {a, b} or {b, c} or X,
α otherwise.

Then, B is not an ordinary single valued neutrosophic base for an osvnt on X.
Suppose that B is an ordinary single valued neutrosophic base for an osvnt τ on X. Then, clearly, B ≤ τ.

Moreover, τ({a, b}) = τ({b, c}) = (1, 0, 0). Thus,

Tτ({b}) = Tτ({a, b} ∩ τ({b, c}) ≥ Tτ({a, b} ∧ Tτ({b, c} = 1

and
Iτ({b}) = Iτ({a, b} ∩ τ({b, c}) ≤ Iτ({a, b} ∧ Iτ({b, c} = 0.

Similarly, we have Fτ({b}) = 0. Thus, τ({b}) = (1, 0, 0). On the other hand, by the definition of B,

Tτ({b}) =
∨

{Aα}α∈Γ⊂2X , {b}=⋃
α∈Γ Aα

∧
α∈Γ

TB(Aα) = Tα

and
Iτ({b}) =

∧
{Aα}α∈Γ⊂2X , {b}=⋃

α∈Γ Aα

∨
α∈Γ

IB(Aα) = Iα.

Similarly, we have Fτ({b}) = Fα. This is a contradiction. Hence, B is not an ordinary single valued
neutrosophic base for an osvnt on X

Theorem 4. Let (X, τ) be an osvnts and let B : 2X → I × I × I be a mapping such that B ≤ τ. Then, B is an
ordinary single valued neutrosophic base for τ if and only if for each x ∈ X and each A ∈ 2X,

TNx(A) ≤
∨

x∈B⊂A
TB(B),

INx(A) ≥
∧

x∈B⊂A
IB(B),

FNx(A) ≥
∧

x∈B⊂A
FB(B).

Proof. (⇒): Suppose B is an ordinary single valued neutrosophic base for τ. Let x ∈ X and let A ∈ 2X.
Then, by Theorem 4.4 in [34], it is obvious that TNx(A) ≤ ∨

x∈B⊂A TB(B). On the other hand,

INx(A) =
∧

x∈B⊂A Iτ(B) [By Definition 13]
=

∧
x∈B⊂A

∧
{Bα}α∈Γ⊂2X , B=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα). [By Definition 15]

If x ∈ B ⊂ A and B =
⋃

α∈Γ Bα, then there is α0 ∈ Γ such that x ∈ Bα0 . Thus,∨
α∈Γ

IB(Bα) ≥ IB(Bα0) ≥
∧

x∈B⊂A
IB(B).

Thus, INx(A) ≥ ∧
x∈B⊂A IB(B). Similarly, we have FNx(A) ≥ ∧

x∈B⊂A FB(B). Hence, the necessary
condition holds.

(⇐): Suppose the necessary condition holds. Then, by Theorem 4.4 in [34], it is clear that

Tτ(A) =
∨

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∧
α∈Γ

TB(Bα).
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Let A ∈ 2X. Suppose A =
⋃

α∈Γ Bα and {Bα} ⊂ 2X. Then,

Iτ(A) ≤ ∨
α∈Γ Iτ(Bα) [By the axiom (OSVNT3)]

≤ ∨
α∈Γ IB(Bα). [Since B ≤ τ]

Thus,
Iτ(A) ≤

∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ

IB(Bα). (1)

On the other hand,

Iτ(A) =
∨

x∈A
∧

x∈B⊂A Iτ(B) [By Lemma 3]
=

∨
x∈A INx(A) [By Definition 13]

=
∨

x∈A
∧

x∈B⊂A IB(B) [By the hypothesis]
=

∧
f∈Πx∈ABx

∨
x∈A IB( f (x)),

where Bx = {B ∈ 2X : x ∈ B ⊂ A}. Furthermore, A =
⋃

x∈A f (x) for each f ∈ Πx∈ABx. Thus,∧
f∈Πx∈ABx

∨
x∈A

IB( f (x)) =
∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨
α∈Γ

IB(Bα).

Hence,
Iτ(A) ≥

∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ

IB(Bα). (2)

By (1) and (2), Iτ(A) =
∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα). Similarly, we have Fτ(A) =∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨
α∈Γ FB(Bα). Therefore, B is an ordinary single valued neutrosophic base

for τ.

Theorem 5. Let B : 2X → I × I × I be a mapping. Then, B is an ordinary single valued neutrosophic base for
some oist τ on X if and only if it has the following conditions:

(1)
∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ TB(Bα) = 1,∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨
α∈Γ IB(Bα) = 0,∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨
α∈Γ FB(Bα) = 0,

(2) for any A1, A2 ∈ 2X and each x ∈ A1 ∩ A2,

TB(A1)∧ TB(A2) ≤
∨

x∈A⊂A1∩A2

TB(A),

IB(A1)∨ IB(A2) ≥
∧

x∈A⊂A1∩A2

IB(A),

FB(A1)∨ FB(A2) ≥
∧

x∈A⊂A1∩A2

FB(A).

In fact, τ : 2X → I × I × I is the mapping defined as follows: for each A ∈ 2X,

Tτ(A) =

{
1 i f A = φ∨
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∧
α∈Γ TB(Bα) otherwise,

Iτ(A) =

{
0 i f A = φ∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα) otherwise,

Fτ(A) =

{
0 i f A = φ∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ FB(Bα) otherwise.

In this case, τ is called an ordinary single valued neutrosophic topology on X induced by B.
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Proof. (⇒): Suppose B is an ordinary single valued neutrosophic base for some osvnt τ on X. Then,
by Definition 15 and the axiom (OSVNT1),∨

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∧
α∈Γ

TB(Bα) = Tτ(X) = 1,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

IB(Bα)) = Iτ(X) = 0,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

FB(Bα)) = Fτ(X) = 0.

Thus, condition (1) holds.
Let A1, A2 ∈ 2X and let x ∈ A1 ∩ A2. Then, by the proof of Theorem 4.2 in [33], it is obvious that

TB(A1)∧ TB(A2) ≤
∨

x∈A⊂A1∩A2
TB(A). On the other hand,

IB(A1)∨ IB(A2) ≥ Iτ(A1)∨ Iτ(A2) ≥ Iτ(A1 ∩ A2) ≥ INx(A1 ∩ A2) ≥
∧

x∈A⊂A1∩A2

IB(A).

Thus,
IB(A1)∨ IB(A2) ≥

∧
x∈A⊂A1∩A2

IB(A).

Similarly, we have
FB(A1)∨ FB(A2) ≥

∧
x∈A⊂A1∩A2

FB(A).

Thus, condition (2) holds.
(⇐): Suppose the necessary conditions (1) and (2) are satisfied. Then, by the proof of Theorem 4.2

in [33], we can see that the following hold:

Tτ(X) = Tτ(φ) = 1,
Tτ(A∩ B) ≥ Tτ(A)∧ Tτ(B) for any A, B ∈ 2X

and

Tτ(
⋃

α∈Γ Aα) ≥
∧

α∈Γ Tτ(Aα) for each {Aα}α∈Γ ⊂ 2X.

From the definition of τ, it is obvious that Iτ(X) = Iτ(φ) = 0. Similarly, we have Fτ(X) = Fτ(φ) =

0. Thus, τ satisfies the axiom (OSVNT1).
Let {Aα}α∈Γ ⊂ 2X and let Bα = {{Bδα

: δα ∈ Γα} :
⋃

δα∈Γα
Bδα

= Aα}. Let f ∈ Πα∈ΓBα. Then,
clearly,

⋃
α∈Γ

⋃
Bδα∈ f (α) Bδα

=
⋃

α∈Γ Aα. Thus,

Iτ(
⋃

α∈Γ Aα) =
∧⋃

δ∈Γ Bδ=
⋃

α∈Γ Aα

∨
δ∈Γ IB(Bδ)

≤ ∧
f∈Πα∈ΓBα

∨
α∈Γ

∨
Bδα∈ f (α) IB(Bδα

)

=
∨

α∈Γ
∧
{Bδα :δα∈Γα}∈Bα

∨
δα∈Γα

IB(Bδα
)

=
∨

α∈Γ Iτ(Aα).

Similarly, we have Fτ(
⋃

α∈Γ Aα) ≤
∨

α∈Γ Fτ(Aα). Thus, τ satisfies the axiom (OSVNT3).
Now, let A, B ∈ 2X and suppose Iτ(A) < Iα and Iτ(B) < Iα for α ∈ SVNV. Then, there are

{Aα1 : α1 ∈ Γ1} and {Bα2 : α2 ∈ Γ2} such that
⋃

α1∈Γ1
Aα1 = A,

⋃
α2∈Γ2

Bα2 = B and IB(Aα1) < Iα for
each α1 ∈ Γ1, IB(Bα2) < Iα for each α2 ∈ Γ2. Let x ∈ A∩ B. Then, there are α1x ∈ Γ1 and α2x ∈ Γ2 such
that x ∈ Aα1x ∩ Bα2x . Thus, from the assumption,

Iα > IB(Aα1x)∨ IB(Bα2x) ≥
∧

x∈C⊂Aα1x∩Bα2x

IB(C).
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Moreover, there is Cx such that x ∈ Cx ⊂ Aα1x ∩ Bα2x ⊂ A∩ B and IB(Cx) < Iα. Since
⋃

x∈A∩B Cx =

A∩ B, we obtain
Iα ≥

∨
x∈A∩B

IB(Cx) ≥
∧

⋃
α∈Γ Bα=A∩B

∨
α∈Γ

IB(Bα) = Iτ(A∩ B).

Now, let Iβ = Iτ(A)∨ Iτ(B) and let n be any natural number, where Iβ ∈ I. Then, Iτ(A) < Iβ + 1/n
and Iτ(B) < Iβ + 1/n. Thus, Iτ(A ∩ B) ≤ Iβ + 1/n. Thus, Iτ(A ∩ B) ≤ Iβ = Iτ(A) ∨ Iτ(B). Similarly,
we have Fτ(A ∩ B) ≤ Fτ(A) ∨ Fτ(B). Hence, τ satisfies the axiom (OSVNT2). This completes the
proof.

Example 4. (1) Let X = {a, b, c} and let α ∈ SVNV be fixed, where α ∈ I1 × I0 × I0. We define the mapping
B : 2X → I × I × I as follows: for each A ∈ 2X,

TB(A) =

{
1 if A = {b} or {a, b} or {b, c}
Tα otherwise,

IB(A) =

{
0 if A = {b} or {a, b} or {b, c}
Iα otherwise,

FB(A) =

{
0 if A = {b} or {a, b} or {b, c}
Fα otherwise.

Then, we can easily see that B satisfies conditions (1) and (2) in Theorem 5. Thus, B is an ordinary single
valued neutrosophic base for an osvnt τ on X. In fact, τ : 2X → I× I× I is defined as follows: for each A ∈ 2X,

Tτ(A) =

{
1 if A ∈ {φ, {b}, {a, b}, {b, c}, X}
Tα otherwise,

Iτ(A) =

{
0 if A ∈ {φ, {b}, {a, b}, {b, c}, X}
Iα otherwise,

Fτ(A) =

{
0 if A ∈ {φ, {b}, {a, b}, {b, c}, X}
Fα otherwise.

(2) Let α ∈ SVNV be fixed, where α ∈ I1× I0× I0. We define the mapping B : 2R → I× I× I as follows:
for each A ∈ 2R,

TB(A) =

{
1 if A = (a, b) for a, b ∈ R with a ≤ b
Tα otherwise,

IB(A) =

{
0 if A = (a, b) for a, b ∈ R with a ≤ b
Iα otherwise,

FB(A) =

{
0 if A = (a, b) for a, b ∈ R with a ≤ b
Fα otherwise.

Then, it can be easily seen that B satisfies the conditions (1) and (2) in Theorem 5. Thus, B is an ordinary
single valued neutrosophic base for an osvnt τα on R.

In this case, τα is called the α-ordinary single valued neutrosophic usual topology on R.
(3) Let α ∈ SVNV be fixed, where α ∈ I1× I0× I0. We define the mapping B : 2R → I× I× I as follows:

for each A ∈ 2R,

TB(A) =

{
1 if A = [a, b) for a, b ∈ R with a ≤ b
Tα otherwise,
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IB(A) =

{
0 if A = [a, b) for a, b ∈ R with a ≤ b
Iα otherwise,

FB(A) =

{
0 if A = [a, b) for a, b ∈ R with a ≤ b
Fα otherwise.

Then, we can easily see that B satisfies the conditions (1) and (2) in Theorem 5. Thus, B is an ordinary
single valued neutrosophic base for an osvnt τl on R.

In this case, τl is called the α-ordinary single valued neutrosophic lower-limit topology on R.

Definition 16. Let τ1, τ2 ∈ OSVNT(X), and let B1 and B1 be ordinary single valued neutrosophic bases for
τ1 and τ2, respectively. Then, B1 and B1 are said to be equivalent if τ1 = τ2.

Theorem 6. Let τ1, τ2 ∈ OSVNT(X), and let B1 and B1 be ordinary single valued neutrosophic bases for τ1

and τ2 respectively. Then, τ1 is coarser than τ2, i.e.,

Tτ1 ≤ Tτ2 , Iτ1 ≥ Iτ2 , Fτ1 ≥ Fτ2

if and only if for each A ∈ 2X and each x ∈ A,

TB1(A) ≤
∨

x∈B⊂A
TB2(B), IB1(A) ≥

∧
x∈B⊂A

IB2(B), FB1(A) ≥
∧

x∈B⊂A
FB2(B).

Proof. (⇒): Suppose τ1 is coarser than τ2. For each x ∈ X, let x ∈ A ∈ 2X. Then, by Theorem 4.8
in [34], TB1(A) ≤ ∨

x∈B⊂A TB2(B). On the other hand,

IB1(A) ≥ Iτ1(A) [since B1 is an ordinary single valued neutrosophic base for τ1]
≥ Iτ2(A) [By the hypothesis]
=

∧
{Aα}α∈Γ⊂2X , A=

⋃
α∈Γ Aα

∨
α∈Γ IB2(Aα).

[Since B2 is an ordinary single valued neutrosophic base for τ2]

Since x ∈ A and A =
⋃

α∈Γ Aα, there is α0 ∈ Γ such that x ∈ Aα0 . Thus,∧
{Aα}α∈Γ⊂2X , A=

⋃
α∈Γ Aα

∨
α∈Γ

IB2(Aα) ≥ IB2(Aα0) ≥
∧

x∈B⊂A
IB2(B).

Thus, IB1(A) ≥ ∧
x∈B⊂A IB2(B). Similarly, we have FB1(A) ≥ ∧

x∈B⊂A FB2(B).
(⇐): Suppose the necessary condition holds. Then, by Theorem 4.8 in [34], Tτ1 ≤ Tτ2 . Let A ∈ 2X.

Then,

Iτ1(A) =
∨

x∈A
∧

x∈B⊂A IB1(B) [By Lemma 3]
≥ ∨

x∈A
∧

x∈B⊂A
∧

x∈C⊂B IB2(C) [By the hypothesis]
=

∧
x∈C⊂A

∨
x∈A IB2(C)

=
∧
{Cx}x∈A⊂2X , A=

⋃
x∈A Cx

∨
x∈A IB2(Cx)

= Iτ2(A).

Thus, Iτ1 ≥ Iτ2 . Similarly, we have Fτ1 ≥ Fτ2 . Thus, τ1 is coarser than τ2. This completes the
proof.

The following is an immediate result of Definition 16 and Theorem 6.

Corollary 4. Let B1 and B2 be ordinary single valued neutrosophic bases for two ordinary single valued
neutrosophic topologies on a set X, respectively. Then,

B1 and B2 are equivalent if and only if the following two conditions hold:
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(1) for each B1 ∈ 2X and each x ∈ B1,

TB1(B1) ≤
∨

x∈B2⊂B1

TB2(B2),

IB1(B1) ≥
∧

x∈B2⊂B1

IB2(B2),

FB1(B1) ≥
∧

x∈B2⊂B1

FB2(B2),

(2) for each B2 ∈ 2X and each x ∈ B2,

TB2(B2) ≤
∨

x∈B1⊂B2

TB1(B1),

IB2(B2) ≥
∧

x∈B1⊂B2

IB1(B1),

FB2(B2) ≥
∧

x∈B1⊂B2

FB1(B1).

It is obvious that every ordinary single valued neutrosophic topology itself forms an ordinary
single valued neutrosophic base. Then, the following provides a sufficient condition for one to see
if a mapping B : 2X → I × I × I such that TB ≤ Tτ, IB ≥ Iτ and FB ≥ Fτ is an ordinary single valued
neutrosophic base for τ ∈ OSVNT(X).

Proposition 10. Let (X, τ) be an osvnts and let B : 2X → I× I× I be a mapping such that TB ≤ Tτ, IB ≥ Iτ

and FB ≥ Fτ. For each A ∈ 2X and each x ∈ A, suppose Tτ(A) ≤ ∨
x∈B⊂A TB(B), Iτ(A) ≥ ∧

x∈B⊂A IB(B)
and Fτ(A) ≥ ∧

x∈B⊂A FB(B). Then, B is an ordinary single valued neutrosophic base for τ.

Proof. From the proof of Proposition 4.10 in [34], it is clear that the first part of the condition (1) of
Theorem 5 holds, i.e.,

∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ TB(Bα) = 1. On the other hand,∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨
α∈Γ IB(Bα)

≥ ∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ Iτ(Bα) [since IB ≥ Iτ]

≥ ∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

Iτ(
⋃

α∈Γ Bα) [by the axiom (OSVNT3)]
= Iτ(X)

=
∨

x∈X
∧

x∈B⊂X Iτ(B) [By Lemma 3]
≥ ∨

x∈X
∧

x∈B⊂X
∧

x∈C⊂B IB(C) [By the hypothesis]
=

∧
x∈C⊂X

∨
x∈X IB(C)

=
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα).

Since τ ∈ OSVNT(X), Iτ(X) = 0. Thus,
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα) = 0. Similarly, we

have
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ FB(Bα) = 0. Thus, condition (1) of Theorem 5 holds.

Now, let A1, A2 ∈ 2X and let x ∈ A1 ∩ A2. Then, by the proof of Proposition 4.10 in [34], it is
obvious that TB(A1)∧ TB(A2) ≤

∨
x∈A⊂A1∩A2

TB(A). On the other hand,

IB(A1)∨ IB(A2) ≥ Iτ(A1)∨ Iτ(A2) [Since IB ≥ Iτ]
≥ Iτ(A1 ∩ A2) [by the axiom (OSVNT2)]
≥ ∧

x∈A⊂A1∩A2
IB(A). [by the hypothesis]

Similarly, we have FB(A1) ∨ FB(A2) ≥
∧

x∈A⊂A1∩A2
FB(A). Thus, condition (2) of Theorem 5

holds. Thus, by Theorem 5, B is an ordinary single valued neutrosophic base for τ. This completes
the proof.
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Definition 17. Let (X, τ) be an osvnts and let' : 2X → I× I× I be a mapping. Then, ϕ is called an ordinary
single valued neutrosophic subbase for τ, if ϕu is an ordinary single valued neutrosophic base for τ, where
ϕu : 2X → I × I × I is the mapping defined as follows: for each A ∈ 2X,

Tϕu(A) =
∨

{Bα}@2X , A=
⋂

α∈Γ Bα

∧
α∈Γ

T'(Bα),

Iϕu(A) =
∧

{Bα}@2X , A=
⋂

α∈Γ Bα

∨
α∈Γ

I'(Bα),

Fϕu(A) =
∧

{Bα}@2X , A=
⋂

α∈Γ Bα

∨
α∈Γ

F'(Bα),

where @ stands for “a finite subset of".

Example 5. Let α ∈ SVNV be fixed, where α ∈ I1 × I0 × I0. We define the mapping ' : 2R → I × I × I
as follows: for each A ∈ 2R,

T'(A) =

{
1 if A = (a, ∞) or (−∞, b) or (a, b)
Tα otherwise,

I'(A) =

{
0 if A = (a, ∞) or (−∞, b) or (a, b)
Iα otherwise,

F'(A) =

{
0 if A = (a, ∞) or (−∞, b) or (a, b)
Fα otherwise,

where a, b ∈ R such that a < b. Then, we can easily see that ' is an ordinary single valued neutrosophic
subbase for the α-ordinary single valued neutrosophic usual topology Uα on R.

Theorem 7. Let ' : 2X → I × I × I be a mapping. Then, ' is an ordinary single valued neutrosophic subbase
for some osvnt if and only if ∨

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∧
α∈Γ

T'(Bα) = 1,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

I'(Bα) = 0,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

F'(Bα) = 0.

Proof. (⇒): Suppose ' is an ordinary single valued neutrosophic subbase for some osvnt. Then,
by Definition 17, it is clear that the necessary condition holds.

(⇐): Suppose the necessary condition holds. We only show that ϕu satisfies the condition (2) in
Theorem 5. Let A, B ∈ 2X and x ∈ A∩ B. Then, by the proof of Theorem 4.3 in [33], it is obvious that
Tϕu(A)∧ Tϕu(B) ≤

∨
x∈C⊂A∩B Tϕu(C). On the other hand,

Iϕu(A)∨ Iϕu(B)
= (

∧⋂
α1∈Γ1

Bα1=A
∨

α1∈Γ1
I'(Bα1))∨ (

∧⋂
α2∈Γ2

Bα2=B
∨

α2∈Γ2
I'(Bα2))

=
∧⋂

α1∈Γ1
Bα1=A

∧⋂
α2∈Γ2

Bα2=B(
∨

α1∈Γ1
I'(Bα1)∨

∨
α2∈Γ2

I'(Bα2))

≥ ∧⋂
α∈Γ Bα=A∩B

∨
α∈Γ I'(Bα)

= Iϕu(A∩ B).
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Since x ∈ A ∩ B, Iϕu(A) ∨ Iϕu(B) ≥ Iϕu(A ∩ B) ≥ ∧
x∈C⊂A∩B Iϕu(C). Similarly, we have

Fϕu(A)∨ Fϕu(B) ≥ Fϕu(A∩ B) ≥ ∧
x∈C⊂A∩B Fϕu(C). Thus, ϕu satisfies the condition (2) in Theorem 5.

This completes the proof.

Example 6. Let X = {a, b, c, d, e} and let α ∈ SVNV be fixed, where α ∈ I1× I0× I0. We define the mapping
' : 2X → I × I × I as follows: for each A ∈ 2X,

T'(A) =

{
1 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
Tα otherwise,

I'(A) =

{
0 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
Iα otherwise,

F'(A) =

{
0 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
Fα otherwise.

Then, X = {a} ∪ {b, c, d} ∪ {c, e},

Tϕu({a}) = Tϕu({b, c, d}) = Tϕu({c, e}) = 1,
Iϕu({a}) = Iϕu({b, c, d}) = Iϕu({c, e}) = 0.
Fϕu({a}) = Fϕu({b, c, d}) = Fϕu({c, e}) = 0.

Thus, ∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ

T'(Bα) = 1,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

I'(Bα) = 0,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

F'(Bα) = 0.

Thus, by Theorem 7, ' is an ordinary single valued neutrosophic subbase for some osvnt.

The following is an immediate result of Corollary 4 and Theorem 7.

Proposition 11. '1, '2 : 2X → I × I × I be two mappings such that∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ

T'1(Bα) = 1,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

I'1(Bα) = 0,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

F'1(Bα) = 0

and ∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ

T'2(Bα) = 1,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

I'2(Bα) = 0,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

F'2(Bα) = 0.

Suppose the two conditions hold:
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(1) for each S1 ∈ 2X and each x ∈ S1,

T'1(S1) ≤
∨

x∈S2⊂S1

T'2(S2), I'1(S1) ≥
∧

x∈S2⊂S1

I'2(S2), F'1(S1) ≥
∧

x∈S2⊂S1

F'2(S2),

(2) for each S2 ∈ 2X and each x ∈ S2,

T'2(S2) ≤
∨

x∈S1⊂S2

T'1(S1), I'2(S2) ≥
∧

x∈S1⊂S2

I'1(S1), f'2(S2) ≥
∧

x∈S1⊂S2

f'1(S1).

Then, '1 and '2 are ordinary single valued neutrosophic subbases for the same ordinary single valued
neutrosophic topology on X.

6. Conclusions

In this paper, we defined an ordinary single valued neutrosophic topology and level set of
an osvnst to study some topological characteristics of neutrosophic sets and obtained some their
basic properties. In addition, we defined an ordinary single valued neutrosophic subspace. Next,
the concepts of an ordinary single valued neutrosophic neighborhood system and an ordinary single
valued neutrosophic base (or subbase) were introduced and studied. Their results are summarized
as follows:

First, an ordinary single valued neutrosophic neighborhood system has the same properties in a
classical neighborhood system (see Theorem 3).

Second, we found two characterizations of an ordinary single valued neutrosophic base
(see Theorems 4 and 5).

Third, we obtained one characterization of an ordinary single valued neutrosophic subbase
(see Theorem 7).

Finally, we expect that this paper can be a guidance for the research of separation axioms,
compactness, connectedness, etc. in ordinary single valued neutrosophic topological spaces.
In addition, one can deal with single valued neutrosophic topology from the viewpoint of lattices.

Author Contributions: All authors have contributed equally to this paper in all aspects. This paper was organized
by the idea of Hur Kul. Junhui Kim and Jeong Gon Lee analyzed the related papers with this research, and they
also wrote the paper. Florentin Smarandache checked the overall contents and mathematical accuracy.

Funding: This research received no external funding.

Acknowledgments: This paper was supported by Wonkwang University in 2017 (Junhui Kim).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353.
2. Chang, C.L. Fuzzy topological spaces. J. Math. Anal. Appl. 1968, 24, 182–190.
3. El-Gayyar, M.K.; Kerre, E.E.; Ramadan, A.A. On smooth topological space II: Separation axioms.

Fuzzy Sets Syst. 2001, 119, 495–504.
4. Ghanim, M.H.; Kerre, E.E.; Mashhour, A.S. Separation axioms, subspaces and sums in fuzzy topology.

J. Math. Anal. Appl. 1984, 102, 189–202.
5. Kandil, A.; El Etriby, A.M. On separation axioms in fuzzy topological space. Tamkang J. Math. 1987, 18, 49–59.
6. Kandil, A.; Elshafee, M.E. Regularity axioms in fuzzy topological space and FRi-proximities. Fuzzy Sets Syst.

1988, 27, 217–231.
7. Kerre, E.E. Characterizations of normality in fuzzy topological space. Simon Steven 1979, 53, 239–248.
8. Lowen, R. Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl. 1976, 56, 621–633.
9. Lowen, R. A comparison of different compactness notions in fuzzy topological spaces. J. Math. Anal.

1978, 64, 446–454.
10. Lowen, R. Initial and final fuzzy topologies and the fuzzy Tychonoff Theorem. J. Math. Anal. 1977, 58, 11–21.



Symmetry 2019, xx, 5 25 of 26

11. Pu, P.M.; Liu, Y.M. Fuzzy topology I. Neighborhood structure of a fuzzy point. J. Math. Anal. Appl.
1982, 76, 571–599.

12. Pu, P.M.; Liu, Y.M. Fuzzy topology II. Products and quotient spaces. J. Math. Anal. Appl. 1980, 77, 20–37.
13. Yalvac, T.H. Fuzzy sets and functions on fuzzy spaces. J. Math. Anal. 1987, 126, 409–423.
14. Chattopadhyay, K.C.; Hazra, R.N.; Samanta, S.K. Gradation of openness: Fuzzy topology. Fuzzy Sets Syst.

1992, 49, 237–242.
15. Hazra, R.N.; Samanta, S.K.; Chattopadhyay, K.C. Fuzzy topology redefined. Fuzzy Sets Syst. 1992, 45, 79–82.
16. Ramaden, A.A. Smooth topological spaces. Fuzzy Sets Syst. 1992, 48, 371–375.
17. Demirci, M. Neighborhood structures of smooth topological spaces. Fuzzy Sets Syst. 1997, 92, 123–128.
18. Chattopadhyay, K.C.; Samanta, S.K. Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy

connectedness. Fuzzy Sets Syst. 1993, 54, 207–212.
19. Peeters, W. Subspaces of smooth fuzzy topologies and initial smooth fuzzy structures. Fuzzy Sets Syst.

1999, 104, 423–433.
20. Peeters, W. The complete lattice (S(X), �) of smooth fuzzy topologies. Fuzzy Sets Syst. 2002, 125, 145–152.
21. Al Tahan, M.; Hošková-Mayerová, Š.; Davvaz, B. An overview of topological hypergroupoids. J. Intell.

Fuzzy Syst. 2018, 34, 1907–1916.
22. Onasanya, B.O.; Hošková-Mayerová, Š. Some topological and algebraic properties of α-level subsets’

topology of a fuzzy subset. An. Univ. Ovidius Constanta 2018, 26, 213–227.
23. Çoker, D.; Demirci, M. An introduction to intuitionistic fuzzy topological spaces in Šostak’s sense. Busefal
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