Annals of Fuzzy Mathematics and Informatics
Volume x, No. x, (Month 201y), pp. 1-xx
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
@ F MII
(c) Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Positive implicative MBJ-neutrosophic ideals of $B C K / B C I$-algebras

Kul Hur, Jeong Gon Lee, Young Bae Jun

Received 28 September 2015; Accepted 26 October 2016

Abstract

The notion of positive implicative MBJ-neutrosophic ideal is introduced, and several properties are investigated. Relations between MBJ-neutrosophic ideal and positive implicative MBJ-neutrosophic ideal are discussed. Characterizations of positive implicative MBJ-neutrosophic ideal are displayed.

2010 AMS Classification: 06F35, 03G25, 03E72.
Keywords: MBJ-neutrosophic set; MBJ-neutrosophic ideal; Positive implicative MBJ-neutrosophic ideal.

Corresponding Author: J. G. Lee (jukolee@wku.ac.kr)

1. Introduction

In order to handle uncertainties in many real applications, the fuzzy set was introduced by L.A. Zadeh [19] in 1965. In 1983, K. Atanassov introdued the notion of intuitionistic fuzzy set as a generalization of fuzzy set. As a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set, the notion of neutrosophic set is initiated by Smarandache ([14], [15] and [16]). Neutrosophic algebraic structures in BCK/BCIalgebras are discussed in the papers [1], [2], [4], [5], [6], [7], [8], [12], [13], [17] and [18]. In [10], the notion of MBJ-neutrosophic sets is introduced as another generalization of neutrosophic set, it is applied to $B C K / B C I$-algebras. Mohseni et al. [10] introduced the concept of MBJ-neutrosophic subalgebras in $B C K / B C I$ algebras, and investigated related properties. They gave a characterization of MBJneutrosophic subalgebra, and established a new MBJ-neutrosophic subalgebra by using an MBJ-neutrosophic subalgebra of a BCI-algebra. They considered the homomorphic inverse image of MBJ-neutrosophic subalgebra, and discussed translation of MBJ-neutrosophic subalgebra. Jun and Roh [11] applied the notion of MBJ-neutrosophic sets to ideals of $B C K / B I$-algebras, and introduce the concept of MBJ-neutrosophic ideals in $B C K / B C I$-algebras. They provided a condition for an

MBJ-neutrosophic subalgebra to be an MBJ-neutrosophic ideal in a $B C K$-algebra, and considered conditions for an MBJ-neutrosophic set to be an MBJ-neutrosophic ideal in a $B C K / B C I$-algebra. They discussed relations between MBJ-neutrosophic subalgebras, MBJ-neutrosophic o-subalgebras and MBJ-neutrosophic ideals. In a $B C I$-algebra, they provided conditions for an MBJ-neutrosophic ideal to be an MBJneutrosophic subalgebra, and considered a characterization of an MBJ-neutrosophic ideal in an (S) - $B C K$-algebra.

In this paper, we introduce the notion of positive implicative MBJ-neutrosophic ideal, and investigate several properties. We discuss relations between MBJ-neutrosophic ideal and positive implicative MBJ-neutrosophic ideal. We provide characterizations of positive implicative MBJ-neutrosophic ideal.

2. Preliminaries

By a $B C I$-algebra, we mean a set X with a binary operation $*$ and a special element 0 that satisfies the following conditions:
(I) $((x * y) *(x * z)) *(z * y)=0$,
(II) $(x *(x * y)) * y=0$,
(III) $x * x=0$,
(IV) $x * y=0, y * x=0 \Rightarrow x=y$,
for all $x, y, z \in X$. If a $B C I$-algebra X satisfies the following identity:
(V) $(\forall x \in X)(0 * x=0)$,
then X is called a $B C K$-algebra.
Every $B C K / B C I$-algebra X satisfies the following conditions:

$$
\begin{align*}
& (\forall x \in X)(x * 0=x) \tag{2.1}\\
& (\forall x, y, z \in X)(x \leq y \Rightarrow x * z \leq y * z, z * y \leq z * x) \tag{2.2}\\
& (\forall x, y, z \in X)((x * y) * z=(x * z) * y) \tag{2.3}\\
& (\forall x, y, z \in X)((x * z) *(y * z) \leq x * y) \tag{2.4}
\end{align*}
$$

where $x \leq y$ if and only if $x * y=0$.
A nonempty subset S of a $B C K / B C I$-algebra X is called a subalgebra of X if $x * y \in S$, for all $x, y \in S$. A subset I of a $B C K / B C I$-algebra X is called an ideal of X, if it satisfies:

$$
\begin{align*}
& 0 \in I, \tag{2.5}\\
& (\forall x \in X)(\forall y \in I)(x * y \in I \Rightarrow x \in I) . \tag{2.6}
\end{align*}
$$

A subset I of a $B C K$-algebra X is called a positive implicative ideal of X (see [9]), if it satisfies (2.5) and

$$
\begin{equation*}
(\forall x, y, z \in X)(((x * y) * z \in I, y * z \in I \Rightarrow x * z \in I) \tag{2.7}
\end{equation*}
$$

By an interval number, we mean a closed subinterval $\tilde{a}=\left[a^{-}, a^{+}\right]$of I, where $0 \leq a^{-} \leq a^{+} \leq 1$. Denote by $[I]$ the set of all interval numbers. Let us define what is known as refined minimum (briefly, rmin) and refined maximum (briefly, rmax) of two elements in $[I]$. We also define the symbols " \succeq ", " \preceq ", "=" in case of two
elements in $[I]$. Consider two interval numbers $\tilde{a}_{1}:=\left[a_{1}^{-}, a_{1}^{+}\right]$and $\tilde{a}_{2}:=\left[a_{2}^{-}, a_{2}^{+}\right]$. Then

$$
\begin{aligned}
& \operatorname{rmin}\left\{\tilde{a}_{1}, \tilde{a}_{2}\right\}=\left[\min \left\{a_{1}^{-}, a_{2}^{-}\right\}, \min \left\{a_{1}^{+}, a_{2}^{+}\right\}\right], \\
& \operatorname{rmax}\left\{\tilde{a}_{1}, \tilde{a}_{2}\right\}=\left[\max \left\{a_{1}^{-}, a_{2}^{-}\right\}, \max \left\{a_{1}^{+}, a_{2}^{+}\right\}\right], \\
& \tilde{a}_{1} \succeq \tilde{a}_{2} \Leftrightarrow a_{1}^{-} \geq a_{2}^{-}, a_{1}^{+} \geq a_{2}^{+},
\end{aligned}
$$

and similarly, we may have $\tilde{a}_{1} \preceq \tilde{a}_{2}$ and $\tilde{a}_{1}=\tilde{a}_{2}$. To say $\tilde{a}_{1} \succ \tilde{a}_{2}$ (resp. $\tilde{a}_{1} \prec \tilde{a}_{2}$), we mean $\tilde{a}_{1} \succeq \tilde{a}_{2}$ and $\tilde{a}_{1} \neq \tilde{a}_{2}$ (resp. $\tilde{a}_{1} \preceq \tilde{a}_{2}$ and $\tilde{a}_{1} \neq \tilde{a}_{2}$). Let $\tilde{a}_{i} \in[I]$, where $i \in \Lambda$. We define

$$
\operatorname{rinf}_{i \in \Lambda} \tilde{a}_{i}=\left[\inf _{i \in \Lambda} a_{i}^{-}, \inf _{i \in \Lambda} a_{i}^{+}\right] \text {and } \operatorname{rsup}_{i \in \Lambda} \tilde{a}_{i}=\left[\sup _{i \in \Lambda} a_{i}^{-}, \sup _{i \in \Lambda} a_{i}^{+}\right] .
$$

Let X be a nonempty set. A function $A: X \rightarrow[I]$ is called an interval-valued fuzzy set (briefly, an IVF set) in X. Let $[I]^{X}$ stand for the set of all IVF sets in X. For every $A \in[I]^{X}$ and $x \in X, A(x)=\left[A^{-}(x), A^{+}(x)\right]$ is called the degree of membership of an element x to A, where $A^{-}: X \rightarrow I$ and $A^{+}: X \rightarrow I$ are fuzzy sets in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively. For simplicity, we denote $A=\left[A^{-}, A^{+}\right]$.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [15]) is a structure of the form:

$$
A:=\left\{\left\langle x ; A_{T}(x), A_{I}(x), A_{F}(x)\right\rangle \mid x \in X\right\}
$$

where $A_{T}: X \rightarrow[0,1]$ is a truth membership function, $A_{I}: X \rightarrow[0,1]$ is an indeterminate membership function, and $A_{F}: X \rightarrow[0,1]$ is a false membership function.

We refer the reader to the books [3, 9] for further information regarding $B C K / B C I$ algebras, and to the site "http://fs.gallup.unm.edu/neutrosophy.htm" for further information regarding neutrosophic set theory.

Let X be a non-empty set. By an MBJ-neutrosophic set in X (see [10]), we mean a structure of the form:

$$
\mathcal{A}:=\left\{\left\langle x ; M_{A}(x), \tilde{B}_{A}(x), J_{A}(x)\right\rangle \mid x \in X\right\},
$$

where M_{A} and J_{A} are fuzzy sets in X, which are called a truth membership function and a false membership function, respectively, and \tilde{B}_{A} is an IVF set in X which is called an indeterminate interval-valued membership function.

For the sake of simplicity, we shall use the symbol $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ for the MBJ-neutrosophic set

$$
\mathcal{A}:=\left\{\left\langle x ; M_{A}(x), \tilde{B}_{A}(x), J_{A}(x)\right\rangle \mid x \in X\right\} .
$$

Let X be a $B C K / B C I$-algebra. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is called an MBJ-neutrosophic subalgebra of X (see [10]), if it satisfies:

$$
(\forall x, y \in X)\left(\begin{array}{l}
M_{A}(x * y) \geq \min \left\{M_{A}(x), M_{A}(y)\right\}, \tag{2.8}\\
\tilde{B}_{A}(x * y) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x), \tilde{B}_{A}(y)\right\}, \\
J_{A}(x * y) \leq \max \left\{J_{A}(x), J_{A}(y)\right\} .
\end{array}\right)
$$

Let X be a $B C K / B C I$-algebra. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is called an MBJ-neutrosophic ideal of X (see [11]), if it satisfies:

$$
\begin{equation*}
(\forall x \in X)\left(M_{A}(0) \geq M_{A}(x), \tilde{B}_{A}(0) \succeq \tilde{B}_{A}(x), J_{A}(0) \leq J_{A}(x)\right) \tag{2.9}
\end{equation*}
$$

and

$$
(\forall x, y \in X)\left(\begin{array}{l}
M_{A}(x) \geq \min \left\{M_{A}(x * y), M_{A}(y)\right\} \tag{2.10}\\
\tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x * y), \tilde{B}_{A}(y)\right\} \\
J_{A}(x) \leq \max \left\{J_{A}(x * y), J_{A}(y)\right\}
\end{array}\right)
$$

3. Positive implicative MBJ-neutrosophic ideals

In what follows, let X be a $B C K$-algebra unless otherwise specified.
Definition 3.1. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is called a positive implicative MBJ-neutrosophic ideal of X, if it satisfies (2.9) and

$$
(\forall x, y, z \in X)\left(\begin{array}{l}
M_{A}(x * z) \geq \min \left\{M_{A}((x * y) * z), M_{A}(y * z)\right\} \tag{3.1}\\
\tilde{B}_{A}(x * z) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(y * z)\right\} \\
J_{A}(x * z) \leq \max \left\{J_{A}((x * y) * z), J_{A}(y * z)\right\}
\end{array}\right)
$$

Example 3.2. Consider a $B C K$-algebra $X=\{0,1,2,3,4\}$ with the binary operation $*$ which is given in Table 1:

Table 1. Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	2	0	0	2
3	3	3	3	0	3
4	4	4	4	4	0

Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X defined by Table 2:
Table 2. MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$

X	$M_{A}(x)$	$\tilde{B}_{A}(x)$	$J_{A}(x)$
0	0.7	$[0.4,0.9]$	0.2
1	0.6	$[0.3,0.8]$	0.5
2	0.5	$[0.2,0.6]$	0.5
3	0.4	$[0.1,0.3]$	0.7
4	0.3	$[0.2,0.5]$	0.9

It is routine to verify that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJneutrosophic ideal of X.

Theorem 3.3. Every positive implicative MBJ-neutrosophic ideal is an MBJ-neutrosophic ideal.

Proof. If we take $z=0$ in (3.1) and use (2.1), then we have the condition (2.10). Thus every positive implicative MBJ-neutrosophic ideal is an MBJ-neutrosophic ideal.

The converse of Theorem 3.3 is not true as seen in the following example.
Example 3.4. Consider a $B C K$-algebra $X=\{0, a, b, c\}$ with the binary operation * which is given in Table 3:

Table 3. Cayley table for the binary operation "*"

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X defined by Table 4:

Table 4. MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$

X	$M_{A}(x)$	$\tilde{B}_{A}(x)$	$J_{A}(x)$
0	0.7	$[0.4,0.9]$	0.2
a	0.6	$[0.3,0.8]$	0.6
b	0.6	$[0.3,0.8]$	0.6
c	0.4	$[0.1,0.3]$	0.4

It is routine to verify that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X. Since

$$
M_{A}(b * a)=0.6<0.7=\min \left\{M_{A}((b * a) * a), M_{A}(a * a)\right\}
$$

$\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is not a positive implicative MBJ-neutrosophic ideal of X.
Lemma 3.5 ([11]). Every MBJ-neutrosophic ideal of X satisfies the following assertion.

$$
\begin{equation*}
(\forall x, y \in X)\left(x \leq y \Rightarrow M_{A}(x) \geq M_{A}(y), \tilde{B}_{A}(x) \succeq \tilde{B}_{A}(y), J_{A}(x) \leq J_{A}(y)\right) \tag{3.2}
\end{equation*}
$$

We provide conditions for an MBJ-neutrosophic ideal to be a positive implicative MBJ-neutrosophic ideal.

Theorem 3.6. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is a positive implicative MBJ-neutrosophic ideal of X if and only if it is an MBJ-neutrosophic ideal of X satisfying the following condition.

$$
(\forall x, y \in X)\left(\begin{array}{l}
M_{A}(x * y) \geq M_{A}((x * y) * y), \tag{3.3}\\
\tilde{B}_{A}(x * y) \succeq \tilde{B}_{A}((x * y) * y), \\
J_{A}(x * y) \leq J_{A}((x * y) * y) .
\end{array}\right)
$$

Proof. Assume that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X. If z is replaced by y in (3.1), then

$$
\begin{aligned}
M_{A}(x * y) & \geq \min \left\{M_{A}((x * y) * y), M_{A}(y * y)\right\} \\
& =\min \left\{M_{A}((x * y) * y), M_{A}(0)\right\}=M_{A}((x * y) * y) \\
\tilde{B}_{A}(x * y) & \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * y), \tilde{B}_{A}(y * y)\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * y), \tilde{B}_{A}(0)\right\}=\tilde{B}_{A}((x * y) * y)
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}(x * y) & \leq \max \left\{J_{A}((x * y) * y), J_{A}(y * y)\right\} \\
& =\max \left\{J_{A}((x * y) * y), J_{A}(0)\right\}=J_{A}((x * y) * y)
\end{aligned}
$$

for all $x, y \in X$.
Conversely, let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic ideal of X satisfying the condition (3.3). Since

$$
((x * z) * z) *(y * z) \leq(x * z) * y=(x * y) * z
$$

for all $x, y, z \in X$, it follows from Lemma 3.5 that

$$
\begin{align*}
& M_{A}((x * y) * z) \leq M_{A}(((x * z) * z) *(y * z)), \\
& \tilde{B}_{A}((x * y) * z) \preceq \tilde{B}_{A}(((x * z) * z) *(y * z)), \tag{3.4}\\
& J_{A}((x * y) * z) \geq J_{A}(((x * z) * z) *(y * z)),
\end{align*}
$$

for all $x, y, z \in X$. Using (3.3), (2.10) and (3.4), we have

$$
\begin{aligned}
M_{A}(x * z) & \geq M_{A}((x * z) * z) \geq \min \left\{M_{A}(((x * z) * z) *(y * z)), M_{A}(y * z)\right\} \\
& \geq \min \left\{M_{A}((x * y) * z), M_{A}(y * z)\right\}, \\
\tilde{B}_{A}(x * z) & \succeq \tilde{B}_{A}((x * z) * z) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(((x * z) * z) *(y * z)), \tilde{B}_{A}(y * z)\right\} \\
& \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(y * z)\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}(x * z) & \leq J_{A}((x * z) * z) \leq \max \left\{J_{A}(((x * z) * z) *(y * z)), J_{A}(y * z)\right\} \\
& \leq \max \left\{J_{A}((x * y) * z), J_{A}(y * z)\right\}
\end{aligned}
$$

for all $x, y, z \in X$. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJneutrosophic ideal of X.

Theorem 3.7. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic ideal of X. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is positive implicative if and only if it satisfies the following condition.

$$
(\forall x, y, z \in X)\left(\begin{array}{l}
M_{A}((x * z) *(y * z)) \geq M_{A}((x * y) * z), \tag{3.5}\\
\tilde{B}_{A}((x * z) *(y * z)) \succeq \tilde{B}_{A}((x * y) * z), \\
J_{A}((x * z) *(y * z)) \leq J_{A}((x * y) * z)
\end{array}\right)
$$

Proof. Assume that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X by Theorem 3.3, and satisfies the condition (3.3) by Theorem 3.6. Since

$$
((x *(y * z)) * z) * z=((x * z) *(y * z)) * z \leq(x * y) * z
$$

for all $x, y, z \in X$, it follows from Lemma 3.5 that

$$
\begin{align*}
& M_{A}((x * y) * z) \leq M_{A}(((x *(y * z)) * z) * z), \\
& \tilde{B}_{A}((x * y) * z) \preceq \tilde{B}_{A}(((x *(y * z)) * z) * z) \tag{3.6}\\
& J_{A}((x * y) * z) \geq J_{A}(((x *(y * z)) * z) * z)
\end{align*}
$$

for all $x, y, z \in X$. Using (2.3), (3.3) and (3.6), we have

$$
\begin{aligned}
M_{A}((x * z) *(y * z)) & =M_{A}((x *(y * z)) * z) \\
& \geq M_{A}(((x *(y * z)) * z) * z) \\
& \geq M_{A}((x * y) * z) \\
\tilde{B}_{A}((x * z) *(y * z)) & =\tilde{B}_{A}((x *(y * z)) * z) \\
& \succeq \tilde{B}_{A}(((x *(y * z)) * z) * z) \\
& \succeq \tilde{B}_{A}((x * y) * z)
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}((x * z) *(y * z)) & =J_{A}((x *(y * z)) * z) \\
& \leq J_{A}(((x *(y * z)) * z) * z) \\
& \leq J_{A}((x * y) * z)
\end{aligned}
$$

Hence (3.5) is valid.
Conversely, let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic ideal of X which satisfies the condition (3.5). If we put $z=y$ in (3.5) and use (III) and (2.1), then we obtain the condition (3.3). Thus $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X by Theorem 3.6.

Theorem 3.8. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X if and only if it satisfies the condition (2.9) and

$$
(\forall x, y, z \in X)\left(\begin{array}{l}
M_{A}(x * y) \geq \min \left\{M_{A}(((x * y) * y) * z), M_{A}(z)\right\}, \tag{3.7}\\
\tilde{B}_{A}(x * y) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(((x * y) * y) * z), \tilde{B}_{A}(z)\right\} \\
J_{A}(x * y) \leq \max \left\{J_{A}(((x * y) * y) * z), J_{A}(z)\right\}
\end{array}\right)
$$

Proof. Assume that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X (see Theorem 3.3), and so the condition (2.9) is valid. Using (2.10), (III), (2.1), (2.3) and (3.5), we have

$$
\begin{aligned}
M_{A}(x * y) & \geq \min \left\{M_{A}((x * y) * z), M_{A}(z)\right\} \\
& =\min \left\{M_{A}(((x * z) * y) *(y * y)), M_{A}(z)\right\} \\
& \geq \min \left\{M_{A}(((x * z) * y) * y), M_{A}(z)\right\} \\
& =\min \left\{M_{A}(((x * y) * y) * z), M_{A}(z)\right\} \\
\tilde{B}_{A}(x * y) & \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(z)\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}(((x * z) * y) *(y * y)), \tilde{B}_{A}(z)\right\} \\
& \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(((x * z) * y) * y), \tilde{B}_{A}(z)\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}(((x * y) * y) * z), \tilde{B}_{A}(z)\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}(x * y) & \leq \max \left\{J_{A}((x * y) * z), J_{A}(z)\right\} \\
& =\max \left\{J_{A}(((x * z) * y) *(y * y)), J_{A}(z)\right\} \\
& \leq \max \left\{J_{A}(((x * z) * y) * y), J_{A}(z)\right\} \\
& =\max \left\{J_{A}(((x * y) * y) * z), J_{A}(z)\right\}
\end{aligned}
$$

for all $x, y, z \in X$.
Conversely, let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X which satisfies conditions (2.9) and (3.7). Then

$$
\begin{aligned}
M_{A}(x) & =M_{A}(x * 0) \geq \min \left\{M_{A}(((x * 0) * 0) * z), M_{A}(z)\right\} \\
& =\min \left\{M_{A}(x * z), M_{A}(z)\right\}, \\
\tilde{B}_{A}(x) & =\tilde{B}_{A}(x * 0) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(((x * 0) * 0) * z), \tilde{B}_{A}(z)\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}(x * z), \tilde{B}_{A}(z)\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}(x) & =J_{A}(x * 0) \leq \max \left\{J_{A}(((x * 0) * 0) * z), J_{A}(z)\right\} \\
& =\max \left\{J_{A}(x * z), J_{A}(z)\right\}
\end{aligned}
$$

for all $x, z \in X$. Thus $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X. Taking $z=0$ in (3.7) and using (2.1) and (2.9) imply that

$$
\begin{aligned}
M_{A}(x * y) & \geq \min \left\{M_{A}(((x * y) * y) * 0), M_{A}(0)\right\} \\
& =\min \left\{M_{A}((x * y) * y), M_{A}(0)\right\} \\
& =M_{A}((x * y) * y)
\end{aligned}
$$

$$
\begin{aligned}
\tilde{B}_{A}(x * y) & \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(((x * y) * y) * 0), \tilde{B}_{A}(0)\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * y), \tilde{B}_{A}(0)\right\} \\
& =\tilde{B}_{A}((x * y) * y),
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}(x * y) & \leq \max \left\{J_{A}(((x * y) * y) * 0), J_{A}(0)\right\} \\
& =\max \left\{J_{A}((x * y) * y), J_{A}(0)\right\} \\
& =J_{A}((x * y) * y),
\end{aligned}
$$

for all $x, y \in X$. It follows from Theorem 3.6 that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X.

Lemma 3.9 ([11]). Let X be a BCK/BCI-algebra. Then every MBJ-neutrosophic ideal $\mathcal{A}=\left(M_{A}, B_{A}, J_{A}\right)$ of X satisfies the following assertion.

$$
x * y \leq z \Rightarrow\left\{\begin{array}{l}
M_{A}(x) \geq \min \left\{M_{A}(y), M_{A}(z)\right\}, \tag{3.8}\\
\tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(y), \tilde{B}_{A}(z)\right\}, \\
J_{A}(x) \leq \max \left\{J_{A}(y), J_{A}(z)\right\},
\end{array}\right.
$$

for all $x, y, z \in X$.
Lemma 3.10. If an MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X satisfies the condition (3.8), then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X.

Proof. Since $0 * x \leq x$ and $x *(x * y) \leq y$ for all $x, y \in X$, it follows from (3.8) that

$$
M_{A}(0) \geq M_{A}(x), \tilde{B}_{A}(0) \succeq \tilde{B}_{A}(x), J_{A}(0) \leq J_{A}(x)
$$

and $M_{A}(x) \geq \min \left\{M_{A}(x * y), M_{A}(y)\right\}, \tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x * y), \tilde{B}_{A}(y)\right\}$ and

$$
J_{A}(x) \leq \max \left\{J_{A}(x * y), J_{A}(y)\right\} .
$$

Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X.
Theorem 3.11. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X if and only if it satisfies the following condition.

$$
(((x * y) * y) * a) * b=0 \Rightarrow\left\{\begin{array}{l}
M_{A}(x * y) \geq \min \left\{M_{A}(a), M_{A}(b)\right\}, \tag{3.9}\\
\tilde{B}_{A}(x * y) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(a), \tilde{B}_{A}(b)\right\}, \\
J_{A}(x * y) \leq \max \left\{J_{A}(a), J_{A}(b)\right\},
\end{array}\right.
$$

for all $x, y, a, b \in X$.
Proof. Assume that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X (see Theorem 3.3). Let $a, b, x, y \in X$ be such that $(((x * y) * y) * a) * b=0$. Then

$$
\begin{aligned}
& M_{A}(x * y) \geq M_{A}((x * y) * y) \geq \min \left\{M_{A}(a), M_{A}(b)\right\}, \\
& \tilde{B}_{A}(x * y) \succeq \tilde{B}_{A}((x * y) * y) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(a), \tilde{B}_{A}(b)\right\},
\end{aligned}
$$

and $J_{A}(x * y) \leq J_{A}((x * y) * y) \leq \max \left\{J_{A}(a), J_{A}(b)\right\}$ by Theorem 3.6 and Lemma 3.9. Thus (3.9) is valid.

Conversely, let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X which satisfies the condition (3.9). Let $x, a, b \in X$ be such that $x * a \leq b$. Then

$$
(((x * 0) * 0) * a) * b=0
$$

and so

$$
\begin{aligned}
M_{A}(x) & =M_{A}(x * 0) \\
\tilde{B}_{A}(x) & =\tilde{B}_{A}(x * 0) \succeq \min \left\{M_{A}(a), M_{A}(b)\right\} \\
& \min \left\{\tilde{B}_{A}(a), \tilde{B}_{A}(b)\right\}
\end{aligned}
$$

and

$$
J_{A}(x)=J_{A}(x * 0) \leq \max \left\{J_{A}(a), J_{A}(b)\right\}
$$

by (2.1) and (3.9). Thus $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X by Lemma 3.10. Since $(((x * y) * y) *((x * y) * y)) * 0=0$ for all $x, y \in X$, we have

$$
\begin{aligned}
M_{A}(x * y) & \geq \min \left\{M_{A}((x * y) * y), M_{A}(0)\right\}=M_{A}((x * y) * y), \\
\tilde{B}_{A}(x * y) & \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * y), \tilde{B}_{A}(0)\right\}=\tilde{B}_{A}((x * y) * y),
\end{aligned}
$$

and

$$
J_{A}(x * y) \leq \max \left\{J_{A}((x * y) * y), J_{A}(0)\right\}=J_{A}((x * y) * y)
$$

by (3.9). It follows from Theorem 3.6 that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X.
Theorem 3.12. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X if and only if it satisfies the following condition.

$$
\begin{align*}
& M_{A}((x * z) *(y * z)) \geq \min \left\{M_{A}(a), M_{A}(b)\right\} \\
& \tilde{B}_{A}((x * z) *(y * z)) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(a), \tilde{B}_{A}(b)\right\} \tag{3.10}\\
& J_{A}((x * z) *(y * z)) \leq \max \left\{J_{A}(a), J_{A}(b)\right\}
\end{align*}
$$

for all $x, y, z, a, b \in X$ with $(((x * y) * z) * a) * b=0$.
Proof. Assume that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X (see Theorem 3.3). Let $a, b, x, y, z \in X$ be such that $(((x * y) * z) * a) * b=0$. Using Theorem 3.7 and Lemma 3.9, we have

$$
\begin{aligned}
& M_{A}((x * z) *(y * z)) \geq M_{A}((x * y) * z) \geq \min \left\{M_{A}(a), M_{A}(b)\right\} \\
& \tilde{B}_{A}((x * z) *(y * z)) \succeq \tilde{B}_{A}((x * y) * z) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(a), \tilde{B}_{A}(b)\right\}
\end{aligned}
$$

and

$$
J_{A}((x * z) *(y * z)) \leq J_{A}((x * y) * z) \leq \max \left\{J_{A}(a), J_{A}(b)\right\}
$$

Conversely, let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X which satisfies the condition (3.10). Let $x, y, a, b \in X$ be such that $(((x * y) * y) * a) * b=0$. Then

$$
M_{A}(x * y)=M_{A}\left((x * y) *(y * y) \geq \min \left\{M_{A}(a), M_{A}(b)\right\}\right.
$$

$$
\tilde{B}_{A}(x * y)=\tilde{B}_{A}\left((x * y) *(y * y) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(a), \tilde{B}_{A}(b)\right\},\right.
$$

and

$$
J_{A}(x * y)=J_{A}\left((x * y) *(y * y) \leq \max \left\{J_{A}(a), J_{A}(b)\right\}\right.
$$

by (2.1), (III) and (3.10). It follows from Theorem 3.11 that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X.

Theorem 3.13. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X if and only if it satisfies the following condition.

$$
\begin{align*}
& M_{A}(x * y) \geq \min \left\{M_{A}\left(a_{1}\right), M_{A}\left(a_{2}\right), \cdots, M_{A}\left(a_{n}\right)\right\}, \\
& \tilde{B}_{A}(x * y) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(a_{1}\right), \tilde{B}_{A}\left(a_{2}\right), \cdots, \tilde{B}_{A}\left(a_{n}\right)\right\}, \tag{3.11}\\
& J_{A}(x * y) \leq \max \left\{J_{A}\left(a_{1}\right), J_{A}\left(a_{2}\right), \cdots, J_{A}\left(a_{n}\right)\right\},
\end{align*}
$$

for all $x, y, a_{1}, a_{2}, \cdots, a_{n} \in X$ with $\left(\cdots\left(((x * y) * y) * a_{1}\right) * \cdots\right) * a_{n}=0$.
Proof. It is similar to the proof of Theorem 3.11.
Theorem 3.14. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X if and only if it satisfies the following condition.

$$
\begin{align*}
& M_{A}((x * z) *(y * z)) \geq \min \left\{M_{A}\left(a_{1}\right), M_{A}\left(a_{2}\right), \cdots, M_{A}\left(a_{n}\right)\right\}, \\
& \tilde{B}_{A}((x * z) *(y * z)) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(a_{1}\right), \tilde{B}_{A}\left(a_{2}\right), \cdots, \tilde{B}_{A}\left(a_{n}\right)\right\}, \tag{3.12}\\
& J_{A}((x * z) *(y * z)) \leq \max \left\{J_{A}\left(a_{1}\right), J_{A}\left(a_{2}\right), \cdots, J_{A}\left(a_{n}\right)\right\},
\end{align*}
$$

for all $x, y, z, a_{1}, a_{2}, \cdots, a_{n} \in X$ with $\left(\cdots\left(((x * y) * z) * a_{1}\right) * \cdots\right) * a_{n}=0$.
Proof. It is similar to the proof of Theorem 3.12.
Given an MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X, we consider the following sets.

$$
\begin{aligned}
& U\left(M_{A} ; \alpha\right):=\left\{x \in X \mid M_{A}(x) \geq \alpha\right\}, \\
& U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right):=\left\{x \in X \mid \tilde{B}_{A}(x) \succeq\left[\delta_{1}, \delta_{2}\right]\right\}, \\
& L\left(J_{A} ; \beta\right):=\left\{x \in X \mid J_{A}(x) \leq \beta\right\},
\end{aligned}
$$

where $\alpha, \beta \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$.
Theorem 3.15. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is a positive implicative MBJ-neutrosophic ideal of X if and only if the non-empty sets $U\left(M_{A} ; \alpha\right)$, $U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; \beta\right)$ are positive implicative ideals of X, for all $\alpha, \beta \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$.

Proof. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be a positive implicative MBJ-neutrosophic ideal of X. Let $\alpha, \beta \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$ be such that $U\left(M_{A} ; \alpha\right), U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; \beta\right)$ are non-empty. Obviously, $0 \in U\left(M_{A} ; \alpha\right) \cap U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right) \cap L\left(J_{A} ; \beta\right)$. For any $x, y, z, a, b, c, u, v, w \in X$, if $(x * y) * z \in U\left(M_{A} ; \alpha\right), y * z \in U\left(M_{A} ; \alpha\right)$,
$(a * b) * c \in U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right), b * c \in U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right),(u * v) * w \in L\left(J_{A} ; \beta\right)$ and $v * w \in L\left(J_{A} ; \beta\right)$, then

$$
\begin{aligned}
& M_{A}(x * z) \geq \min \left\{M_{A}((x * y) * z), M_{A}(y * z)\right\} \geq \min \{\alpha, \alpha\}=\alpha \\
& \tilde{B}_{A}(a * c) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((a * b) * c), \tilde{B}_{A}(b * c)\right\} \succeq \operatorname{rmin}\left\{\left[\delta_{1}, \delta_{2}\right],\left[\delta_{1}, \delta_{2}\right]\right\}=\left[\delta_{1}, \delta_{2}\right] \\
& J_{A}(u * w) \leq \max \left\{J_{A}((u * v) * w), J_{A}(v * w)\right\} \leq \min \{\beta, \beta\}=\beta
\end{aligned}
$$

and so $x * z \in U\left(M_{A} ; \alpha\right), a * c \in U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $u * w \in L\left(J_{A} ; \beta\right)$. Therefore $U\left(M_{A} ; \alpha\right), U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; \beta\right)$ are positive implicative ideals of X.

Conversely, assume that the non-empty sets $U\left(M_{A} ; \alpha\right), U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; \beta\right)$ are positive implicative ideals of X for all $\alpha, \beta \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$. Assume that $M_{A}(0)<M_{A}(a), \tilde{B}_{A}(0) \prec \tilde{B}_{A}(a)$ and $J_{A}(0)>J_{A}(a)$, for some $a \in X$. Then $0 \notin U\left(M_{A} ; M_{A}(a)\right) \cap U\left(\tilde{B}_{A} ; \tilde{B}_{A}(a)\right) \cap L\left(J_{A} ; J_{A}(a)\right.$, which is a contradiction. Thus $M_{A}(0) \geq M_{A}(x), \tilde{B}_{A}(0) \succeq \tilde{B}_{A}(x)$ and $J_{A}(0) \leq J_{A}(x)$, for all $x \in X$. If

$$
M_{A}\left(a_{0} * c_{0}\right)<\min \left\{M_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right), M_{A}\left(b_{0} * c_{0}\right)\right\}
$$

for some $a_{0}, b_{0}, c_{0} \in X$, then $\left(a_{0} * b_{0}\right) * c_{0} \in U\left(M_{A} ; t_{0}\right)$ and $b_{0} * c_{0} \in U\left(M_{A} ; t_{0}\right)$ but $a_{0} * c_{0} \notin U\left(M_{A} ; t_{0}\right)$ for $t_{0}:=\min \left\{M_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right), M_{A}\left(b_{0} * c_{0}\right)\right\}$. This is a contradiction, and thus

$$
M_{A}(a * c) \geq \min \left\{M_{A}((a * b) * c), M_{A}(b * c)\right\}
$$

for all $a, b, c \in X$.
Similarly, we can show that $J_{A}(a * c) \leq \max \left\{J_{A}((a * b) * c), J_{A}(b * c)\right\}$, for all $a, b, c \in X$. Suppose that $\tilde{B}_{A}\left(a_{0} * c_{0}\right) \prec \operatorname{rmin}\left\{\tilde{B}_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right), \tilde{B}_{A}\left(b_{0} * c_{0}\right)\right\}$, for some $a_{0}, b_{0}, c_{0} \in X$. Let $\tilde{B}_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right)=\left[\lambda_{1}, \lambda_{2}\right], \tilde{B}_{A}\left(b_{0} * c_{0}\right)=\left[\lambda_{3}, \lambda_{4}\right]$ and $\tilde{B}_{A}\left(a_{0} * c_{0}\right)=\left[\delta_{1}, \delta_{2}\right]$. Then

$$
\left[\delta_{1}, \delta_{2}\right] \prec \operatorname{rmin}\left\{\left[\lambda_{1}, \lambda_{2}\right],\left[\lambda_{3}, \lambda_{4}\right]\right\}=\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right]
$$

and so $\delta_{1}<\min \left\{\lambda_{1}, \lambda_{3}\right\}$ and $\delta_{2}<\min \left\{\lambda_{2}, \lambda_{4}\right\}$. Taking

$$
\left[\gamma_{1}, \gamma_{2}\right]:=\frac{1}{2}\left(\tilde{B}_{A}\left(a_{0} * c_{0}\right)+\operatorname{rmin}\left\{\tilde{B}_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right), \tilde{B}_{A}\left(b_{0} * c_{0}\right)\right\}\right)
$$

implies that

$$
\begin{aligned}
{\left[\gamma_{1}, \gamma_{2}\right] } & =\frac{1}{2}\left(\left[\delta_{1}, \delta_{2}\right]+\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right]\right) \\
& =\left[\frac{1}{2}\left(\delta_{1}+\min \left\{\lambda_{1}, \lambda_{3}\right\}\right), \frac{1}{2}\left(\delta_{2}+\min \left\{\lambda_{2}, \lambda_{4}\right\}\right)\right]
\end{aligned}
$$

It follows that

$$
\min \left\{\lambda_{1}, \lambda_{3}\right\}>\gamma_{1}=\frac{1}{2}\left(\delta_{1}+\min \left\{\lambda_{1}, \lambda_{3}\right\}\right)>\delta_{1}
$$

and

$$
\min \left\{\lambda_{2}, \lambda_{4}\right\}>\gamma_{2}=\frac{1}{2}\left(\delta_{2}+\min \left\{\lambda_{2}, \lambda_{4}\right\}\right)>\delta_{2}
$$

Thus $\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right] \succ\left[\gamma_{1}, \gamma_{2}\right] \succ\left[\delta_{1}, \delta_{2}\right]=\tilde{B}_{A}\left(a_{0} * c_{0}\right)$. So

$$
a_{0} * c_{0} \notin U\left(\tilde{B}_{A} ;\left[\gamma_{1}, \gamma_{2}\right]\right)
$$

On the other hand,

$$
\tilde{B}_{A}\left(\left(a_{0} * b_{0}\right) * c_{0}\right)=\left[\lambda_{1}, \lambda_{2}\right] \succeq\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right] \succ\left[\gamma_{1}, \gamma_{2}\right]
$$

and

$$
\tilde{B}_{A}\left(b_{0} * c_{0}\right)=\left[\lambda_{3}, \lambda_{4}\right] \succeq\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right] \succ\left[\gamma_{1}, \gamma_{2}\right]
$$

that is, $\left(a_{0} * b_{0}\right) * c_{0}, b_{0} * c_{0} \in U\left(\tilde{B}_{A} ;\left[\gamma_{1}, \gamma_{2}\right]\right)$. This is a contradiction. Hence

$$
\tilde{B}_{A}(x * z) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x * y) * z), \tilde{B}_{A}(y * z)\right\}
$$

for all $x, y, z \in X$. Consequently, $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a positive implicative MBJ-neutrosophic ideal of X.

References

[1] R. A. Borzooei, F. Smarandache and Y. B. Jun, Positive implicative generalized neutrosophic ideals in $B C K$-algebras, Neutrosophic Sets and Systems (in press).
[2] R. A. Borzooei, X. H. Zhang, F. Smarandache and Y. B. Jun, Commutative generalized neutrosophic ideals in $B C K$-algebras, Symmetry 2018, 10, 350; doi:10.3390/sym10080350.
[3] Y. S. Huang, BCI-algebra, Beijing: Science Press (2006).
[4] Y. B. Jun, Neutrosophic subalgebras of several types in $B C K / B C I$-algebras, Ann. Fuzzy Math. Inform. 14(1) (2017), 75-86.
[5] Y. B. Jun, S. J. Kim and F. Smarandache, Interval neutrosophic sets with applications in $B C K / B C I$-algebra, Axioms 2018, 7, 23.
[6] Y. B. Jun, F. Smarandache and H. Bordbar, Neutrosophic \mathcal{N}-structures applied to $B C K / B C I$ algebras, Information 2017, 8, 128.
[7] Y. B. Jun, F. Smarandache, S. Z. Song and M. Khan, Neutrosophic positive implicative \mathcal{N} ideals in $B C K / B C I$-algebras, Axioms 2018, $7,3$.
[8] M. Khan, S. Anis, F. Smarandache and Y. B. Jun, Neutrosophic \mathcal{N}-structures and their applications in semigroups, Ann. Fuzzy Math. Inform. 14 (6) (2017) 583-598.
[9] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul (1994).
[10] M. Mohseni Takallo, R. A. Borzooei and Y. B. Jun, MBJ-neutrosophic structures and its applications in $B C K / B C I$-algebras, Neutrosophic Sets and Systems (in press).
[11] Y. B. Jun and E. H. Roh, MBJ-neutrosophic ideals of $B C K / B C I$-algebras, Open Mathematics (submitted).
[12] M.A. Öztürk and Y. B. Jun, Neutrosophic ideals in $B C K / B C I$-algebras based on neutrosophic points, J. Inter. Math. Virtual Inst. 8 (2018) 1-17.
[13] A. B. Saeid and Y. B. Jun, Neutrosophic subalgebras of $B C K / B C I$-algebras based on neutrosophic points, Ann. Fuzzy Math. Inform. 14 (1) (2017) 87-97.
[14] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information \& Learning, Ann Arbor, Michigan, USA, 105 p., 1998. http://fs.gallup.unm.edu/eBookneutrosophic s6.pdf (last edition online).
[15] F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic probabilFy, set and logic, Rehoboth: American Research Press (1999).
[16] F. Smarandache, Neutrosophic set, a generalization of intuFionistic fuzzy sets, International Journal of Pure and Applied Mathematics 24 (5) (2005) 287-297.
[17] S.Z. Song, M. Khan, F. Smarandache and Y.B. Jun, A novel extension of neutrosophic sets and Fs application in $B C K / B I$-algebras, New Trends in Neutrosophic Theory and Applications (Volume II), Pons Editions, Brussels, Belium, EU 2018 308-326.
[18] S. Z. Song, F. Smarandache and Y. B. Jun, Neutrosophic commutative \mathcal{N}-ideals in $B C K$ algebras, Information 2017, 8, 130.
[19] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

KUL HUR (kulhur@wku.ac.kr)

Department of Mathematics, Institute of Basic Natural Science, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea
K. Hur et al./Ann. Fuzzy Math. Inform. xx (2018), No. x, 1-xx

JEONG GON LEE (jukolee@wku.ac.kr)
Department of Mathematics, Institute of Basic Natural Science, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea

Young BaE Jun (skywine@gmail.com)
Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea

