Regular α Generalized Closed Set in Neutrosophic Topological Spaces

Harshitha A^1 and Jayanthi D^2

Department of Mathematics, Avinashilingam (Deemed to be) University, Coimbatore. Corresponding Author: Harshitha A

Abstract: The purpose of this paper is to introduce and study about neutrosophic regular α generalized closed sets in neutrosophic topological spaces. Some interesting propositions based on this set are presented and established with suitable examples. Their properties are discussed.

Mathematics Subject Classification (2010): 54A40, 03E72

Keywords: Neutrosophic sets, neutrosophic topology, neutrosophic regular α generalized closed sets.

Date of Submission: 04-04-2019

Date of acceptance: 19-04-2019

I. Introduction

The concept of fuzzy sets was first introduced by L.Zadeh [9] in 1965. It shows the degree of membership of the element in a set. Later, fuzzy topology was introduced by Chang [2] in 1968. In 1983 Atanassov [1] introduced the concept of intuitionistic fuzzy set, where the degree of membership and non-membership are discussed. Coker [3] introduced intuitionistic fuzzy topological spaces. Florentin Smarandache [4] introduced and developed the concept of neutrosophic set from the fuzzy sets and intuitionistic fuzzy sets in 1997, who also developed the concept of single-valued neutrosophic set oriented towards real world scientific and engineering applications. A.A. Salama and S.A. Alblowi [8] introduced neutrosophic topological spaces by using the neutrosophic sets. In this paper, we introduce one of the concepts namely regular α generalized closed set in neutrosophic topological spaces.

II. Preliminaries

Here in this paper the neutrosophic topological space is denoted by (X,τ) . Also the neutrosophic interior, neutrosophic closure of a neutrosophic set A are denoted by NInt(A) and NCl(A). The complement of a neutrosophic set A is denoted by C(A) and the empty and whole sets are denoted by 0_N and 1_N respectively.

Definition 2.1: [4] Let X be a non-empty fixed set. A neutrosophic set (NS) A is an object having the form $A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle: x \in X\}$ where $\mu_A(x), \sigma_A(x), \nu_A(x)$ represent the degree of membership, degree of indeterminacy and the degree of non-membership respectively of each element $x \in X$ to the set A. A neutrosophic set $A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle: x \in X\}$ can be identified as an ordered triple

 $\langle \mu_A(x), \sigma_A(x), \nu_A(x) \rangle$ in]⁻⁰, 1⁺[on X. **Definition 2.2:** [4] Let A= $\langle \mu_A(x), \sigma_A(x), \nu_A(x) \rangle$ be a NS on X, then the complement C(A) may be defined as

- 1. $C(A) = \{ \langle x, 1 \mu_A(x), 1 \nu_A(x) \rangle : x \in X \}$
- 2. $C(A) = \{\langle x, v_A(x), \sigma_A(x), \mu_A(x) \rangle : x \in X \}$

3. $C(A) = \{ \langle x, v_A(x), 1 - \sigma_A(x), \mu_A(x) \rangle : x \in X \}$

Note that for any two neutrosophic sets A and B,

- 4. $C(A \cup B) = C(A) \cap C(B)$
- 5. $C(A \cap B) = C(A) \cup C(B)$

Definition 2.3: [8] For any two neutrosophic sets A = { $\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle$: $x \in X$ } and

B = { $\langle x, \mu_B(x), \sigma_B(x), \nu_B(x) \rangle$: x ϵX } we may have

1. $A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x), \sigma_A(x) \le \sigma_B(x) \text{ and } \nu_A(x) \ge \nu_B(x) \forall x \in X$

2. $A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x), \sigma_A(x) \ge \sigma_B(x) \text{ and } \nu_A(x) \ge \nu_B(x) \forall x \in X$

- 3. A $\cap B = \langle x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \nu_A(x) \lor \nu_B(x) \rangle$
- 4. A $\cap B = \langle x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \nu_A(x) \lor \nu_B(x) \rangle$
- 5. AU $B = \langle x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \nu_A(x) \land \nu_B(x) \rangle$
- 6. AU $B = \langle x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \land \sigma_B(x), \nu_A(x) \land \nu_B(x) \rangle$

Definition 2.4: [8] A neutrosophic topology on a non-empty set X is a family τ of neutrosophic subsets in X satisfies the following axioms:

- $(NT_1) \quad 0_N, 1_N \in \tau$
- (NT₂) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- $(NT_3) \quad \cup G_i \in \tau \forall \{G_i : i \in J\} \subseteq \tau$

In this case the pair (X, τ) is a neutrosophic topological space and any neutrosophic set in τ is known as a neutrosophic open set (NOS) in X. A neutrosophic set A is a neutrosophic closed set (NCS) if and only if its complement C(A) is a neutrosophic open set in X. Here the empty set (0_N) and the whole set (1_N) may be defined as follows:

- $(0_1) \qquad 0_{\mathbb{N}} = \{ \langle x, 0, 0, 1 \rangle \colon x \in X \}$
- $(0_2) \qquad 0_{\mathbb{N}} = \{ \langle x, 0, 1, 1 \rangle : x \in X \}$
- (0₃) $0_{\rm N} = \{ \langle x, 0, 1, 0 \rangle : x \in X \}$
- $(0_4) \qquad 0_{\mathrm{N}} = \{ \langle x, 0, 0, 0 \rangle \colon x \in X \}$
- $(1_1) 1_N = \{ \langle x, 1, 0, 0 \rangle \colon x \in X \}$
- $(1_2) 1_N = \{\langle x, 1, 0, 1 \rangle : x \in X\}$
- (1₃) $1_{N} = \{\langle x, 1, 1, 0 \rangle : x \in X\}$
- $(1_4) 1_N = \{ \langle x, 1, 1, 1 \rangle : x \in X \}$

Definition 2.5: [8] Let (X, τ) be a NTS and A= { $\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle$: $x \in X$ } be a NS in X. Then the neutrosophic interior and the neutrosophic closure of A are defined by

NInt(A) = \cup { G: G is an NOS in X and G \subseteq A}

 $NCl(A) = \cap \{ K: K \text{ is an } NCS \text{ in } X \text{ and } A \subseteq K \}$

Note that for any NS A, NCl(C(A)) = C(NInt(A)) and NInt(C(A)) = C(NCl(A)).

Definition 2.6: [5] A neutrosophic set A of a neutrosophic topological space X is said to be

- (i) a neutrosophic pre-open set if $A\subseteq NInt(NCl(A))$
- (ii) a neutrosophic semi-open set if $A\subseteq NCl(NInt(A))$
- (iii) a neutrosophic α open set if A \subseteq NInt(NCl(NInt(A)))

(iv) a neutrosophic semi- α -open set if A \subseteq NCl(α NInt(A))

Definition 2.7: [5] A neutrosophic set A of a neutrosophic topological space X is said to be

- (i) a neutrosophic pre-closed set if $NCl(NInt(A)) \subseteq A$
- (ii) a neutrosophic semi-closed set if $NInt(NCl(A)) \subseteq A$
- (iii) a neutrosophic α closed set if NCl(NInt(NCl(A))) \subseteq A
- (iv) a neutrosophic semi- α -closed set if NInt(α NCl(A)) \subseteq A

Definition 2.8: [6] A neutrosophic set A in a neutrosophic topological space (X, τ) is said to be a neutrosophic regular closed set, if A = NCl(NInt(A)) and neutrosophic regular open set if NInt(NCl(A)) = A.

Definition 2.9: [7] A neutrosophic set A in a neutrosophic topological space (X, τ) is said to be a neutrosophic generalized closed set, if NCl(A) \subseteq U whenever A \subseteq U and U is a neutrosophic open set in X.

Definition 2.10: [6] A neutrosophic set (NS) A in a neutrosophic topological space (X, τ) is a neutrosophic α generalized closed set, if N α Cl(A) \subseteq U whenever A \subseteq U and U is a neutrosophic open set in X.

III. Neutrosophic Regular Generalized Closed Set

In this section, we introduce neutrosophic regular generalized closed sets and analyse some of their properties. **Definition 3.1:** A neutrosophic set A in a neutrosophic topological space (X, τ) is said to be a neutrosophic regular generalized closed set, if NCl(A) \subseteq U whenever A \subseteq U and U is a neutrosophic regular open set in X. The complement A^c of the neutrosophic regular generalized closed set is a neutrosophic regular generalized open set

Example 3.2: Let $X=\{a,b\}$ and $\tau =\{0_N,U,V,1_N\}$ where $U=\langle x, (0.6,0.7)(0.1,0.1)(0.4,0.2)\rangle$ and $V=\langle x, (0.1,0.2)(0.1,0.1)(0.8,0.8)\rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A=\langle x, (0.2,0.2)(0.1,0.1)(0.6,0.7)\rangle$ is a neutrosophic regular generalized closed set in X, since $A \subseteq U$ and U is a neutrosophic regular open set, we have NCl(A) = U^c \subseteq U.

Proposition 3.3: Every neutrosophic closed set is a neutrosophic regular generalized closed set in X, but not conversely in general.

Proof: Let U be a neutrosophic regular open set in X such that $A \subseteq U$. Since A is a neutrosophic closed set, NCl(A) = A. By hypothesis, $NCl(A) \subseteq U$. Thus A is a neutrosophic regular generalized closed set in X.

Example 3.4: Let $X = \{a,b\}$ and $\tau = \{0_N, U, V, 1_N\}$, where $U = \langle x, (0.6, 0.7)(0.1, 0.1)(0.4, 0.2) \rangle$ and $V = \langle x, (0.1, 0.2)(0.1, 0.1)(0.8, 0.8) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A = \langle x, (0.2, 0.2)(0.1, 0.1)(0.6, 0.7) \rangle$ is a neutrosophic regular generalized closed set in X. Since for $A \subseteq U$ and U is a neutrosophic regular open set, we have NCl(A) = U^c \subseteq U. But A is not a neutrosophic closed set in X as NCl(A) = U^c \neq A.

Proposition 3.5: The union of two neutrosophic regular generalized closed set is a neutrosophic regular generalized closed set in X.

Proof: Let A and B be neutrosophic regular generalized closed sets in X. Let $A \cup B \subseteq U$ and U be a neutrosophic regular open set in X, where $A \subseteq U$ and $B \subseteq U$. Then $NCl(A \cup B) = NCl(A) \cup NCl(B) \subseteq U$, by hypothesis. Hence $A \cup B$ is also a neutrosophic regular generalized closed set in X.

IV. Neutrosophic Regular α Generalized Closed Set

In this section, we introduce neutrosophic regular α generalized closed set and analyse some of their properties.

Definition 4.1: A neutrosophic set A in a neutrosophic topological space (X, τ) is said to be neutrosophic regular α generalized closed set, if N α Cl(A) \subseteq U whenever A \subseteq U and U is a neutrosophic regular open set in X.

Example 4.2:LetX={a,b}and $\tau = \{0_N, U, V, 1_N\}$, where U= $\langle x, (0.4, 0.2)(0.1, 0.1)(0.6, 0.7) \rangle$ and V= $\langle x, (0.8, 0.8)(0.1, 0.1)(0.2, 0.2) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set A= $\langle x, (0.2, 0.2)(0.1, 0.1)(0.8, 0.8) \rangle$ is a neutrosophic regular α generalized closed set in X. Since A \subseteq U and U is a neutrosophic regular open set, we have N α Cl(A) =A \cup NCl(NInt(NCl(A))) = $0_N \subseteq U$.

Proposition 4.3: Every neutrosophic closed set is a neutrosophic regular α generalized closed set in X, but not conversely in general.

Proof: Let U be a neutrosophic regular open set in X such that $A \subseteq U$. Since A is neutrosophic closed set, NCl(A) = A. By hypothesis, N α Cl(A) = A \cup NCl(NInt(NCl(A))) = A \cup NCl(NInt(A)) \subseteq A \cup NCl(A) = A \cup A = A \subseteq U. Thus A is a neutrosophic regular α generalized closed set in X.

Example 4.4: Let $X = \{a,b\}$ and $\tau = \{0_N, U, V, 1_N\}$, where $U = \langle x, (0.6, 0.7)(0.1, 0.1)(0.4, 0.2) \rangle$ and $V = \langle x, (0.1, 0.2)(0.1, 0.1)(0.8, 0.8) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A = \langle x, (0.2, 0.2)(0.1, 0.1)(0.6, 0.7) \rangle$ is a neutrosophic regular α generalized closed set in X. Since $A \subseteq U$ and U is a neutrosophic regular open set, we have $N\alpha Cl(A) = A \cup NCl(NInt(NCl(A))) = U^c \subseteq U$. But A is not a neutrosophic closed set in X as $NCl(A) = U^c \neq A$.

Proposition 4.5: Every neutrosophic regular closed set is a neutrosophic regular α generalized closed set in X, but not conversely in general.

Proof: Let U be a neutrosophic regular open set in X such that $A \subseteq U$. Since every neutrosophic regular closed set is a neutrosophic closed set, NCl(A) = A. By hypothesis, $N\alpha Cl(A) = A \cup NCl(NInt(NCl(A))) = A \cup NCl(NInt(A)) \subseteq A \cup NCl(A) = A \cup A = A \subseteq U$. Hence $N\alpha Cl(A) \subseteq U$. Thus A is a neutrosophic regular α generalized closed set in X.

Example 4.6: LetX={a,b} and $\tau = \{0_N, U, V, 1_N\}$, where U= $\langle x, (0.6, 0.7)(0.1, 0.1)(0.4, 0.2) \rangle$ and

 $V = \langle x, (0.1, 0.2)(0.1, 0.1)(0.8, 0.8) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A = \langle x, (0.2, 0.2)(0.1, 0.1)(0.6, 0.7) \rangle$ is a neutrosophic regular α generalized closed set since $N\alpha Cl(A) = A \cup NCl(NInt(NCl(A))) = U^c \subseteq U$, whenever $A \subseteq U$. But since $NCl(NInt(A)) = U^c \neq A$, A is not a neutrosophic regular closed set in X.

Proposition 4.7: Every neutrosophic α closed set is a neutrosophic regular α generalized closed set in X, but not conversely in general.

Proof: Let U be a neutrosophic regular open set in X such that $A \subseteq U$. Since A is a neutrosophic α closed set, NCl(NInt(NCl(A))) $\subseteq A$. By hypothesis, N α Cl(A) = A \cup NCl(NInt(NCl(A))) $\subseteq A \cup A = A \subseteq U$. Hence N α Cl(A) \subseteq U and A is a neutrosophic regular α generalized closed set in X.

Example 4.8: Let $X=\{a,b\}$ and $\tau=\{0_N, U, V, 1_N\}$, where $U=\langle x, (0.6, 0.7)(0.1, 0.1)(0.4, 0.2)\rangle$ and $V=\langle x, (0.1, 0.2)(0.1, 0.1)(0.8, 0.8)\rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A=\langle x, (0.2, 0.2)(0.1, 0.1)(0.6, 0.7)\rangle$ is a neutrosophic regular α generalized closed set, since $N\alpha Cl(A) = A \cup NCl(NInt(NCl(A))) = U^c \subseteq U$, whenever $A \subseteq U$ and U is a neutrosophic regular open set in X. But since $NCl(NInt(NCl(A))) = U^c \not\subseteq A$, A is not a neutrosophic α closed set in X.

Proposition 4.9: Every neutrosophic generalized closed set is a neutrosophic regular α generalized closed set in X, but not conversely in general.

Proof: Let $A \subseteq U$ and U be a neutrosophic regular open set in X. By hypothesis, NCl(A) \subseteq U, whenever $A \subseteq$ U. This implies, N α Cl(A) = A \cup NCl(NInt(NCl(A))) \subseteq A \cup NCl(A) \subseteq U. Therefore A is a neutrosophic regular α generalized closed set in X.

Example4.10:LetX={a,b}and τ ={0_N,U,V,1_N},whereU= $\langle x, (0.6,0.7)(0.1,0.1)(0.4,0.2) \rangle$ and

 $V = \langle x, (0.1, 0.2)(0.1, 0.1)(0.8, 0.8) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A = \langle x, (0.2, 0.2)(0.1, 0.1)(0.6, 0.7) \rangle$ is a neutrosophic regular α generalized closed set in X. Since $A \subseteq U$ and U is a neutrosophic regular open set, we have $N\alpha Cl(A) = A \cup NCl(NInt(NCl(A))) = U^c \subseteq U$. But A is not a neutrosophic generalized closed set in X as $NCl(A) = U^c \not\subseteq U$, whereas $A \subseteq U$.

Remark 4.11: Every neutrosophic regular α generalized closed set and neutrosophic pre-closed set in X are independent to each other in general.

Example 4.12: Let $X = \{a,b\}$ and $\tau = \{0_N, U, V, 1_N\}$, where $U = \langle x, (0.6, 0.7)(0.1, 0.1)(0.4, 0.2) \rangle$ and $V = \langle x, (0.1, 0.2)(0.1, 0.1)(0.8, 0.8) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A = \langle x, (0.2, 0.2)(0.1, 0.1)(0.6, 0.7) \rangle$ is a neutrosophic regular α generalized closed set, since $N\alpha Cl(A) = A \cup NCl(NInt(NCl(A))) = U^c \subseteq U$, whenever $A \subseteq U$. But since $NCl(NInt(A)) = U^c \not\subseteq A$, A is not a neutrosophic pre-closed set in X.

Example 4.13: Let $X=\{a,b\}$ and $\tau = \{0_N, U, V, 1_N\}$ where $U=\langle x, (0.2, 0.3)(0.1, 0.1)(0.7, 0.7)\rangle$ and $V=\langle x, (0.8, 0.7)(0.1, 0.1)(0.2, 0.2)\rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A=\langle x, (0.1, 0.2)(0.1, 0.1)(0.7, 0.8)\rangle$ is a neutrosophic pre-closed set in X, since NCl(NInt(A)) = $0_N \subseteq A$. But since N α Cl(A) = A \cup NCl(NInt(NCl(A))) = $U^c \nsubseteq U$ where $A \subseteq U$ and U is a neutrosophic regular open set in X, A is not a neutrosophic regular α generalized closed set in X.

Remark 4.14: Every neutrosophic regular α generalized closed set and neutrosophic semi-closed set in X are independent to each other in general.

Example 4.15: Let X={a,b} and $\tau = \{0_N, U, V, 1_N\}$, where U= $\langle x, (0.6, 0.7)(0.1, 0.1)(0.4, 0.2) \rangle$ and V= $\langle x, (0.1, 0.2)(0.1, 0.1)(0.8, 0.8) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set A= $\langle x, (0.2, 0.2)(0.1, 0.1)(0.6, 0.7) \rangle$ is a neutrosophic regular α generalized closed set, since N α Cl(A) = AUNCl(NInt(NCl(A))) = U^c \subseteq U, whenever A \subseteq U. But since NInt(NCl(A)) = V $\not\subseteq$ A, A is not a neutrosophic semi-closed set in X.

Example 4.16: Let $X=\{a,b\}$ and $\tau = \{0_N, U, V, 1_N\}$, where $U=\langle x, (0.5, 0.2)(0.1, 0.1)(0.5, 0.8)\rangle$ and $V=\langle x, (0.2, 0.2)(0.1, 0.1)(0.8, 0.8)\rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A=\langle x, (0.5, 0.2)(0.1, 0.1)(0.5, 0.8)\rangle$ is a neutrosophic semi-closed set in X, since NInt(NCl(A)) = U \subseteq A. But since N α Cl(A) = A \cup NCl(NInt(NCl(A))) = U^c $\not\subseteq$ U where A \subseteq U and U is a neutrosophic regular open set in X, A is not a neutrosophic regular α generalized closed set in X.

Proposition 4.17: The union of two neutrosophic regular α generalized closed set is a neutrosophic regular α generalized closed set in X.

Proof: Let A and B be the neutrosophic regular α generalized closed set in X. Let $A \cup B \subseteq U$ where U is a neutrosophic regular open set in X, Then $A \subseteq U$ and $B \subseteq U$. N α Cl($A \cup B$) = ($A \cup B$) \cup NCl(NInt(NCl($A \cup B$))) \subseteq ($A \cup B$) \cup NCl($A \cup B$) \subseteq NCl($A \cup B$) = NCl($A \cup B$) = NCl($A \cup B$) \subseteq U. Hence $A \cup B$ is also a neutrosophic regular α generalized closed set in X.

The relation between various types of neutrosophic closed sets are given in the following diagram:

Proposition 4.18: If A is both a neutrosophic regular open set and neutrosophic regular α generalized closed set in X, then A is a neutrosophic regular generalized closed set in X.

Proof: Let $A \subseteq U$ and U be a neutrosophic regular open set in X. By hypothesis, we have $N\alpha Cl(A) \subseteq U$ and $NCl(A) = NCl(NInt(NCl(A))) \subseteq A \cup NCl(NInt(NCl(A))) = N\alpha Cl(A) \subseteq U$. Hence A is a neutrosophic regular generalized closed set in X.

Proposition 4.19: If A is both a neutrosophic pre-open set and neutrosophic regular α generalized closed set in X, then A is a neutrosophic regular generalized closed set in X.

Proof: Let $A \subseteq U$ and U be a neutrosophic regular open set in X. By hypothesis we have $N\alpha Cl(A) \subseteq U$ and $NCl(A) \subseteq NCl(NInt(NCl(A))) \subseteq A \cup NCl(NInt(NCl(A))) = N\alpha Cl(A) \subseteq U$. Hence A is a neutrosophic regular generalized closed set in X.

Proposition 4.20: If A is both a neutrosophic regular open set and a neutrosophic regular α generalized closed set in X, then A is a neutrosophic α closed set in X.

Proof: As $A \subseteq A$, by the hypothesis, $N\alpha Cl(A) \subseteq A$. But we have $A \subseteq N\alpha Cl(A)$. This implies $N\alpha Cl(A) = A$. Hence A is a neutrosophic α closed set in X.

Proposition 4.21: Let A be a neutrosophic regular α generalized closed set in X and $A \subseteq B \subseteq N\alpha Cl(A)$, then B is a neutrosophic regular α generalized closed set in X.

Proof: Let $B \subseteq U$ and U is a neutrosophic regular open set in X. Then $A \subseteq U$ since $A \subseteq B$. As A is a neutrosophic regular α generalized closed set in X, $N\alpha Cl(A) \subseteq U$ and by hypothesis $B \subseteq N\alpha Cl(A)$. This implies $N\alpha Cl(B) \subseteq N\alpha Cl(A) \subseteq U$. Therefore $N\alpha Cl(B) \subseteq U$ and hence B is a neutrosophic regular α generalized closed set in X.

Proposition 4.22: If A is a neutrosophic regular generalized closed set in X and if $A \subseteq B \subseteq NCl(A)$, then B is a neutrosophic regular α generalized closed set in X.

Proof: Let $B \subseteq U$ and U is a neutrosophic regular open set in X. Then $A \subseteq U$ since $A \subseteq B$. As A is a neutrosophic regular generalized closed set in X, NCl(A) $\subseteq U$ and by hypothesis $B \subseteq NCl(A)$. This implies $N\alpha Cl(B) \subseteq NCl(B) \subseteq NCl(A) \subseteq U$. Therefore $N\alpha Cl(B) \subseteq U$ and B is a neutrosophic regular α generalized closed set in X.

V. Neutrosophic Regular Generalized Open Set

In this section, we introduce neutrosophic regular generalized open sets and analyse some of their properties. **Definition 5.1:** A neutrosophic set A in a neutrosophic topological space (X, τ) is said to be a neutrosophic regular generalized open set, if NInt(A) \supseteq U whenever A \supseteq U and U is a neutrosophic regular closed set in X.

Example 5.2: Let $X=\{a,b\}$ and $\tau =\{0_N, U, V, 1_N\}$ where $U=\langle x, (0.4, 0.5)(0.1, 0.1)(0.5, 0.7)\rangle$ and $V=\langle x, (0.8, 0.8)(0.1, 0.1)(0.2, 0.3)\rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A=\langle x, (0.6, 0.7)(0.1, 0.1)(0.2, 0.2)\rangle$ is a neutrosophic regular generalized open set in X, since $A \supseteq U^c$ and U^c is a neutrosophic regular closed set, we have NInt(A) = $U \supseteq U^c$.

Proposition 5.3: Every neutrosophic open set is a neutrosophic regular generalized open set in X, but not conversely in general.

Proof: Let U be a neutrosophic regular closed set in X such that $A \supseteq U$. Since A is a neutrosophic open set, NInt(A) = A. By hypothesis, NInt(A) \supseteq U. Thus A is a neutrosophic regular generalized open set in X.

Example 5.4: Let $X = \{a,b\}$ and $\tau = \{0_N, U, V, 1_N\}$, where $U = \langle x, (0.4, 0.2)(0.1, 0.1)(0.5, 0.7) \rangle$ and $V = \langle x, (0.8, 0.8)(0.1, 0.1)(0.2, 0.2) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A = \langle x, (0.6, 0.7)(0.1, 0.1)(0.2, 0.2) \rangle$ is a neutrosophic regular generalized open set in X. Since for $A \supseteq U^c$ and U^c is a neutrosophic regular closed set, we have $NInt(A) = U \supseteq U^c$. But A is not a neutrosophic open set in X as $NInt(A) = U \neq A$.

Proposition 5.5: The intersection of two neutrosophic regular generalized open set is a neutrosophic regular generalized open set in X.

Proof: Let A and B be neutrosophic regular generalized open sets in X. Let $A \cap B \supseteq U$ and U be a neutrosophic regular closed set in X, where $A \supseteq U$ and $B \supseteq U$. Then $NInt(A \cap B) = NInt(A) \cap NInt(B) \supseteq U$, by hypothesis. Hence $A \cap B$ is also a neutrosophic regular generalized open set in X.

VI. Neutrosophic Regular α Generalized Open Set

In this section, we introduce neutrosophic regular α generalized open set and analyse some of their properties. **Definition 6.1:** A neutrosophic set A in a neutrosophic topological space (X, τ) is said to be neutrosophic regular α generalized open set, if N α Int(A) \supseteq U whenever A \supseteq U and U is a neutrosophic regular closed set in X. The family of all neutrosophic regular α generalized open sets of an neutrosophic topological space (X, τ) is denoted by NR α GO(X).

Example 6.2:Let X={a,b}and $\tau = \{0_N, U, V, 1_N\}$, where U= $\langle x, (0.5, 0.4)(0.1, 0.1)(0.5, 0.4) \rangle$ and V= $\langle x, (0.1, 0.2)(0.1, 0.1)(0.7, 0.7) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set

A= $\langle x, (0.6, 0.7)(0.1, 0.1)(0.3, 0.1) \rangle$ is a neutrosophic regular α generalized open set in X. Since A $\supseteq U^c$ and U^c is a neutrosophic regular closed set, we have $N\alpha Int(A) = A \cap NInt(NCl(NInt(A))) = U \supseteq U^c$.

Proposition 6.3: Every neutrosophic open set is a neutrosophic regular α generalized open set in X, but not conversely in general.

Proof: Let U be a neutrosophic regular closed set in X such that $A \supseteq U$. Since A is neutrosophic open set, NInt(A) = A. By hypothesis, NaInt(A) = A \cap NInt(NCl(NInt(A))) = A \cap NInt(NCl(A)) $\supseteq A \cap$ NInt(A) = A $\cap A$ = A \supseteq U. Thus A is a neutrosophic regular α generalized open set in X.

Example 6.4: Let $X = \{a,b\}$ and $\tau = \{0_N, U, V, 1_N\}$, where $U = \langle x, (0.5, 0.4)(0.1, 0.1)(0.5, 0.4) \rangle$ and $V = \langle x, (0.1, 0.2)(0.1, 0.1)(0.7, 0.7) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A = \langle x, (0.6, 0.7)(0.1, 0.1)(0.3, 0.1) \rangle$ is a neutrosophic regular α generalized open set in X. Since $A \supseteq U^c$ and U^c is a neutrosophic regular closed set, we have $N\alpha Int(A) = A \cap NInt(NCl(NInt(A))) = U \supseteq U^c$. But A is not a neutrosophic open set in X as $NInt(A) = U \neq A$.

Proposition 6.5: Every neutrosophic regular open set is a neutrosophic regular α generalized open set in X, but not conversely in general.

Proof: Let U be a neutrosophic regular closed set in X such that $A \supseteq U$. Since every neutrosophic regular open set is a neutrosophic open set, NInt(A) = A. By hypothesis, $N\alpha$ Int(A) = A \cap NInt(NCl(NInt(A))) = A \cap A = A \supseteq U. Hence $N\alpha$ Int(A) \supseteq U. Thus A is a neutrosophic regular α generalized closed set in X.

Example 6.6:Let X={a,b}and $\tau = \{0_N, U, V, 1_N\}$, where U= $\langle x, (0.5, 0.4)(0.1, 0.1)(0.5, 0.4) \rangle$ and

 $V = \langle x, (0.1, 0.2)(0.1, 0.1)(0.6, 0.6) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A = \langle x, (0.6, 0.7)(0.1, 0.1)(0.3, 0.1) \rangle$ is a neutrosophic regular α generalized open set since $N\alpha Int(A) = A \cap NInt(NCl(NInt(A))) = U \supseteq U^c$, whenever $A \supseteq U^c$. But since $NInt(NCl(A)) = 1_N \neq A$, A is not a neutrosophic regular open set in X.

Proposition 6.7: Every neutrosophic α open set is a neutrosophic regular α generalized open set in X, but not conversely in general.

Proof: Let U be a neutrosophic regular closed set in X such that $A \supseteq U$. Since A is a neutrosophic α open set, A \subseteq NInt(NCl(NInt(A))). By hypothesis, N α Int(A) = A \cap NInt(NCl(NInt(A))) \supseteq A \cap A = A \supseteq

U. Hence $N\alpha Int(A) \supseteq U$ and A is a neutrosophic regular α generalized open set in X.

Example 6.8: Let X={a,b} and τ ={0_N,U,V,1_N},where U= $\langle x, (0.5,0.4)(0.1,0.1)(0.5,0.4) \rangle$ and

 $V = \langle x, (0.1, 0.2)(0.1, 0.1)(0.7, 0.7) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A = \langle x, (0.6, 0.7)(0.1, 0.1)(0.3, 0.1) \rangle$ is a neutrosophic regular α generalized open set, since $N\alpha Int(A) = A \cap NInt(NCl(NInt(A))) = U \supseteq U^c$, whenever $A \supseteq U^c$. But since $NInt(NCl(NInt(A))) = U \supseteq A$, A is not a neutrosophic α open set in X.

Proposition 6.9: Every neutrosophic generalized open set is a neutrosophic regular α generalized open set in X, but not conversely in general.

Proof: Let $A \supseteq U$ and U be a neutrosophic regular closed set in X. By hypothesis, $NInt(A) \supseteq U$, whenever $A \supseteq U$. This implies, $N\alpha Int(A) = A \cap NInt(NCl(NInt(A))) \supseteq A \cap NCl(A) \supseteq U$. Therefore A is a neutrosophic regular α generalized open set in X.

Example 6.10: LetX={a,b}and τ ={0_N,U,V,1_N},where U=(x, (0.6,0.7)(0.1,0.1)(0.2,0.2)) and

 $V = \langle x, (0.1, 0.2)(0.1, 0.1)(0.8, 0.8) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A = \langle x, (0.7, 0.8)(0.1, 0.1)(0.1, 0.2) \rangle$ is a neutrosophic regular α generalized closed set in X. Since $A \supseteq U^c$ and U^c is a neutrosophic regular closed set, we have $N\alpha Int(A) = A \cup NInt(NCl(NInt(A))) = A \supseteq U^c$. But A is not a neutrosophic generalized closed set in X as $NCl(A) = U \not\supseteq U^c$. Whereas $A \supseteq U^c$.

Remark 6.11: Every neutrosophic regular α generalized open set and neutrosophic pre-open set in X are independent to each other in general.

Example 6.12: Let $X = \{a,b\}$ and $\tau = \{0_N, U, V, 1_N\}$, where $U = \langle x, (0.5, 0.7)(0.1, 0.1)(0.4, 0.2) \rangle$ and $V = \langle x, (0.2, 0.2)(0.1, 0.1)(0.8, 0.8) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A = \langle x, (0.6, 0.7)(0.1, 0.1)(0.2, 0.2) \rangle$ is a neutrosophic regular α generalized open set, since $N\alpha Int(A) = A \cap NInt(NCl(NInt(A))) = U \supseteq U^c$, whenever $A \supseteq U^c$ and U^c is a neutrosophic regular closed set in X. But since $NInt(NCl(A)) = U \supseteq A$, A is not a neutrosophic pre-open set in X.

Example 6.13: Let $X=\{a,b\}$ and $\tau = \{0_N, U, V, 1_N\}$ where $U=\langle x, (0.2, 0.3)(0.1, 0.1)(0.6, 0.7)\rangle$ and $V=\langle x, (0.8, 0.7)(0.1, 0.1)(0.1, 0.1)\rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set $A=\langle x, (0.7, 0.8)(0.1, 0.1)(0.1, 0.2)\rangle$ is a neutrosophic pre-open set in X, since NInt(NCl(A)) = $1_N \supseteq A$. But since N α Int(A) = A \cap NInt(NCl(NInt(A))) = U $\supseteq U^c$ where A $\supseteq U^c$ and U^c is a neutrosophic regular closed set in X, A is not a neutrosophic regular α generalized open set in X.

Remark 6.14: Every neutrosophic regular α generalized open set and neutrosophic semi-open set in X are independent to each other in general.

Example 6.15: Let X={a,b} and $\tau = \{0_N, U, V, 1_N\}$, where U= $\langle x, (0.6, 0.7)(0.1, 0.1)(0.4, 0.2) \rangle$ and V= $\langle x, (0.1, 0.2)(0.1, 0.1)(0.7, 0.8) \rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set A= $\langle x, (0.8, 0.7)(0.1, 0.1)(0.2, 0.1) \rangle$ is a neutrosophic regular α generalized open set, since N α Int(A) = A \cap NInt(NCl(NInt(A))) = U \supseteq U^c, whenever A \supseteq U^c. But since NCl(NInt(A)) = V^c $\not\supseteq$ A, A is not a neutrosophic semi-open set in X.

Example 6.16: Let X={a,b} and $\tau = \{0_N, U, V, 1_N\}$ where U= $\langle x, (0.5, 0.2)(0.1, 0.1)(0.5, 0.8)\rangle$ and V= $\langle x, (0.2, 0.2)(0.1, 0.1)(0.8, 0.8)\rangle$, then (X, τ) is a neutrosophic topological space. Here the neutrosophic set A= $\langle x, (0.5, 0.8)(0.1, 0.1)(0.5, 0.2)\rangle$ is a neutrosophic semi-open set in X, since NCl(NInt(A)) = U^c \supseteq A. But since NaInt(A) = A \cap NInt(NCl(NInt(A))) = U \supseteq U^c where A \supseteq U^c and U^c is a neutrosophic regular closed set in X, A is not a neutrosophic regular α generalized open set in X.

The relation between various types of neutrosophic open sets are given in the following diagram:

Proposition 6.17: The intersection of two neutrosophic regular α generalized open sets is a neutrosophic regular α generalized open set in X.

Proof: Let A and B be the neutrosophic regular α generalized open sets in X. Let $A \cap B \supseteq U$ and U be a neutrosophic regular closed set in X, where $A \supseteq U$ and $B \supseteq U$. Then $N\alpha Int(A \cap B) = (A \cap B) \cap NInt(NCl(NInt(A \cap B))) \supseteq (A \cap B) \cap NInt(A \cap B) = (A \cap B) \cap NInt(A) \cap NInt(B) \supseteq U$, by hypothesis. Hence $A \cap B$ is also a neutrosophic regular α generalized open set in X.

Proposition 6.18: If A is both a neutrosophic regular closed set and neutrosophic regular α generalized open set in X, then A is a neutrosophic regular generalized open set in X.

Proof: Let $A \supseteq U$ and U be a neutrosophic regular closed set in X. By hypothesis, we have $N\alpha Int(A) \supseteq U$ and $NInt(A) = NInt(NCl(NInt(A))) \supseteq A \cap NInt(NCl(NInt(A))) = N\alpha Int(A) \supseteq U$. Hence A is a neutrosophic regular generalized open set in X.

Proposition 6.19: If A is both a neutrosophic pre-closed set and neutrosophic regular α generalized open set in X, then A is a neutrosophic regular generalized open set in X.

Proof: Let $A \supseteq U$ and U be a neutrosophic regular closed set in X. By hypothesis we have $N\alpha Int(A) \supseteq U$ and $NInt(A) \supseteq NInt(NCl(NInt(A))) \supseteq A \cap NCl(NInt(NCl(A))) = N\alpha Int(A) \supseteq U$. Hence A is a neutrosophic regular generalized open set in X.

Proposition 6.20: Let A be a neutrosophic regular α generalized open set in X and $A \supseteq B \supseteq N\alpha Int(A)$, then B is a neutrosophic regular α generalized open set in X.

Proof: Let A be a neutrosophic regular α generalized open set in X and B be a neutrosophic set in X. Let $A \supseteq B \supseteq N\alpha Int(A)$. Then A^c is a neutrosophic regular α generalized closed set in X and $A^c \subseteq B^c \subseteq N\alpha Cl(A^c)$. Then B^c is a neutrosophic regular α generalized closed set in X [5]. Hence B is a neutrosophic regular α generalized closed set in X.

Proposition 6.21: If A is a neutrosophic regular closed set in X and a neutrosophic regular α generalized open set in X. Then A is a neutrosophic α open set in X.

Proof: As $A \supseteq A$, by the hypothesis, NaInt(A) $\supseteq A$. But we have $A \supseteq NaInt(A)$. This implies NaInt(A) = A. Hence A is a neutrosophic α open set in X.

Proposition 6.22: Let (X,τ) be a neutrosophic topological space and every B be a neutrosophic regular closed set, $B \subseteq A \subseteq \text{NInt}(\text{NCl}(B))$. Then A is a neutrosophic regular α generalized open set in X.

Proof: Let B be a neutrosophic regular closed set in X. Then B = NCl(NInt(B)). By hypothesis, $A \subseteq NInt(NCl(B)) \subseteq NInt(NCl(NInt(B))) \subseteq NInt(NCl(NInt(B))) \subseteq NInt(NCl(NInt(A)))$. Therefore A is a neutrosophic α open set. Since every neutrosophic α open set is a neutrosophic regular α generalized open set, A is a neutrosophic regular α generalized open set in X.

VII. Applications of Neutrosophic Regular α Generalized Closed Sets

In this section we introduce neutrosophic regular $\alpha T_{1/2}$ space, neutrosophic regular $\alpha T^*_{1/2}$ space, neutrosophic regular α generalized $T_{1/2}$ space and proved their characterizations.

Definition 7.1: A neutrosophic topological space (X,τ) is said to be a neutrosophic regular α T_{1/2} space, if every neutrosophic regular α generalized closed set is a neutrosophic α closed set in X.

Definition 7.2: A neutrosophic topological space (X,τ) is said to be a neutrosophic regular $\alpha T^*_{1/2}$ space, if every neutrosophic regular α generalized closed set is a neutrosophic closed set in X.

Proposition 7.3: A neutrosophic topological space (X,τ) is a neutrosophic regular $\alpha T_{1/2}$ space if and only if, every neutrosophic α open set is a neutrosophic regular α generalized open set in X.

Proof: Necessity: Let A be a neutrosophic regular α generalized open set in X, then A^c is a neutrosophic regular α generalized closed set in X. By hypothesis, A^c is a neutrosophic α closed set in X. Therefore, A is a neutrosophic α open set in X.

Sufficiency: Let A be a neutrosophic regular α generalized closed set in X, then A^c is a neutrosophic regular α generalized open set in X. By hypothesis, A^c is a neutrosophic α open set in X. Therefore, A is a neutrosophic α closed set in X. Hence (X,τ) is a neutrosophic regular $\alpha T_{1/2}$ space.

Proposition 7.4: For a neutrosophic regular $\alpha T_{1/2}$ space in (X, τ), the following properties are equivalent:

(i) A∈NRαGO(X)

(ii) $A \subseteq NInt(NCl(NInt(A)))$

(iii) There exists neutrosophic open set G such that $G \subseteq A \subseteq NInt(NCl(G))$.

Proof:(i) \Rightarrow (ii): is obvious.

(ii) \Rightarrow (iii): Let $A \in NInt(NCl(NInt(A)))$. Then $NInt(A) \subseteq A \subseteq NInt(NCl(NInt(A)))$. Therefore we have a neutrosophic open set G = NInt(A) in X such that $G \subseteq A \subseteq NInt(NCl(G))$.

(iii) \Rightarrow (i): Suppose there exists a neutrosophic open set G = NInt(A) such that

 $G \subseteq A \subseteq \text{NInt}(\text{NCl}(G))$, then $(\text{NInt}(\text{NCl}(G)))^c \subseteq A^c$. That is $(\text{NInt}(\text{NCl}(\text{NInt}(A))))^c \subseteq A^c$ which implies $\text{NCl}(\text{NInt}(\text{NCl}(A^c))) \subseteq A^c$. Therefore, A^c is a neutrosophic α closed set in X. Then A is a neutrosophic α open set in X and A is a neutrosophic α generalized open set in X. Hence $A \in \text{NR}\alpha GO(X)$.

Definition 7.5: A neutrosophic topological space (X, τ) is said to be a neutrosophic regular α generalized T_{1/2} space, if every neutrosophic regular α generalized closed set in X is a neutrosophic α generalized closed set in X.

Proposition 7.6: If a neutrosophic topological space (X, τ) is a neutrosophic regular α generalized $T_{1/2}$ space, then every neutrosophic regular α generalized open set is a neutrosophic α generalized open set.

Proof: Let A be a neutrosophic regular α generalized open set in X. This implies A^c is a neutrosophic regular α generalized closed set in X. Since X is a neutrosophic regular α generalized T_{1/2} space, then A^c is a neutrosophic α generalized closed set in X. Hence A is a neutrosophic α generalized open set in X.

References

- [1]. Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986,87-96.
- [2]. Chang, C., Fuzzy topological spaces, J.Math.Anal.Appl., 1968,182-190.
- [3]. Coker, D., An Introduction to Intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 1997, 81-89.
- [4]. Floretin Smarandache., Neutrosophic set: A generalization of Intuitionistic fuzzy set, Jour. of Defense Resources Management, 2010,107-116.
- [5]. Ishwarya, P., and Bageerathi, K., On Neutrosophic semi-open sets in neutrosophic topological spaces, International Jour. of Math. Trends and Tech.2016, 214-223.
- [6]. Jayanthi, D., On α Generalized closed sets in neutrosophic topological spaces, International Conference on Recent Trends in Mathematics and Information Technology (ICRMIT 2018).
- [7]. **Pushpalatha, A.**, and **Nandhini, T.**, Generalized closed sets via neutrosophic topological Spaces, Malaya Journal of Matematik, Vol. 7, No. 1, 2019,50-54.
- [8]. Salama, A. A., and Alblowi, S. A., Neutrosophic set and neutrosophic topological Spaces, IOSR Jour. of Mathematics, 2012, 31-35.
- [9]. Zadeh, L.A., Fuzzy sets, Information and Control, 1965, 338-353.

_____.

Harshitha A. "Regular α Generalized Closed Set in Neutrosophic Topological Spaces." IOSR Journal of Mathematics (IOSR-JM) 15.2 (2019): 11-18.