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Abstract: Based on the theories of AG-groupoid, neutrosophic extended triplet (NET) and 

semigroup, the characteristics of regular cyclic associative groupoids (CA-groupoids) and cyclic 

associative neutrosophic extended triplet groupoids (CA-NET-groupoids) are further studied, and 

some important results are obtained. In particular, the following conclusions are strictly proved: (1) 

an algebraic system is a regular CA-groupoid if and only if it is a CA-NET-groupoid; (2) if (S, *) is a 

regular CA-groupoid, then every element of S lies in a subgroup of S, and every -class in S is a 

group; and (3) an algebraic system is an inverse CA-groupoid if and only if it is a regular CA-

groupoid and its idempotent elements are commutative. Moreover, the Green relations of CA-

groupoids are investigated, and some examples are presented for studying the structure of regular 

CA-groupoids. 
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1. Introduction 

The theory of group is an essential branch of algebra. The research of group has become an 

important trend in the theory of semigroup. Various algebraic structures are related to groups, such 

as regular semigroups, generalized groups, and neutrosophic extended triplet groups (see [1–6]). 

With the development of semigroup, the study of generalized regular semigroup has become an 

important topic. This paper focuses on the regularity of non-associative algebraic structures 

satisfying the cyclic associative law: x(yz) = z(xy). 

As early as 1954, Sholander [7] used the term of cyclic associative law to express the following 

operation law: (ab)c = (bc)a. Obviously, its dual form is as follows: a(bc) = c(ab). At the same time, in 

1954, Hosszu also used the term of cyclic associative law in the study of functional equation (see the 

introduction and explanation by Maksa [8]). In 1995, Kleinfeld [9] studied the rings with cyclic 

associative law x(yz) = y(zx). Moreover, Zhan and Tan [10] introduced the notion of left weakly 

Novikov algebra. In many fields (such as non-associative rings and non-associative algebras [11–14]), 

image processing [15], and networks [16]), non-associativity has essential research significance. Since 

cyclic associative law is widely used in algebraic systems, we have been focusing on the basic 

algebraic structure of cyclic associative groupoids (CA-groupoids) and other relevant algebraic 

structures (see [17,18]). 

Smarandache first proposed the new concept of neutrosophic set in [19]. The theory of 

neutrosophic set has been applied in many fields, such as applying neutrosophic soft sets in decision 

making, and proposing a new model of similarity in medical diagnosis and verifying its validity of l 
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through a numerical example with practical background [20]. Later, Smarandache and colleagues 

extended the neutrosophic logic to the neutrosophic extended triplet group (NETG) [6]. In this paper, 

we analyze the structure of cyclic associative neutrosophic extended triplet groupoids (CA-NET-

Groupoids). 

Green’s relations, first studied by Green [21] in 1951, have played a fundamental role in the 

development of regular semigroup theory. This has in turn completely illustrated the effectiveness 

of Green’s method in studying semigroups, especially regular semigroups. Research on the Green 

relations of regular semigroups is at the core, and it involves almost all aspects of semigroup algebra 

theory. In 2011, Mary [22] studied the generalized inverse of semigroups by means of Green’s 

relations. In 2017, Kufleitner and Manfred [23] considered the complexity of Green’s relations when 

the semigroup is given by transformations on a finite set. This paper focuses on the Green’s relations 

of CA-groupoids, in particular regular CA-groupoids. Recently, we analyzed these new results and 

studied them from the perspective of CA-groupoid theory. Miraculously, we obtained some 

unexpected results that, if S is a regular CA-groupoid, then every element of S lies in a subgroup of 

S, and every -class in S is a group. 

The rest of this paper is organized as follows. In Section 2, we give the related concepts and 

results of the CA-groupoid. In Section 3, we give some basic concepts and examples of regular 

elements, strongly regular elements, inverse elements, and local associative and quasi-regular 

elements. In Section 4, we prove the equivalence of regular CA-groupoids and CA-NET-groupoids, 

and give corresponding examples. In Section 5, we discuss the Green’s relations of CA-groupoids 

and the Green’s relations of regular CA-groupoids. In Section 6, we propose a new concept of inverse 

CA-groupoids and prove that regular CA-groupoids, strongly regular CA-groupoids, CA-NET-

groupoids, inverse CA-groupoids and commutative regular semigroups are equivalent. Finally, the 

summary and plans for future work are presented in Section 6. 

2. Preliminaries 

In this section, we give the related research and results of the CA-groupoid. Some related notions 

are introduced. 

A groupoid is a pair (S, ×) where S is a non-empty set together with a binary operation ×. 

Traditionally, the × operator is omitted without confusion. 

Definition 1. ([4,5]) A groupoid (S, ×) is called a neutrosophic extended triplet-groupoid NET-groupoid) if, 

for any a ∈ S, there exist a neutral of “a” (denoted by neut(a)), and an opposite of “a” (denoted by anti(a)), 

such that neut(a) ∈ S, anti(a) ∈ S, and: 

a × neut(a) = neut(a) × a = a; a × anti(a) = anti(a) × a = neut(a)  

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet. 

Let (S, ×) be a groupoid. Some concepts are defined as follows: 

(1) An element a ∈ S is called idempotent if a² = a. 

(2) S is called semigroup if, for any a, b, c ∈ S, a  × (b  × c )  = (a × b) × c. A semigroup (S, ×) is 

commutative if, for all a, b ∈ S, a  × b = b  × a . 

Here, recall some basic concepts in the semigroup theory. A non-empty subset A of a semigroup 

(S, ×) is called a left ideal if SA ⊆ A, a right ideal if AS ⊆ A, and an ideal if it is both a left and a right 

ideal. If a is an element of a semigroup (S, ×), the smallest left ideal containing a is Sa ∪ {a}, which 

we may conveniently write as S1a. 

An element a of a semigroup S is called regular if there exists x in S such that a × x × a = a. The 

semigroup S is called regular if all its elements are regular. 

Among idempotents in an arbitrary semigroup, there is a natural (partial) order relation defined 

by the rule that e ≤ f if and only if e × f = f × e = e. It is easy to verify that the given relation has the 

properties (reflexive), (antisymmetric) that define an order relation. Certainly, it is clear that e ≤ e, and 

that e ≤ f and f ≤ e together implies that e = f. To show transitivity, notice that, if e ≤ f and f ≤ g, so that 
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e × f = f × e = e and f × g = g × f =f, then e × g = e × f × g = e × f = e and g × e = g × f × e = f × e =e, and thus e ≤ 

g. 

Let S be a regular semigroup and let E(S) denote the set of idempotents of S. For each e ∈ E(S), 

let Ge be a subgroup of S with identity e. If T(S) = ∪ (Ge: e ∈ E(S)) is a subsemigroup and e, f, g ∈ 

E(S), e ≥ f , and e ≥ g imply f × g = g × f, we term S a strongly regular semigroup [24]. 

An equivalent relation on S is defined by the rule that a b if and only if S1a = S1b; an equivalent 

relation on S is defined by the rule that a b if and only if aS1 = bS1; denote  = ∩ ,  = 

∪ , that is, a b if and only if S1a = S1b and aS1 = bS1; a b if and only if S1a = S1b or aS1 = bS1. An 

equivalent relation on S is defined by the rule that a b if and only if S1aS1 = S1bS1, where: 

S1aS1 = SaS ∪ aS ∪ Sa ∪ {a}.  

That is, a b if and only if there exists x, y, u, v ∈ S1 for which x  × a  × y = b, u  × b  × v = a. The

-class ( -class, -class, -class, -class) containing the element a is written a ( a, a, a,

a). 

Definition 2. ([7–10,25]) Let (S, ×) be a groupoid. If, for all a, b, c ∈ S, 

a  × (b  × c)  = c  × (a  × b) ,   

then (S, ×) is called a cyclic associative groupoid (shortly, CA-groupoid). 

Proposition 1. ([25]) Let (S, ×) be a CA-groupoid. Then, for any a, b, c, d, x, y ∈ S, 

(1) (a × b) × (c × d) = (d  × a)  × (c  × b) ; and 

(2) (a  × b)  × ((c  × d)  × (x  × y))  = (d  × a)  × ((c  × b)  × (x  × y)) . 

Definition 3. ([25]) A NET-groupoid (S, ×) is called cyclic associative (shortly, CA-NET-groupoid) if it is 

cyclic associative as a groupoid. S is called a commutative CA-NET-groupoid if, for all a, b ∈ N, a  × b = b  × 

a. 

Theorem 1. ([25]) Let (S, ×) be a CA-NET-groupoid. Then, for any a, p, q ∈ N and anti(a)  ∈ {anti(a)}, 

(1) q  × neut(a)  ∈ {anti(a)}, for all q ∈ {anti(a)}; 

(2) p  × neut(a) =  q  × neut(a), for all p, q ∈ {anti(a)}; and  

(3) neut(p) × neut(a) = neut(a) × neut(p) = neut(a), for all p ∈ {anti(a)}. 

Remark 1. Since there may be more than one anti-element of an element a, the symbol {anti(a)} is used to 

represent the set of all anti elements of a. Therefore, the meaning of q ∈ {anti(a)} is that q is an anti-element of 

a. 

Theorem 2. ([25]) Let (S, ×) be a CA-NET-groupoid. Denote the set of all different neutral element in S by 

E(S). For any e ∈ E(S), denote S(e) = {a ∈ S| neut(a) = e}. Then, for any e ∈ E(S), S(e) is a subgroup of S. 

3. Regular and Inverse Elements in Cyclic Associative Groupoids (CA-Groupoids) 

Definition 4. An element a of a CA-groupoid (S, ×) is called regular if there exists x ∈ S such that  

a = a  × (x  × a)   

(S, ×) is called a regular CA-groupoid if all its elements are regular. 

Definition 5. An element a of a CA-groupoid (S, ×) is called strongly regular if there exists x ∈ S such that 

a = a  × (x  × a)  and a = (a  × x)  × a  

(S, ×) is called strongly regular CA-groupoid if all its elements are strongly regular. 
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Example 1. Denote S = {a, b, c} and define operations × on S, as shown in Table 1. We can verify that a is 

strongly regular, since a = a  × (a  × a)  = (a  × a)  × a; b is regular, since b = b  × (b  × b) . However, b is not 

strongly regular, since b ≠ (b  × b)  × b,  and there does not exist x ∈ S such that b = b  × (x  × b)  = (b  × x)  × 

b. 

Table 1. The operation × on S. 

× a b c 

a a a c 

b b a c 

c c c c 

Example 2. Let S = {1, 2, 3, 4}. The operation × on S is defined as Table 2. We can verify that (S, ×) is a 

commutative semigroup, then for any a, b, c ∈ S, we have a  × (b  × c)  = (a  × b)  × c = c  × (a  × b) . Thus, (S, 

×) is a commutative CA-groupoid. Moreover, (S, ×) is an AG-groupoid because (S, ×) is a commutative CA-

groupoid. In addition, (S, ×) is a regular semigroup, because 1 = 1 × 1 × 1, 2 = 2  × 2  × 2, 3 = 3 × 1 × 3, 4 = 4 × 

2 × 4. (S, ×) is also a regular CA-groupoid, since 1 = 1 × (1 × 1), 2 = 2 × (2 × 2), 3 = 3 × (1 × 3), 4 = 4 × (2 × 4). 

(S, ×) is also a regular AG-groupoid, since 1 = (1 × 1) × 1, 2 = (2 × 2) × 2, 3 = (3 × 1) × 3, 4 = (4 × 4) × 4. 

Table 2. The operation × on S. 

× 1 2 3 4 

1 1 2 3 4 

2 2 1 4 3 

3 3 4 3 4 

4 4 3 4 3 

Example 3. Let S = {1, 2, 3, 4, 5}. The operation × on S is defined as Table 3. We can verify that (S, ×) is a 

strongly regular semigroup. However, (S, ×) is not a CA-groupoid because 3 × (4 × 5) 5 × (3 × 4). 

Table 3. The operation × on S. 

× 1 2 3 4 5 

1 1 1 1 1 1 

2 1 2 1 1 5 

3 1 1 3 4 1 

4 1 4 1 1 3 

5 1 1 5 2 1 

Example 4. Let S = {1, 2, 3, 4}. The operation × on S is defined as Table 4. We can verify that (S, ×) is a strongly 

regular CA-groupoid, since 1 = 1 × (1 × 1) = (1 × 1) × 1, 2 = 2 × (4 × 2) = (2 × 4) × 2, 3 = 3 × (3 × 3) = (3 × 3) × 

3, 4 = 4 × (2 × 4) = (4 × 2) × 4. (S, ×) is also a strongly regular semigroup. 

Table 4. The operation × on S. 

× 1 2 3 4 

1 1 1 1 1 

2 1 4 2 3 

3 1 2 3 4 

4 1 3 4 2 

An idea of great important in CA-groupoid theory is that of an inverse of an element. 

Definition 6. For any element a in a CA-groupoid S, we say that a−1 is an inverse of a if satisfied 

a = a × (a−1 × a), a−1 × (a × a−1) = a−1 (1) 
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Notice that an element with an inverse is necessarily regular. Less obviously, each regular element has an 

inverse; for if a × (x × a) = a we need only define a−1 = x × (a × x) and verify that Equation (1) are satisfied. 

Theorem 3. Let (S, ×) be a regular CA-groupoid; then, each of its elements has an inverse and the inverse is 

unique. 

Proof. Let x1, x2 be inverses of a in S. Then, we have a = a × (x1 × a), x1 = x1 × (a × x1) and a = a × (x2 × a), 

x2 = x2 × (a × x2), 

x1 = x1 × (a × x1) = x1 × (x1 × a) = x1 × (x1 × (a × (x2 × a))) = x1 × (x1 × (a × (a × x2)))  

= x1 × ((a × x2) × (x1 × a)) 
 

= x1 × ((a × a) × (x1 × x2)) (Applying Proposition 1) 

= (x1 × x2) × (x1 × (a × a)) = (x1 × x2) × (a × (x1 × a)) = (x1 × x2) × a. 
 

Similarly, we can get that x2 = (x2 × x1) × a. 

Then, we have 

(x1 × a) × x2 = (x1 × a) × ((x2 × x1) × a) = a × ((x1 × a) × (x2 × x1)) = (x2 × x1) × (a × (x1 × a)) = 

(x2 × x1) × a = x2, 
 

x1 × x2 = x1 × ((x2 × x1) × a) = a × (x1 × (x2 × x1)) = (x2 × x1) × (a × x1)  

= (x1 × x2) × (a × x1) (Applying Proposition 1)  

= x1 × ((x1 × x2) × a) = x1 × x1.  

Similarly, we can get that x2 × x1 = x2 × x2. Further, we have, 

x1×x2 = x1×((x1×a)×x2) = x2×(x1×(x1×a)) = x2×(a×(x1×x1)) = (x1×x1)×(x2×a) = (x1×x2)×(x2×a)  

= (a×x1)×(x2×x2) (Applying Proposition 1) 

= (a×x1)×(x2×x1) 

= (x1×a)×(x2×x2) (Applying Proposition 1 and x2×x1 = x2×x2) 

= x2×((x1×a)×x2) = x2×x2. 

 

Thus, x1×x2 = x2×x1, x1= (x1 × x2) × a= (x2 × x1) × a = x2. 

Therefore, in a regular CA-groupoid, each of its elements has an inverse and the inverse is 

unique. □ 

Example 5. Let S = {1, 2, 3, 4, 5, 6}. The operation × on S is defined as Table 5. We can verify that (S, ×) is a 

CA-groupoid; element 3 is an inverse of 3 because 3 = 3×(3×3), 3 = 3×(3×3), obviously element 3 is a regular; 

and element 5 is an inverse of 5 since 5 = 5×(5×5), 5 = 5×(5×5), obviously element 5 is a regular. However, 

elements 1, 2, 4, and 6 have no inverses because there exists no x, y, p, qS such that 1 = 1×(x×1), x = x×(1×x); 

2 = 2×(y×2), y = y×(2×y); 4 = 4×(p×4), p = p×(4×p); and 6 = 6×(q×6), q = q×(6×q). Obviously, for any a ∈ S, if 

a  ∉ a×S, then a has not inverse. 

Table 5. The operation × on S. 

× 1 2 3 4 5 6 

1 2 3 3 3 5 2 

2 4 3 3 3 5 2 

3 3 3 3 3 5 2 

4 3 3 3 3 5 2 

5 5 5 5 5 3 5 

6 4 3 3 3 5 3 
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Example 6. Let S = {1, 2, 3, 4, 5, 6}. The operation × on S is defined as Table 6. We can verify that (S, ×) is a 

regular CA-groupoid, since 1 = 1×(1×1), 2 = 2×(2×2), 3 = 3×(3×3), 4 = 4×(4×4), 5 = 5×(5×5), 6 = 6×(6×6), and 

the inverse is unique. 

Table 6. The operation × on S. 

× 1 2 3 4 5 6 

1 1 2 5 5 5 6 

2 2 1 5 5 5 6 

3 5 5 3 4 5 6 

4 5 5 4 3 5 6 

5 5 5 5 5 5 6 

6 6 6 6 6 6 5 

Definition 7. An element a of a CA-groupoid (S, ×) is called locally associative if satisfied 

a×(a×a) = (a×a)×a.  

(S, ×) is called locally associative CA-groupoid if all its elements are locally associative. 

Example 7. Let S = {1, 2, 3, 4, 5}. The operation × on S is defined as Table 7. We can verify that (S, ×) is a 

locally associative CA-groupoid, since 1×(1×1) = (1×1)×1, 2×(2×2) = (2×2)×2, 3×(3×3) = (3×3)×3, 4×(4×4) = 

(4×4)×4, and 5×(5×5) = (5×5)×5. However, (S, ×) is not a semigroup because (3×4)×3 3×(4×3). 

Table 7. The operation × on S. 

× 1 2 3 4 5 

1 1 1 1 1 2 

2 1 1 2 1 2 

3 1 1 4 2 4 

4 1 1 2 1 2 

5 1 1 4 2 4 

Definition 8. An element a of a CA-groupoid (S, ×) is called quasi-regular if there exists x ∈ S, m ∈ N such 

that  

am×(x×am) = am. (am is defined by a×am−1)  

(S, ×) is called quasi-regular CA-groupoid if all its elements are quasi-regular. 

Example 8. Let S = {1, 2, 3, 4}. The operation × on S is defined as Table 8. We can verify that (S, ×) is a quasi-

regular CA-groupoid, since 1 = 12×(3×12), 2 = 2×(2×2), 3 = 3×(3×3), 42 = 42×(2×42). However, (S, ×) is not a 

regular CA-groupoid because there exists no x, yS such that 1 = 1×(x×1), 4 = 4×(y×4). Moreover, (S, ×) is not 

a semigroup because (4×1)×1 ≠ 4×(1×1). 

Table 8. The operation × on S 

× 1 2 3 4 

1 3 2 3 2 

2 2 2 2 2 

3 3 2 3 2 

4 4 2 2 2 

Definition 9. Let (S, ×) be a groupoid. If for all a, b, c ∈ S, 

a×(b×c) = (a×b)×c, a×(b×c) = c×(a×b),  

then (S, ×) is called cyclic associative semigroup (shortly, CA-semigroup). 
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Example 9. Suppose S = {1, 2, 3, 4} and define a binary operation × on S as shown in Table 9. We can verify 

that (S, ×) is a CA-groupoid, but (S, ×) is not a CA-semigroup because (3×4)×3 ≠ 3×(4×3). 

Table 9. The operation × on S. 

× 1 2 3 4 

1 1 1 1 1 

2 1 1 2 1 

3 1 1 4 2 

4 1 1 2 1 

Obviously on the CA-groupoid S, there is: strongly regular element  regular element  

inverse element  quasi-regular element. 

According to Examples 1, 2, and 5–9, we can get the relationship between CA-groupoids and 

related algebraic systems, which we can be expressed as Figure 1. 

Remark 2. In Figure 1, each letter only indicates the smallest area in which it is located. Here, A represents 

the set of all strongly regular CA-groupoids, and 

A B represents the set of all regular CA-groupoids; 

A B C represents the set of all CA-semigroups; 

A B C D represents the set of all quasi-regular CA-groupoids; 

A B C D E represents the set of all locally associative CA-groupoids; 

A B C D E F represents the set of all CA-groupoids; and 

A B C G represents the set of all semigroups. 

 

Figure 1. The relationships among some algebraic systems. 

3. Regular Cyclic Associative Groupoids (CA-Groupoids) and Cyclic Associative Neutrosophic 

Extended Triplet Groupoids (CA-NET-Groupoids) 

Theorem 4. Let (S, ×) be a CA-NET-groupoid. Then, its idempotents are commutative. 

Proof. Let a, b an idempotent in S; then, we have 

(a×b)×(a×b) = (b×a)×(a×b) (Applying Proposition 1)  

= (b×b)×(a×a) (Applying Proposition 1) = b×a. 

 

Moreover, 

(a×b)×(a×b) = (b×(neut(b)×a))×(a×b) 

     = (b×b)×(a×(neut(b)×a)) (Applying Proposition 1) 
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= (b×b)×(a×(a×neut(b))) = (b×b)×(neut(b)×(a×a)) 

= b×(neut(b)×a) = a×(b×neut(b)) = a×b. 

Therefore, a×b = b×a. In a CA-NET-groupoid, its idempotents are commutative. □ 

Corollary 1. Every CA-NET-groupoid is commutative. 

Proof. Let (S, ×) be a CA-NET-groupoid. By Theorem 4, for any x ∈ S, neut(x) is idempotent. Then, 

for any a, b ∈ S, we have 

neut(a)×neut(b) = neut(b)×neut(a),  

Furthermore, 

neut(a)×b = neut(a)×(neut(b)×b) = b×(neut(a)×neut(b))  

= neut(b)×(b×neut(a)) =(neut(b)×neut(b))×(b×neut(a))  

= (neut(a)×neut(b))×(b×neut(b)) (Applying Proposition 1)  

= (neut(a)×neut(b))×(neut(b)×b)  

= (b×neut(a))×(neut(b)×neut(b)) (Applying Proposition 1)  

= (b×neut(a))×neut(b) 

 

Further, for any a, b ∈ S, we have 

a×b = (neut(a)×a)×(neut(b)×b) 

= (b×neut(a))×(neut(b)×a) (Applying Proposition 1) 

= a×((b×neut(a))×neut(b)) 

= a×(neut(a)×b) (by neut(a)×b  

= (b×neut(a))×neut(b)) 

= b×(a×neut(a))  

= b×a 

 

Therefore, every CA-NET-groupoid is commutative. □ 

Example 10. Let S= {1, 2, 3, 4, 5}. The operation × on S is defined as Table 10. We can verify that (S, ×) is a 

CA-NET-groupoid, and 

neut(1) = 1, anti(1) = {1, 5}; neut(2) = 2, anti(2) = {1, 2, 3, 4, 5};  

neut(3) = 3, anti(3) = {3, 5}; neut(4) = 4, anti(4)= {1, 3, 4, 5}; neut(5) = 5, anti(3) = 5.  

Obviously, (S, ×) is a commutative. 

Table 10. The operation × on S 

× 1 2 3 4 5 

1 1 2 4 4 1 

2 2 2 2 2 2 

3 4 2 3 4 3 

4 4 2 4 4 4 

5 1 2 3 4 5 

Theorem 5. Let (S, ×) be a groupoid. Then, S is a CA-NET-groupoid if and only if it is a regular CA-groupoid.  
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Proof. Assume that S is a CA-NET-groupoid. For any a in S, by Definitions 1 and 3, we have 

a×(anti(a)×a) = a×neut(a) = a.  

From this and Definition 4, we know that element a is a regular element and S is a regular CA-

groupoid. 

Therefore, we prove that S is a regular CA-groupoid. 

Now, we assume that S is a regular CA-groupoid. For any a in a regular CA-groupoid S, we have 

a×(x×a) = a.  

Furthermore, 

(x×a)×a = (x×a)×(a×(x×a)) = (x×a)×((x×a)×a) = a×((x×a)×(x×a)) 

= a×(a×((x×a)×x)) 

= a×(x×(a×(x×a))) 

= a×(x×a) = a. 

 

Therefore, there exists (x×a)  ∈ S, such that (x×a)×a = a×(x×a) = a. 

Moreover, we have 

(x×a) = x×(a×(x×a)) = (x×a)×(x×a) = a×((x×a)×x).  

Furthermore, 

((x×a)×x)×a = ((x×a)×x)×(a×(x×a)) 

= (x×a)×(((x×a)×x)×a) = a×((x×a)×((x×a)×x)) 

= a×(x×((x×a)×(x×a))) 

= a×(x×(x×a)) (by (x×a)× (x×a)= (x×a)) 

= (x×a)×(a×x) 

= x×((x×a)×a) (by (x×a)×a = a) 

= x×a 

 

Therefore, there exists ((x×a)×x)S, such that a×((x×a)×x) = ((x×a)×x)×a = x×a. Then, S is 

a CA-NET-groupoid. □ 

Example 11. Let S = {1, 2, 3, 4}. The operation × on S is defined as Table 11. We can verify that (S, ×) is a CA-

NET- groupoid, and 

neut(1) = 1, anti(1) = {1, 2, 3, 4}; neut(2) = 3, anti(2) = 4; neut(3) = 3, anti(3) = 3; neut(4) = 3, anti(4) = 2. 

Moreover, (S, ×) is a regular CA-groupoid, since 1 = 1×(1×1), 2 = 2×(4×2), 3 = 3×(3×3), 4 = 4×(2×4). 

Table 11. The operation × on S. 

× 1 2 3 4 

1 1 1 1 1 

2 1 4 2 3 

3 1 2 3 4 

4 1 3 4 2 

Definition 10. Let (S, ×) be a groupoid. 

(1) If for any a ∈ S, there exist two elements b and c in S satisfying the condition a×b = a and c×a = b, then S 

is called a CA-(r, l)-NET-groupoid. 

(2) If for any a ∈ S, there exist two elements b and c in S satisfying the condition a×b = a and a×c = b, then 

S is called a CA-(r, r)-NET-groupoid. 
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(3) If for any a ∈ S, there exist two elements b and c in S satisfying the condition b×a = a and a×c = b, then 

S is called a CA-(l, r)-NET-groupoid. 

(4) If for any a ∈ S, there exist two elements b and c in S satisfying the condition b×a = a and c×a = b, then 

S is called a CA-(l, l)-NET-groupoid. 

Theorem 6. Let (S, ×) be a groupoid. Then, S is a CA-(r, l)-NET-groupoid if and only if it is a regular CA-

groupoid. 

Proof. Assume that S is a CA-(r, l)-NET-groupoid. For any a in S, by Definitions 1 and 10(1), we have 

a×neut(a) = a, anti(a)×a = neut(a)  

a×(anti(a)×a) = a×neut(a) = a  

From this and Definition 4, we know that element a is a regular element and S is a regular CA-

groupoid. Therefore, we prove that S is a regular CA-groupoid. 

Now, we assume that S is a regular CA-groupoid. For any a in a regular CA-groupoid S, we have 

a×(x×a) = a.  

Thus, there exists (x×a)  ∈ S, such that a×(x×a) = a. 

Moreover, we have: 

x×a = (x×a).  

Therefore, there exists x ∈ S, such that x×a = (x×a). Then, S is a CA-(r, l)-NET-groupoid. □ 

Theorem 7. Let (S, ×) be a groupoid. Then, S is a CA-(r, r)-NET-groupoid if and only if it is a regular CA-

groupoid. 

Proof. Assume that S is a CA-(r, r)-NET-groupoid. For any a in S, by Definitions 1 and 10(2), we have 

a×neut(a) = a,  a×anti(a) = neut(a),  

a×(anti(a)×a) = a×(a×anti(a)) = a×neut(a) = a  

From this and Definition 4, we know that element a is a regular element and S is a regular CA-

groupoid. Therefore, we prove that S is a regular CA-groupoid. 

Now, we assume that S is a regular CA-groupoid, for any a in a regular CA-groupoid S, we have 

a×(x×a) = a×(a×x) = a  

Thus, there exists (a×x)  ∈ S, such that a×(a×x) = a. 

Moreover, we have 

a×x = (a×x)  

Therefore, there exists x ∈ S, such that a×x = (a×x). Then, S is a CA-(r, r)-NET-groupoid. □ 

Theorem 8. Let (S, ×) be a groupoid. Then, S is a CA-(l, r)-NET-groupoid if and only if it is a regular CA-

groupoid.  

Proof. Assume that S is a CA-(l, r)-NET-groupoid. For any a in S, by Definitions 1 and 10(3), we have 

neut(a)×a = a, a×anti(a) = neut(a) 

neut(a)×a = (a×anti(a))×a = (a×anti(a))×(neut(a)×a) 

= (a×a)×(neut(a)×anti(a)) (Applying Proposition 1) 
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= (anti(a)×a)×(neut(a)×a) (Applying Proposition 1) 

= (anti(a)×a)×a. 

Thus, a×anti(a) = anti(a)×a = neut(a). 

Moreover, we have 

a×neut(a) = (neut(a)×a)×(anti(a)×a) 

= (a×neut(a))×(anti(a)×a) (Applying Proposition 1) 

= (a×neut(a))×neut(a). 

 

Thus, a×neut(a) = neut(a)×a = a. 

Then, 

(anti(a)×a)×a = neut(a)×a = a×neut(a) = a×(anti(a)×a) = a  

From this and Definition 4, we know that element a is a regular element and S is a regular CA-

groupoid. Therefore, we prove that S is a regular CA-groupoid. 

Now, we assume that S is a regular CA-groupoid. For any a in a regular CA-groupoid S, let a = 

(a×x)×a. We have 

x×a = x×((a×x)×a) = a×(x×(a×x)) = ((a×x)×(a×x)),  

(a×x)×a = (a×x)×((a×x)×a) = a×((a×x)×(a×x)) = a×(x×a) = a, a×x = (a×x)  

Therefore, S is a CA-(l, r)-NET-groupoid. □ 

Theorem 9. Let (S, ×) be a groupoid. Then, S is a CA-(l, l)-NET-groupoid if and only if it is a regular CA-

groupoid.  

Proof. Assume that S is a CA-(l, l)-NET-groupoid. For any a in S, by Definitions 1 and 10(4), we have 

neut(a)×a = a, anti(a)×a = neut(a), 

a×neut(a) = (neut(a)×a)×(anti(a)×a) 

= (a×neut(a))×(anti(a)×a) (Applying Proposition 1) 

= (a×neut(a))×neut(a) 

 

Thus, a×neut(a) = neut(a)×a = a. 

Then, 

(anti(a)×a)×a = neut(a)×a = a×neut(a) = a×(anti(a)×a) = a.  

From this and Definition 4, we know that element a is a regular element and S is a regular CA-

groupoid. Therefore, we prove that S is a regular CA-groupoid. 

Now, we assume that S is a regular CA-groupoid. For any a in a regular CA-groupoid S, let a = 

(x×a)×a, we have 

x×a = x×((a×x)×a) = a×(x×(a×x)) = ((a×x)×(a×x)), 

(x×a)×a = (x×a)×((x×a)×a) = a×((x×a)×(x×a)) = (x×a)×(a×(x×a))  

= (x×a)×(a×(a×x)) = (a×x)×((x×a)×a) = (a×x)×a 

= (a×x)×((a×x)×a)(by (a×x)×a = a) 

= a×((a×x)×(a×x))  

= a×(x×a) = a. 

 

Moreover, we have x×a = (x×a). Therefore, S is a CA-(l, l)-NET-groupoid. □ 
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Example 12. Denote S = {1, 2, 3, 4} and define operations × on S as shown in Table 12. We can verify that (S, 

×) is a CA-(r, l)-NET-groupoid, and, 

neut(r, l)(1) = 1, anti(r, l)(1) = {1, 2, 3, 4}; neut(r, l)(2) = 4, anti(r, l)(2) = 2;  

neut(r, l)(3) = 3, anti(r, l)(3) = 3; neut(r, l)(4) = 4, anti(r, l)(4) = 4  

It is easy to verify that S is also a CA-(r, r)-NET-groupoid, CA-(l, r)-NET-groupoid, CA-(l, l)-NET-

groupoid. 

Moreover, (S, ×) is a regular CA-groupoid, since 1 = 1×(2×1), 2 = 2×(2×2), 3 = 3×(3×3), and 4 = 4×(4×4). 

Table 12. The operation × on S. 

× 1 2 3 4 

1 1 1 1 1 

2 1 4 1 2 

3 1 1 3 1 

4 1 2 1 4 

4. Green Relations in Cyclic Associative Groupoids (CA-Groupoids) 

If a is an element of a CA-groupoid S, the smallest left ideal of S containing a is Sa {a}. 

Definition 11. Let (S, ×) be a CA-groupoid, for any a, b ∈ S, define the following binary relationships: 

a b { } { }Sa a Sb b ; 

a b { } { }aS a bS b ; 

( { }) ( { }) ( { }) ( { })a b Sa a S Sa a Sb b S Sb b ; 

. 

 

We call , , , and the Green’s relations on the CA-groupoid. 

Definition 12. Let (S, ×) be a CA-groupoid. A relation R on the set S is called left compatible (with the 

operation on S) if 

( a, s, t ∈ S)  (s, t) ∈ R  (a×s, a×t) ∈ R,  

and right compatible if 

( a, s, t ∈ S)  (s, t) ∈ R  (s×a, t×a) ∈ R.  

It is called compatible if 

( s, t, s’, t’ ∈ S) [(s, t) ∈ R and (s’, t’) ∈ R]  (s×s’, t×t’) ∈ R.  

A left [right] compatible equivalence is called a left [right] congruence. A compatible equivalence relation 

is called a congruence. 

Proposition 2. Let a, b be elements of a CA-groupoid S. If a = b, then a a, a a. If a b, then a b if and 

only if there exists x, y in S such that x×a = b, y×b = a. In addition, a b if and only if there exists u, v in S 

such that a×u = b, b×v = a.  

Another immediate property of this is as follows: 

Proposition 3. is a left congruence and is a right congruence.  

Corollary 2. In a CA-groupoid S, and are not commutative. That is, as a binary relationship, ∘

∘ . 

Example 13. Let S = {1, 2, 3, 4, 5, 6}. The operation × on S is defined as Table 13. Then, (S, ×) is a CA-groupoid. 
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 = {< 3, 5>, <5, 3>},  = {<3, 4>, <4, 3>}. ∘  = {<5, 4>} ∘  = {<4, 5>}. Then, and are 

not commutative. 

Table 13. The operation × on S. 

× 1 2 3 4 5 6 

1 2 3 3 3 5 2 

2 4 3 3 3 5 2 

3 3 3 3 3 5 4 

4 3 3 3 3 5   4 

5 5 5 5 5 3 5 

6 3 3 3 3 5 3 

In a regular CA-groupoid S we have a particularly useful way of looking at the equivalences

and . First, notice that if S is regular then a = a×(x×a) ∈aS, and similarly a ∈ Sa, a∈SaS. Hence, in 

describing the Green equivalences for a regular CA-groupoid we can drop all reference to Sa {a}, 

and assert simply that 

a b Sa Sb ; 

a b aS bS ; 

a b SaS SbS ; 

. 

 

Definition 13. Let (S, ×) be a regular CA-groupoid, define the following binary relationship: 

  

We call the Green’s relations on the regular CA-groupoid. 

Theorem 10. In a regular CA-groupoid S, the relations and are commutative. That is, as a binary 

relationship, ∘ = ∘ . 

Proof. Let (S, ×) be a regular CA-groupoid, let a, b ∈ S, and suppose that (a, b)  ∈ ∘ . Then, 

there exists c in S such that a c and c b. That is, there exist x, y, u, v in S such that 

x×a = c, c×u = b, 

y×c = a, b×v = c. 
 

If we now write d for the element (y×c)×u of S, applying Theorem 5, S is a CA-NET-groupoid. As 

such, we have 

a×u = (y×c)×u = d, 

a = y×c = y×(b×v) = v×(y×b) = b×(v×y) = (c×u)×(v×y) 

= (y×c)×(v×u) (Applying Proposition 1) 

= a×(v×u) = u×(a×v) = v×(u×a) 

= v×(u×(neut(a)×a)) = v×(a×(u×neut(a))) 

= v×(neut(a)×(a×u)) = v×(neut(a)×d) = d×(v×neut(a)) 

 

hence a d. In addition, 

b = c×u = (x×a)×u = (x×a)×(u×neut(u)) = neut(u)×((x×a)×u) = neut(u)×b  

d = (y×c)×u = (y×c)×(neut(u)×u) = u×((y×c)×neut(u)) = neut(u)×(u×(y×c))   
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= neut(u)×(c×(u×y)) = neut(u)×(y×(c×u)) = neut(u)×(y×b) = neut(u)×(y×(neut(u)×b)) 

= neut(u)×(b×(y×neut(u))) = (y×neut(u))×(neut(u)×b) = (y×neut(u))×b, 

d = a×u = (y×c)×u = (y×c)×(u×neut(u)) = neut(u)×((y×c)×u) = neut(u)×d,  

b = c×u = (x×a)×u = (x×a)×(neut(u)×u) = u×((x×a)×neut(u)) = neut(u)×(u×(x×a))  

= neut(u)×(u×c) = neut(u)×(u×(x×a)) = neut(u)×(u×(x×(y×c))) 

= neut(u)×((y×c)×(u×x)) = neut(u)×(a×(u×x)) = neut(u)×(x×(a×u)) = neut(u)×(x×d)  

= neut(u)×(x×(neut(u)×d)) = neut(u)×(d×(x×neut(u))) = (x×neut(u))×(neut(u)×d)  

= (x×neut(u))×d, 

 

thus d b. We deduce that (a, b) ∘ . We have shown that ∘ ∘ ; the reverse inclusion 

follows in a similar way. □ 

Theorem 11. In a regular CA-groupoid S, is equivalent to . That is, as a binary relationship, = . 

Proof. By Theorem 10, we have d b. Then, 

b =c×u = (x×a)×u = (x×a)×(neut(u)×u) = u×((x×a)×neut(u))  

= neut(u)×(u×(x×a)) = neut(u)×(u×c) = neut(u)×(u×(x×a)) = neut(u)×(u×(x×(y×c)))  

= neut(u)×((y×c)×(u×x)) = neut(u)×(a×(u×x)) = neut(u)×(x×(a×u))  

= neut(u)×(x×d) = d×(neut(u)×x). 

 

d = (y×c)×u = (y×c)×(neut(u)×u) = u×((y×c)×neut(u)) = neut(u)×(u×(y×c)) 

= neut(u)×(c×(u×y)) = neut(u)×(y×(c×u)) = neut(u)×(y×b) = neut(u)(y×(c×u)) 

= neut(u)×(y×b) = b×(neut(u)×y). 

 

Thus, d b. 

Therefore, in a regular CA-groupoid S, is equivalent to . □ 

Example 14. Let S = {1, 2, 3, 4, 5, 6, 7, 8}. The operation × on S is defined as Table 14. Then, (S, ×) is a regular 

CA-groupoid.  = {<1, 2>, <2, 1>, <3, 4>, <4, 3>, <5, 6>, <6, 5>, <7, 8>, <8, 7>},  = {<1, 2>, <2, 1>, <3, 4>, 

<4, 3>, <5, 6>, <6, 5>, <7, 8>, <8, 7>}, ∘  = {<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>, <6, 6>, <7, 7>, <8, 8>} 

= ∘  = {<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>, <6, 6>, <7, 7>, <8, 8>}. Thus, and are commutative, 

and  = . 

Table 14. The operation × on S. 

× 1 2 3 4 5 6 7 8 

1 1 2 5 5 5 6 7 8 

2 2 1 5 5 5 6 7 8 

3 5 5 3 4 5 6 7 8 

4 5 5 4 3 5 6 7 8 

5 5 5 5 5 5 6 7 8 

6 6 6 6 6 6 5 7 8 

7 7 7 7 7 7 7 7 8 

8 8 8 8 8 8 8 8 7 

Obviously on the regular CA-groupoid S, there is 

= = == = .  
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Lemma 1. In a regular CA-groupoid S, each -class contains at least one idempotent. 

Proof. For any a ∈ S, there exist x ∈ S, such that a = a×(x×a); then, 

(x×a)×(x×a) = a×((x×a)×x) = x×(a×(x×a)) = x×a  

Therefore, (x×a) is idempotent and a (x×a). □ 

Lemma 2. Every idempotent e in a regular CA-groupoid S is a left identity for e. 

Proof. If a ∈ e, then a = x×e. For some x in S and 

e×a = e×(x×e) = e×(e×x) = x×e2 =x×e = a. □  

Proposition 4. Let a be an element of a regular -class L in a regular CA-groupoid S. If a contains 

idempotents e, then e contains an inverse a−1 of a such that a×a−1 = a−1×a = e.  

Proof. Since a e it follows by Lemma 2 that e×a = a. Again, from a e, it follows that there exists x 

in S such that a×x = e. If we denote x×e by a−1, we easily see that 

a×(a−1×a) = a×((x×e)×a) = a×(a×(x×e)) = a×(e×(a×x))  

= a×(e×e) = e×(a×e) = e×(e×a) = e×a = a, 
 

a−1×(a×a−1) = (x×e)×(a×(x×e)) = (x×e)×(e×(a×x)) = (x×e)×(e×e) = e×((x×e)×e)  

= e×(e×(x×e)) = e×(e×(e×x)) = e×(x×e) = e×(e×x) = x×(e×e) = x×e = a−1. 

 

Thus, a−1 is an inverse of a. Moreover, 

a×a−1 = a×(x×e) = e×(a×x) = e×e = e  

Further, 

a×a = (x×e)×a = (x×e)×(e×a) = a×((x×e)×e)  

= e×(a×(x×e)) = e×(e×(a×x)) = e×(e×e) = e. 
 

It now follows easily that 

a×a−1 = a−1×a = e. □  

Theorem 12. Let (S, ×) be a CA-groupoid. Then, the following statements are equivalent: 

(1) S is regular; 

(2) Every element of S lies in a subgroup of S; and  

(3) Every -class in S is a group. 

Proof. (1) (2). Assume that S is a regular CA-groupoid. By Theorem 5, we know that S is a CA-

NET-groupoid. By Theorem 2, we know that, in a CA-NET-groupoid S, every element of S lies in a 

subgroup of S. Thus, if S is a regular CA-groupoid, then every element of S lies in a subgroup of S. 

(2) (3). Assume that every element of S lies in a subgroup of S. Let a ∈ S; then, a ∈ G for some 

subgroup G of S. Denote the identity element of G by e, and the inverse of a within G by a−1. Then, 

from 

e×a = a×e = a and a×a−1 = a−1×a = e  

it follows that a e, and hence Ha= He, every -class in S is a group. 
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(3) (1). Assume that every -class in S is a group. For each a in S, a ∈ Ha, because Ha is a 

group, then element a has a unique inverse a−1 within the group Ha. Let x= a−1; then, it is clear that 

a×(x×a) = a.  

Therefore, S is a regular CA-groupoid. □ 

Example 15. Let S = {a, b, c, d, e}. Define operation × on S as Table 15. Then, (S, ×) is a CA-groupoid. 

Table 15. The operation × on S. 

× a b c d e 

a a b c d c 

b b a d c d 

c c d c d c 

d d c d c d 

e c d c d e 

(S, ×) is a regular CA-groupoid, since a = a×(a×a), b = b×(b×b), c = c×(c×c), d = d×(d×d), and e = 

e×(e×e). Every element of CA-groupoid S lies in a subgroup of S, because {a, b}, {c, d}, {e} is a subgroup of S. 

Moreover, a, b ∈ {a, b}, c, d ∈ {c, d}, and e ∈ {e}. Every -class in S is a group. Then, H1, H2, H3 of -class 

in S, H1 = {a, b}, H2 = {c, d}, H3 = {e}. Moreover, a×b = b, b×b = a; c×d = d, d×d = c and e×e = e, H1, H2, H3 

is a group. 

5. Relationships between Some Cyclic Associative Groupoids (CA-Groupoids) 

Definition 14. A CA-groupoid (S, ×) is called inverse CA-groupoid if there exists a unary operation a−1 on S 

with the properties 

(a−1)−1 = a, a×(a−1×a) = a,  

and for any x, y ∈ S, 

(x×x−1)×(y×y−1) = (y×y−1)×(x×x−1)  

Theorem 13. Let (S, ×) be a CA-groupoid. Then, S is an inverse CA-groupoid if and only if it is a regular CA-

groupoid and its idempotent is commutative. 

Proof. Let S be an inverse CA-groupoid, which follows if we show that every idempotent in S can be 

expressed in the form xx−1. Let e be an idempotent in S. Then, the inverse CA-groupoid property 

ensures that there is an element e−1 in S such that e×(e−1×e) = e, (e−1)−1 = e. Hence, 

e−1 = e−1×((e−1)−1×e−1) = e−1×(e×e−1) = e−1×((e×e)×e−1) = e−1×(e−1×(e×e)) = 

e−1×(e×(e−1×e)) = e−1×e = e−1×(e×e) = e×(e−1×e) = e.  

and thus e = e2 = e×e = e×e−1. 

According to the definition of an inverse CA-groupoid, idempotents commute. If x, y are 

idempotent, then x×y = (x×x−1)×(y×y−1) = (y×y−1)×(x×x−1) = y×x. 

Therefore, S is a regular CA-groupoid and its idempotents are commutative. 

Now, we assume that S is a regular CA -groupoid and its idempotents are commutative. Then, 

according to regularity, for any x ∈  S, there exists neut(x) ∈  S, anti(x) ∈  S. By Theorem 1, let 

anti(x)×neut(x) = x−1; then, we have 

(x−1)−1 = x, x×(x−1×x) = x,  

(x×x−1)×(y×y−1) = neut(x)×neut(y) = neut(y)×neut(x) = (y×y−1)×(x×x−1)  

Therefore, S is an inverse CA-groupoid. □ 
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Corollary 3. Let (S, ×) be a regular CA-groupoid. Then, S is a commutative CA-groupoid. 

Proof. Let (S, ×) be a regular CA-groupoid. By Theorem 5, S is a CA-NET-groupoid. By Corollary 1, 

S is a commutative CA-groupoid. □ 

Theorem 14. Let (S, ×) be a CA-groupoid. Then, the following statements are equivalent: 

(1) S is a regular CA-groupoid; 

(2) S is a strongly regular CA-groupoid; 

(3) S is a CA-NET-groupoid; 

(4) S is an inverse CA-groupoid; and  

(5) S is a commutative regular semigroup. 

Proof. (1) (2). Assume that S is a regular CA-groupoid. By Corollary 3, we know that S is a 

commutative CA-groupoid. Then, for any a ∈ S, there exists x ∈ S, such that a = a×(x×a) and a = 

(a×x)×a. According to the definition of strongly regular CA-groupoid (Definition 5), S is a strongly 

regular CA-groupoid. 

(2) (3). Assume that S is a strongly regular CA-groupoid. By Definitions 4 and 5, S is a regular 

CA-groupoid. By Theorem 5, S is a CA-NET-groupoid. 

(3) (4). Let (S, ×) be a CA-NET-groupoid. According to Theorem 4, the idempotent of S is 

commutative. By Theorem 5, S is a regular CA-groupoid. By Theorem 13, S is an inverse CA-groupoid. 

(4) (5). Let (S, ×) be an inverse CA-groupoid. By Theorem 13, S is a regular CA-groupoid and 

its idempotent is commutative. Then, we only need proof a regular CA-groupoid is a commutative 

regular semigroup. By Corollary 3, S is a commutative CA-groupoid. For any a, b, c ∈ S, we have  

a×(b×c) = c×(a×b) = (a×b)×c  

and there exists x ∈ S, such that a = a×(x×a) = a×(a×x) = (a×x)×a = a×x×a. 

Therefore, S is a commutative regular semigroup. 

(5) (1). Assume that (S, ×) is a commutative regular semigroup. For any a, b, c ∈ S, we have  

a×(b×c) = (a×b)×c = c×(a×b)  

and there exists x ∈ S, such that a = a×x×a = a×(x×a). 

Therefore, S is a regular CA-groupoid. □ 

Example 16. Let S = {1, 2, 3, 4}. The operation × on S is defined as Table 16. Then, (S, ×) is a regular CA-

groupoid, since 1 = 1×(1×1), 2 = 2×(4×2), 3 = 3×(3×3), and 4 = 4×(4×4). (S, ×) is also a strongly regular CA-

groupoid because 1 = 1×(1×1), 1 = (1×1)×1; 2 = 2×(4×2), 2 = (2×4)×2; 3 = 3×(3×3), 3 = (3×3)×3; 4 = 4×(4×4), 

and 4 = (4×4)×4. We can verify that (S, ×) is a CA-NET-groupoid, and neut(1) = 1, anti(1) = 1; neut(2) = 2, 

anti(2) = {1, 2, 3, 4}; neut(3) = 3, anti(3) = 3; and neut(4) = 4, anti(4) = {1, 3, 4}. (S, ×) is an inverse CA-

groupoid, since 1×2 = 2×1, 1×3 = 3×1, 1×4 = 4×1, 2×3 = 3×2, 2×4 = 4×2, and 3×4 = 4×3. (S, ×) is 

also a commutative regular semigroup because 1 = 1×1×1, 2 = 2×2×2, 3 = 3×3×3, and 4 = 4×4×4. 

Table 16. The operation × on S. 

× 1 2 3 4 

1 1 2 4 4 

2 2 2 2 2 

3 4 2 3 4 

4 4 2 4 4 
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Corollary 4. Let (S, ×) be a strongly regular CA-groupoid. Then, S is a strongly regular semigroup. 

Proof. Let (S, ×) be a strongly regular CA-groupoid. By Theorem 14 (2), (5), S is a strongly regular 

semigroup. □ 

6. Conclusions 

Starting from various backgrounds (for examples, non-associative rings with x(yz)=y(zx), cyclic 

associative Abel-Grassman groupoids, regular semigroup, and regular AG-groupoid), this paper 

introduces the concept of regular cyclic associative groupoid (CA-groupoid) for the first time. 

Furthermore, we study the relationship between regular CA-groupoids and other relevant algebraic 

structures. The research shows that the regular CA-groupoids, as a kind of non-associative algebraic 

structures, has typical representativeness and rich connotation, and is closely related to many kinds 

of algebraic structures. This paper concludes some important results, which are listed as follows: 

(1) If an algebraic system is a regular CA-groupoid, then, each of its elements has an inverse and 

the inverse is unique (see Theorem 3 and Example 6). 

(2) If an algebraic system is a CA-NET-groupoid, then, its idempotents are commutative (see 

Theorem 4). 

(3) Every CA-NET-groupoid is commutative (see Corollary 1 and Example 10). 

(4) An algebraic system is a regular CA-groupoid if and only if it is a CA-NET-groupoid (see 

Theorem 5 and Example 11). 

(5) If an algebraic system is a CA-groupoid, then,  and are not commutative. That is, as a 

binary relationship, ∘ ∘  (see Corollary 2 and Example 13). 

(6) If an algebraic system is a regular CA-groupoid, then, the relations  and  commute. That 

is, as a binary relationship, ∘ = ∘  (see Theorem 10 and Example 14). 

(7) If an algebraic system is a regular CA-groupoid, then every element of S lies in a subgroup of S, 

and every -class in S is a group (see Theorem 12 and Example 15). 

(8) An algebraic system is an inverse CA-groupoid if and only if it is a regular CA-groupoid and its 

idempotent is commutative (see Theorem 13 and Example 16). 

(9) If an algebraic system is a regular CA-groupoid, then, it is a commutative CA-groupoid (see 

Corollary 3 and Example 16). 

(10) An algebraic system is a regular CA-groupoid if and only if it is a commutative regular 

semigroup (see Theorem 14 and Example 16). 

These results are important for exploring the structure characterizations of regular CA-

groupoids and CA-NET-groupoids. 

For future research, we will discuss the integration of the related topics, such as the ideals in 

CA-groupoids and the relationships among some algebraic structures (see [26-28]). 
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