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REGULAR SEMICLOSED SETS ON NEUTROSOPHIC
CRISP TOPOLOGICAL SPACES

A. VADIVEL, M. NAVULURI1, AND J. SATHIYARAJ

ABSTRACT. In this paper, we introduce another idea of neutrosophic crisp gen-
eralised sets called neutrosophic crisp regular semi closed sets and examined
their central properties in neutrosophic crisp topological spaces. We addition-
ally present neutrosophic crisp regular semi closure and neutrosophic crisp reg-
ular semi interior and concentrate a portion of their major properties.

1. INTRODUCTION AND PRELIMINARIES

In 1965, Zadeh [10] had introduced a fuzzy set as a degree of membership. In
1986, Atanassove [1] proposed the degree of non-membership to fuzzy sets. In
addition to this Smarandache [9] added the degree of indeterminacy in 1998. In
[7], Salama and Smarandache introduced the following notions, we select one
type alone in each case, as more than two types [3]. Let a NCS (neutrosophic
crisp set) L = 〈L1, L2, L3〉 of a X 6= φ, where L1, L2, L3 ⊆ X, φN = (φ, φ,X),

XN = (X,X, φ)]. We will denote the set of all NCSs in X as NCS(X).
Let L = (L1, L2, L3),M = (M1,M2,M3) ∈ NCS(X) and (Lj)j∈J ⊂ NCS(X),

where Lj = (Lj,1, Lj,2, Lj,3). Then

(i) L ⊂M , if L1 ⊂M1, L2 ⊂M2, L3 ⊃M3.
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(ii) L = M , if L ⊂M and M ⊂ L.

(iii) LC = (Lc
1, L

c
2, L

c
3).

(iv) L ∩M = (L1 ∩M1, L2 ∩M2, L3 ∩M3).
(v) L ∪M = (L1 ∪M1, L2 ∪M2, L3 ∪M3).

(vi) ∩Lj = (∩Lj,1,∩Lj,2,∩Lj,3).
(vii) ∪Lj = (∪Lj,1,∪Lj,2,∪Lj,3).

Let L,M,C ∈ NCS(X) and (Lj)j∈J ⊂ NCS(X). Then

(i) φN ⊂ L ⊂ XN .
(ii) if L ⊂M and M ⊂ C, then L ⊂ C.

(iii) L ∩M ⊂ L and L ∩M ⊂M .
(iv) L ⊂ L ∪M and M ⊂ L ∪M .
(v) L ⊂M iff L ∩M = L.

(vi) L ⊂M iff L ∪M = M .
(vii) L ∪ L = L,L ∩ L = L.

(viii) L ∪M = M ∪ L,L ∩M = M ∩ L.
(ix) L ∪ (M ∪ C) = (L ∪M) ∪ C, L ∩ (M ∩ C) = (L ∩M) ∩ C.
(x) L∪ (M ∩C) = (L∪M)∩ (L∪C) and L∩ (M ∪C) = (L∩M)∪ (L∩C).

(xi) L ∪ (L ∩M) = L,L ∩ (L ∪M) = L.
(xii) (L ∪M)c = Lc ∩M c, (L ∩M)c = Lc ∪M c.

(xiii) (Lc)c = L.
(xiv) L ∪ φN = L,L ∩ φN = φN .
(xv) L ∪XN = XN , L ∩XN = L.
(xvi ) Xc

N = φN , φ
c
N = XN .

(xvii) L ∪ Lc = XN , L ∩ Lc = φN .
(xviii) (∩Lj)

c = ∪Lc
J , (∪Lj)

c = ∩Lc
j.

(xix) L ∩ (∪Lj) = ∪(L ∩ Lj), L ∪ (∩Lj) = ∩(L ∪ Lj). .

Moreover, Salama et al. [5,7,8] applied the concept of neutrosophip crisp sets to
concept of NCT (neutrosophic crisp topology), NCT (neutrosophic crisp topo-
logical space),NCcs (neutrosophic crisp closed set), NCT (neutrosophic crisp
open set), NCcl(L) (neutrosophic crisp closure of L) and neutrosophic crisp
interior of L. A neutrosophic crisp subset L of a NCTS (X,Γ) is said to be
neutrosophic crisp pre (resp. semi, α and β) open set [6] (briefly, NCPos
(resp. NCSos, NCαos and NCβos)) if L ⊆ NCint(NCcl(L)) (resp. L ⊆
NCcl(NCint(L)), L ⊆ NCint(NCcl(NCint(L))) and L ⊆ NCcl(NCint(NCcl(L)))).
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The complement of a NCPos (resp. NCSos, NCαos and NCβos) is called a
neutrosophic crisp preclosed (resp. semi, α and β) closed set (briefly, NCPcs
(resp. NCScs, NCαcs and NCβcs)) in (X,Γ). The family of all NCPos (resp.
NCPcs, NCSos, NCScs, NCαos, NCαcs, NCβos and NCβcs) X is denoted
by NCPOS(X) (resp. NCPCS(X), NCSOS(X), NCSCS(X), NCαOS(X),
NCαCS(X), NCβOS(X) and NCβCS(X)). [6] Let L be a NCS of NCTS
(X,Γ). Then, the neutrosophic crisp pre (resp. semi, α and β) interior of L is the
union of all NCPos (resp. NCSos, NCαos and NCβos) contained in L and is
denoted by NCPint(L) (respectively NCSint(L), NCαint(L) and NCβint(L)).
the neutrosophic crisp pre (resp. semi, α and β) closure of L is the intersection
of all NCPcs (resp. NCScs, NCαcs and NCβcs) contains L and is dented by
NCPcl(L) (resp. NCScl(L), NCαcl(L) and NCβcl(L)). The undefined notions
from [7] and cited therein. In general topology Cameron [2] defined a regular
semi open sets and Di Maio and Noiri [4] defined semi regular open sets.

2. NEUTROSOPHIC CRISP REGULAR SEMI CLOSED SETS

Definition 2.1. ANCS, L of aNCTS (X,Γ) is called a neutrosophic crisp (i) regu-
lar open (resp. closed) set (briefly, NCros (resp. NCrcs)) if L = NCint(NCcl(L))

(resp. L = NCcl(NCint(L))). (ii) regular semi closed (resp. open) sets (briefly,
NCrScs (resp. NCrSos)) if ∃NCrcs (resp. NCros) H in X 3 NCint(H) ⊆ L ⊆
H (resp. H ⊆ L ⊆ NCcl(H)).

NCrSCS(X) (resp. NCrSOS(X)) denotes the family of all NCrScs (resp.
NCrSos) of X

Proposition 2.1. If aNCS, L is aNCros (resp. NCrSos) then Lc isNCrcs (resp.
NCrScs).

Proposition 2.2. In a NCTS (X,Γ), the following hold:

(i) Every NCros is a NCos (resp. NCrSos).
(ii) Every NCrSos is a NCSos.

(iii) Every NCos is a NCrSos (resp. NCαos).
(iv) Every NCαos is a NCSos (resp. NCPos).
(v) Every NCPos is a NCβos.

(vi) Every NCSos is a NCβos.
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But not conversely.

Definition 2.2. A neutrosophic crisp subset L of a NCTS (X,Γ) is called a neu-
trosophic crisp semi regular open sets (briefly, NCSros) if it is both NCSo and
NCSc or equivalently, L = NCSint(NCScl(L)). The family of all NCSro (resp.
NCSO) of X is denoted by NCSrO(X) (resp. NCSO(X)).

Theorem 2.1. For any NCS, L of a NCTS (X,Γ). (a) (i) L ∈ NCSrO(X). (ii)
L = NCSint(NCScl(L)) (iii) There exist a NCros H of X 3 H ⊆ L ⊆ NCcl(H).
are equivalent. (b) (i) L ∈ NCSrC(X). (ii) L = NCScl(NCSint(L)) (iii) There
exist a NCrcs H of X 3 NCint(H) ⊆ L ⊆ H. are equivalent.

From this discussion, we have,

FIGURE 1

3. NEUTROSOPHIC CRISP REGULAR SEMI CLOSURE (RESP. INTERIOR)

Definition 3.1. The intersection (resp. union) of all NCrScs (resp. NCrSos) in a
NCTS (X,Γ) containing (resp. contained in) L is called neutrosophic crisp regular
semi closure of L (resp. neutrosophic crisp regular semi interior of L) (briefly,
NCrScl(L) (resp. NCrSint(L))), NCrScl(L) = ∩{M : L ⊆ M,M is a NCrScs}
(resp. NCrSint(L) = ∪{M : B ⊆ L,M is a NCrSos}).

Proposition 3.1. Let L be any neutrsophic crisp set in a NCTS (X,Γ), the follow-
ing properties are true:

(i) NCrScl(L) = L iff L is a NCrScs.
(ii) NCrSint(L) = L iff L is a NCrSos.

(iii) NCrScl(L) is the smallest NCrScs containing L .
(iv) NCrSint(L) is the largest NCrSos contained in L .
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(v) NCrSint(XN − L) = XN − (NCrScl(L)).
(vi ) NCrScl(XN − L) = XN − (NCrSint(L)).

Theorem 3.1. Let L and M be two neutrsophic crisp set in a NCTS (X,Γ), the
following properties hold:

(i) NCrScl(φN) = φN , NCrScl(XN) = XN .
(ii) L ⊆ NCrScl(L).

(iii) L ⊆M ⇒ NCrScl(L) ⊆ NCrScl(M).
(iv) NCrScl(L ∩M) ⊆ NCrScl(L) ∩NCrScl(M).
(v) NCrScl(L) ∪NCrScl(M) ⊆ NCrScl(L ∪M).

(vi) NCrScl(NCrScl(L)) = NCrScl(L).
(vii) NCrSint(φN) = φN , NCrSint(XN) = XN .

(viii) NCrSint(L) ⊆ L.
(ix) L ⊆M ⇒ NCrSint(L) ⊆ NCrSint(M).
(x) NCrSint(L ∩M) ⊆ NCrSint(L) ∩NCrSint(M).

(xi) NCrSint(L) ∪NCrSint(M) ⊆ NCrSint(L ∪M).
(xii) NCrSint(NCrSint(L)) = NCrSint(L).

Proposition 3.2. For any NCS, L of a NCTS (X,Γ), then:

(i) NCrint(L) ⊆ NCint(L) ⊆ NCrSint(L) ⊆ NCSint(L) ⊆ NCβint(L) ⊆
L ⊆ NCβcl(L) ⊆ NCScl(L) ⊆ NCrScl(L) ⊆ NCcl(L) ⊆ NCrcl(L).

(ii) NCint(L) ⊆ NCαint(L) ⊆ NCSint(L) ⊆ NCScl(L) ⊆ NCαcl(L) ⊆
NCcl(L).

(iii) NCαint(L) ⊆ NCPint(L) ⊆ NCβint(L) ⊆ NCβcl(L) ⊆ NCPcl(L) ⊆
NCαcl(L).

Theorem 3.2. If a NCrSos L is such that L ⊆ M ⊆ NCcl(L), then M is also a
NCrSos.

Corollary 3.1. If a NCrScs L is such that NCint(L) ⊆ M ⊆ L, then M is also a
NCrScs.

Theorem 3.3. ANCS L ∈ NCrSO(X) iff for every neutrosophic crisp point p ∈ L,
∃ a NCS M ∈ NCrSO(X) such that p ∈M ⊆ L.

Proposition 3.3. If L ∈ NCrSO(X), then NCrScl(L) ⊆ NCrSO(X).

Proposition 3.4. If L is NCrSos in X, then Lc is NCrScs.
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Proposition 3.5. In aNCTS (X,Γ), theNCrcs,NCros andNCrclos areNCrSos.
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