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1. Introduction

Smarandache [1] proposed the concept of neutrosophic sets as an extension of fuzzy sets [2].
A neutrosophic set has three components, namely, truth membership, indeterminacy membership
and falsity membership, in which each membership value is a real standard or non-standard subset
of the nonstandard unit interval ]0−, 1 + [ ([3]), where 0− = 0− ε, 1+ = 1 + ε, ε is an infinitesimal
number > 0. To apply neutrosophic set in real-life problems more conveniently, Smarandache [3] and
Wang et al. [4] defined single-valued neutrosophic sets which takes the value from the subset of [0, 1].
Actually, the single valued neutrosophic set was introduced for the first time by Smarandache in 1998
in [3]. Ye [5] considered multicriteria decision-making method using the correlation coefficient under
single-valued neutrosophic environment. Ye [6] also presented improved correlation coefficients of
single valued neutrosophic sets and interval neutrosophic sets for multiple attribute decision making.

Rough set theory was proposed by Pawlak [7] in 1982. Rough set theory is useful to study
the intelligence systems containing incomplete, uncertain or inexact information. The lower and
upper approximation operators of rough sets are used for managing hidden information in a system.
Therefore, many hybrid models have been built, such as soft rough sets, rough fuzzy sets, fuzzy
rough sets, soft fuzzy rough sets, neutrosophic rough sets, andrough neutrosophic sets, for handling
uncertainty and incomplete information effectively. Dubois and Prade [8] introduced the notions
of rough fuzzy sets and fuzzy rough sets. Liu and Chen [9] have studied different decision-making
methods. Broumi et al. [10] introduced the concept of rough neutrosophic sets. Yang et al. [11]
proposed single valued neutrosophic rough sets by combining single valued neutrosophic sets
and rough sets, and established an algorithm for decision-making problem based on single valued
neutrosophic rough sets on two universes. Mordeson and Peng [12] presented operations on
fuzzy graphs. Akram et al. [13–16] considered several new concepts of neutrosophic graphs with
applications. Zafer and Akram [17] introduced a novel decision-making method based on rough
fuzzy information. In this research study, we apply the concept of rough neutrosophic sets to graphs.
We introduce rough neutrosophic digraphs and describe methods of their construction. Moreover,

Axioms 2018, 7, 5; doi:10.3390/axioms7010005 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
https://orcid.org/0000-0001-7217-7962
https://orcid.org/0000-0002-5560-5926
http://dx.doi.org/10.3390/axioms7010005
http://www.mdpi.com/journal/axioms


Axioms 2018, 7, 5 2 of 20

we present the concept of self complementary rough neutrosophic digraphs. We also present an
application of rough neutrosophic digraphs in decision-making.

We have used standard definitions and terminologies in this paper. For other notations,
terminologies and applications not mentioned in the paper, the readers are referred to [18–22].

2. Rough Neutrosophic Digraphs

Definition 1. [4] Let Z be a nonempty universe. A neutrosophic set N on Z is defined as follows:

N = {< x : µN(x), σN(x), λN(x) >, x ∈ Z}

where the functions µ, σ, λ :Z→ [0, 1] represent the degree of membership, the degree of indeterminacy and the
degree of falsity.

Definition 2. [7] Let Z be a nonempty universe and R an equivalence relation on Z.A pair (Z, R) is called an
approximation space. Let N∗ be a subset of Z and the lower and upper approximations of N∗ in the approximation
space (Z, R) denoted by RN∗ and RN∗ are defined as follows:

RN∗ = {x ∈ Z|[x]R ⊆ N∗},
RN∗ = {x ∈ Z|[x]R ⊆ N∗},

where [x]R denotes the equivalence class of R containing x. A pair (RN∗, RN∗) is called a rough set.

Definition 3. [10] Let Z be a nonempty universe and R an equivalence relation on Z. Let N be a neutrosophic
set(NS) on Z. The lower and upper approximations of N in the approximation space (Z, R) denoted by RN and
RN are defined as follows:

RN = {< x, µR(N)(x), σR(N)(x), λR(N)(x) >: y ∈ [x]R, x ∈ Z},
RN = {< x, µR(N)(x), σR(N)(x), λR(N)(x) >: y ∈ [x]R, x ∈ Z},

where,

µR(N)(x) =
∧

y∈[x]R
µN(y), µR(N)(x) =

∨
y∈[x]R

µN(y),

σR(N)(x) =
∧

y∈[x]R
σN(y), σR(N)(x) =

∨
y∈[x]R

σN(y,

λR(N)(x) =
∨

y∈[x]R
λN(y), λR(N)(x) =

∧
y∈[x]R

λN(y).

A pair (RN, RN) is called a rough neutrosophic set.

We now define the concept of rough neutrosophic digraph.

Definition 4. Let V∗ be a nonempty set and R an equivalence relation on V∗. Let V be a NS on V∗, defined as

V = {< x, µV(x), σV(x), λV(x) >: x ∈ V∗}.

Then, the lower and upper approximations of V represented by RV and RV, respectively, are characterized
as NSs in V∗ such that ∀ x ∈ V∗,

R(V) = {< x, µR(V)(x), σR(V)(x), λR(V)(x) >: y ∈ [x]R},
R(V) = {< x, µR(V)(x), σR(V)(x), λR(V)(x) >: y ∈ [x]R},

where,

µR(V)(x) =
∧

y∈[x]R
µV(y), µR(V)(x) =

∨
y∈[x]R

µV(y),

σR(V)(x) =
∧

y∈[x]R
σV(y), σR(V)(x) =

∨
y∈[x]R

σV(y),

λR(V)(x) =
∨

y∈[x]R
λV(y), λR(V)(x) =

∧
y∈[x]R

λV(y).
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Let E∗ ⊆ V∗ ×V∗ and S an equivalence relation on E∗ such that

((x1, x2), (y1, y2)) ∈ S⇔ (x1, y1), (x2, y2) ∈ R.

Let E be a neutrosophic set on E∗ ⊆ V∗ ×V∗ defined as

E = {< xy, µE(xy), σE(xy), λE(xy) >: xy ∈ V∗ ×V∗},

such that

µE(xy) ≤ min{µRV(x), µRV(y)},
σE(xy) ≤ min{σRV(x), σRV(y)},
λE(xy) ≤ max{λRV(x), λRV(y)} ∀x, y ∈ V∗.

Then, the lower and upper approximations of E represented by SE and SE, respectively, are defined
as follows

SE = {< xy, µSE(xy), σSE(xy), λSE(xy) >: wz ∈ [xy]S, xy ∈ V∗ ×V∗},
SE = {< xy, µSE(xy), σSE(xy), λSE(xy) >: wz ∈ [xy]S, xy ∈ V∗ ×V∗},

where,

µS(E)(xy) =
∧

wz∈[xy]S
µE(wz), µS(E)(xy) =

∨
wz∈[xy]S

µE(wz),

σS(E)(xy) =
∧

wz∈[xy]S
σE(wz), σS(E)(xy) =

∨
wz∈[xy]S

σE(wz),

λS(E)(xy) =
∨

wz∈[xy]S
λE(wz), λS(E)(xy) =

∧
wz∈[xy]S

λE(wz).

A pair SE = (SE, SE) is called a rough neutrosophic relation.

Definition 5. A rough neutrosophic digraph on a nonempty set V∗ is a four-ordered tuple G = (R, RV, S, SE)
such that

(a) R is an equivalence relation on V∗;
(b) S is an equivalence relation on E∗ ⊆ V∗ ×V∗;
(c) RV = (RV, RV) is a rough neutrosophic set on V∗;
(d) SE = (SE, SE) is a rough neutrosophic relation on V∗ and
(e) (RV, SE) is a neutrosophic digraph where G = (RV, SE) and G = (RV, SE) are lower and upper

approximate neutrosophic digraphs of G such that

µSE(xy) ≤ min{µRV(x), µRV(y)},

σSE(xy) ≤ min{σRV(x), σRV(y)},

λSE(xy) ≤ max{λRV(x), λRV(y)},

and

µSE(xy) ≤ min{µRV(x), µRV(y)},
σSE(xy) ≤ min{σRV(x), σRV(y)},
λSE(xy) ≤ max{λRV(x), λRV(y)} ∀ x, y ∈ V∗.

Example 1. Let V∗ = {a, b, c} be a set and R an equivalence relation on V∗

R =

 1 0 1
0 1 0
1 0 1

 .
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Let V = {(a, 0.2, 0.3, 0.6), (b, 0.8, 0.6, 0.5), (c, 0.9, 0.1, 0.4)} be a neutrosophic set on V∗. The lower and
upper approximations of V are given by,

RV = {(a, 0.2, 0.1, 0.6), (b, 0.8, 0.6, 0.5), (c, 0.2, 0.1, 0.6)},
RV = {(a, 0.9, 0.3, 0.4), (b, 0.8, 0.6, 0.5), (c, 0.9, 0.3, 0.4)}.

Let E∗ = {aa, ab, ac, bb, ca, cb} ⊆ V∗ ×V∗ and S an equivalence relation on E∗ defined as:

S =



1 0 1 0 1 0
0 1 0 0 0 1
1 0 1 0 1 0
0 0 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1


.

Let E = {(aa, 0.2, 0.1, 0.4), (ab, 0.2, 0.1, 0.5), (ac, 0.1, 0.1, 0.5), (bb, 0.7, 0.5, 0.5), (ca, 0.1, 0.1, 0.3),
(cb, 0.2, 0.1, 0.5)} be a neutrosophic set on E∗ and SE = (SE, SE) a rough neutrosophic relation where SE and
SE are given as

SE ={(aa, 0.1, 0.1, 0.5), (ab, 0.2, 0.1, 0.5), (ac, 0.1, 0.1, 0.5), (bb, 0.7, 0.5, 0.5),

(ca, 0.1, 0.1, 0.5), (cb, 0.2, 0.1, 0.5)},
SE ={(aa, 0.2, 0.1, 0.3), (ab, 0.2, 0.1, 0.5), (ac, 0.2, 0.1, 0.3), (bb, 0.7, 0.5, 0.5),

(ca, 0.2, 0.1, 0.3), (cb, 0.2, 0.1, 0.5)}.

Thus, G = (RV, SE) and G = (RV, SE) are neutrosophic digraphs as shown in Figure 1.

Figure 1. Rough neutrosophic digraph G = (G, G).

We now form new rough neutrosophic digraphs from old ones.

Definition 6. Let G1 = (G1, G1) and G2 = (G2, G2) be two rough neutrosophic digraphs on a set V∗.
Then, the intersection of G1 and G2 is a rough neutrosophic digraph G = G1 e G2 = (G1 ∩ G2, G1 ∩ G2),
where G1 ∩ G2 = (RV1 ∩ RV2, SE1 ∩ SE2) and G1 ∩ G2 = (RV1 ∩ RV2, SE1 ∩ SE2) are neutrosophic
digraphs, respectively, such that
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(1) µRV1∩RV2(x) = min{µRV1(x), µRV2(x)},
σRV1∩RV2(x) = min{σRV1(x), σRV2(x)},
λRV1∩RV2(x) = max{λRV1(x), λRV2(x)} ∀ x ∈ RV1 ∩ RV1,

µSE1∩SE2(xy) = min{µSE1(x), µSE2(y)},
σSE1∩SE2(xy) = min{σSE1(x), σSE2(y)}
λSE1∩SE2(xy) = max{λSE1(x), λSE2(y)} ∀ xy ∈ SE1 ∩ SE2,

(2) µRV1∩RV2
(x) = min{µRV1

(x), µRV2
(x)},

σRV1∩RV2
(x) = min{σRV1

(x), σRV2
(x)},

λRV1∩RV2
(x) = max{λRV1

(x), λRV2
(x)} ∀ x ∈ RV1 ∩ RV2,

µSE1∩SE2
(xy) = min{µSE1

(x), µSE2
(y)}

σSE1∩SE2
(xy) = min{σSE1

(x), σSE2
(y)}

λSE1∩SE2
(xy) = max{λSE1

(x), λSE2
(y)} ∀ xy ∈ SE1 ∩ SE2.

Example 2. Consider the two rough neutrosophic digraphs G1 and G2 as shown in Figures 1 and 2. The
intersection of G1 and G2 is G = G1 e G2 = (G1 ∩ G2, G1 ∩ G2) where G1 ∩ G2 = (RV1 ∩ RV2, SE1 ∩ SE2)

and G1 ∩ G2 = (RV1 ∩ RV2, SE1 ∩ SE2) are neutrosophic digraphs as shown in Figure 3.

Figure 2. Rough neutrosophic digraph G = (G, G).

Figure 3. Rough neutrosophic digraph G1 e G2 = (G1 ∩ G2, G1 ∩ G2).

Theorem 1. The intersection of two rough neutrosophic digraphs is a rough neutrosophic digraph.

Proof. Let G1 = (G1, G1) and G2 = (G2, G2) be two rough neutrosophic digraphs. Let G = G1 e G2 =

(G1 ∩ G2, G1 ∩ G2) be the intersection of G1 and G2, where G1 ∩ G2 = (RV1 ∩ RV2, SE1∩, SE2) and
G1 ∩ G2 = (RV1 ∩ RV2, SE1 ∩ SE2). To prove that G = G1 e G2 is a rough neutrosophic digraph, it is
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enough to show that SE1 ∩ SE2 a nd SE1 ∩ SE2 are neutrosophic relation on RV1 ∩ RV2 and RV1 ∩ RV2,
respectively. First, we show that SE1 ∩ SE2 is a neutrosophic relation on RV1 ∩ RV2.

µSE1∩SE2(xy) = µSE1(xy) ∧ µSE2(xy)

≤ (µRV1(x) ∧ µRV2(y)) ∧ (µRV1(x) ∧ µRV2(y))

= (µRV1(x) ∧ µRV2(x)) ∧ (µRV1(y) ∧ µRV2(y)

= µRV1∩RV2(x) ∧ µRV1∩RV2(y)

µSE1∩SE2(xy) ≤ min{µRV1∩RV2(x), µRV1∩RV2(y)}
σSE1∩SE2(xy) = σSE1(xy) ∧ σSE2(xy)

≤ (σRV1(x) ∧ σRV2(y)) ∧ (σRV1(x) ∧ σRV2(y))

= (σRV1(x) ∧ σRV2(x)) ∧ (σRV1(y) ∧ σRV2(y)

= σRV1∩RV2(x) ∧ σRV1∩RV2(y)

σSE1∩SE2(xy) ≤ min{σRV1∩RV2(x), σRV1∩RV2(y)}
λSE1∩SE2(xy) = λSE1(xy) ∧ λSE2(xy)

≤ (λRV1(x) ∨ λRV2(y)) ∧ (λRV1(x) ∨ λRV2(y))

= (λRV1(x) ∧ λRV2(x)) ∨ (λRV1(y) ∧ λRV2(y)

= λRV1∩RV2(x) ∨ λRV1∩RV2(y)

λSE1∩SE2(xy) ≤ max{λRV1∩RV2(x), λRV1∩RV2(y)}.

Thus, from above it is clear that SE1 ∩ SE2 is a neutrosophic relation on RV1 ∩ RV2.
Similarly, we can show that SE1 ∩ SE2 is a neutrosophic relation on RV1 ∩ RV2. Hence, G is a

rough neutrosophic digraph.

Definition 7. The Cartesian product of two neutrosophic digraphs G1 and G2 is a rough neutrosophic digraph
G = G1 n G2 = (G1 n G2, G1 n G2), where G1 n G2 = (R1 n R2, SE1 n SE2 and G1 n G2 = (RV1 n
RV2, SE1 n SE2) such that

(1) µRV1nRV2(x1, x2) = min{µRV1(x1), µRV2(x2)},
σRV1nRV2(x1, x2) = min{σRV1(x1), µRV2(x2)},
λRV1nRV2(x1, x2) = max{λRV1(x1), µRV2(x2)}, ∀ (x1, x2) ∈ RV1 n RV2,

µSE1nSE2(x, x2)(x, y2) = min{µRV1(x), µSE2(x2, y2)},
σSE1nSE2(x, x2)(x, y2) = min{σRV1(x), σSE2(x2, y2)},
λSE1nSE2(x, x2)(x, y2) = max{λRV1(x), λSE2(x2, y2)} ∀ x ∈ RV1, x2y2 ∈ SE2,

µSE1nSE2(x1, z)(y1, z) = min{µSE1(x1, y1), µRV2(z)},
σSE1nSE2(x1, z)(y1, z) = min{σSE1(x1, y1), σRV2(z)},
λSE1nSE2(x1, z)(y1, z) = max{λSE1(x1, y1), λRV2(z)} ∀ x1y1 ∈ SE1, z ∈ RV2,

(2) µRV1nRV2
(x1, x2) = min{µRV1

(x1), µRV2
(x2)},

σRV1nRV2
(x1, x2) = min{σRV1

(x1), µRV2
(x2)},

λRV1nRV2
(x1, x2) = max{λRV1

(x1), µRV2
(x2)} ∀ (x1, x2) ∈ RV1 n RV2,

µSE1nSE2
(x, x2)(x, y2) = min{µRV1

(x), µSE2
(x2, y2)},

σSE1nSE2
(x, x2)(x, y2) = min{σRV1

(x), σSE2
(x2, y2)},

λSE1nSE2
(x, x2)(x, y2) = max{λRV1

(x), λSE2
(x2, y2)} ∀ x ∈ RV1, x2y2 ∈ SE2,
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µSE1nSE2
(x1, z)(y1, z) = min{µSE1

(x1, y1), µRV2
(z)},

σSE1nSE2
(x1, z)(y1, z) = min{σSE1

(x1, y1), σRV2
(z)},

λSE1nSE2
(x1, z)(y1, z) = max{λSE1

(x1, y1), λRV2
(z)} ∀ x1y1 ∈ SE1, z ∈ RV2,

Example 3. Let V∗ = {a, b, c, d} be a set. Let G1 = (G1, G1) and G2 = (G2, G2) be two rough neutrosophic
digraphs on V∗, as shown in Figures 4 and 5. The cartesian product of G1 and G2 is G = (G1 × G2, G1 × G2),
where G1 × G2 = (RN1 × RN2, SE1 × SE2) and G1 × G2 = (RN1 × RN2, SE1 × SE2) are neutrosophic
digraphs, as shown in Figures 6 and 7, respectively.

Figure 4. Rough neutrosophic digraph G1 = (G1, G1).

Figure 5. Rough neutrosophic digraph G2 = (G2, G2).
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Figure 6. Neutrosophic digraph G1 × G2 = (RN1 × RN2, SE1 × SE2).

Figure 7. Neutrosophic digraph G1 × G2 = (RN1 × RN2, SE1 × SE2).

Theorem 2. The Cartesian product of two rough neutrosophic digraphs is a rough neutrosophic digraph.

Proof. Let G1 = (G1, G1) and G2 = (G2, G2) be two rough neutrosophic digraphs. Let G = G1 n G2 =

(G1 n G2, G1 n G2) be the Cartesian product of G1 and G2, where G1 n G2 = (RV1 n RV2, SE1 n SE2)

and G1 n G2 = (RV1 n RV2, SE1 n SE2). To prove that G = G1 n G2 is a rough neutrosophic digraph,
it is enough to show that SE1 n SE2 and SE1 n SE2 are neutrosophic relation on RV1 n RV2 and
RV1 n RV2, respectively. First, we show that SE1 n SE2 is a neutrosophic relation on RV1 n RV2.
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If x ∈ RV1, x2y2 ∈ SE2, then

µSE1nSE2(x, x2)(x, y2) = µRV1(x) ∧ µSE2(x2, y2)

≤ µRV1(x) ∧ (µRV2(x2) ∧ µRV2(y2))

= (µRV1(x) ∧ µRV2(x2)) ∧ (µRV1(x) ∧ µRV2(y2))

= µRV1nRV2(x, x2) ∧ µRV1nRV2(x, y2)

µSE1nSE2(x, x2)(x, y2) ≤ min{µRV1nRV2(x, x2), µRV1nRV2(x, y2)},
σSE1nSE2(x, x2)(x, y2) = σRV1(x) ∧ σSE2(x2, y2)

≤ σRV1(x) ∧ (σRV2(x2) ∧ σRV2(y2))

= (σRV1(x) ∧ σRV2(x2)) ∧ (σRV1(x) ∧ σRV2(y2)

= σRV1nRV2(x, x2) ∧ σRV1nRV2(x, y2)

σSE1nSE2(x, x2)(x, y2) ≤ min{σRV1nRV2(x, x2), σRV1nRV2(x, y2)},
λSE1nSE2(x, x2)(x, y2) = λRV1(x) ∨ λSE2(x2, y2)

≤ λRV1(x) ∨ (λRV2(x2) ∨ λRV2(y2))

= (λRV1(x) ∨ λRV2(x2)) ∨ (λRV1(x) ∨ λRV2(y2))

= λRV1nRV2(x, x2) ∨ λRV1nRV2(x, y2)

λSE1nSE2(x, x2, x, y2) ≤ max{λRV1nRV2(x, x2), λRV1nRV2(x, y2)}.

If x1y1 ∈ SE1, z ∈ RV2, then

µSE1nSE2(x1, z)(y1, z) = µSE1(x1, y1) ∧ µRV2(z)

≤ (µRV1(x1) ∧ µRV1(y1)) ∧ µRV2(z)

= (µRV1(x1) ∧ µRV2(z)) ∧ (µRV1(y1) ∧ µRV2(z))

= µRV1nRV2(x1, z) ∧ µRV1nRV2(y1, z)

µSE1nSE2(x1, z)(y1, z) ≤ min{µRV1nRV2(x1, z), µRV1nRV2(y1, z)},
σSE1nSE2(x1, z)(y1, z) = σSE1(x1, y1) ∧ σRV2(z)

≤ (σRV1(x1) ∧ σRV1(y1)) ∧ σRV2(z)

= (σRV1(x1) ∧ σRV2(z)) ∧ (σRV1(y1) ∧ σRV2(z))

= σRV1nRV2(x1, z) ∧ σRV1nRV2(y1, z)

σSE1nSE2(x1, z)(y1, z) ≤ min{σRV1nRV2(x1, z), σRV1nRV2(y1, z)},
λSE1nSE2(x1, z)(y1, z) = λSE1(x1, y1) ∨ λRV2(z)

≤ (λRV1(x1) ∨ λRV1(y1)) ∨ λRV2(z)

= (λRV1(x1) ∨ λRV2(z)) ∨ (λRV1(y1) ∨ λRV2(z))

= λRV1nRV2(x1, z) ∨ λRV1nRV2(y1, z)

λSE1nSE2(x1, z)(y1, z) ≤ max{λRV1nRV2(x1, z), λRV1nRV2(y1, z)}.

Thus, from above, it is clear that SE1 n SE2 is a neutrosophic relation on RV1 n RV2.
Similarly, we can show that SE1 n SE2 is a neutrosophic relation on RV1 n RV2. Hence,

G = (G1 n G2, G1 n G2) is a rough neutrosophic digraph.

Definition 8. The composition of two rough neutrosophic digraphs G1 and G2 is a rough neutrosophic digraph
G = G1 ◦ G2 = (G1 ◦ G2, G1 ◦ G2), where G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2) and G1 ◦ G2 = (RV1 ◦
RV2, SE1 ◦ SE2) are neutrosophic digraphs, respectively, such that

(1) µRV1◦RV2(x1, x2) = min{µRV1(x1), µRV2(x2)},
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σRV1◦RV2(x1, x2) = min{σRV1(x1), µRV2(x2)},
λRV1◦RV2(x1, x2) = max{λRV1(x1), µRV2(x2)} ∀ (x1, x2) ∈ RV1 × RV2,

µSE1◦SE2(x, x2)(x, y2) = min{µRV1(x), µSE2(x2, y2)},
σSE1◦SE2(x, x2)(x, y2) = min{σRV1(x), σSE2(x2, y2)},
λSE1◦SE2(x, x2)(x, y2) = max{λRV1(x), λSE2(x2, y2)} ∀ x ∈ RV1, x2y2 ∈ SE2,

µSE1◦SE2(x1, z)(y1, z) = min{µSE1(x1, y1), µRV2(z)},
σSE1◦SE2(x1, z)(y1, z) = min{σSE1(x1, y1), σRV2(z)},
λSE1◦SE2(x1, z)(y1, z) = max{λSE1(x1, y1), λRV2(z)} ∀ x1y1 ∈ SE1, z ∈ RV2,

µSE1◦SE2(x1, x2)(y1, y2) = min{µSE1(x1, y1), µRV2(x2), µRV2(y2)},
σSE1◦SE2(x1, x2)(y1, y2) = min{σSE1(x1, y1), σRV2(x2), σRV2(y2)},
λSE1◦SE2(x1, x2)(y1, y2) = max{λSE1(x1, y1), λRV2(x2), λRV2(y2)}

∀ x1y1 ∈ SE1, x2, y2 ∈ RV2, x2 6= y2.

(2) µRV1◦RV2
(x1, x2) = min{µRV1

(x1), µRV2
(x2)},

σRV1◦RV2
(x1, x2) = min{σRV1

(x1), µRV2
(x2)},

λRV1◦RV2
(x1, x2) = max{λRV1

(x1), µRV2
(x2)} ∀ (x1, x2) ∈ RV1 × RV2,

µSE1◦SE2
(x, x2)(x, y2) = min{µRV1

(x), µSE2
(x2, y2)},

σSE1◦SE2
(x, x2)(x, y2) = min{σRV1

(x), σSE2
(x2, y2)},

λSE1◦SE2
(x, x2)(x, y2) = max{λRV1

(x), λSE2
(x2, y2)} ∀ x ∈ RV1, x2y2 ∈ SE2,

µSE1◦SE2
(x1, z)(y1, z) = min{µSE1

(x1, y1), µRV2
(z)},

σSE1◦SE2
(x1, z)(y1, z) = min{σSE1

(x1, y1), σRV2
(z)},

λSE1◦SE2
(x1, z)(y1, z) = max{λSE1

(x1, y1), λRV2
(z)} ∀ x1y1 ∈ SE1, z ∈ RV2,

µSE1◦SE2
(x1, x2)(y1, y2) = min{µSE1

(x1, y1), µRV2
(x2), µRV2

(y2)},

σSE1◦SE2
(x1, x2)(y1, y2) = min{σSE1

(x1, y1), σRV2
(x2), σRV2

(y2)},

λSE1◦SE2
(x1, x2)(y1, y2) = max{λSE1

(x1, y1), λRV2
(x2), λRV2

(y2)}

∀ x1y1 ∈ SE1, x2, y2 ∈ RV2, x2 6= y2

Example 4. Let V∗ = {p, q, r} be a set. Let G1 = (G1, G1) and G2 = (G2, G2) be two RND on V∗,
where G1 = (RV1, SE1) and G1 = (RV1, SE1) are ND, as shown in Figure 8. G2 = (RV2, SE2) and
G2 = (RV2, SE2) are also ND, as shown in Figure 9.

The composition of G1 and G2 is G = G1 ◦G2 = (G1 ◦G2, G1 ◦G2) where G1 ◦G2 = (RV1 ◦RV2, SE1 ◦
SE2) and G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2) are NDs, as shown in Figures 10 and 11.
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Figure 8. Rough neutrosophic digraph G1 = (G1, G1).

Figure 9. Rough neutrosophic digraph G2 = (G2, G2).

Figure 10. Neutrosophic digraph G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2).
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Figure 11. Neutrosophic digraph G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2).

Theorem 3. The Composition of two rough neutrosophic digraphs is a rough neutrosophic digraph.

Proof. Let G1 = (G1, G1) and G2 = (G2, G2) be two rough neutrosophic digraphs. Let G = G1 ◦ G2 =

(G1 ◦ G2, G1 ◦ G2) be the Composition of G1 and G2, where G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2) and
G1 ◦ G2 = (RV1 ◦ RV2, SE1 ◦ SE2). To prove that G = G1 ◦ G2 is a rough neutrosophic digraph, it is
enough to show that SE1 ◦ SE2 and SE1 ◦ SE2 are neutrosophic relations on RV1 ◦ RV2 and RV1 ◦ RV2,
respectively. First, we show that SE1 ◦ SE2 is a neutrosophic relation on RV1 ◦ RV2.

If x ∈ RV1, x2y2 ∈ SE2, then

µSE1◦SE2(x, x2)(x, y2) = µRV1(x) ∧ µSE2(x2, y2)

≤ µRV1(x) ∧ (µRV2(x2) ∧ µRV2(y2))

= (µRV1(x) ∧ µRV2(x2)) ∧ (µRV1(x) ∧ µRV2(y2))

= µRV1◦RV2(x, x2) ∧ µRV1◦RV2(x, y2)

µSE1◦SE2(x, x2)(x, y2) ≤ min{µRV1◦RV2(x, x2), µRV1◦RV2(x, y2)},
σSE1◦SE2(x, x2)(x, y2) = σRV1(x) ∧ σSE2(x2, y2)

≤ σRV1(x) ∧ (σRV2(x2) ∧ σRV2(y2))

= (σRV1(x) ∧ σRV2(x2)) ∧ (σRV1(x) ∧ σRV2(y2)

= σRV1◦RV2(x, x2) ∧ σRV1◦RV2(x, y2)

σSE1◦SE2(x, x2)(x, y2) ≤ min{σRV1◦RV2(x, x2), σRV1◦RV2(x, y2)},
λSE1◦SE2(x, x2)(x, y2) = λRV1(x) ∨ λSE2(x2, y2)

≤ λRV1(x) ∨ (λRV2(x2) ∨ λRV2(y2))

= (λRV1(x) ∨ λRV2(x2)) ∨ (λRV1(x) ∨ λRV2(y2))

= λRV1◦RV2(x, x2) ∨ λRV1◦RV2(x, y2)

λSE1◦SE2(x, x2, x, y2) ≤ max{λRV1◦RV2(x, x2), λRV1◦RV2(x, y2)}.

If x1y1 ∈ SE1, z ∈ RV2, then

µSE1◦SE2(x1, z)(y1, z) = µSE1(x1, y1) ∧ µRV2(z)

≤ (µRV1(x1) ∧ µRV1(y1)) ∧ µRV2(z)

= (µRV1(x1) ∧ µRV2(z)) ∧ (µRV1(y1) ∧ µRV2(z))

= µRV1◦RV2(x1, z) ∧ µRV1◦RV2(y1, z)

µSE1◦SE2(x1, z)(y1, z) ≤ min{µRV1◦RV2(x1, z), µRV1◦RV2(y1, z)},
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σSE1◦SE2(x1, z)(y1, z) = σSE1(x1, y1) ∧ σRV2(z)

≤ (σRV1(x1) ∧ σRV1(y1)) ∧ σRV2(z)

= (σRV1(x1) ∧ σRV2(z)) ∧ (σRV1(y1) ∧ σRV2(z))

= σRV1◦RV2(x1, z) ∧ σRV1◦RV2(y1, z)

σSE1◦SE2(x1, z)(y1, z) ≤ min{σRV1◦RV2(x1, z), σRV1◦RV2(y1, z)},
λSE1◦SE2(x1, z)(y1, z) = λSE1(x1, y1) ∨ λRV2(z)

≤ (λRV1(x1) ∨ λRV1(y1)) ∨ λRV2(z)

= (λRV1(x1) ∨ λRV2(z)) ∨ (λRV1(y1) ∨ λRV2(z))

= λRV1◦RV2(x1, z) ∨ λRV1◦RV2(y1, z)

λSE1◦SE2(x1, z)(y1, z) ≤ max{λRV1◦RV2(x1, z), λRV1◦RV2(y1, z)}.

If x1y1 ∈ SE1, x2, y2 ∈ RV2 such that x2 6= y2,

µSE1◦SE2(x1, x2)(y1, y2) = µSE1(x1y1) ∧ µRV2(x2) ∧ µRV2(y2)

≤ (µRV1(x1) ∧ µRV1(y1)) ∧ µRV2(x2) ∧ µRV2(y2)

= (µRV1(x1) ∧ µRV2(x2)) ∧ (µRV1(y1)) ∧ µRV2(y2))

= µRV1◦RV2(x1, x2) ∧ µRV1◦RV2(y1, y2)

µSE1◦SE2(x1, x2)(y1, y2) ≤ min{µRV1◦RV2(x1, x2), µRV1◦RV2(y1, y2)}
σSE1◦SE2(x1, x2)(y1, y2) = σSE1(x1y1) ∧ σRV2(x2) ∧ σRV2(y2)

≤ (σRV1(x1) ∧ σRV1(y1)) ∧ σRV2(x2) ∧ σRV2(y2)

= (σRV1(x1) ∧ σRV2(x2)) ∧ (σRV1(y1)) ∧ σRV2(y2))

= σRV1◦RV2(x1, x2) ∧ σRV1◦RV2(y1, y2)

σSE1◦SE2(x1, x2)(y1, y2) ≤ min{σRV1◦RV2(x1, x2), σRV1◦RV2(y1, y2)}
λSE1◦SE2(x1, x2)(y1, y2) = λSE1(x1y1) ∨ λRV2(x2) ∨ λRV2(y2)

≤ (λRV1(x1) ∨ λRV1(y1)) ∨ λRV2(x2) ∨ λRV2(y2)

= (λRV1(x1) ∨ λRV2(x2)) ∨ (λRV1(y1)) ∨ λRV2(y2))

= λRV1◦RV2(x1, x2) ∨ λRV1◦RV2(y1, y2)

λSE1◦SE2(x1, x2)(y1, y2) ≤ max{λRV1◦RV2(x1, x2), λRV1◦RV2(y1, y2)}.

Thus, from above, it is clear that SE1 ◦ SE2 is a neutrosophic relation on RV1 ◦ RV2.
Similarly, we can show that SE1 ◦ SE2 is a neutrosophic relation on RV1 ◦ RV2. Hence,

G = (G1 ◦G2, G1 ◦G2) is a rough neutrosophic digraph.

Definition 9. Let G = (G, G) be a RND. The complement of G, denoted by G′ = (G′, G′) is a rough
neutrosophic digraph, where G′ = ((RV)′, (SE)′) and G′ = ((RV)′, (SE)′) are neutrosophic digraph such that

(1) µ(RV)′(x) = µRV(x),

σ(RV)′(x) = σRV(x),

λ(RV)′(x) = λRV(x) ∀ x ∈ V∗

µ(SE)′(x, y) = min{µRV(x), µRV(y)} − µSE(xy)

σ(SE)′(x, y) = min{σRV(x), σRV(y)} − σSE(xy)

λ(SE)′(x, y) = max{λRV(x), λRV(y)} − λSE(xy) ∀ x, y ∈ V∗.
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(2) µRV′(x) = µRV(x),

σRV′(x) = σRV(x),

λRV′(x) = λRV(x), ∀ x ∈ V∗

µ(SE)′(x, y) = min{µRV(x), µRV(y)} − µSE(xy)

σ(SE)′(x, y) = min{σRV(x), σRV(y)} − σSE(xy)

λ(SE)′(x, y) = max{λRV(x), λRV(y)} − λSE(xy) ∀ x, y ∈ V∗.

Example 5. Consider a rough neutrosophic digraph as shown in Figure 4. The lower and upper approximations
of graph G are G = (RV, SE) and G = (RV, SE), respectively, where

RV = {(a, 0.2, 0.4, 0.6), (b, 0.2, 0.4, 0.6), (c, 0.2, 0.5, 0.9), (d, 0.2, 0.5, 0.9)},
RV = {(a, 0.3, 0.8, 0.3).(b, 0.3, 0.8, 0.3), (c, 0.5, 0.6, 0.8), (d, 0.5, 0.6, 0.8)},

SE = {(aa, 0.2, 0.3, 0.3), (ab, 0.2, 0.3, 0.3), (ad, 0.1, 0.3, 0.8), (bc, 0.1, 0.3, 0.8),
(bd, 0.1, 0.3, 0.8), (dc, 0.2, 0.4, 0.7), (dd, 0.2, 0.4, 0.7)},

SE = {(aa, 0.2, 0.4, 0.3), (ab, 0.2, 0.4, 0.3), (ad, 0.2, 0.4, 0.7), (bc, 0.2, 0.4, 0.7),
(bd, 0.2, 0.4, 0.7), (dc, 0.2, 0.4, 0.7), (dd, 0.2, 0.4, 0.7)}.

The complement of G is G′ = (G′, G′). By calculations, we have

(RV)′ = {(a, 0.2, 0.4, 0.6), (b, 0.2, 0.4, 0.6), (c, 0.2, 0.5, 0.9), (d, 0.2, 0.5, 0.9)},
(RV)′ = {(a, 0.3, 0.8, 0.3).(b, 0.3, 0.8, 0.3), (c, 0.5, 0.6, 0.8), (d, 0.5, 0.6, 0.8)},

(SE)′ = {(aa, 0, 0.1, 0.3), (ab, 0, 0.1, 0.3), (ac, 0.2, 0.4, 0.9), (ad, 0.1, 0.1, 0.1), (ba, 0.2, 0.4, 0.6), (bb, 0.2, 0.4, 0.6),

(bc, 0.1, 0.1, 0.1), (bd, 0.1, 0.1, 0.1), (ca, 0.2, 0.4, 0.9), (cb, 0.2, 0.4, 0.9), (cc, 0.2, 0.5, 0.9), (cd, 0.2, 0.5, 0.9),

(da, 0.2, 0.4, 0.9), (db, 0.2, 0.4, 0.9), (dc, 0, 0.1, 0.2), (dd, 0, 0.1, 0.2)},

(SE)′ = {(aa, 0.1, 0.4, 0), (ab, 0.1, 0.4, 0), (ac, 0.3, 0.6, 0.8), (ad, 0.1, 0.2, 0.1), (ba, 0.3, 0.8, 0.3), (bb, 0.3, 0.8, 0.3),

(bc, 0.1, 0.2, 0.1), (bd, 0.1, 0.2, 0.1), (ca, 0.3, 0.6, 0.8), (cb, 0.3, 0.6, 0.8), (cc, 0.5, 0.6, 0.8), (cd, 0.5, 0.6, 0.8),

(da, 0.3, 0.6, 0.8), (db, 0.3, 0.6, 0.8), (dc, 0.3, 0.2, 0.1), (dd, 0.3, 0.2, 0.1)}.

Thus, G′ = ((RV)′, (SE)′) and G′ = ((RV)′, (SE)′) are neutrosophic digraph, as shown in Figure 12.

Figure 12. Rough neutrosophic digraph G′ = (G′, G′).

Definition 10. A rough neutrosophic digraph G = (G, G) is self complementary if G and G′ are isomorphic,
that is, G ∼= G′ and G ∼= G′.
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Example 6. Let V∗ = {a, b, c} be a set and R an equivalence relation on V∗ defined as:

R =

 1 0 1
0 1 0
1 0 1

 .

Let V = {(a, 0.2, 0.4, 0.8), (b, 0.2, 0.4, 0.8), (c, 0.4, 0.6, 0.4)} be a neutrosophic set on V∗. The lower and
upper approximations of V are given as,
RV = {(a, 0.2, 0.4, 0.8), (b, 0.2, 0.4, 0.8), (c, 0.2, 0.4, 0.8)},
RV = {(a, 0.4, 0.6, 0.4), (b, 0.2, 0.4, 0.8), (c, 0.4, 0.6, 0.4)}.

Let E∗ = {aa, ab, ac, ba} ⊆ V∗ ×V∗ and S an equivalence relation on E∗ defined as

S =


1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

 .

Let E = {(aa, 0.1, 0.3, 0.2), (ab, 0.1, 0.2, 0.4), (ac, 0.2, 0.2, 0.4), (ba, 0.1, 0.2, 0.4)} be a neutrosophic set
on E∗ and SE = (SE, SE) a RNR where SE and SE are given as
SE = {(aa, 0.1, 0.2, 0.4), (ab, 0.1, 0.2, 0.4), (ac, 0.1, 0.2, 0.4), (ba, 0.1, 0.2, 0.4)},
SE = {(aa, 0.2, 0.3, 0.2), (ab, 0.1, 0.2, 0.4), (ac, 0.2, 0.3, 0.2), (ba, 0.1, 0.2, 0.4)}.

Thus, G = (RV, SE) and G = (RV, SE) are neutrosophic digraphs, as shown in Figure 13.
The complement of G is G′ = (G′, G′), where G′ = G and G′ = G are neutrosophic digraphs, as shown
in Figure 13, and it can be easily shown that G and G′ are isomorphic. Hence, G = (G, G) is a self
complementary RND.

Figure 13. Self complementary RND G = (G, G).

Theorem 4. Let G = (G, G) be a self complementary rough neutrosophic digraph. Then,

∑
w,z∈V∗

µSE(wz) =
1
2 ∑

w,z∈V∗
(µRV(w) ∧ µRV(z))

∑
w,z∈V∗

σSE(wz) =
1
2 ∑

w,z∈V∗
(σRV(w) ∧ σRV(z))

∑
w,z∈V∗

λSE(wz) =
1
2 ∑

w,z∈V∗
(λRV(w) ∨ λRV(z))

∑
w,z∈V∗

µSE(wz) =
1
2 ∑

w,z∈V∗
(µRV(w) ∧ µRV(z))

∑
w,z∈V∗

σSE(wz) =
1
2 ∑

w,z∈V∗
(σRV(w) ∧ σRV(z))

∑
w,z∈V∗

λSE(wz) =
1
2 ∑

w,z∈V∗
(λRV(w) ∨ λRV(z)).
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Proof. Let G = (G, G) be a self complementary rough neutrosophic digraph. Then, there exist two
isomorphisms g : V∗ −→ V∗ and g : V∗ −→ V∗, respectively, such that

µ(RV)′(g(w)) = µRV(w),

σ(RV)′(g(w)) = σRV(w),

λ(RV)′(g(w)) = λRV(w), ∀ w ∈ V∗

µ(SE)′(g(w)g(z)) = µ(SE)(wz),

σ(SE)′(g(w)g(z)) = σ(SE)(wz),

λ(SE)′(g(w)g(z)) = λ(SE)(wz) ∀ w, z ∈ V∗.

and

µ(RV)′(g(w)) = µRV(w),

σ(RV)′(g(w)) = σRV(w),

λ(RV)′(g(w)) = λRV(w), ∀ w ∈ V∗

µ(SE)′(g(w)g(z)) = µ(SE)(wz),

σ(SE)′(g(w)g(z)) = σ(SE)(wz),

λ(SE)′(g(w)g(z)) = λ(SE)(wz) ∀ w, z ∈ V∗.

By Definition 7, we have

µ(SE)′(g(w)g(z)) = (µRV(w) ∧ µRV(z))− µ(SE)(wz)

µ(SE)(wz) = (µRV(w) ∧ µRV(z))− µ(SE)(wz)

∑
w,z∈V∗

µ(SE)(wz) = ∑
w,z∈V∗

(µRV(w) ∧ µRV(z))− ∑
w,z∈V∗

µ(SE)(wz)

2 ∑
w,z∈V∗

µ(SE)(wz) = ∑
w,z∈V∗

(µRV(w) ∧ µRV(z))

∑
w,z∈V∗

µ(SE)(wz) =
1
2 ∑

w,z∈V∗
(µRV(w) ∧ µRV(z))

σ(SE)′(g(w)g(z)) = (σRV(w) ∧ σRV(z))− σ(SE)(wz)

σ(SE)(wz) = (σRV(w) ∧ σRV(z))− σ(SE)(wz)

∑
w,z∈V∗

σ(SE)(wz) = ∑
w,z∈V∗

(σRV(w) ∧ σRV(z))− ∑
w,z∈V∗

σ(SE)(wz)

2 ∑
w,z∈V∗

σ(SE)(wz) = ∑
w,z∈V∗

(σRV(w) ∧ σRV(z))

∑
w,z∈V∗

σ(SE)(wz) =
1
2 ∑

w,z∈V∗
(σRV(w) ∧ σRV(z))

λ(SE)′(g(w)g(z)) = (λRV(w) ∨ λRV(z))− λ(SE)(wz)

λ(SE)(wz) = (λRV(w) ∨ λRV(z))− λ(SE)(wz)

∑
w,z∈V∗

λ(SE)(wz) = ∑
w,z∈V∗

(λRV(w) ∨ λRV(z))− ∑
w,z∈V∗

λ(SE)(wz)

2 ∑
w,z∈V∗

λ(SE)(wz) = ∑
w,z∈V∗

(λRV(w) ∨ λRV(z))

∑
w,z∈V∗

λ(SE)(wz) =
1
2 ∑

w,z∈V∗
(λRV(w) ∨ λRV(z))
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Similarly, it can be shown that

∑
w,z∈V∗

µSE(wz) =
1
2 ∑

w,z∈V∗
(µRV(w) ∧ µRV(z))

∑
w,z∈V∗

σSE(wz) =
1
2 ∑

w,z∈V∗
(σRV(w) ∧ σRV(z))

∑
w,z∈V∗

λSE(wz) =
1
2 ∑

w,z∈V∗
(λRV(w) ∨ λRV(z)).

This completes the proof.

3. Application

Investment is a very good way of getting profit and wisely invested money surely gives certain
profit. The most important factors that influence individual investment decision are: company’s
reputation, corporate earnings and price per share. In this application, we combine these factors into
one factor, i.e. company’s status in industry, to describe overall performance of the company. Let us
consider an individual Mr. Shahid who wants to invest his money. For this purpose, he considers some
private companies, which are Telecommunication company (TC), Carpenter company (CC), Real Estate
business (RE), Vehicle Leasing company (VL), Advertising company (AD), and Textile Testing company
(TT). Let V∗={TC, CC, RE, VL, AD, TT } be a set. Let T be an equivalence relation defined on V∗

as follows:

T =



1 0 1 0 1 0
0 1 0 0 0 0
1 0 1 0 1 0
0 0 0 1 0 1
1 0 1 0 1 0
0 0 0 1 0 1


.

Let V = {(TC, 0.3, 0.4, 0.1), (CC, 0.8, 0.1, 0.5), (RE, 0.1, 0.2, 0.6), (VL, 0.9, 0.6, 0.1), (AD, 0.2, 0.5,
0.2), (TT, 0.8, 0.6, 0.5)} be a neutrosophic set on V∗ with three components corresponding to each
company, which represents its status in the industry and TV = (TV, TV) a rough neutrosophic set,
where TV and TV are lower and upper approximations of V, respectively, as follows:

TV = {(TC, 0.1, 0.2, 0.6), (CC, 0.8, 0.1, 0.5), (RE, 0.1, 0.2, 0.6), (VL, 0.8, 0.6, 0.5), (AD,

0.1, 0.2, 0.6), (TT, 0.8, 0.6, 0.5)},
TV = {(TC, 0.3, 0.5, 0.1), (CC, 0.8, 0.1, 0.5), (RE, 0.3, 0.5, 0.1), (VL, 0.9, 0.6, 0.1), (AD,

0.3, 0.5, 0.1), (TT, 0.9, 0.6, 0.1)}.
Let E∗ = {(TC, CC), (TC, AD), (TC, RE), (CC, VL), (CC, TT), (AD, RE), (TT, VL)},

be the set of edges and S an equivalence relation on E∗ defined as follows:

S =



1 0 0 0 0 0 0
0 1 1 0 0 1 0
0 1 1 0 0 1 0
0 0 0 1 1 0 0
0 1 0 1 1 0 0
0 0 1 0 0 1 0
0 0 0 0 0 0 1


.
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Let E = {
(
(TC, CC), 0.1, 0.1, 01

)
,
(
(TC, AD), 0.1, 0.2, 0.1

)
,
(
(TC, RE), 0.1, 0.2, 0.1

)
,(

(CC, VL), 0.8, 0.1, 0.5
)
,
(
(CC, TT), 0.8, 0.1, 0.5

)
,
(
(AD, RE), 0.1, 0.2, 0.1

)
,(

(TT, VL), 0.8, 0.6, 0.1
)
}

be a neutrosophic set on E∗ which represents relationship between companies and SE = (SE, SE)
a rough neutrosophic relation, where SE and SE are lower and upper upper approximations of E,
respectively, as follows:

SE = {
(
(TC, CC), 0.1, 0.1, 0.1

)
,
(
(TC, AD), 0.1, 0.2, 0.1

)
,
(
(TC, RE), 0.1, 0.2, 0.1

)
,(

(CC, VL), 0.8, 0.1, 0.5
)
,
(
(CC, TT), 0.8, 0.1, 0.5

)
,
(
(AD, RE), 0.1, 0.2, 0.1

)
,(

(TT, VL), 0.8, 0.6, 0.1
)
},

SE = {
(
(TC, CC), 0.1, 0.1, 0.1

)
,
(
(TC, AD), 0.1, 0.2, 0.1

)
,
(
(TC, RE), 0.1, 0.2, 0.1

)
,(

(CC, VL), 0.8, 0.1, 0.5
)
,
(
(CC, TT), 0.8, 0.1, 0.5

)
,
(
(AD, RE)0.1, 0.2, 0.1

)
,(

(TT, VL), 0.8, 0.6, 0.1
)
}.

Thus, G = (TV, SE) and G = (TV, SE) is a rough neutrosophic digraph as shown in Figure 14.

.

Figure 14. Rough neutrosophic digraph G = (G, G).

To find out the most suitable investment company, we define the score values

S(vi) = ∑
vivj∈E∗

T(vj) + I(vj)− F(vj)

3− (T(vivj) + I(vivj)− F(vivj))
,

where

T(vj) =
T(vj)+T(vj)

2 ,

I(vj) =
I(vj)+I(vj)

2 ,

F(vj) =
F(vj)+F(vj)

2 ,

and
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T(vivj) =
T(vivj)+T(vivj)

2 ,

I(vivj) =
I(vivj)+I(vivj)

2 ,

F(vivj) =
F(vivj)+F(vivj)

2 .

of each selected company and industry decision is vk if vk = max
i

S(vi). By calculation, we have

S(TC) = 0.4926, S(CC) = 1.4038, S(RE) = 0.0667, S(VL) = 0.3833, S(AD) = 0.1429 and S(TT) = 1.3529.
Clearly, CC is the optimal decision. Therefore, the carpenter company is selected to get maximum
possible profit. We present our proposed method as an algorithm. This Algorithm 1 returns the optimal
solution for the investment problem.

Algorithm 1 Calculation of Optimal decision

1: Input the vertex set V∗.
2: Construct an equivalence relation T on the set V∗.
3: Calculate the approximation sets TV and TV.
4: Input the edge set E∗ ⊆ V∗ ×V∗.
5: Construct an equivalence relation S on E∗.
6: Calculate the approximation sets SE and SE.
7: Calculate the score value, by using formula

S(vi) = ∑
vivj∈E∗

T(vj) + I(vj)− F(vj)

3− (T(vivj) + I(vivj)− F(vivj))
.

8: The decision is S(vk) = max
vi∈V∗

S(vi).

9: If vk has more than one value, then any one of S(vk) may be chosen.

4. Conclusions and Future Directions

Neutrosophic sets and rough sets are very important models to handle uncertainty from two
different perspectives. A rough neutrosophic model is a hybrid model which is made by combining
two mathematical models, namely, rough sets and neutrosophic sets. This hybrid model deals with soft
computing and vagueness by using the lower and upper approximation spaces. A rough neutrosophic
set model gives more precise results for decision-making problems as compared to neutrosophic set
model. In this paper, we have introduced the notion of rough neutrosophic digraphs. This research
work can be extended to: (1) rough bipolar neutrosophic soft graphs; (2) bipolar neutrosophic soft
rough graphs; (3) interval-valued bipolar neutrosophic rough graphs; and (4) neutrosophic soft
rough graphs.
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