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A B S T R A C T

Outsourcing has become a common and important link for enterprises. When selecting an outsourcing provider,
single-valued neutrosophic linguistic sets can successfully express qualitative and fuzzy information.
Furthermore, the selection of an outsourcing provider is a multi-criteria decision-making problem that can be
tackled by the multi-attribute border approximation area comparison (MABAC) method. In MABAC, criteria are
assumed to be compensatory. However, criteria may be non-compensatory in outsourcing provider selection.
Thus, this paper introduces the main idea of the elimination and choice translating reality (ELECTRE) method.
An MABAC–ELECTRE method is established under single-valued neutrosophic linguistic environments. This
method uses the mean-squared deviation weight method to obtain the weights of criteria. Moreover, an illus-
trative example is conducted to explain the procedure of the MABAC–ELECTRE method. A comparative analysis
verifies its feasibility in solving problems with non-compensatory criteria.

1. Introduction

Outsourcing has become a significant link in the production chain
for many enterprises. It can reduce manpower and financial investment
and achieve maximum efficiency. Enterprises may outsource a part of
or all work to professional organisations as needed. Recently, an in-
creasing number of enterprises have been outsourcing to seek assistance
for their production and operation. In 2015, the amount of money in-
volved in outsourcing service contracts signed by Chinese enterprises
reached 130.93 billion dollars, and the amount of money involved in
execution reached 96.69 billion dollars. It is of great economic value to
investigate the decision-making method for outsourcing provider se-
lection.

Many scholars have focused on finding a suitable one from a mul-
titude of outsourcing providers. Some of these scholars mentioned that
the outsourcing provider selection is a multi-criteria decision-making
problem (Hsu, Liou, & Chuang, 2013; Liou & Chuang, 2010; Liou,
Wang, Hsu, & Yin, 2011; Tavana, Zareinejad, Caprio, & Kaviani, 2016).
These scholars introduced multi-criteria decision-making (MCDM)
methods to establish the outsourcing provider selection methods. The
characterisation of decision information is a significant issue in con-
structing these MCDM selection methods. A few researchers considered
that uncertain information may exist in the selection process due to the
complexity of human cognition (Li & Wan, 2014a; Uygun, Kaçamak, &
Kahraman, 2015; Wan, Wang, Lin, & Dong, 2015). Fuzzy sets (FSs) can

depict uncertain information (Krupka & Lastovicka, 2017; Li & Wang,
2017) and have been introduced in many fields, such as decision
making (Geng, Liu, Teng, & Liu, 2017; Wang, Yang, & Li, 2016; Wang,
Zhang, & Wang, 2018; Yu, Wang, & Wang, 2018), treatment selection
(Ji, Zhang, & Wang, 2017), game model (Erman, 2010) and green
supplier evaluation (Wang, Liu, Liu, & Huang, 2017). Likewise, FSs
have been applied to denote uncertain information in the outsourcing
provider selection.

However, limitations exist in existing research on the fuzzy out-
sourcing provider selection.

(1) The outsourcing provider selection is a complicated problem, in
which uncertain decision information may not be expressed quan-
titatively. Such information may be improper to be characterised by
FSs that comprise quantitative values. Nevertheless, this fact has
not been considered in existing fuzzy outsourcing provider selection
methods. These methods applied FSs composed of quantitative va-
lues (see Section 2). Information loss and distortion may exist in
current outsourcing provider selection methods.

(2) Existing studies on outsourcing provider selection are based on an
impertinent assumption. They suppose that multiple criteria in-
volved in outsourcing provider selection are complementary.
However, criteria may be non-compensatory. For example, six cri-
teria may be considered in information technology (IT) outsourcing
provider selection. These criteria include research and development
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capability, product quality, technology level, flexibility, delivery
time and cost. Low cost cannot compensate for poor research and
development capability, inferior quality of product, low technology
level, poor flexibility or long delivery time.

A novel fuzzy outsourcing provider selection method is constructed.
It overcomes the aforementioned deficiencies. The proposed out-
sourcing provider selection method expresses decision information
using single-valued neutrosophic linguistic sets (SVNLSs). Moreover,
the new selection method is established by using multi-attribute border
approximation area comparison (MABAC) method. This paper presents
two weighted aggregation operators for SVNLSs that will be used in
MABAC. These two operators include the single-valued neutrosophic
linguistic weighted average (SVNLWA) and single-valued neutrosophic
linguistic weighted geometric (SVNLWG) operators. As for the non-
compensation problem, our outsourcing provider selection method in-
troduces the main idea of the elimination and choice translating reality
(ELECTRE) method into MABAC.

The use of SVNLSs is motivated by the following reason. An SVNLS
(Ye, 2015) comprises a linguistic part and a fuzzy part. The fuzzy part is
used to depict the degrees of confidence of linguistic value in the lin-
guistic part. The fuzzy part of an SVNLS is in the form of single-valued
neutrosophic numbers (SVNNs). SVNLS is a useful tool to denote de-
cision information in the outsourcing provider selection. For example,
when an expert is required to assess an outsourcing provider, he or she
provides a qualitative evaluation (e.g. the outsourcing provider is good)
instead of a numerical rating. Furthermore, the degree of which he or
she thinks the assessment is true is not 100% but a decimal between
zero and one, such as 0.8. The degree of which he or she thinks the
assessment is false is not zero but a decimal between zero and one, such
as 0.3. The degree of which he or she does not sure about the assess-
ment is a decimal between zero and one, such as 0.2. A single specific
value cannot reflect all information simultaneously. Moreover, these
three degrees are mutually independent, and there is no restriction on
their sum. SVNNs can depict information regarding the confidence of
the assessment perfectly and SVNLSs can denote the assessments in the
outsourcing provider selection successfully.

The application of the proposed outsourcing provider selection
method is explained in an illustrative example. In addition, the pro-
posed outsourcing provider selection method is compared with several
existing methods in a comparative analysis. Results of comparative
analysis indicate the good performance of the proposed outsourcing
provider selection method.

We contribute to existing research on outsourcing provider selec-
tion. The contributions of this study are threefold: (1) Characterisation
of decision information: SVNLSs are perfect for describing the qualita-
tive and uncertain information in outsourcing provider selection.
Unlike single-valued neutrosophic sets (SVNSs), SVNLSs can depict
qualitative information. Different from linguistic values, SVNLSs char-
acterise fuzziness in the selection process. (2) Consideration of non-
compensation of criteria: Our outsourcing provider selection method
introduces the main idea behind ELECTRE method into MABAC. Unlike
the traditional MABAC, our method considers the non-complementary
property of criteria. (3) Weight method: Our MABAC–ELECTRE method
determines the weight vector of criteria by using the mean-squared
deviation weight method.

The structure of this paper is organised as follows. Section 2 reviews
the existing research on outsourcing provider selection. Section 3 in-
troduces definitions that will be used in our outsourcing provider se-
lection method. Furthermore, we define the SVNLWA and SVNLWG
operators. Section 4 constructs the combined MABAC–ELECTRE
method to address the outsourcing provider selection problem. Section
5 provides an illustrative example of IT outsourcing provider selection.
Section 6 presents a comparative analysis. Finally, Section 7 concludes
the paper and provides interesting directions for future research.

2. Literature review

Scholars have been investigating on how to find a proper one from
multiple outsourcing providers and have obtained some achievements
(Hsu et al., 2013; Liou & Chuang, 2010; Liou et al., 2011). For example,
Lin, Lin, Yu, and Tzeng (2010) proposed an outsourcing provider se-
lection method, which uses the interpretive structural modelling and
the analytic network process. Tavana et al. (2016) developed a selec-
tion method for outsourcing reverse logistics. The proposed method
uses a preference programming model to derive the weights of criteria.
Li and Wan (2014a) and Qiang and Li (2015) constructed linear pro-
gramming methods for outsourcing provider selection. Uygun et al.
(2015) introduced an MCDM method to establish an outsourcing pro-
vider selection method. Moreover, Sivakumar, Kannan, and Murugesan
(2015) combined the analytic hierarchy process and Taguchi loss
functions to address outsourcing provider selection problems.

Some scholars emphasized the existence of uncertain information in
outsourcing provider selection due to the complexity of human cogni-
tion (Li & Wan, 2014a; Uygun et al., 2015; Wan et al., 2015). These
researchers investigated the expression of uncertain information in
outsourcing provider selection and suggested the introduction of fuzzy
logic. For instance, Wan et al. (2015) used intuitionistic FSs to depict
uncertain information in outsourcing provider selection. In addition, Li
and Wan (2014a) introduced trapezoidal fuzzy number to express un-
certain information. Uygun et al. (2015) characterised uncertain in-
formation using triangular fuzzy number. Moreover, Wang, Wang, and
Zhang (2016) applied multi-hesitant fuzzy linguistic term sets in de-
noting decision information in outsourcing provider selection. Di-
versely, Ji, Wang, and Zhang (2016) employed SVNSs to express un-
certain information in outsourcing provider selection.

However, two deficiencies regarding characterising uncertain in-
formation exist in the aforementioned studies. (1) Firstly, FSs in (Li &
Wan, 2014a; Uygun et al., 2015; Wan et al., 2015) can only depict
quantitative information. Section 1 indicates that decision makers may
fail to express their evaluations using quantitative values. They prefer
to use qualitative values rather than precise values in evaluating out-
sourcing provider. Nevertheless, FSs in (Li & Wan, 2014a; Uygun et al.,
2015; Wan et al., 2015) cannot depict qualitative information in out-
sourcing provider selection. (2) Secondly, FS in Wang, Wang, et al.
(2016) can express qualitative evaluation information. However, it
cannot reflect the degrees of truth-membership, falsity-membership and
indeterminacy-membership of each qualitative evaluation. Section 1
explains that the degree of which a decision maker thinks his or her
assessment is true may not be 100%; the degree of which a decision
maker thinks his or her assessment is false may not be zero; the degree
of which a decision maker is not sure about his or her assessment may
not be zero. This is because of his or her limited knowledge and cog-
nition.

The outsourcing provider selection is an MCDM problem. MCDM
methods can be introduced to solve outsourcing provider selection
problems. Many fuzzy MCDM methods have been proposed
(Pouresmaeil, Shivanian, Khorram, & Fathabadi, 2017). For example,
Stanujkic, Zavadskas, Smarandache, Brauers, and Karabasevic (2017)
and Zavadskas, Bausys, Juodagalviene, and Garnyte-Sapranaviciene
(2017) investigated the multi-objective optimisation by a ratio analysis
and the full multiplicative form under neutrosophic environments.
Moreover, a weighted aggregated sum product assessment with SVNSs
was developed by Zavadskas, Baušys, Stanujkic, and Magdalinovic-
Kalinovic (2017) and Zavadskas, Baušys, and Lazauskas (2015). In
addition, Liang, Wang, and Zhang (2017) presented a single-valued
trapezoidal neutrosophic decision making trial and evaluation labora-
tory method. Zavadskas, Bausys, Kaklauskas, et al. (2017) proposed a
multi-attribute market value assessment method with neutrosophic
sets. Furthermore, Ye (2014) constructed a neutrosophic MCDM
method based on cross-entropy.

MABAC method is a simple and effective MCDM method with
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simple calculation, systematic process and sound logic (Xue, You, Lai, &
Liu, 2016). It is a particularly pragmatic and reliable measure for
MCDM problems. MABAC was recently proposed by Pamučar and
Ćirović (2015). It divides alternatives under each criterion into three
areas (Debnath, Roy, Kar, Zavadskas, & Antucheviciene, 2017; Shi, Liu,
Li, & Xu, 2017). These areas comprise the border, upper and lower
approximation areas. MABAC has been extended into fuzzy environ-
ments (Gigović, Pamučar, Božanić, & Ljubojević, 2017; Peng, Dai, &
Yuan, 2016; Shi et al., 2017). For instance, Xue et al. (2016) and Liu,
You, and Duan (2017) applied MABAC to address problems under in-
terval-valued intuitionistic fuzzy environments. In addition, Peng and
Yang (2016) established the Choquet integral-based MABAC under
Pythagorean fuzzy environments. Yu, Wang, and Wang (2017) in-
vestigated the extension of MABAC under interval type-2 fuzzy en-
vironments. Pamučar, Petrović, and Ćirović (2017) and Pamučar,
Mihajlović, Obradović, and Atanasković (2017) presented MABAC with
interval-valued fuzzy rough numbers. They combined the best–worst
method with MABAC. Moreover, MABAC has been extended into
hesitant fuzzy (Peng & Dai, 2017b) and interval-valued neutrosophic
environments (Peng & Dai, 2017a). MABAC has not been investigated
under single-valued neutrosophic linguistic environments. It is an in-
teresting research topic to apply MABAC in outsourcing provider se-
lection with SVNLSs.

MABAC assumes that criteria are compensatory. However, as nar-
rated in Section 1, criteria may be non-compensatory in outsourcing
provider selection. ELECTRE is a significant method to address the non-
compensation problem of criteria (Del Vasto-Terrientes, Valls,
Slowinski, & Zielniewicz, 2015). ELECTRE has been investigated and
extended by many researchers. A family of ELECTRE methods, in-
cluding ELECTRE I, ELECTRE II and ELECTRE III, has been formed
(Zhang, Peng, & Wang, 2017). In addition, many researchers devote
themselves to the application of ELECTRE methods in fuzzy decision
making (Liu, You, Chen, & Chen, 2016; Wang, Wang, Chen, Zhang, &
Chen, 2014; Zhou, Wang, & Zhang, 2016). For example, Vahdani and
Hadipour (2011) applied ELECTRE to settle decision-making problems
with interval-valued FSs. In addition, ELECTRE has been extended into
intuitionistic fuzzy (Wu & Chen, 2011) and neutrosophic environments
(Zhang, Wang, & Chen, 2016). Moreover, Peng, Wang, Wang, Yang, and
Chen (2015) defined the outranking relations of multi-hesitant FSs and
extended ELECTRE III into multi-hesitant fuzzy environments.
ELECTRE III has also been investigated under hesitant interval-valued
fuzzy environments (Wang, Peng, Zhang, & Chen, 2017).

In this study, decision information in outsourcing provider selection
is characterised by single-valued neutrosophic linguistic numbers
(SVNLNs). The SVNLWA and SVNLWG operators are presented. Then,
an outsourcing provider selection method is constructed by using
MABAC. The proposed outsourcing provider selection method tackles
the non-compensation problem of criteria by introducing the main idea
of ELECTRE III.

3. Preliminary definitions

In this section, some concepts of SVNLSs and SVNLNs are reviewed.
These concepts will be involved in our proposed outsourcing provider
selection method. Moreover, the SVNLWA and the SVNLWG operators
are developed and will be used in the construction of the proposed
outsourcing provider selection method.

Definition 1 (Ye, 2015). Let = …X x x x{ , , , }n1 2 be a non-empty fixed set.
Let = …S s s s s{ , , , , }l0 1 2 be a finite and totally ordered discrete linguistic
term set. An SVNLS can be defined as:

= 〈 〉A x s T x I x F x{ ,[ ,( ( ), ( ), ( ))] },i θ x A i A i A i( )i

where ∈x Xi , ∈s Sθ x( )i , ∈T x( ) [0,1]A i , ∈I x( ) [0,1]A i and ∈F x( ) [0,1]A i .
T x( )A i , I x( )A i and F x( )A i are the degrees of truth-membership,
indeterminate-membership and false-membership of xi in X to sθ x( )i ,

respectively. Moreover, ⩽ + + ⩽T x I x F x0 ( ) ( ) ( ) 3A i A i A i exists for any
∈x Xi .

In addition, = 〈 〉a s T x I x F x,( ( ), ( ), ( ))θ x A i A i A i( )i is called an SVNLN. For
convenience, hereafter, an SVNLN is denoted as = 〈 〉a s T I F,( , , )θ x a a a( )i . An
SVNLS can be considered as a collection of SVNLNs and can be re-
presented as = 〈 〉A s T x I x F x{ ,( ( ), ( ), ( )) }θ x A i A i A i( )i .

Tian, Wang, Wang, and Zhang (2017) introduced the linguistic scale
function to define the operations of SVNLNs.

Definition 2 (Tian et al., 2017). Let = 〈 〉a s T I F,( , , )θ a a a a( ) and
= 〈 〉b s T I F,( , , )θ b b b b( ) be two SVNLNs. Let ∗f be a linguistic scale

function, ∗−f 1 be the anti-function of ∗f and >λ 0. Then, the
operations of SVNLNs can be defined as follows:
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(2) × = 〈 + − + − 〉∗− ∗ ∗a b f f s f s T T I I I I F F F F( ( ) ( )),( , , )θ a θ b a b a b a b a b a b
1

( ) ( ) ;
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1
( ) ;
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λ
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λ
a

λ
a

λ1
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(5) = 〈 − − 〉∗− ∗ ∗neg a f f s f s F I T( ) ( ( ) ( )),( ,1 , )θ l θ a a a a
1

( ) ( ) .

Three linguistic scale functions are listed by Tian et al. (2017). The
first scale function is =f s( )θ j

θ j
l1 ( )
( ) , ∈θ j l( ) [0, ]. Its linguistic informa-

tion is divided on average. The second and third linguistic scale func-
tions are piecewise functions. They are presented as follows:
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All three functions are strictly monotonically increasing and continuous
functions.

Tian et al. (2017) developed the comparison method of SVNLNs
based on the proposed score, accuracy and certainty functions.

Definition 3 (Tian et al., 2017). Let = 〈 〉a s T I F{ ,( , , ) }θ a a a a( ) be an SVNLN.
Let ∗f be a linguistic scale function. The score function of a can be
defined as follows:

= + − + −∗S a f s T I F( ) ( )( 1 1 ).θ a a a a( )

The accuracy function of a can be defined as follows:

= −∗A a f s T F( ) ( )( ).θ a a a( )

The certainty function of a can be defined as follows:

= ∗C a f s T( ) ( ) .θ a a( )

Definition 4 (Tian et al., 2017). Let = 〈 〉a s T I F{ ,( , , ) }θ a a a a( ) and
= 〈 〉b s T I F{ ,( , , ) }θ b b b b( ) be two SVNLNs. The comparison method of

SVNLNs can be defined as follows:

(1) If >S a S b( ) ( ), then ≻a b.
(2) If =S a S b( ) ( ) and >A a A b( ) ( ), then ≻a b.
(3) If =S a S b( ) ( ), =A a A b( ) ( ) and >C a C b( ) ( ), then ≻a b.
(4) If =S a S b( ) ( ), =A a A b( ) ( ) and =C a C b( ) ( ), then =a b.

Definition 5 (Ye, 2015). Let = 〈 〉a s T I F,( , , )θ a a a a( ) and = 〈 〉b s T I F,( , , )θ b b b b( )
be two SVNLNs. The generalised distance measure between a and b can
be defined as follows:

= − + − + −d a b θ a T θ b T θ a I θ b I θ a F θ b F( , ) | ( ) ( ) | | ( ) ( ) | | ( ) ( ) | ,a b
p

a b
p

a b
p (1)
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when =p 1, Eq. (1) reduces to the Hamming distance; and when =p 2,
Eq. (1) reduces to the Euclidean distance.

Two aggregation operators of SVNLNs, namely, SVNLWA and the
SVNLWG, are defined on the basis of existing studies.

Definition 6. Let = 〈 〉x s T I F,( , , )i θ x x x x( )i i i i = …i n( 1,2, , ) be a collection of
SVNLNs. = …w w w w( , , , )n

T
1 2 is the weight vector of xi, where ∑ == w 1i

n
i1

and ⩾w 0i = …i n( 1,2, , ). The SVNLWA operator can be defined as
follows:

∑… =
=

SVNLWA x x x w x( , , , ) ( ).n
i

n

i i1 2
1

If the weight vector = …( )w , , ,n n n

T1 1 1 , then the SVNLWA operator
reduces to the single valued neutrosophic linguistic arithmetic
average (SVNLAA) operator.

Theorem 1. Let = 〈 〉x s T I F,( , , )i θ x x x x( )i i i i = …i n( 1,2, , ) be a collection of
SVNLNs. = …w w w w( , , , )n

T
1 2 is the weight vector of xi, where ∑ == w 1i

n
i1

and ⩾w 0i = …i n( 1,2, , ). The aggregated result by the SVNLWA operator is
also an SVNLN, and
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The proof of Theorem 1 is presented in Appendix A.

Definition 7. Let = 〈 〉x s T I F,( , , )i θ x x x x( )i i i i = …i n( 1,2, , ) be a collection of
SVNLNs. = …w w w w( , , , )n

T
1 2 is the weight vector of xi, where ∑ == w 1i

n
i1

and ⩾w 0i = …i n( 1,2, , ). The SVNLWG operator can be defined as
follows:

∏… =
=

SVNLWG x x x x( , , , ) ( ) .n
i

n

i
w

1 2
1

i

If the weight vector = …( )w , , ,n n n

T1 1 1 , then the SVNLWG operator
reduces to the single valued neutrosophic linguistic geometric
average (SVNLGA) operator.

Theorem 2. Let = 〈 〉x s T I F,( , , )i θ x x x x( )i i i i = …i n( 1,2, , ) be a collection of
SVNLNs. = …w w w w( , , , )n

T
1 2 is the weight vector of xi, where ∑ == w 1i

n
i1

and ⩾w 0i = …i n( 1,2, , ). The aggregated result by the SVNLWG operator is
also an SVNLN, and
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The proof of Theorem 2 is provided in Appendix A.

4. Combined MABAC–ELECTRE selection method

This section presents a combined MABAC–ELECTRE method for
outsourcing provider selection. The combined MABAC–ELECTRE
method comprises three stages. The first stage aims to acquire the
weight vector of criteria. The second stage obtains the differences be-
tween outsourcing providers and corresponding border approximation
area. The outsourcing providers are ranked in the last stage. Fig. 1
depicts the structure of the combined MABAC–ELECTRE method. Its
details are illustrated in the rest of this section.

An outsourcing provider selection problem involves m providers
( …A A A, , , m1 2 ) and n criteria ( …C C C, , , n1 2 ). Each outsourcing provider is
evaluated by e ( ⩾e 1) decision makers ( …DM DM DM, , , e1 2 ) against each
criterion. The weighted vector of decision makers is given as

= …ω ω ω ω( , , , )e
T

1 2 . The evaluations provided by decision maker DMg

= …g e( 1,2, , ) can be characterised by SVNLNs. The details of the char-
acterisation have been explained in Section 1. The decision matrixU g of
DMg can be denoted as follows:

=
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⎝
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⋯
⋯
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where ̃= 〈 〉∼∼ ∼U s T I F,( , , )rj
g

rj
g

rj
g

rj
g

rj
g

is the SVNLN of Ar = ⋯r m( 1,2, , ) against Cj
= ⋯j n( 1,2, , ) provided by DMg = …g e( 1,2, , ).

4.1. Stage 1: Obtain the weight vector of criteria

In this stage, the weight vector of criteria is obtained. The weights of
criteria are determined by a mean-squared deviation weight method.
The details of this stage are explained as follows.

Step 1: Normalise decision matrices.

An outsourcing provider problem may have cost and benefit criteria.
Thus, the decision matrix of each decision maker should be normalised.
If Cj is a cost criterion, then Urj

g should be normalised; otherwise, nor-
malisingUrj

g is unnecessary. For ease of description, CC is used to denote
the set of all cost criteria. The formula of normalisation is defined as
follows:

= 〈 〉 = ⎧
⎨⎩

∈
N s T I F

neg U C CC

U
,( , , )

( ) ,

otherwise.rj
g

rj
g

rj
g

rj
g

rj
g rj

g
j

rj
g

(4)

where neg U( )rj
g is the compensatory set of Urj

g. The compensatory set of
an SVNLN is defined in Definition 2. The normalised decision matrices

= ×N N( )g
rj
g

m n = …g e( 1,2, , ) can be determined by using Eq. (4).

Step 2: Aggregate normalised decision matrices.

The most suitable outsourcing provider should be obtained using
the evaluations of all decision makers. In this step, the normalised de-
cision matrices of e decision makers are aggregated. This purpose can
be achieved by using the SVNLWA operator in Eq. (2):

= 〈 〉 = …N s T I F SVNLWA N N N,( , , ) ( , , , ),rj rj rj rj rj rj rj rj
e1 2

(5)

where Nrj is the aggregated decision information of Ar against Cj. The
aggregated decision matrix N comprises Nrj = … = …r m j n( 1,2, ; 1,2, , )
and can be denoted as = ×N N( )rj m n.

Step 3: Obtain mean values.

A mean-squared deviation weight method is developed in the sub-
sequent steps. This method uses the mean value of all outsourcing
providers against each criterion. In this step, the mean value E N( )j of all
outsourcing providers against Cj is obtained. E N( )j is obtained by using
the SVNLAA operator:

= …E N SVNLAA N N N( ) ( , , , ).j j j mj1 2 (6)

The SVNLAA operator is an SVNLWA operator (i.e. Eq. (2)) with
equal weights of aggregated elements.

Step 4: Obtain mean-squared deviation values.

This step intends to calculate the mean-squared deviation values.
The mean-squared deviation value σ N( )j against Cj can be obtained by
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using Eq. (7):

∑= −
=

σ N d N E N( ) ( ( ( ))) .j i

m
ij j1

2
(7)

Step 5: Obtain the weight vector of criteria.

The weight wj of Cj can be obtained by using Eq. (8):

=
∑ =

w
σ

σ
.j

j

j
n

j1 (8)

The weight vector of criteria comprises their weight, and it is re-
presented by = …w w w w( , , , )n

T
1 2 in the two next stages.

4.2. Stage 2: Obtain difference matrix

Step 6: Obtain weighted decision matrix.

Stage 1 obtains the aggregated decision matrix N in Step 2. Stage 1
also determines the weight vector of criteria w in Step 5. This step
obtains the weighted decision matrix by multiplying N by w. Elements
in the weighted decision matrix = ×R r( )ij m n can be obtained by Eq. (9):

=r w N .ij j ij (9)

Step 7: Obtain the border approximation area matrix.

MABAC involves the notion of border approximation area. The
border approximation area bj can be calculated by using the SVNLGA

Stage 1. Obtain the weight vector of criteria

The mean-squared
deviation weight method

Stage 2. Obtain difference matrix

Step 6: Obtain weighted decision matrix
Step 7: Obtain the border approximation area
matrix
Step 8: Obtain the differences between
element rij in the weighted decision
matrix R and the border approximation
area bj

Stage 3. Rank outsourcing providers

Step 9: Determine the concordance matrix
Step 10: Determine the credibility index of
outranking relations
Step 11: Determine the indices of
outsourcing providers
Step 12: Rank outsourcing providers

Step 1: Normalise decision matrices
Step 2: Aggregate normalised decision
matrices
Step 3: Obtain the mean values
Step 4: Obtain mean-squared deviation
values
Step 5: Obtain the weight vector of criteria

MABAC method

ELECTRE method

Fig. 1. Structure of the combined MABAC-ELECTRE method.
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operator in Eq. (3) as:

= …b SVNLGA N N N( , , , ).j j j mj1 2 (10)

Then, the border approximation area matrix = ×B b( )j n 1 can be de-
termined.

Step 8: Obtain the difference between element rij in the weighted
decision matrix R and the border approximation area bj.

The difference matrix = ×D d( )ij m n can be obtained by using Eq. (1)
in Definition 3 as:

= ⎧
⎨⎩

≻
−

d
d N b if N b

d N b otherwise
( , )

( , )
.ij

ij j ij j

ij j (11)

Whether ≻N bij j or not is determined by the comparison method in
Definition 4.

4.3. Stage 3: Rank outsourcing providers

MABAC ranks alternatives according to the closeness coefficient to
the border approximation area. This closeness coefficient is the ar-
ithmetic sum of the row elements of D (i.e., ∑ = dj

n
ij1 ). That is, MABAC

irrationally assumes that criteria are complementary. The main idea of
ELECTRE is to manage the integration of the row elements of D. The
details of this stage are explained as follows.

Step 9: Determine the concordance matrix.

The concordance index C x x( , )i k between Ai and Ak can be calculated
by Eq. (12):

∑=
=

C A A
n

c d d( , ) 1 ( , ),i k
j

n

ij kj
1 (12)

where c d d( , )ij kj is the degree of concordance between dij and dkj.

=
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0

1
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kj ij j
p d d

p q j kj ij j

kj ij j

j ij kj

j j

(13)

where qj is the preference threshold under cj, pj is the indifference
threshold under cj and ⩽ ⩽q p0 j j.

Therefore, the concordance matrix C is as follows:

=
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⋯
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Step 10: Determine the credibility index of outranking relations.

∏=
=

σ A A C A A δ A A( , ) ( , )· ( , ).i k i k
j

n

j i k
1 (14)

Here,

= ⎧
⎨
⎩

>−
−δ A A if disc d d C A A

otherwise
( , ) ( , ) ( , )

1
,j i k

disc d d
C d d ij kj i k

1 ( , )
1 ( , )

ij kj

i k

where disc d d( , )ij kj is the degree of discordance between dij and dkj, and
disc d d( , )ij kj can be obtained by:

=
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where pj is the indifference threshold under cj, vj is the veto threshold
under cj and ⩽ ⩽p v0 j j.

Step 11: Determine the indices of outsourcing providers.

The index of an outsourcing provider can be defined as follows:

∑ ∑= −
= =

index A σ A A σ A A( ) ( , ) ( , ),i
k

m

i k
k

m

k i
1 1 (15)

where = …i m1,2, , .

Step 12: Rank outsourcing providers.

Outsourcing providers can be ranked according to index A( )i
( = …i m1,2, , ). A greater value of index A( )i yields a better outsourcing
provider Ai.

5. Sample of outsourcing provider selection

This section applies the combined MABAC–ELECTRE method to
tackle an outsourcing provider selection problem. This section mainly
aims to explain the application of the combined MABAC–ELECTRE
method.

The following case, which stems from (Li & Wan, 2014b), is about IT
outsourcing provider selection. San’an Optoelectronics Company Lim-
ited (hereafter termed San’an), which was founded in November 2000,
is China’s earliest-founded and largest production base to manufacture
full-colour, ultra-high bright LED epitaxial products and chips with best
quality. San’an principally engages in research & development, pro-
duction and marketing of products, such as full-colour, ultra-high
brightness LED epitaxial products, chips, compound solar cells and
high-power concentrating solar products. The general headquarter of
San’an is located in Xiamen and its industrialisation bases distribute in
multiple regions, including Xiamen, Tianjin, Wuhu and Huainan. In
2015, the revenue of San’an reached RMB 4.858 billion with a growth
rate of 6% from 2014, and the profit of San’an reached RMB 1.695
billion with a growth rate of 16% from 2014.

San’an contributes the great majority of manpower and financial
resources to its core competition instead of IT. The outsourcing of IT
becomes an optimal option for San’an because of its lack of professional
competence. San’an selects five potential outsourcing providers, in-
cluding x1 Shanghai Ingens IT Company Limited (hereafter termed
Ingens), x2 Beijing Teamsun Technology Company Limited (hereafter
termed Teamsun), x3 Shenzhen Sinoway IT Outsourcing Company
Limited (hereafter termed Sinoway), x4 Lenovo and x5 Taiji Company
Limited (hereafter termed Taiji), for further evaluation after forward
selection. To find the most suitable IT outsourcing provider, San’an
invites three experts, denoted by e1, e2 and e3, to evaluate each out-
sourcing provider against six criteria, namely, c1 research and devel-
opment capability, c2 product quality, c3 technology level, c4 flexibility,
c5 delivery time and c6 cost. The weight vector of these three experts is
(1/3,1/3,1/3)T .

Section 1 stated that evaluations can be characterised by SVNLNs.
Each expert assesses every provider against each criterion. The lin-
guistic values in =S s s s s s{ , , , , }0 1 2 3 4 are used. For example, e1 evaluated x1
against C1 using the linguistic value s3. Moreover, each manager is re-
quested to provide the following information: (1) The degree of which
he or she thinks the assessment is true. (2) The degree of which he or
she thinks the assessment is false. (3) The degree of which he is not sure
about the assessment. These three kinds of information can be depicted
by a SVNN. For instance, e1 provided these three kinds of information
about his evaluation (s3) on x1 against C1. The degree that s3 is true is
0.4; the degree that s3 is false is 0.1; and the degree that he is unsure is
0.6. These kinds of information can be characterised by a SVNN
〈 〉0.4,0.6,0.1 . All the aforementioned information on x1 against C1

P. Ji et al. Computers & Industrial Engineering 120 (2018) 429–441

434



provided by e1 can be denoted by an SVNLN 〈 〉s ,(0.4,0.6,0.1)3 . Table 1
lists the SVNLNs for all outsourcing providers against each criterion
provided by e1. Likewise, Tables 2 and 3 show the SVNLNs for all
outsourcing providers against each criterion provided by e2 and e3,
respectively. SVNLN for xi against Cj provided by e1 (e2 or e3) is pre-
sented in the (i+1)-th row and (j+1)-th column of Table 1 (Tables 2
or 3).

5.1. Stage 1: Obtain the weight vector of criteria

Step 1: Normalise decision matrix.

c4 and c5 are cost criteria whereas the others are benefit criteria. Let
the scale function be =f s( )θ j

θ j
l1 ( )
( ) . In this example, =l 4 because

=S s s s s s{ , , , , }0 1 2 3 4 . Decision matrices can be normalised by using Eq. (4).
The normalised decision matrices are listed in Tables 4–6.

Table 1
Decision matrix of e1 with SVNLNs.

c1 c2 c3

x1 〈 〉s ,(0.4,0.6,0.1)3 〈 〉s ,(0.9,0.2,0.6)4 〈 〉s ,(0.9,0.7,0.1)4
x2 〈 〉s ,(0.9,0.7,0.1)1 〈 〉s ,(0.8,0.4,0.2)2 〈 〉s ,(0.5,0.4,0.9)1
x3 〈 〉s ,(0.5,0.1,0.3)2 〈 〉s ,(0.6,0.5,0.1)3 〈 〉s ,(0.9,0.2,0.1)4
x4 〈 〉s ,(0.5,0.3,0.5)1 〈 〉s ,(0.4,0.1,0.1)2 〈 〉s ,(0.2,0.8,0.4)2
x5 〈 〉s ,(0.5,0.3,0.5)4 〈 〉s ,(0.7,0.5,0.1)4 〈 〉s ,(0.5,0.6,0.1)2

c4 c5 c6

x1 〈 〉s ,(0.1,0.8,0.6)3 〈 〉s ,(0.2,0.9,0.4)0 〈 〉s ,(0.8,0.1,0.1)4
x2 〈 〉s ,(0.3,0.8,0.6)0 〈 〉s ,(0.1,0.9,0.4)3 〈 〉s ,(0.2,0.1,0.1)2
x3 〈 〉s ,(0.1,0.3,0.5)3 〈 〉s ,(0.2,0.9,0.3)0 〈 〉s ,(0.5,0.1,0.2)1
x4 〈 〉s ,(0.1,0.7,0.9)0 〈 〉s ,(0.1,0.8,0.5)3 〈 〉s ,(0.6,0.1,0.3)4
x5 〈 〉s ,(0.2,0.3,0.8)1 〈 〉s ,(0.1,0.9,0.8)0 〈 〉s ,(0.6,0.3,0.1)1

Table 2
Decision matrix of e2 with SVNLNs.

c1 c2 c3

x1 〈 〉s ,(0.8,0.6,0.1)4 〈 〉s ,(0.5,0.2,0.2)4 〈 〉s ,(0.7,0.4,0.1)4
x2 〈 〉s ,(0.8,0.4,0.1)1 〈 〉s ,(0.6,0.4,0.2)3 〈 〉s ,(0.5,0.2,0.3)3
x3 〈 〉s ,(0.2,0.1,0.3)1 〈 〉s ,(0.8,0.5,0.2)2 〈 〉s ,(0.6,0.5,0.1)4
x4 〈 〉s ,(0.6,0.4,0.4)1 〈 〉s ,(0.7,0.3,0.3)2 〈 〉s ,(0.6,0.8,0.2)3
x5 〈 〉s ,(0.9,0.2,0.6)4 〈 〉s ,(0.9,0.2,0.1)4 〈 〉s ,(0.7,0.8,0.1)2

c4 c5 c6

x1 〈 〉s ,(0.1,0.6,0.9)3 〈 〉s ,(0.3,0.6,0.6)1 〈 〉s ,(0.5,0.1,0.3)4
x2 〈 〉s ,(0.1,0.6,0.7)1 〈 〉s ,(0.4,0.9,0.7)3 〈 〉s ,(0.8,0.1,0.1)4
x3 〈 〉s ,(0.2,0.5,0.8)3 〈 〉s ,(0.1,0.9,0.4)0 〈 〉s ,(0.6,0.1,0.1)1
x4 〈 〉s ,(0.1,0.6,0.9)0 〈 〉s ,(0.1,0.5,0.4)3 〈 〉s ,(0.6,0.1,0.1)4
x5 〈 〉s ,(0.2,0.6,0.4)0 〈 〉s ,(0.1,0.9,0.7)0 〈 〉s ,(0.2,0.1,0.1)1

Table 3
Decision matrix of e3 with SVNLNs.

c1 c2 c3

x1 〈 〉s ,(0.5,0.6,0.1)2 〈 〉s ,(0.4,0.8,0.1)4 〈 〉s ,(0.8,0.5,0.1)3
x2 〈 〉s ,(0.4,0.4,0.1)1 〈 〉s ,(0.5,0.4,0.2)4 〈 〉s ,(0.8,0.1,0.3)2
x3 〈 〉s ,(0.6,0.1,0.1)3 〈 〉s ,(0.5,0.5,0.5)4 〈 〉s ,(0.6,0.8,0.1)4
x4 〈 〉s ,(0.1,0.8,0.2)1 〈 〉s ,(0.4,0.5,0.8)2 〈 〉s ,(0.8,0.8,0.1)4
x5 〈 〉s ,(0.4,0.7,0.1)4 〈 〉s ,(0.8,0.2,0.1)4 〈 〉s ,(0.9,0.1,0.1)2

c4 c5 c6

x1 〈 〉s ,(0.1,0.7,0.9)3 〈 〉s ,(0.5,0.9,0.1)2 〈 〉s ,(0.2,0.1,0.2)4
x2 〈 〉s ,(0.6,0.2,0.9)2 〈 〉s ,(0.1,0.9,0.4)3 〈 〉s ,(0.6,0.1,0.4)3
x3 〈 〉s ,(0.3,0.7,0.2)3 〈 〉s ,(0.6,0.9,0.8)0 〈 〉s ,(0.4,0.1,0.6)1
x4 〈 〉s ,(0.1,0.8,0.9)0 〈 〉s ,(0.1,0.8,0.6)3 〈 〉s ,(0.3,0.1,0.2)4
x5 〈 〉s ,(0.2,0.6,0.7)2 〈 〉s ,(0.1,0.9,0.3)0 〈 〉s ,(0.4,0.2,0.1)1

Table 4
Normalised decision matrix N1 of e1.

c1 c2 c3

x1 〈 〉s ,(0.4,0.6,0.1)3 〈 〉s ,(0.9,0.2,0.6)4 〈 〉s ,(0.9,0.7,0.1)4
x2 〈 〉s ,(0.9,0.7,0.1)1 〈 〉s ,(0.8,0.4,0.2)2 〈 〉s ,(0.5,0.4,0.9)1
x3 〈 〉s ,(0.5,0.1,0.3)2 〈 〉s ,(0.6,0.5,0.1)3 〈 〉s ,(0.9,0.2,0.1)4
x4 〈 〉s ,(0.5,0.3,0.5)1 〈 〉s ,(0.4,0.1,0.1)2 〈 〉s ,(0.2,0.8,0.4)2
x5 〈 〉s ,(0.5,0.3,0.5)4 〈 〉s ,(0.7,0.5,0.1)4 〈 〉s ,(0.5,0.6,0.1)2

c4 c5 c6

x1 〈 〉s ,(0.6,0.2,0.1)1 〈 〉s ,(0.4,0.1,0.2)4 〈 〉s ,(0.8,0.1,0.1)4
x2 〈 〉s ,(0.6,0.2,0.3)4 〈 〉s ,(0.4,0.1,0.1)1 〈 〉s ,(0.2,0.1,0.1)2
x3 〈 〉s ,(0.5,0.7,0.1)1 〈 〉s ,(0.3,0.1,0.2)4 〈 〉s ,(0.5,0.1,0.2)1
x4 〈 〉s ,(0.9,0.3,0.1)4 〈 〉s ,(0.5,0.2,0.1)1 〈 〉s ,(0.6,0.1,0.3)4
x5 〈 〉s ,(0.8,0.7,0.2)3 〈 〉s ,(0.8,0.1,0.1)4 〈 〉s ,(0.6,0.3,0.1)1

Table 5
Normalised decision matrix N 2 of e2.

c1 c2 c3

x1 〈 〉s ,(0.8,0.6,0.1)4 〈 〉s ,(0.5,0.2,0.2)4 〈 〉s ,(0.7,0.4,0.1)4
x2 〈 〉s ,(0.8,0.4,0.1)1 〈 〉s ,(0.6,0.4,0.2)3 〈 〉s ,(0.5,0.2,0.3)3
x3 〈 〉s ,(0.2,0.1,0.3)1 〈 〉s ,(0.8,0.5,0.2)2 〈 〉s ,(0.6,0.5,0.1)4
x4 〈 〉s ,(0.6,0.4,0.4)1 〈 〉s ,(0.7,0.3,0.3)2 〈 〉s ,(0.6,0.8,0.2)3
x5 〈 〉s ,(0.9,0.2,0.6)4 〈 〉s ,(0.9,0.2,0.1)4 〈 〉s ,(0.7,0.8,0.1)2

c4 c5 c6

x1 〈 〉s ,(0.9,0.4,0.1)1 〈 〉s ,(0.6,0.4,0.3)3 〈 〉s ,(0.5,0.1,0.3)4
x2 〈 〉s ,(0.7,0.4,0.1)3 〈 〉s ,(0.7,0.1,0.4)1 〈 〉s ,(0.8,0.1,0.1)4
x3 〈 〉s ,(0.8,0.5,0.2)1 〈 〉s ,(0.4,0.1,0.1)4 〈 〉s ,(0.6,0.1,0.1)1
x4 〈 〉s ,(0.9,0.4,0.1)4 〈 〉s ,(0.4,0.5,0.1)1 〈 〉s ,(0.6,0.1,0.1)4
x5 〈 〉s ,(0.4,0.4,0.2)4 〈 〉s ,(0.7,0.1,0.1)4 〈 〉s ,(0.2,0.1,0.1)1

Table 6
Normalised decision matrix N 3 of e3.

c1 c2 c3

x1 〈 〉s ,(0.5,0.6,0.1)2 〈 〉s ,(0.4,0.8,0.1)4 〈 〉s ,(0.8,0.5,0.1)3
x2 〈 〉s ,(0.4,0.4,0.1)1 〈 〉s ,(0.5,0.4,0.2)4 〈 〉s ,(0.8,0.1,0.3)2
x3 〈 〉s ,(0.6,0.1,0.1)3 〈 〉s ,(0.5,0.5,0.5)4 〈 〉s ,(0.6,0.8,0.1)4
x4 〈 〉s ,(0.1,0.8,0.2)1 〈 〉s ,(0.4,0.5,0.8)2 〈 〉s ,(0.8,0.8,0.1)4
x5 〈 〉s ,(0.4,0.7,0.1)4 〈 〉s ,(0.8,0.2,0.1)4 〈 〉s ,(0.9,0.1,0.1)2

c4 c5 c6

x1 〈 〉s ,(0.9,0.3,0.1)1 〈 〉s ,(0.1,0.1,0.5)2 〈 〉s ,(0.2,0.1,0.2)4
x2 〈 〉s ,(0.9,0.8,0.6)2 〈 〉s ,(0.4,0.1,0.1)1 〈 〉s ,(0.6,0.1,0.4)3
x3 〈 〉s ,(0.2,0.3,0.3)1 〈 〉s ,(0.8,0.1,0.6)4 〈 〉s ,(0.4,0.1,0.6)1
x4 〈 〉s ,(0.9,0.2,0.1)4 〈 〉s ,(0.6,0.2,0.1)1 〈 〉s ,(0.3,0.1,0.2)4
x5 〈 〉s ,(0.7,0.4,0.2)2 〈 〉s ,(0.3,0.1,0.1)4 〈 〉s ,(0.4,0.2,0.1)1

Table 7
Integrated decision matrix.

c1 c2 c3

x1 〈 〉s ,(0.6,0.6,0.1)3 〈 〉s ,(0.6,0.4,0.3)4 〈 〉s ,(0.8,0.5,0.1)3
x2 〈 〉s ,(0.7,0.5,0.1)1 〈 〉s ,(0.6,0.4,0.2)3 〈 〉s ,(0.6,0.2,0.4)2
x3 〈 〉s ,(0.5,0.1,0.2)2 〈 〉s ,(0.6,0.5,0.3)3 〈 〉s ,(0.7,0.5,0.1)4
x4 〈 〉s ,(0.4,0.5,0.3)1 〈 〉s ,(0.5,0.3,0.4)2 〈 〉s ,(0.6,0.8,0.2)3
x5 〈 〉s ,(0.6,0.4,0.4)4 〈 〉s ,(0.8,0.3,0.1)4 〈 〉s ,(0.7,0.5,0.1)2

c4 c5 c6

x1 〈 〉s ,(0.8,0.3,0.1)1 〈 〉s ,(0.4,0.2,0.3)3 〈 〉s ,(0.5,0.1,0.2)4
x2 〈 〉s ,(0.7,0.4,0.3)3 〈 〉s ,(0.5,0.1,0.2)1 〈 〉s ,(0.6,0.1,0.2)3
x3 〈 〉s ,(0.5,0.5,0.2)1 〈 〉s ,(0.5,0.1,0.3)4 〈 〉s ,(0.5,0.1,0.3)1
x4 〈 〉s ,(0.9,0.3,0.1)4 〈 〉s ,(0.5,0.3,0.1)1 〈 〉s ,(0.5,0.1,0.2)4
x5 〈 〉s ,(0.6,0.5,0.2)3 〈 〉s ,(0.6,0.1,0.1)4 〈 〉s ,(0.4,0.2,0.1)1
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Step 2: Obtain the comprehensive evaluation information.

The integrated decision matrix can be obtained by using Eq. (5).
Table 7 lists the integrated decision matrix.

Step 3: Obtain the mean value of five outsourcing providers against
each criterion.

The mean value of outsourcing providers against each criterion can
be obtained by using Eq. (6). The results are presented as follows:

= 〈 〉E N s( ) ,(0.5727,0.4182,0.2455)1 2.2 ,
= 〈 〉E N s( ) ,(0.6375,0.3813,0.2437)2 3.2 ,
= 〈 〉E N s( ) ,(0.6857,0.5214,0.1643)3 2.8 ,
= 〈 〉E N s( ) ,(0.7333,0.3917,0.1833)4 2.4 , = 〈 〉E N s( ) ,(0.5077,0.1385,0.2154)5 2.6

and = 〈 〉E N s( ) ,(0.5154,0.1077,0.2)6 2.6 .

Step 4: Obtain the mean square deviation value of outsourcing
providers against each criterion.

The mean squared deviation value σ N( )j of outsourcing providers
under criterion Cj can be obtained by using Eq. (7). Results are shown in
the second column of Table 8. The last row of the second column of
Table 8 is the sum of mean squared deviation values of all criteria.

Step 5: Obtain the weight vector of criteria.

The Euclidean distance is taken as an example, that is, =p 2. The
weights of criteria can be obtained by using Eq. (8). The obtained
weights are presented in the third column of Table 8. The last row of the
third column of Table 8 is the sum of weights of all criteria.

5.2. Stage 2: Obtain difference matrix

Step 6: Obtain the weighted decision matrix R.

The weighted decision matrix can be determined by using Eq. (9).
Table 9 shows the weighted decision matrix.

Step 7: Obtain the border approximation area matrix.

The border approximation area matrix can be obtained by using Eq.
(10). The results are listed as follows:

= 〈 〉b s ,(0.5502,0.4422,0.2292)1 0.4099 , = 〈 〉b s ,(0.6128,0.3847,0.2669)2 0.4288 ,
= 〈 〉b s ,(0.676,0.5427,0.1894)3 0.4058 , = 〈 〉b s ,(0.6853,0.4067,0.1835)4 0.5543 ,
= 〈 〉b s ,(0.4959,0.164,0.205)5 0.271 and = 〈 〉b s ,(0.4959,0.121,0.2025)6 0.2146 .

Step 8: Obtain the difference between element rij in the weighted
decision matrix R and the border approximation area bj.

dij between rij in R and bj can be obtained by using Eq. (11) =p( 2).
Table 10 lists the values of dij.

5.3. Stage 3: Rank outsourcing provider

Step 9: Determine the concordance matrix.

Let =q 0.01j and =p 0.02j be the preference and indifference
thresholds for all criteria cj =j( 1,2,3,4,5,6), respectively. The con-
cordance matrix can be obtained by using Eqs. (12) and (13). Table 11
lists the degrees of concordance between xi and xk =i k( , 1,2,3,4,5).

Step 10: Determine the credibility index of outranking relations.

Let =v 0.06 be the veto threshold for all criteria cj =j( 1,2,3,4,5,6).
The credibility index of outranking relations can be obtained by using
Eq. (14). The indices are presented in Table 12.

Step 11: Determine the indices of outsourcing providers.

The indices of outsourcing providers can be obtained by using Eq.
(15). The results are presented as follows:

= − = −index x( ) 0.7084 1.0288 0.32041 , = − = −index x( ) 0 1.6869 1.68692 ,
= − = −index x( ) 0.2807 1.6295 1.34883 , =index x( ) 0.92114 and
=index x( ) 2.4355 .

Step 12: Rank outsourcing providers.

Table 13 shows that the rankings of outsourcing providers are
≻ ≻ ≻ ≻x x x x x5 4 1 3 2 because > >index x index x index( ) ( )5 4

> >x index x index x( ) ( ) ( )1 3 2 . The best IT outsourcing provider is Taiji
(x5).

Table 8
Mean squared deviation value under each criterion.

Mean squared deviation value Weight

c1 3.3721 0.217
c2 2.1460 0.138
c3 2.3332 0.150
c4 4.2050 0.271
c5 1.9409 0.125
c6 1.5368 0.099
Sum 15.5340 1

Table 9
Weighted decision matrix.

c1 c2 c3

x1 〈 〉s ,(0.6,0.6,0.1)0.651 〈 〉s ,(0.6,0.4,0.3)0.553 〈 〉s ,(0.8,0.5,0.1)0.451
x2 〈 〉s ,(0.7,0.5,0.1)0.217 〈 〉s ,(0.6,0.4,0.2)0.414 〈 〉s ,(0.6,0.2,0.4)0.3
x3 〈 〉s ,(0.5,0.1,0.2)0.434 〈 〉s ,(0.6,0.5,0.3)414 〈 〉s ,(0.7,0.5,0.1)0.601
x4 〈 〉s ,(0.4,0.5,0.3)0.217 〈 〉s ,(0.5,0.3,0.4)0.276 〈 〉s ,(0.6,0.8,0.2)0.451
x5 〈 〉s ,(0.6,0.4,0.4)0.868 〈 〉s ,(0.8,0.3,0.1)0.553 〈 〉s ,(0.7,0.5,0.1)0.3

c4 c5 c6

x1 〈 〉s ,(0.8,0.3,0.1)0.271 〈 〉s ,(0.4,0.2,0.3)0.375 〈 〉s ,(0.5,0.1,0.2)0.396
x2 〈 〉s ,(0.7,0.4,0.3)0.812 〈 〉s ,(0.5,0.1,0.2)0.125 〈 〉s ,(0.6,0.1,0.2)0.297
x3 〈 〉s ,(0.5,0.5,0.2)0.271 〈 〉s ,(0.5,0.1,0.3)0.5 〈 〉s ,(0.5,0.1,0.3)0.099
x4 〈 〉s ,(0.9,0.3,0.1)1.083 〈 〉s ,(0.5,0.3,0.1)0.125 〈 〉s ,(0.5,0.1,0.2)0.396
x5 〈 〉s ,(0.6,0.5,0.2)0.812 〈 〉s ,(0.6,0.1,0.1)0.5 〈 〉s ,(0.4,0.2,0.1)0.099

Table 10
Difference dij between rij and bj.

c1 c2 c3 c4 c5 c6

x1 0.072 0.0105 0.0085 −0.0531 0.0044 0.0098
x2 −0.0159 −0.0012 −0.0364 0.0656 −0.0071 0.0054
x3 0.0191 −0.0021 0.0281 −0.0702 0.0223 −0.0037
x4 −0.0253 −0.0223 −0.0199 0.3635 −0.0071 0.0098
x5 0.1791 0.0357 −0.0112 0.0478 0.0274 −0.0056

Table 11
Degrees of concordance between xi and xk.

x1 x2 x3 x4 x5

x1 0.8333 0.7084 0.8333 0.3333
x2 0.6125 0.5 0.7247 0.3333
x3 0.6127 0.8333 0.7748 0.5
x4 0.4752 0.8333 0.3333 0.5
x5 0.7481 0.8536 0.8333 0.7424
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6. Comparative analysis

In this section, the MABAC–ELECTRE method is compared with
several decision-making methods to verify its feasibility. The details of
the comparative analysis are introduced in the remainder of this sec-
tion.

Three decision-making methods are used to solve the IT outsourcing
provider selection presented in Section 5.

(1) Method 1: This method is an extended TOPSIS method developed
by Ye (2015). Ye (2015) defined the distance measurement of
SVNLNs, based on which a TOPSIS-based decision-making method
was established.

(2) Method 2: This method is established by Tian et al. (2017). They
proposed a weighted Bonferrroni mean operator for SVNLNs. Sub-
sequently, they constructed Method 2 using this operator.

(3) Method 3: This method is a traditional fuzzy MABAC method. The
input data of Method 3 is SVNLNs. Only one difference, which lies
in the attainment of the ranking indices of outsourcing providers,
exists between Method 3 and the MABAC–ELECTRE method. In
Method 3, the ranking order of outsourcing providers is determined
by ∑ = dj

n
ij1 .

The ranking results obtained by these three methods are compared
with the ranking result of the MABAC–ELECTRE method. Table 14
depicts the ranking results of Methods 1–3 and the MABAC–ELECTR
method. To offer clear visual representation, Fig. 2 describes the
ranking orders of these four methods based on the results in Table 14.
Table 14 and Fig. 2 show that the different ranking orders of out-
sourcing providers can be obtained with distinct methods. Furthermore,
the best outsourcing providers of these four methods may be different.
The best outsourcing provider of the MABAC–ELECTRE method is the
same as that of Method 2. Taiji (x5) is the best outsourcing provider in
the rankings obtained by these two methods. The best outsourcing
provider obtained by Method 1 is Teamsun (x2), whereas that of
Method 3 is Lenovo (x4).

In this comparative analysis, the method in (Jahan, Ismail, Shuib,
Norfazidah, & Edwards, 2011), which is an aggregation method, is used
to obtain the most suitable one from the four decision-making methods.
Please refer to (Jahan et al., 2011) for the details of the aggregation
method. This method finds the optimal rankings from the rankings of
multiple decision-making methods. The most suitable decision-making
method obtains the most consistent ranking result with the optimal
rankings. Table 15 shows the number of times the outsourcing provider
is assigned to different ranks. Table 16 lists the values of Eik, which is
obtained on the basis of the values in Table 15. The computation of Eik
prepares for the construction of model (16):

∑ ∑= ∗ ∗

⎧

⎨

⎪

⎩
⎪

∑ = = …

∑ = = …

=

= =

=

=

{

Max Z E N

s t

N i

N i

N i k

. .

1 1,2, ,5,

1 1,2, ,5,

0
1 for all and

i k
ik k ik

k ik

i ik
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1

5

1

5
5

1
5

1
5

2

(16)

This linear programming model helps find optimal rankings.
MATLAB software is used to solve this linear programming problem.

The results of the method in (Jahan et al., 2011) and the ranking results
of Methods 1–3 and the MABAC–ELECTRE method are illustrated in
Fig. 3. The MABAC–ELECTRE method determines the same ranking
order with the aggregation method. That is, the MABAC–ELECTRE
method is more suitable than Methods 1–3 in tackling the outsourcing
provider selection problem.

The difference between the ranking result of each decision-making
method and optimal rankings is obtained. The difference is calculated
by using the formula in (Zhang, Ji, Wang, & Chen, 2016), as follows:

∑= −
=

sumDiv r B B|( )/ |,
i

n

i i i
1

where ri represents the ranking order of xi obtained by a decision-
making method, Bi denotes the optimal ranking of xi. Table 17 presents
the differences between the results of each method and optimal rank-
ings. The results in Table 17 agree with those of Fig. 3. Method 1
achieves the highest deviation, followed by Method 2. The deviation of
Method 3 is lower than that of Method 2. Moreover, the MABAC–E-
LECTRE method exhibits the lowest deviation. Results reveal that the
MABAC–ELECTRE method is the most suitable among the four decision-
making methods.

The possible explanations for these results are provided as follows.

(1) The operations used in Method 1 are different from those in the
other three methods. In Method 1, the operations regarding the
linguistic terms are directly based on their subscripts. The correla-
tion between the linguistic and fuzzy parts is ignored. On the con-
trary, the other three methods, including the MABAC–ELECTRE
method, use the linguistic scale function to define the operations.
Moreover, the correlation between the linguistic and fuzzy parts in
SVNLNs is considered. Hence, the result of Method 1 may be dif-
ferent from those of the other three methods.

(2) The MABAC–ELECTRE method acknowledges that criteria may be
non-compensatory in some actual situations and introduces the
main idea of ELECTRE. Nevertheless, Methods 1 and 3 assume that
criteria are compensatory and independent. Method 3 also assumes
that criteria are compensatory. In addition, this method considers
the interrelationships among criteria by using the Bonferrroni
mean. Therefore, the ranking result of the MABAC–ELECTRE
method may not be identical to the results of the other three
methods.

In general, results in this comparative analysis prove the effective-
ness of the combined MABAC–ELECTRE method. The combined

Table 12
Credibility index of outranking relations.

x1 x2 x3 x4 x5 Sum

x1 0 0.7084 0 0 0.7084
x2 0 0 0 0 0
x3 0.2807 0 0 0 0.2807
x4 0 0.8333 0.0878 0 0.9211
x5 0.7481 0.8536 0.8333 0 2.435
Sum 1.0288 1.6869 1.6295 0 0

Table 13
Rankings of IT outsourcing providers.

Provider Index Rank

Ingens (x1) −0.3204 3
Teamsun (x2) −1.6869 5
Sinoway (x3) −1.3488 4
Lenovo (x4) 0.9211 2
Taiji (x5) 2.4350 1

Table 14
Ranking orders of four different methods.

Method Ranking order Best provider Worst provider

Method 1 ≻ ≻ ≻ ≻x x x x x2 4 3 1 5 x2 x5
Method 2 ≻ ≻ ≻ ≻x x x x x5 1 4 3 2 x5 x2
Method 3 ≻ ≻ ≻ ≻x x x x x4 5 1 2 3 x4 x3
MABAC–ELECTRE ≻ ≻ ≻ ≻x x x x x5 4 1 3 2 x5 x2
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MABAC–ELECTRE method introduces the main idea of ELECTRE to
obtain the ranking order of outsourcing providers. In other words, the
proposed outsourcing provider selection method is better in addressing
actual situations with non-compensatory criteria than other SVNLN
methods. As presented in Section 5, the combined MABAC–ELECTRE
method may require large computation. However, the situation can be
improved with the assistance of computer software, such as MATLAB.

7. Conclusion

This paper has established a fuzzy outsourcing provider selection
method. The outsourcing provider selection method applies SVNLNs to
depict qualitative and fuzzy information. MABAC is extended to handle
SVNLNs. Moreover, the outsourcing provider selection method in-
troduces the main idea of ELECTRE into MABAC and considers the non-

0
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3

4

5

6

x1 x2 x3 x4 x5

R
an

ki
ng

IT outsourcing provider

Method 1 Method 2 Method 3 MABAC-ELECTRE

Fig. 2. Rankings of each outsourcing provider obtained by four different methods.

Table 15
Number of times an outsourcing provider is assigned to different ranks.

Outsourcing providers Rank

1 2 3 4 5

x1 1 2 1
x2 1 1 2
x3 1 2 1
x4 1 2 1
x5 2 1 1

Table 16
Smoothing of outsourcing provider assignment over ranks (Eik).

Outsourcing providers Rank

1 2 3 4 5

x1 0 1 3 4 4
x2 1 1 1 2 4
x3 0 0 1 3 4
x4 1 3 4 4 4
x5 2 3 3 3 4

Fig. 3. Ranking results of different methods.

Table 17
Deviation of the four methods.

Method Method 1 Method 2 Method 3 MABAC–ELECTRE

sumDiv 4.77 3.75 1.28 0

Note: The minimum value is in boldface.
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compensation of criteria. Moreover, the mean-squared deviation weight
method with SVNLNs is developed to obtain criteria weights.

The outsourcing provider selection method has been applied to an
illustrative example of IT outsourcing provider selection. Results show
its feasibility in solving outsourcing provider selection problems. A
comparative analysis has been conducted in this study. Several MCDM
methods with SVNLNs are compared with the proposed outsourcing
provider selection method in the comparative analysis. Results indicate
the advantages of the proposed outsourcing provider selection method.
From a managerial point of view, our method can assist enterprises in
selecting proper outsourcing providers. This can further improve the
performance of enterprises.

Several interesting directions may be investigated in our future re-
search. Firstly, the current study proposed a fuzzy outsourcing provider
selection method. This method can also be applied to address problems
in various other fields, such as purchasing decision. The use of our
findings to solve problems in these fields still needs to be investigated.
Secondly, the combined MABAC–ELECTRE method was constructed on
the basis of a perfect rationality assumption. However, decision makers

may be bounded rational in actual situations. The performance of our
outsourcing provider selection method can be improved by overcoming
this deficiency, such as considering human psychological character-
istics. To do that, the prospect theory or regret theory can be introduced
into the outsourcing provider selection method.
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Appendix A

Proof of Theorem 1. By the mathematical induction, Theorem 1 can be proved to be true.
ɑ. When =n 2, = +SVNLWA x x w x w x( , )1 2 1 1 2 2. By the operation (3) in Definition 2, = 〈 〉∗− ∗w x f w f s T I F( ( )),( , , )θ x x x x1 1
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That is to say, Eq. (2) holds for =n 2.
β. Suppose that Eq. (2) is true when =n k. That is,
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Therefore, Eq. (2) is right when = +n k 1. Thus, Eq. (2) is proved to be correct for all n.
Hence, Theorem 1 holds.

Proof of Theorem 2. By the mathematical induction, Theorem 2 can be proved to be true.
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β. Suppose that Eq. (3) is true when =n k. That is,
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1 . By the operation (2) in Definition 2, the following equation can be ob-

tained.
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Therefore, Eq. (3) is right when = +n k 1. Thus, Eq. (3) is proved to be correct for all n.
Hence, Theorem 2 holds.
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