SELF-CENTERED INTERVAL VALUED NEUTROSOPHIC GRAPH

V.J. Sudhakar*, G. Yuvaraj* and V. Navaneetha Kumar⁺

*PG & Research Department of Mathematics Islamiah College (Autonomous), Vaniyambadi – 635 752, India ⁺ CMS Business school, Jain University, Bengaluru-560009, India

Abstract

In this paper, we discuss the concepts of interval valued neutrosophic gragh, single valued neutrosophic signed graph, self centered single valued neutrosophic graph. We present the concept of self-centered interval valued neutrosophic graph. We investigate some properties of self-centered interval valued neutrosophic graphs.

Keywords: Neutosophic graph, interval valued graph, self-centered graph.

1. Introduction

Karunambigai M.G and Kalaivani O introduced the concept of self-centered IFG. Smarandache F, Broumi S, Talea M, Bakali A, Dhavaseelan R, Vikram-prasad R, Krishnaraj V introduced the idea of neutrosophic sets by combining the non-standard analysis. Neutrosophic set is a mathematical tool for dealing real life problems having imprecise, indeterminacy and inconsistent data. Neutrosophic set theory, as a generalization of classical set theory, fuzzy set theory and intuitionistic fuzzy set theory, is applied in a variety of fields, including control theory, decision making problems, topology, medicines and inmany more real life problems. Wang et Wang H, Samarandache F, ZhangY.Q presented the notion of single-valued al. neutrosophic sets to apply neutrosophic sets in real life problems more conveniently. A single-valued neutrosophic set has three components: truth membership degree, indeterminacymembership degree and falsity membership degree. These three components of a single-valued neutrosophic set are not dependent and their values arecontained in the standard unit interval [0, 1]. Single-valued neutrosophic sets are the generalization of intuitionistic fuzzy sets. Single-valued neutrosophic sets have been a new hot research topic and many researchers haveaddressed this issue. Akram et al. Akram M and Shahzadi S has discussed several concepts related to single-valued neutrosophic graphs. Majumdarand Samanta Majumdar P and Samanta S.K studied similarity and entropy of single-valued neutrosophic sets. In this paper, we introduce the concepts of length, distance, radius and eccentricity of self-centered of a interval valued neutrosophic graph. We also discuss some interesting properties besides given some examples.

2. Preliminaries

Definition 2.1. *Let X be a space of points (objects) with generic elements in X denoted by x; then the neutrosophic set A is an object of the form*

$$A = \{ < x : T_A(x), I_A(x), F_A(x) >, x \in X \}$$

where the functions $T, I, F : X \rightarrow]^-0, 1^+[$ define respectively the a truth-membership function, indeterminacy-membership function and falsity-membership function of the element $x \in X$ to the set A with the condition

$$0 \le T_A(x) + I_A(x) + F_A(x) \le 3^+.$$

The functions $T_A(x)$, $I_A(x)$ and $F_A(x)$ are real standard or non standard subsets of $]^-0$, $1^+[$.

Definition 2.2. Let X be a space of points (options) with generic elements in X denoted by x. A single valued neutrosophic set A (SVNS) is characterized by truth-membership function $T_A(x)$, an indeterminacy-membership function $I_A(x)$ and a falsity-membership $F_A(x)$. For each point $x \in X$, $T_A(x)$, $I_A(x)$, $F_A(x) \in \{0, 1\}$. A (SVNS) can be written as

$$A = \{ < x : T_A(x), I_A(x), F_A(x) >, x \in X \}$$

Definition 2.3. Let $A = (T_A, I_A, F_A)$ and $B = (T_B, I_B, F_B)$ be single valued neutrosophic sets on a set on a set X. If $A = (T_A, I_A, F_A)$ is a single valued neutrosophic relation on a set X, then

$$T_B(x, y) \leq \min(T_A(x), T_A(y))$$

$$I_B(x, y) \geq \max(I_A(x), I_A(x)) \text{ and }$$

$$F_B(x, y) \geq \max(F_A(x), F_A(x))$$

A single valued neutrosophic relation A on X is called symmetric if

$$T_A(x, y) = T_A(y, x) \qquad T_B(x, y) = T_B(y, x)$$
$$I_A(x, y) = I_A(y, x) \qquad I_B(x, y) = I_B(y, x)$$
$$F_A(x, y) = F_A(y, x) \qquad F_B(x, y) = F_B(y, x)$$

 $x, y \in X$.

Throughout this paper, we denote $G^* = (V, E)$ a crisp graph, and G = (A, B) a single valued neutrosophic graph.

Definition 2.4. A single valued neutrosophic graph (SVN-graph) with underlying set V is defined to be a pair G = (A, B) where

- 1. The functions $T_A : V \to [0, 1], I_A : V \to [0, 1], F_A : V \to [0, 1]$ denote degree of truth-membership, degree of indeterminacy-membership and degree of falsitymembership of the element $v_i \in V$ respectively and $0 \le T_A(v_i) + I_A(v_i) + F_A(v_i) \le 3$ for all $v_i \in V(i = 1, 2, ...n)$
- 2. The functions $T_B : E \leq V \times V \rightarrow [0,1], I_B : E \leq V \times V \rightarrow [0,1]$ and $F_B : E \leq V \times V \rightarrow [0,1]$ are defined by

$$T_B(v_i, v_j) \leq \min[T_A(v_i), T_A(v_j)]$$

$$I_B(v_i, v_j) \geq \max[I_A(v_i), I_A(v_j)] and$$

$$F_B(v_i, v_j) \geq \max[F_A(v_i), F_A(v_j)]$$

Denotes the degree of truth-membership, indeterminacy-membership and falsitymembership of the edge $(v_i, v_j) \in E$ respectively, where

$$0 \le T_B(v_i, v_j) + I_B(v_i, v_j) + F_B(v_i, v_j) \le 3$$

for all $(v_i, v_j) \in E(i, j = 1, 2, ...n)$

We call A the single valued neutrosophic vertex set of V, B the single valued neutrosophic edge set of E, respectively. Note that B is a symmetric single valued neutrosophic relation on A. We use the notation for an element of E. Thus, G = (A, B) is a single valued neutrosophic graph of $G^* = (V, E)$ if $T_B: E \leq V \times V \rightarrow [0, 1], I_B: E \leq V \times V \rightarrow [0, 1] \text{ and } F_B: E \leq V \times V \rightarrow [0, 1]$ are defined by

$$T_B(v_i, v_j) \leq \min[T_A(v_i), T_A(v_j)]$$

$$I_B(v_i, v_j) \geq \max[I_A(v_i), I_A(v_j)] and$$

$$F_B(v_i, v_j) \geq \max[F_A(v_i), F_A(v_j)] for all (v_i, v_j \in E)$$

Example 2.1. Consider the graph G^* such that $V = \{v_1, v_2, v_3, v_4\}$, $E = \{v_1v_2, v_2v_3, v_3v_4, v_4v_1\}$. Let A be a single valued neutrosophic subset of V and let B a single valued neutrosophic subset of E denoted by

		<i>v</i> ₁	<i>v</i> ₂	<i>v</i> ₃	v_4	
	T_{Δ}	4 0.4	0.5	0.3	0.2	
	I_A	0.2	0.2	0.5	0.4	
	F_{\perp}	₄ 0.5	0.3	0.6	0.3	
		<i>v</i> ₁ <i>v</i> ₂	<i>v</i> ₂ <i>v</i> ₃	<i>v</i> ₃ <i>v</i> ₄	<i>V</i> 4 <i>V</i> 5	5
	T_B	0.4	0.3	0.2	0.1	
	I_B	0.2	0.5	0.5	0.4	
	F_B	0.5	0.6	0.6	0.5	
(0.4,0.2,0	5)		(0.4,0).2, 0.5	()	(0.5,0.2,0.3)
	v_1				$ v_2$	4
(0.1, 0.4, 0.5))					(0.3, 0.5, 0.6)
	$v_2 $				$ v_3 $	3
(0.2,0.4,0	3)		(0.2,	0.5,0	.6)	(0.3,0.5,0.6)

Figure 2.2 Single valued neutrosophic graph

in figure 3,

- 1. (v₁,0.4,0.2,0.5) is single valued neutrosophic vertex or SVN-vertex.
- 2. $(v_1v_2, 0.4, 0.2, 0.5)$ is single valued neutrosophic edge or SVN-edge.
- 3. $(v_1, 0.4, 0.2, 0.5)$ and $(v_2, 0.5, 0.2, 0.3)$ are single valued neutrosophic adjacent vertices.

4. $(v_1v_2, 0.4, 0.2, 0.5)$ and $(v_1v_4, 0.1, 0.4, 0.5)$ are single valued neutrosophic adjacent edge.

Definition 2.5. Let X be a space of points (objects) with generic elements in X denoted by x. An interval valued neutrosophic set (for short IVNS) A in X is characterized by truth-membership function $T_A(x)$, indeterminacy-membership function $I_A(x)$ and falsity-membership function $F_A(x)$. For each point x in X, we have that $T_A(x) =$ $[T_{AL}(x), T_{AU}(x)], I_A(x) = [I_{AL}(x), I_{AU}(x)], F_A(x) = [F_{AL}(x), F_{AU}(x)]$

$$0 \le T_A(x) + I_A(x) + F_A(x) \le 3.$$

Definition 2.6. Let X be a space of points (objects) with generic elements in X denoted by x. An interval valued neutrosophic set (IVNS)A in X is characterized by truth-membership function $T_A(x)$, indeterminacy-membership function $I_A(x)$ and falsity-membership function $F_A(x)$. For each point x in X, we have that $T_A(x) =$ $[T_{AL}(x), T_{AU}(x)], I_A(x) = [I_{AL}(x), I_{AU}(x)], F_A(x) = [F_{AL}(x), F_{AU}(x)] \subseteq [0, 1]$ and $0 \le T_A(x) + I_A(x) + F_A(x) \le 3$.

Definition 2.7. An interval valued neutrosophic graph of a graph $G^* = (V, E)$ we mean a pair G = (A, B) where

$$A = < [T_{AL}, T_{AU}], [I_{AL}, I_{AU}], [F_{AL}, F_{AU}] >$$

is an interval valued neutrosophic set on V and

$$B = < [T_{BL}, T_{BU}], [I_{BL}, I_{BU}], [F_{BL}, F_{BU}] >$$

is an interval valued neutrosophic set on E satisfies the following condition: 1. $V = \{v_1, v_2...v_n\}$ such that $T_{AL} : V \to [0, 1], T_{AU} : V \to [0, 1], I_{AL} : V \to [0, 1], I_{AU} : V \to [0, 1], and F_{AL} : V \to [0, 1], F_{AU} : V \to [0, 1]$ denote the degree of the truthmembership, the degree of indeterminacy-membership and degree of falsity-membership of the element $y \in V$, respectively, and

$$0 \le T_A(v_i) + I_A(v_i) + F_A(v_i) \le 3$$

for all $v_i \in V(i = 1, 2, ..n)$ 2. The functions $T_{BL} : V \times V \rightarrow [0, 1], T_{BU} : V \times V \rightarrow [0, 1], I_{BL} : V \times V \rightarrow [0, 1],$ $I_{BU}: V \times V \rightarrow [0,1]$ and $F_{BL}: V \times V \rightarrow [0,1]$, $F_{BU}: V \times V \rightarrow [0,1]$ are such that

$$T_{BL}(\{v_i, v_j\}) \leq \min[T_{AL}(v_i), T_{AL}(v_j)]$$

$$T_{BU}(\{v_i, v_j\}) \leq \min[T_{AU}(v_i), T_{AU}(v_j)]$$

$$I_{BL}(\{v_i, v_j\}) \geq \max[I_{AL}(v_i), I_{AL}(v_j)]$$

$$I_{BU}(\{v_i, v_j\}) \geq \max[I_{AU}(v_i), I_{AU}(v_j)] \text{ and }$$

$$F_{BL}(\{v_i, v_j\}) \geq \max[F_{AL}(v_i), F_{AL}(v_j)]$$

$$F_{BU}(\{v_i, v_j\}) \geq \max[F_{AU}(v_i), F_{AU}(v_j)]$$

Denotes the degree of truth-membership, indeterminacy-membership and falsitymembership of the edge $(v_i, v_j) \in E$ respectively, where

$$0 \le T_B(v_i, v_j) + I_B(v_i, v_j) + F_B(v_i, v_j) \le 3$$

for all $\{v_i, v_j\} \in E(i, j = 1, 2, ...n)$ We call A the IVN vertex set of V, B the IVN edge set of E, respectively. Note that B is a symmetric IVN relation on A. We use the notation (v_i, v_j) for an element of E Thus, G = (A, B) is an ING of $G^* = (V, E)$ if $T_{BL}(v_i, v_j) \leq \min[T_{AL}(v_i), T_{AL}(v_j)], T_{BU}(v_i, v_j) \leq \min[T_{AU}(v_i), T_{AU}(v_j)],$ $I_{BL}(v_i, v_j) \geq \max[I_{AL}(v_i), I_{AL}(v_j)], I_{BU}(v_i, v_j) \geq \max[I_{AU}(v_i), I_{AU}(v_j)]$ and $F_{BL}(v_i, v_j) \geq$ $\max[F_{AL}(v_i), F_{AL}(v_j)], F_{BU}(v_i, v_j) \geq \max[F_{AU}(v_i), F_{AU}(v_j)]$ for all $(v_i, v_j) \in E$

Definition 2.8. A path P in a single valued neutrosophic graph G = (A, B) is a sequence of distinct vertices $v_1, v_2, ...v_n$ such that either one of the following condition is satisfied (i) $T_B(v_i, v_j) > 0$, $I_B(v_i, v_j) > 0$ and $F_B(v_i, v_j) = 0$ for some i and j. (ii) $T_B(v_i, v_j) = 0$, $I_B(v_i, v_j) = 0$ and $F_B(v_i, v_j) > 0$ for some i and j.

Definition 2.9. Let G = (A, B) be a connected single valued neutrosophic graph.

1. The T-length of a path $P: v_1, v_2, ..., v_n$ in G, $l_T(P)$ is defined as

$$l_T(P) = \sum_{i=1}^{n-1} \left(\frac{1}{T_B(v_i, v_{i+1})} \right)$$

2. The I-length of a path $P: v_1, v_2, ..., v_n$ in $G, l_I(P)$ is defined as

$$l_I(P) = \sum_{i=1}^{n-1} \left(\frac{1}{I_B(v_i, v_{i+1})} \right)$$

3. The F-length of a path $P: v_1, v_2, ..., v_n$ in $G, l_F(P)$ is defined as

$$l_F(P) = \sum_{i=1}^{n-1} \left(\frac{1}{F_B(v_i, v_{i+1})} \right)$$

The (T, I, F)- length of a path $P : v_1, v_2, ..., v_n$ in G, $l_{(T,I,F)}(P)$ is defined as $l_{(T,I,F)}(P) = (l_T(p), l_I(p), l_F(p)).$

Definition 2.10. Let G = (A, B) be a connected single valued neutrosophic graph.

1. The *T*-distance $\delta_T(v_i, v_j)$ is the minimum of the *T*-length of all the paths joining v_i and v_j in *G*, where $v_i, v_j \in V$. *i.e*

 $\delta_T(v_i, v_i) = min\{l_T(P) : P \text{ is a path between } v_i \text{ and } v_i\}$

2. The I-distance $\delta_I(v_i, v_j)$ is the minimum of the I-length of all the paths joining v_i and v_j in G, where $v_i, v_j \in V$. i.e

 $\delta_I(v_i, v_j) = min\{l_I(P) : P \text{ is a path between } v_i \text{ and } v_j\}$

3. The *F*-distance $\delta_F(v_i, v_j)$ is the minimum of the *F*-length of all the paths joining v_i and v_j in *G*, where $v_i, v_j \in V$. *i.e*

 $\delta_F(v_i, v_j) = min\{l_F(P) : P \text{ is a path between } v_i \text{ and } v_j\}$

The distance $\delta_{(T,I,F)}(v_i, v_j)$ *is defined as* $\delta_{(T,I,F)}(v_i, v_j) = (\delta_T, \delta_I, \delta_F)$

Definition 2.11. Let G = (A, B) be a connected single valued neutrosophic graph.

1. For each $v_i \in V$, the *T*-eccentricity of v_i , denoted by $e_T(v_i)$ and is defined as

$$e_T(v_i) = max\{\delta_T(v_i, v_j) : v_i \in V, v_i \neq v_j\}$$

2. For each $v_i \in V$, the I-eccentricity of v_i , denoted by $e_I(v_i)$ and is defined as

$$e_{I}(v_{i}) = max\{\delta_{I}(v_{i}, v_{i}) : v_{i} \in V, v_{i} \neq v_{i}\}$$

3. For each $v_i \in V$, the *F*-eccentricity of v_i , denoted by $e_F(v_i)$ and is defined as

$$e_F(v_i) = \min\{\delta_F(v_i, v_j) : v_i \in V, v_i \neq v_j\}$$

For each $v_i \in V$, the eccentricity of v_i denoted by $e(v_i)$ and is defined by $e(v_i) = (e_T(v_i), e_I(v_i), e_F(v_i))$.

Definition 2.12. Let G = (A, B) be a connected single valued neutrosophic graph.

1. The T-radius of G is denoted by $r_T(G)$ and is defined as

$$r_T(G) = \min\{e_T(v_i) : v_i \in V\}.$$

2. The I-radius of G is denoted by $r_I(G)$ and is defined as

$$r_I(G) = min\{e_I(v_i) : v_i \in V\}.$$

3. The *F*-radius of *G* is denoted by $r_F(G)$ and is defined as

$$r_F(G) = \min\{e_F(v_i) : v_i \in V\}.$$

The radius of G is denoted by r(G) and is defined as $r(G) = (r_T(G), r_I(G), r_F(G))$.

Definition 2.13. A connected single valued neutrosophic graph G is a

- 1. *T*-self-centered single valued neutrosophic graph, if every vertex of G is a T-central vertex. (i.e) $r_T(G) = e_T(v_i), \forall v_i \in V$.
- 2. *I-self-centered single valued neutrosophic graph, if every vertex of G is a I-central vertex.* (*i.e*) $r_I(G) = e_I(v_i), \forall v_i \in V.$
- 3. *F*-self-centered single valued neutrosophic graph, if every vertex of G is a *F*-central vertex. (*i.e*) $r_F(G) = e_F(v_i), \forall v_i \in V$.
- 4. single valued neutrosophic self-centered graph, if every vertex of G is a central vertex. (i.e) $r_T(G) = e_T(v_i), r_I(G) = e_I(v_i)$ and $r_F(G) = e_F(v_i), \forall v_i \in V$.

3. Self-centered Interval Valued Neutrosophhic Graph

Definition 3.1. A path P in a interval valued neutrosophic graph G = (A, B) is a sequence of distinct vertices $v_1, v_2, ... v_n$ such that either one of the following condition is satisfied

i
$$[T_{B_L}(v_i, v_j), T_{B_U}(v_i, v_j)] > 0, [I_{B_L}(v_i, v_j), I_{B_U}(v_i, v_j)] > 0$$
 and
 $[F_{B_L}(v_i, v_j), F_{B_U}(v_i, v_j)] = 0$ for some *i* and *j*.

ii $[T_{B_L}(v_i, v_j), T_{B_U}(v_i, v_j)] = 0, [I_{B_L}(v_i, v_j), I_{B_U}(v_i, v_j)] = 0$ and $[F_{B_L}(v_i, v_j), F_{B_U}(v_i, v_j)] > 0$ for some *i* and *j*.

Definition 3.2. Let G = (A, B) be a connected interval valued neutrosophic graph.

1. The *T*-length of a path $P: v_1, v_2, ..., v_n$ in $G, l_T(P)$ is defined as

$$l_{T}(P) = [l_{T_{L}}(P), l_{T_{U}}(P)] where$$

$$l_{T_{L}}(P) = \sum_{i=1}^{n-1} \left(\frac{1}{T_{B_{L}}(v_{i}, v_{i+1})}\right)$$

$$l_{T_{U}}(P) = \sum_{i=1}^{n-1} \left(\frac{1}{T_{B_{U}}(v_{i}, v_{i+1})}\right)$$

2. The I-length of a path $P: v_1, v_2, ..., v_n$ in $G, l_I(P)$ is defined as

$$l_{I}(P) = [l_{I_{L}}(P), l_{I_{U}}(P)] where$$
$$l_{I_{L}}(P) = \sum_{i=1}^{n-1} \left(\frac{1}{I_{B_{L}}(v_{i}, v_{i+1})}\right)$$
$$l_{I_{U}}(P) = \sum_{i=1}^{n-1} \left(\frac{1}{I_{B_{U}}(v_{i}, v_{i+1})}\right)$$

3. The F-length of a path $P: v_1, v_2, ..., v_n$ in $G, l_F(P)$ is defined as

$$l_F(P) = [l_{F_L}(P), l_{F_U}(P)] \text{ where}$$
$$l_{F_L}(P) = \sum_{i=1}^{n-1} \left(\frac{1}{F_{B_L}(v_i, v_{i+1})}\right)$$
$$l_{F_U}(P) = \sum_{i=1}^{n-1} \left(\frac{1}{F_{B_U}(v_i, v_{i+1})}\right)$$

The (T, I, F)- length of a path $P : v_1, v_2, ..., v_n$ in G, $l_{(T,I,F)}(P)$ is defined as

$$l_{(T,I,F)}(P) = ([l_{T_L}(P), l_{T_U}(P)], [l_{I_L}(P), l_{I_U}(P)], [l_{F_L}(P), l_{F_U}(P)]).$$

Definition 3.3. Let G = (A, B) be a connected interval valued neutrosophic graph.

1. The *T*-distance $\delta_T(v_i, v_j)$ is the minimum of the *T*-length of all the paths joining v_i and v_j in *G*, where $v_i, v_j \in V$. *i.e*

$$\delta_T(v_i, v_j) = [\delta_{T_L}(v_i, v_j), \delta_{T_U}(v_i, v_j)]$$

where

$$\delta_{T_L}(v_i, v_j) = \min\{l_{T_L}(P) : P \text{ is a path between } v_i \text{ and } v_j\}$$

$$\delta_{T_U}(v_i, v_j) = \min\{l_{T_U}(P) : P \text{ is a path between } v_i \text{ and } v_j\}$$

2. The I-distance $\delta_I(v_i, v_j)$ is the minimum of the I-length of all the paths joining v_i and v_j in G, where $v_i, v_j \in V$. i.e

$$\delta_I(v_i, v_j) = [\delta_{I_L}(v_i, v_j), \delta_{I_U}(v_i, v_j)]$$

where

$$\delta_{I_L}(v_i, v_j) = \min\{l_{I_L}(P) : P \text{ is a path between } v_i \text{ and } v_j\}$$

$$\delta_{I_U}(v_i, v_j) = \min\{l_{I_U}(P) : P \text{ is a path between } v_i \text{ and } v_j\}$$

3. The *F*-distance $\delta_F(v_i, v_j)$ is the minimum of the *F*-length of all the paths joining v_i and v_j in *G*, where $v_i, v_j \in V$. *i.e*

$$\delta_F(v_i, v_j) = [\delta_{F_L}(v_i, v_j), \delta_{F_U}(v_i, v_j)]$$

where

$$\delta_{F_L}(v_i, v_j) = \min\{l_{F_L}(P) : P \text{ is a path between } v_i \text{ and } v_j\}$$

$$\delta_{F_U}(v_i, v_j) = \min\{l_{F_U}(P) : P \text{ is a path between } v_i \text{ and } v_j\}$$

The distance $\delta_{(T,I,F)}(v_i, v_j)$ *is defined as* $\delta_{(T,I,F)}(v_i, v_j) = (\delta_T, \delta_I, \delta_F)$ *i.e*

$$\delta_{(T,I,F)} = ([\delta_{T_L}, \delta_{I_U}], [\delta_{I_L}, \delta_{T_U}], [\delta_{F_L}, \delta_{F_U}])$$

Definition 3.4. Let G = (A, B) be a connected interval valued neutrosophic graph.

1. For each $v_i \in V$, the *T*-eccentricity of v_i , denoted by $e_T(v_i)$ and is defined as

$$e_T(v_i) = [e_{T_L}(v_i), e_{T_U}(v_i)] \text{ where}$$
$$e_{T_L}(v_i) = max\{\delta_{T_L}(v_i, v_j) : v_i \in V, v_i \neq v_j\}$$
$$e_{T_U}(v_i) = max\{\delta_{T_U}(v_i, v_j) : v_i \in V, v_i \neq v_j\}$$

2. For each $v_i \in V$, the I-eccentricity of v_i , denoted by $e_I(v_i)$ and is defined as

$$e_{I}(v_{i}) = [e_{I_{L}}(v_{i}), e_{I_{U}}(v_{i})] where$$
$$e_{I_{L}}(v_{i}) = max\{\delta_{I_{L}}(v_{i}, v_{j}) : v_{i} \in V, v_{i} \neq v_{j}\}$$
$$e_{I_{U}}(v_{i}) = max\{\delta_{I_{U}}(v_{i}, v_{j}) : v_{i} \in V, v_{i} \neq v_{j}\}$$

- 3. For each $v_i \in V$, the *F*-eccentricity of v_i , denoted by $e_F(v_i)$ and is defined as
 - $e_F(v_i) = [e_{F_L}(v_i), e_{F_U}(v_i)] \text{ where}$ $e_{F_L}(v_i) = \min\{\delta_{F_L}(v_i, v_j) : v_i \in V, v_i \neq v_j\}$ $e_{F_U}(v_i) = \min\{\delta_{F_U}(v_i, v_j) : v_i \in V, v_i \neq v_j\}$

For each $v_i \in V$, the eccentricity of v_i denoted by $e(v_i)$ and is defined by $e(v_i) = (e_T(v_i), e_I(v_i), e_F(v_i))$. *i.e*

$$e(v_i) = ([e_{T_L}(v_i), e_{T_U}(v_i)], [e_{I_L}(v_i), e_{I_U}(v_i)], [e_{F_L}(v_i), e_{F_U}(v_i)])$$

Definition 3.5. Let G = (A, B) be a connected interval valued neutrosophic graph.

1. The T-radius of G is denoted by $r_T(G)$ and is defined as

$$r_{T}(G) = [r_{T_{L}}(G), r_{T_{U}}(G)] \text{ where}$$
$$r_{T_{L}}(G) = min\{e_{T_{L}}(v_{i}) : v_{i} \in V\}.$$
$$r_{T_{U}}(G) = min\{e_{T_{U}}(v_{i}) : v_{i} \in V\}.$$

2. The I-radius of G is denoted by $r_I(G)$ and is defined as

$$r_{I}(G) = [r_{I_{L}}(G), r_{I_{U}}(G)] \text{ where}$$

$$r_{I_{L}}(G) = min\{e_{I_{L}}(v_{i}) : v_{i} \in V\}.$$

$$r_{I_{U}}(G) = min\{e_{I_{U}}(v_{i}) : v_{i} \in V\}.$$

3. The *F*-radius of *G* is denoted by $r_F(G)$ and is defined as

$$r_{F}(G) = [r_{F_{L}}(G), r_{F_{U}}(G)] \text{ where}$$
$$r_{F_{L}}(G) = min\{e_{F_{L}}(v_{i}) : v_{i} \in V\}.$$
$$r_{F_{U}}(G) = min\{e_{F_{U}}(v_{i}) : v_{i} \in V\}.$$

The radius of G is denoted by r(G) and is defined as $r(G) = (r_T(G), r_I(G), r_F(G))$. i.e,

$$r(G) = ([r_{T_L}(G), r_{T_U}(G)], [r_{I_L}(G), r_{I_U}(G)], [r_{F_L}(G), r_{F_U}(G)])$$

Definition 3.6. A connected interval valued neutrosophic graph G is a

1. *T*-self-centered interval valued neutrosophic graph, if every vertex of G is a T-central vertex. $r_T(G) = e_T(v_i)$ (i.e)

$$r_{T_L}(G) = e_{T_L}(v_i), \ r_{T_U}(G) = e_{T_U}(v_i)$$

for all $v_i \in V$

2. I-self-centered interval valued neutrosophic graph, if every vertex of G is a I-central vertex. $r_I(G) = e_I(v_i)$ (i.e)

$$r_{I_L}(G) = e_{I_L}(v_i), \ r_{I_U}(G) = e_{I_U}(v_i).$$

for all $v_i \in V$

3. *F*-self-centered interval valued neutrosophic graph, if every vertex of G is a *F*-central vertex. $r_F(G) = e_F(v_i)$ (*i.e*)

$$r_{F_L}(G) = e_{F_L}(v_i), \ r_{F_U}(G) = e_{F_U}(v_i).$$

for all $v_i \in V$

interval valued neutrosophic self-centered graph, if every vertex of G is a central vertex. (*i.e*) $r_T(G) = e_T(v_i), r_I(G) = e_I(v_i)$ and $r_F(G) = e_F(v_i), \forall v_i \in V$.

$$([\frac{1}{5},\frac{1}{3}],[\frac{1}{3},\frac{1}{2}],[\frac{1}{3},\frac{1}{4}]) \qquad ([\frac{1}{3},\frac{1}{6}],[\frac{1}{5},\frac{1}{5}],[\frac{1}{4},\frac{1}{3}]) \\ ([\frac{1}{5},\frac{1}{6}],[\frac{1}{3},\frac{1}{2}],[\frac{1}{3},\frac{1}{2}],[\frac{1}{3},\frac{1}{2}],[\frac{1}{3},\frac{1}{3}]) \\ ([\frac{1}{5},\frac{1}{6}],[\frac{1}{3},\frac{1}{2}],[\frac{1}{3},\frac{1}{3}]) \qquad ([\frac{1}{5},\frac{1}{6}],[\frac{1}{3},\frac{1}{2}],[\frac{1}{3},\frac{1}{3}]) \\ ([\frac{1}{3},\frac{1}{6}],[\frac{1}{7},\frac{1}{6}],[\frac{1}{4},\frac{1}{3}]) \qquad ([\frac{1}{5},\frac{1}{3}],[\frac{1}{3},\frac{1}{2}],[\frac{1}{3},\frac{1}{4}]) \\ 1.$$

Example 3.1.

Path	(v_1, v_2)	(v_2, v_3)	(v_3, v_4)
Distance $\delta_{(T,I,F)}(v_i, v_j)$	([5,6],[6,4],[3,3])	([5,6],[6,4],[3,3])	([5,6],[6,4],[3,3])
Path	(v_1, v_4)	(v_1, v_3)	(v_2, v_4)
Distance $\delta_{(T,I,F)}(v_i, v_j)$	([5,6],[6,4],[3,3])	([10,12],[6,8],[3,3])	([10,12],[6,8],[3,3])

Figure	3.	1.	Self-O	Center	ed	Interval	' val	ued	Net	utrosc	ophi	с (Gra	ph
()			./											

Then the eccentricity of v_i are $e(v_1) = ([10, 12], [6, 8], [3, 3]), e(v_2) = ([10, 12], [6, 8], [3, 3]), e(v_3) = ([10, 12], [6, 8], [3, 3]), e(v_4) = ([10, 12], [6, 8], [3, 3]).$ Radius of G is r(G) = ([10, 12], [6, 8], [3, 3]).

Here $r(G) = e(v_i), \forall v_i \in V.$

Hence G is a self-centered interval valued neutrosophic graph.

Theorem 3.1. A Interval valued neutrosophic graph G = (A, B) is a self-centered interval valued neutrosophic graph iff $\delta_T(v_i, v_j) \leq r_T(G)$, $\delta_I(v_i, v_j) \leq r_I(G)$, $\delta_F(v_i, v_j) \geq r_F(G)$.

i.e $\delta_{T_L}(v_i, v_j) \leq r_{T_L}(G), \ \delta_{T_U}(v_i, v_j) \leq r_{T_U}(G), \ \delta_{I_L}(v_i, v_j) \leq r_{I_L}(G), \ \delta_{I_U}(v_i, v_j) \leq r_{I_U}(G), \ \delta_{F_L}(v_i, v_j) \geq r_{F_L}(G), \ \delta_{F_U}(v_i, v_j) \geq r_{F_U}(G) \ \forall (v_i, v_j) \in V.$

Proof. We assume that *G* is self-centered interval valued neutrosophic graph *G*. That is $e_{T_L}(v_i) = e_{T_L}(v_j), e_{T_U}(v_i) = e_{T_U}(v_j), e_{I_L}(v_i) = e_{I_L}(v_j), e_{I_U}(v_i) = e_{I_U}(v_j), e_{F_L}(v_i) = e_{F_L}(v_j), e_{F_U}(v_i) = e_{F_U}(v_j).$

Now we want to prove that

$$\delta_T(v_i, v_j) \leq r_T(G), \text{ i.e} \delta_{T_L}(v_i, v_j) \leq r_{T_L}(G), \delta_{T_U}(v_i, v_j) \leq r_{T_U}(G),$$

$$\delta_I(v_i, v_j) \leq r_I(G), \text{ i.e} \delta_{I_L}(v_i, v_j) \leq r_{I_L}(G), \delta_{I_U}(v_i, v_j) \leq r_{I_U}(G),$$

$$\delta_F(v_i, v_j) \geq r_F(G), \text{ i.e} \delta_{F_I}(v_i, v_j) \geq r_{F_I}(G), \delta_{F_U}(v_i, v_j) \geq r_{F_U}(G).$$

By the definition of eccentricity, we obtain

 $\delta_T(v_i, v_j) \le e_T(v_i), \, \delta_I(v_i, v_j) \le e_I(v_i), \, \delta_F(v_i, v_j) \ge e_F(v_i).$

i.e
$$\delta_{T_L}(v_i, v_j) \leq e_{T_L}(v_i), \, \delta_{T_U}(v_i, v_j) \leq e_{T_U}(v_i),$$

 $\delta_{I_L}(v_i, v_j) \leq e_{I_L}(v_i), \, \delta_{I_U}(v_i, v_j) \leq e_{I_U}(v_i),$
 $\delta_{F_L}(v_i, v_j) \geq e_{F_L}(v_i), \, \delta_{F_U}(v_i, v_j) \geq e_{F_U}(v_i) \quad \forall (v_i, v_j) \in V.$

Since G is self-centered interval valued neutrosophic graph, the above inequality becomes

$$\delta_{T_L}(v_i, v_j) \leq r_{T_L}(G), \ \delta_{T_U}(v_i, v_j) \leq r_{T_U}(G),$$

$$\delta_{I_L}(v_i, v_j) \leq r_{I_L}(G), \ \delta_{I_U}(v_i, v_j) \leq r_{I_U}(G),$$

$$\delta_{F_L}(v_i, v_j) \geq r_{F_L}(G), \ \delta_{F_U}(v_i, v_j) \geq r_{F_U}(G) \quad \forall (v_i, v_j) \in V.$$

i.e,
$$\delta_T(v_i, v_j) \leq r_T(G), \ \delta_I(v_i, v_j) \leq r_I(G), \ \delta_F(v_i, v_j) \geq r_F(G).$$

Assume that $\delta_T(v_i, v_j) \leq r_T(G), \, \delta_I(v_i, v_j) \leq r_I(G), \, \delta_F(v_i, v_j) \geq r_F(G).$

i.e
$$\delta_{T_L}(v_i, v_j) \leq r_{T_L}(G), \, \delta_{T_U}(v_i, v_j) \leq r_{T_U}(G),$$

 $\delta_{I_L}(v_i, v_j) \leq r_{I_L}(G), \, \delta_{I_U}(v_i, v_j) \leq r_{I_U}(G),$
 $\delta_{F_L}(v_i, v_j) \geq r_{F_L}(G), \, \delta_{F_U}(v_i, v_j) \geq r_{F_U}(G) \quad \forall (v_i, v_j) \in V.$

Then we have to prove that G is self-centered interval valued neutrosophic graph. Suppose that G is not self-centered interval valued neutrosophic graph.

Then $r_T(G) = e_T(v_i)$, $r_I(G) = e_I(v_i)$, $r_F(G) = e_F(v_i)$. i.e $r_{T_L}(G) = e_{T_L}(v_i)$, $r_{T_U}(G) = e_{T_U}(v_i)$, $r_{I_L}(G) = e_{I_L}(v_i)$, $r_{I_U}(G) = e_{I_U}(v_i)$, $r_{F_L}(G) = e_{F_L}(v_i)$, $r_{F_U}(G) = e_{F_U}(v_i)$ for some $v_i \in V$.

Let us assume that $e_{T_L}(v_i)$, $e_{T_U}(v_i)$, $e_{i_L}(v_i)$, $e_{F_L}(v_i)$ and $e_{F_U}(v_i)$ is the least value among all other eccentricity. That is

$$r_{T_L}(G) = e_{T_L}(v_i), r_{T_U}(G) = e_{T_U}(v_i), r_{I_L}(G) = e_{I_L}(v_i), r_{I_U}(G) = e_{I_U}(v_i),$$

$$r_{F_L}(G) = e_{F_L}(v_i) \text{ and } r_{F_U}(G) = e_{F_U}(v_i).$$
(3.1)

where $e_{T_L}(v_i) < e_{T_L}(v_j)$, $e_{T_U}(v_i) < e_{T_U}(v_j)$, $e_{I_L}(v_i) < e_{I_L}(v_j)$, $e_{I_U}(v_i) < e_{I_U}(v_j)$, $e_{F_L}(v_i) < e_{F_L}(v_i) < e_{F_L}(v_i) < e_{F_L}(v_i)$ for some $(v_i, v_j) \in V$ and

$$\delta_{T_L}(v_i, v_j) = e_{T_L}(v_j) > e_{T_L}(v_i), \ \delta_{T_U}(v_i, v_j) = e_{T_U}(v_j) > e_{T_U}(v_i),$$

$$\delta_{I_L}(v_i, v_j) = e_{I_L}(v_j) > e_{I_L}(v_i), \ \delta_{I_U}(v_i, v_j) = e_{I_U}(v_j) > e_{I_U}(v_i),$$

$$\delta_{F_L}(v_i, v_j) = e_{F_L}(v_j) > e_{F_L}(v_i), \ and \ \delta_{F_U}(v_i, v_j) = e_{F_U}(v_j) > e_{F_U}(v_i).$$
(3.2)

for some $(v_i, v_j) \in V$.

Hence from equations (1) and (2), we have

$$\begin{split} \delta_{T_L}(v_i, v_j) &> r_{T_L}(G), \, \delta_{T_U}(v_i, v_j) > r_{T_U}(G), \\ \delta_{I_L}(v_i, v_j) &> r_{I_L}(G), \, \delta_{I_U}(v_i, v_j) > r_{I_U}(G), \\ \delta_{F_L}(v_i, v_j) &< r_{F_L}(G), \, \delta_{F_U}(v_i, v_j) < r_{F_U}(G) \end{split}$$

for some $(v_i, v_j) \in V$, which is a contradiction to the fact that

$$\delta_{T_L}(v_i, v_j) \leq r_{T_L}(G), \ \delta_{T_U}(v_i, v_j) \leq r_{T_U}(G),$$

$$\delta_{I_L}(v_i, v_j) \leq r_{I_L}(G), \ \delta_{I_U}(v_i, v_j) \leq r_{I_U}(G),$$

$$\delta_{F_L}(v_i, v_j) \geq r_{F_L}(G), \ \delta_{F_U}(v_i, v_j) \geq r_{F_U}(G) \quad \forall (v_i, v_j) \in V.$$

i.e, $\delta_T(v_i, v_j) \le r_T(G)$, $\delta_I(v_i, v_j) \le r_I(G)$, $\delta_F(v_i, v_j) \ge r_F(G)$. Hence *G* is a self-centered interval valued neutrosophic graph.

References

- [1] M.Akram and W.A. Dudek, *Interval-valued fuzzy graphs*, Computers Math. Appl., 61, (2011) 289-299.
- [2] M.Akram, *Interval-valued fuzzy graphs*, Neural Computing and Applications, 21, (2012) 145-150.
- [3] M. Akram, N.O. Al-Shehrie and W.A. Dudek, *Certain types of interval-valued fuzzy graphs*, Journal of Applied Mathematics, 2013, Article ID 857070(2013) 11 pages.
- [4] M. Akram, W.A. Dudek and M. Murtaza Yousaf, *Centered interval-valued fuzzy graphs*, Afrika Matematika, 26,(5-6) (2015) 887-898.
- [5] M. Akram and M. Nasir, Concepts of interval-valued neutrosophic graphs, International Journal of Algebra and Statistics, 6(1-2), (2017) 22-41 DOI :10.20454/ijas.2017.1235.
- [6] M. Akram and M. Nasir, *Interval-valued neutrosophic competition graphs*, Annals of Fuzzy Mathematics and Informatics, 14(1),(2017) 99-120.
- [7] M. Akram and R. Akmal, Application of bipolar fuzzy sets in graph structures, *Applied Computational Intelligence and Soft Computing*, 2016(2016), Article ID 5859080, 13 pages.
- [8] M. Akram and S. Shahzadi, *Neutrosophic soft graphs with application*, Journal of Intelligent and Fuzzy Systems, 32(1),(2017) 841-858.
- [9] M. Akram and G. Shahzadi, *Certain characterization of m-polar fuzzy graphs by level graphs*, Punjab University Journal of Mathematics, 49(1)(2017), 1-12.
- [10] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20,(1986) 87-96.
- [11] P. Bhattacharya, *Some remarks on fuzzy graphs*, Pattern Recognition Letter, 6,(1987) 297-302.

- [12] S. Broumi, M. Talea, A. Bakali and F. Smarandache, *Interval valued neutrosophic graphs*, Critical Review, 12,(2016) 5 33.
- [13] T. Dinesh, A study on graph structures incidence algebras and their fuzzy analogues[Ph.D.thesis], Kannur University, Kannur, India, (2011).
- [14] T. Dinesh and T.V. Ramakrishnan, On generalised fuzzy graph structures, Applied Mathematical Sciences, 5(4),(2011) 173 180.
- [15] M.B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets Syst., 21,(1987) 1-17.
- [16] M.B. Gorzalczany, An interval-valued fuzzy inference method some basic properties, Fuzzy Sets Syst., 31,(1989) 243-251.
- [17] J. Hongmei and W. Lianhua, *Interval-valued fuzzy subsemigroups and subgroups* associated by intervalvalued suzzy graphs, 2009 WRI Global Congress on Intelligent Systems, (2009) 484-487.
- [18] A. Kaufmann, *Introduction a la Thiorie des Sous-Ensemble Flous*, Masson et Cie, 1,(1973).
- [19] J.N. Mordeson and P. Chang-Shyh, *Operations on fuzzy graphs*, Information Sciences, 79,(3)(1994), 159-170.
- [20] J.N. Mordeson and P.S. Nair, *Fuzzy graphs and fuzzy hypergraphs*, Physica Verlag, Heidelberg 1998; Second Edition, (2001).
- [21] H. A. Othman, On fuzzy infra-semiopen sets, Punjab Univ. J. Math., 48, No. 2 (2016) 1-10.
- [22] A. Rosenfeld, *Fuzzy graphs, Fuzzy Sets and Their Applications*, Academic Press, New York, (1975) 77-95.
- [23] E. Sampathkumar, *Generalized graph structures*, Bulletin of Kerala Mathematics Association, 3(2), (2006) 65–123.
- [24] F. Smarandache, *A unifying field in logics. neutrosophy: neutrosophic probability, set and logic*. Rehoboth:, American Research Press, (1999).
- [25] F. Smarandache, Neutrosophic set- a generalization of the intuitionistic fuzzy set, Granular Computing. 2006 IEEE International Conference, (2006) 38-42 DOI: 10.1109/GRC.2006.1635754.
- [26] S. Mathew and M. Sunitha, *Types of arcs in a fuzzy graph*, Information Sciences, 179,(2009), 1760-1768.

- [27] S. Mathew and M. Sunitha, *Strongest strong cycles and fuzzy graphs*, Fuzzy Systems, IEEE Transactions on, 21,(2013), 1096-1104.
- [28] I. Turksen, *Interval valued fuzzy sets based on normal forms*, Fuzzy Sets and Systems, 20,(1986) 191-210.
- [29] H. Wang, F. Smarandache, Y.Q. Zhang and R. Sunderraman, *Single-valued neutrosophic sets*, Multisspace and Multistruct, 4,(2010) 410-413.
- [30] H. Wang, Y. Zhang and R. Sunderraman, *Truth-value based interval neutrosophic sets*, Granular Computing, 2005 IEEE International Conference, 1,(2005) 274-277 DOI: 10.1109/GRC.2005.1547284.
- [31] H. Wang, F. Smarandache, Y.Q. Zhang and R. Sunderram, *An Interval neutrosophic sets and logic: theory and applications in computing*, Hexis Arizona, (2005).
- [32] L.A. Zadeh, Fuzzy sets, Information Control, 8,(1965) 338-353.
- [33] L.A. Zadeh, *The concept of a linguistic and application to approximate reasoning I*, Information Sci., 8, (1975) 199-249.
- [34] L.A. Zadeh, *Similarity relations and fuzzy orderings*, Information Sciences, 3(2), (1971) 177–200.
- [35] J. Zhan, W. A. Dudek and Y.B. Jun, *Interval valued* ($\in, \in \lor q$)-fuzzy filters of pseudo *BLalgebras*, Soft Computing, 13, (2009) 13-21.
- [36] J. Zhan, B. Davvaz and K. P. Shum, *A new view of fuzzy hypernear-rings*, Inform Sciences, 178,(2008) 425-438.