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Abstract A single-valued neutrosophic (SVN) set is a powerful general formal framework that

generalizes the concept of fuzzy set and intuitionistic fuzzy set. In SVN set, indeterminacy is

quantified explicitly, and truth membership, indeterminacy membership, and falsity membership

are independent. In this paper, we apply the notion of SVN sets to Lie algebras. We develop

the concepts of SVN Lie subalgebras and SVN Lie ideals. We describe some interesting results

of SVN Lie ideals.
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1. Introduction

The concept of Lie groups was first introduced by Sophus Lie in nineteenth century through

his studies in geometry and integration methods for differential equations. Lie algebras were also

discovered by him when he attempted to classify certain smooth subgroups of a general linear

group. The importance of Lie algebras in mathematics and physics has become increasingly

evident in recent years. In applied mathematics, Lie theory remains a powerful tool for studying

differential equations, special functions and perturbation theory. It is noted that Lie theory has

applications not only in mathematics and physics but also in diverse fields such as continuum

mechanics, cosmology and life sciences. Lie algebra has been used by electrical engineers, mainly

in the mobile robot control [1]. Lie algebra has also been used to solve the problems of computer

vision.

Fuzzy structures are associated with theoretical soft computing, especially Lie algebras and

their different classifications, have numerous applications to the spectroscopy of molecules, atoms

and nuclei. One of the key concepts in the application of Lie algebraic method in physics is

that of spectrum generating algebras and their associated dynamic symmetries. The major

advancements in the fascinating world of fuzzy sets started with the work of renowned scientist

Zadeh [2] with new directions and ideas. Smarandache [3] and Wang et al. [4] defined SVN

sets as a generalization of fuzzy sets [2] and intuitionistic fuzzy sets [5]. Algebraic structures

have a vital place with vast applications in various disciplines. Neutrosophic set theory has been

applied to algebraic structures [6]. Fuzzification of Lie algebras has been discussed in [7–15]. In
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this paper, we apply the notion of SVN sets to Lie algebras. We develop the concepts of SVN

Lie subalgebras and SVN Lie ideals. We describe some interesting results of SVN Lie ideals.

2. Preliminaries

In this section, we first review some elementary aspects that are necessary for this paper. A

Lie algebra is a vector space L over a field F (equal to R or C) on which L ×L → L denoted

by (x, y) → [x, y] is defined satisfying the following axioms:

(L1) [x, y] is bilinear,

(L2) [x, x] = 0 for all x ∈ L ,

(L3) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ L (Jacobi identity).

Throughout this paper, L is a Lie algebra and F is a field. We note that the multiplication

in a Lie algebra is not associative, i.e., it is not true in general that [[x, y], z] = [x, [y, z]]. But it

is anti commutative, i.e., [x, y] = −[y, x]. A subspace H of L closed under [·, ·] will be called a

Lie subalgebra.

A fuzzy set µ : L → [0, 1] is called a fuzzy Lie ideal [7] of L if

(a) µ(x+ y) ≥ min{µ(x), µ(y)},

(b) µ(αx) ≥ µ(x),

(c) µ([x, y]) ≥ µ(x)

hold for all x, y ∈ L and α ∈ F.

Definition 2.1([3, 4]) Let X be a space of points (objects). A single-valued neutrosophic set

(SVN set) N on a non-empty set X is characterized by a truth membership function TN : X →

[0, 1], indeterminacy membership function IN : X → [0, 1] and a falsity membership function

FN : X → [0, 1]. Thus, N = {< x, TN (x), IN (x), FN (x) > |x ∈ X}.

3. Single-valued neutrosophic Lie algebras

We define here single-valued neutrosophic Lie subalgebras and single-valued neutrosophic Lie

ideal.

Definition 3.1 An SVN set N = (TN , IN , FN ) on Lie algebra L is called an SVN Lie subalgebra

if the following conditions are satisfied:

(1) TN(x + y) ≥ min(TN (x), TN (y)), IN (x + y) ≥ min(IN (x), IN (y)) and FN (x + y) ≤

max(FN (x), FN (y)),

(2) TN (αx) ≥ TN(x), IN (αx) ≥ IN (x) and FN (αx) ≤ FN (x),

(3) TN([x, y]) ≥ min{TN(x), TN (y)}, IN ([x, y]) ≥ min{IN (x), IN (y)} and FN ([x, y]) ≤

max{FN(x), FN (y)}

for all x, y ∈ L and α ∈ F.

Definition 3.2 An SVN set N = (TN , IN , FN ) on L is called an SVN Lie ideal if it satisfies

the conditions (1), (2) and the following additional condition:
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(4) TN ([x, y]) ≥ TN (x), IN ([x, y]) ≥ IN (x) and FN ([x, y]) ≤ FN (x)

for all x, y ∈ L .

From (2) it follows that:

(5) TN (0) ≥ TN(x), IN (0) ≥ IN (x), FN (0) ≤ FN (x),

(6) TN (−x) ≥ TN (x), IN (−x) ≥ IN (x), FN (−x) ≤ FN (x).

Proposition 3.3 Every SVN Lie ideal is an SVN Lie subalgebra.

We note here that the converse of Proposition 3.3 does not hold in general as it can be seen

in the following example.

Example 3.4 Consider F = R. Let L = ℜ3 = {(x, y, z) : x, y, z ∈ R} be the set of all

3-dimensional real vectors which forms a Lie algebra and define

ℜ3 ×ℜ3 → ℜ3

[x, y] → x× y,

where × is the usual cross product. We define an SVN set N = (TN , IN , FN ) : ℜ3 → [0, 1] ×

[0, 1]× [0, 1] by

TN (x, y, z) =















1, if x = y = z = 0,

0.5, if x 6= 0, y = z = 0,

0, otherwise,

IN (x, y, z) =















1, if x = y = z = 0,

0.5, if x 6= 0, y = z = 0,

0, otherwise,

FN (x, y, z) =















0, if x = y = z = 0,

0.3, if x 6= 0, y = z = 0,

1, otherwise.

Then N = (TN , IN , FN ) is an SVN Lie subalgebra of L but N = (TN , IN , FN ) is not an SVN

Lie ideal of L since

TN([(1, 0, 0) (1, 1, 1)]) = TN (0,−1, 1) = 0,

IN ([(1, 0, 0) (1, 1, 1)]) = IN (0,−1, 1) = 0,

FN ([(1, 0, 0) (1, 1, 1)]) = FN (0,−1, 1) = 1,

TN(1, 0, 0) = 0.5, IN(1, 0, 0) = 0.5, FN(1, 0, 0) = 0.3.

That is,

TN ([(1, 0, 0) (1, 1, 1)]) � TN(1, 0, 0),

IN ([(1, 0, 0) (1, 1, 1)]) � IN (1, 0, 0),

FN ([(1, 0, 0) (1, 1, 1)]) � FN (1, 0, 0).
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Proposition 3.5 If N is an SVN Lie ideal of L , then

(1) TN (0) ≥ TN(x), IN (0) ≥ IN (x), FN (0) ≤ FN (x),

(2) TN ([x, y]) ≥ max{TN(x), TN (y)},

(3) IN ([x, y]) ≥ max{IN (x), IN (y)},

(4) FN ([x, y]) ≤ min{FN (x), FN (y)},

(5) TN ([x, y]) = TN (−[y, x]) = TN([y, x]),

(6) IN ([x, y]) = IN (−[y, x]) = IN ([y, x]),

(7) FN ([x, y]) = FN (−[y, x]) = FN ([y, x])

for all x, y ∈ L .

Proof The proof follows from Definition 3.2. �

Proposition 3.6 If {Ni | i ∈ J} is a family of SVN Lie ideals of L , then
⋂

Ni = (
∧

TNi
,
∨

FNi
)

is an SVN Lie ideal of L , where
∧

TNi
(x) = inf{TNi

(x) | i ∈ J, x ∈ L },

∧

INi
(x) = inf{INi

(x) | i ∈ J, x ∈ L },

∨

FNi
(x) = sup{FNi

(x) | i ∈ J, x ∈ L }.

Proof The proof follows from Definition 3.2. �

Definition 3.7 Let N = (TN , IN , FN ) be an SVN set in a Lie algebra L and let (α, β, γ) ∈

[0, 1]× [0, 1]× [0, 1] with α+ β + γ ≤ 3. Then level subset of N is defined as:

N (α,β,γ) = {x ∈ L | TN(x) ≥ α, IN (x) ≥ β, FN (x) ≤ γ},

are called (α, β, γ)-level subsets of SVN setN . The set of all (α, β, γ) ∈ Im(TN )×Im(IN )×Im(IN )

such that α+ β + γ ≤ 3 is known as image of N = (TN , IN , FN ). Note that

N (α,β,γ) = {x ∈ L | TN(x) ≥ α, IN (x) ≥ β, FN (x) ≤ γ},

N (α,β,γ) = {x ∈ L | TN(x) ≥ α} ∩ {x ∈ L | IN (x) ≥ β} ∩ {x ∈ L | FN (x) ≤ γ},

N (α,β,γ) = ∪(TN , α) ∩ ∪
′

(IN , β) ∩ L(FN , γ).

Theorem 3.8 An SVN set N = (TN , IN , FN ) of L is an SVN Lie ideal of L if and only if

N (α,β,γ) is a Lie ideal of L for every (α, β, γ) ∈ Im(TN )× Im(IN )× Im(FN ) with α+ β+ γ ≤ 3.

Proposition 3.9 Let N = (TN , IN , FN ) be an SVN Lie ideal of L and (r1, s1, t1), (r2, s2, t2) ∈

Im(T ) × Im(I) × Im(F ) with ri + si + ti ≤ 3 for i = 1, 2. Then L
(r1,s1,t1)
N = L

(r2,s2,t2)
N if and

only if (r1, s1, t1) = (r2, s2, t2).

Theorem 3.10 Let P0 ⊂ P1 ⊂ P2 ⊂ . . . Pn = L be a chain of Lie ideals of a Lie algebra L .

Then there exists an SVN Lie ideal TN of L for which level subsets U(TN , r), Ú(IN , s) and

L(TN , t) coincide with this chain.

Proof Let {sk | k = 0, 1, . . . , n} and {tk | k = 0, 1, . . . , n} be finite decreasing and increasing
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sequences in [0, 1] such that si + ti ≤ 1, for i = 0, 1, . . . , n. Let N = (TN , IN , FN ) be an

intuitionistic fuzzy set in L defined by TN(P0) = r0, IN (P0) = s0, FN (P0) = t0, TN(Pk\Pk−1) =

rk, IN (Pk \Pk−1) = sk and FN (Pk \Pk−1) = tk for 0 < k ≤ n. Let x, y ∈ L . If x, y ∈ Pk \Pk−1,

then x+ y, αx, [x, y] ∈ Pk and

TN(x+ y) ≥ rk = min{TN(x), TN (y)},

IN (x + y) ≥ sk = min{TN(x), TN (y)},

FN (x+ y) ≤ tk = max{FN (x)), FN (y)},

TN (αx) ≥ rk = TN(x), IN (αx) ≥ sk = IN (x), FN (αx) ≤ tk = FN (x),

TN ([x, y]) ≥ rk = TN (x), IN ([x, y]) ≥ sk = IN (x), FN ([x, y]) ≤ tk = FN (x).

For i > j, if x ∈ Pi \ Pi−1 and y ∈ Pj \ Pj−1, then TN(x) = ri = TN(y), IN (x) = si = IN (y),

FN (x) = tj = FN (y) and x+ y, αx, [x, y] ∈ Pi. Thus

TN (x+ y) ≥ ri = min{TN(x), TN (y)},

IN (x+ y) ≥ si = min{IN (x), IN (y)},

FN (x+ y) ≤ tj = max{FN (x)), FN (y)},

TN (αx) ≥ ri = TN(x), IN (αx) ≥ si = IN (x), FN (αx) ≤ tj = FN (x),

TN ([x, y]) ≥ ri = TN(x), IN ([x, y]) ≥ si = IN (x), FN ([x, y]) ≤ tj = FN (x).

Thus, we conclude that N = (TN , IN , FN ) is an SVN Lie ideal of a Lie algebra L and all its

nonempty level subsets are Lie ideals.

Since Im(TN ) = {r0, r1, . . . , rn}, Im(IN ) = {s0, s1, . . . , sn}, Im(FN ) = {t0, t1, . . . , tn}, level

subsets of N form chains:

U(TN , r0) ⊂ U(TN , r1) ⊂ · · · ⊂ U(TN , rn) = L,

Ú(IN , s0) ⊂ Ú(IN , s1) ⊂ · · · ⊂ Ú(IN , sn) = L,

L(FN , t0) ⊂ L(FN , t1) ⊂ · · · ⊂ L(FN , tn) = L,

respectively. Indeed,

U(TN , r0) = {x ∈ L |TN(x) ≥ r0} = P0,

Ú(IN , s0) = {x ∈ L | IN (x) ≥ s0} = P0,

L(FN , t0) = {x ∈ L |FN (x) ≤ t0} = P0.

We now prove that

U(TN , rk) = U(IN , sk) = Pk = L(FN , tk) for 0 < k ≤ n.

Clearly, Pk ⊆ U(Tk, rk), Pk ⊆ U(Ik, sk) and Pk ⊆ L(FN , tk).

If x ∈ U(TN , rk), then TN(x) ≥ rk and so x /∈ Pi for i > k. Hence

TN (x) ∈ {r0, r1, . . . , rk},
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which implies x ∈ Pi for some i ≤ k. Since Pi ⊆ Pk, it follows that x ∈ Pk. Consequently,

U(TN , rk) = Pk for some 0 < k ≤ n. If x ∈ Ú(IN , sk), then IN (x) ≥ sk and so x /∈ Pi for i > k.

Hence

IN (x) ∈ {s0, s1, . . . , sk},

which implies x ∈ Pi for some i ≤ k. Since Pi ⊆ Pk, it follows that x ∈ Pk. Consequently,

Ú(IN , sk) = Pk for some 0 < k ≤ n. Now if x ∈ L (FN , tk), then FN (x) ≤ tk and so x /∈ Pi for

j ≤ k. Thus

FN (x) ∈ {t0, t1, . . . , tk},

which implies x ∈ Pj for some j ≤ k. Since Pj ⊆ Pk, it follows that x ∈ Pk. Consequently,

L(FN , tk) = Pk for some 0 < k ≤ n. This completes the proof. �

Theorem 3.11 If N = (TN , IN , FN ) is an SVN Lie ideal of a Lie algebra L , then

TN(x) = sup{r ∈ [0, 1] | x ∈ U(TN , r)},

IN (x) = sup{s ∈ [0, 1] | x ∈ Ú(IN , s)},

FN (x) = inf{t ∈ [0, 1] | x ∈ L (FN , t)}

for every x ∈ L .

Proof The proof follows from Definition 3.2. �

Definition 3.12 Let f be a map from a set L1 to a set L2. If N = (TN , IN , FN ) and

M = (TM , IM , FM ) are SVN sets in L1 and L2, respectively, then the preimage of M under f ,

denoted by f−1(M), is an SVN set defined by

f−1(M) = (f−1(TM ), f−1(FM )).

Theorem 3.13 Let f : L1 → L2 be an onto homomorphism of Lie algebras. If M =

(TM , IM , FM ) is an SVN Lie ideal of L2, then the preimage f−1(M) = (f−1(TM ), f−1(FM ))

of M under f is an SVN Lie ideal of L1.

Proof The proof follows from Definitions 3.2 and 3.12. �

Theorem 3.14 Let f : L1 → L2 be an epimorphism of Lie algebras. If N = (TN , IN , FN ) is

an SVN Lie ideal of L2, then f−1(N c) = (f−1(N))c.

Proof The proof follows from Definitions 3.2 and 3.12. �

Theorem 3.15 Let f : L1 → L2 be an epimorphism of Lie algebras. If N = (TN , IN , FN ) is an

SVN Lie ideal of L2 and M = (TM , IM , FM ) is the preimage of N = (TN , FN ) under f . Then

M = (TM , IM , FM ) is an SVN Lie ideal of L1.

Proof The proof follows from Definitions 3.2 and 3.12. �

Definition 3.16 Let L1 and L2 be two Lie algebras and f be a mapping of L1 into L2. If
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N = (TN , IN , FN ) is an SVN set of L1, then the image of N = (TN , IN , FN ) under f is the SVN

set in L2 defined by

f(TN )(y) =

{

supx∈f−1(y) TN(x), if f−1(y) 6= ∅,

0, otherwise,

f(IN )(y) =

{

supx∈f−1(y) IN (x), if f−1(y) 6= ∅,

0, otherwise,

f(FN )(y) =

{

infx∈f−1(y) FN (x), if f−1(y) 6= ∅,

1, otherwise

for each y ∈ L2.

Theorem 3.17 Let f : L1 → L2 be an epimorphism of Lie algebras. If N = (TN , IN , FN ) is

an SVN Lie ideal of L1, then f(N) is an SVN Lie ideal of L2.

Proof The proof follows from Definitions 3.2 and 3.16. �

Definition 3.18 Let f : L1 → L2 be a homomorphism of Lie algebras. For any SVN set

N = (TN , IN , FN ) in a Lie algebra L2, we define an SVN set Nf = (T f
N , F f

N ) in L2 by

T f
N(x) = TN (f(x)), IfN (x) = IN (f(x)), F f

N (x) = FN (f(x))

for all x ∈ L1. Clearly, N
f(x1) = Nf (x2) = A(x) for all x1, x2 ∈ f−1(x).

Lemma 3.19 Let f : L1 → L2 be a homomorphism of Lie algebras. If N = (TN , IN , FN ) is an

SVN Lie ideal of L2, then Nf = (T f
N , IfN , F f

N ) is an SVN Lie ideal of L1.

Proof Let x, y ∈ L1 and α ∈ F. Then

T f
N(x+y) = TN(f(x+y)) = TN (f(x)+f(y)) ≥ min{TN(f(x)), TN (f(y))} = min{T f

N(x), T f
N (y)},

IfN (x+ y) = IN (f(x+ y)) = IN (f(x) + f(y)) ≥ min{IN (f(x)), IN (f(y))} = min{IfN (x), IfN (y)},

F f
N (x+y) = FN (f(x+y)) = FN (f(x)+f(y)) ≤ max{FN (f(x)), FN (f(y))} = max{F f

N (x), F f
N (y)},

T f
N(αx) = TN (f(αx)) = TN (αf(x)) ≥ TN (f(x)) = αf

N (x),

IfN (αx) = IN (f(αx)) = IN (αf(x)) ≥ IN (f(x)) = αf
N (x),

F f
N (αx) = FN (αf(x)) ≤ FN (f(x)) = F f

N (x).

Similarly,

T f
N ([x, y]) = TN (f([x, y])) = TN ([f(x), f(y)]) ≥ TN (f(x)) = T f

N(x),

IfN ([x, y]) = IN (f([x, y])) = IN ([f(x), f(y)]) ≥ IN (f(x)) = IfN (x),

F f
N ([x, y]) = FN ([f(x, y)]) = FN ([f(x), f(y)]) ≤ FN (f(x)) = F f

N (x).

This proves that Nf = (T f
N , IfN , F f

N ) is an SVN Lie ideal of L1. �

We now characterize the SVN Lie ideals of Lie algebras.
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Theorem 3.20 Let f : L1 → L2 be an epimorphism of Lie algebras. Then Nf = (T f
N , IfN , F f

N )

is an SVN Lie ideal of L1 if and only if N = (TN , IN , FN ) is an SVN Lie ideal of L2.

Proof The sufficiency follows from Lemma 3.19. In proving the necessity, since f is a surjective

mapping, for any x, y ∈ L2 there are x1, y1 ∈ L1 such that x = f(x1), y = f(y1). Thus TN (x) =

T f
N(x1), TN(y) = T f

N(y1), IN (x) = IfN (x1), IN (y) = IfN (y1), FN (x) = F f
N (x1), FN (y) = F f

N (y1),

whence

TN (x+ y) = TN(f(x1) + f(y1)) = TN (f(x1 + y1)) = T f
N (x1 + y1)

≥ min{T f
N(x1), T

f
N (y1)} = min{TN(x), TN (y)},

IN (x+ y) = IN (f(x1) + f(y1)) = IN (f(x1 + y1)) = IfN (x1 + y1)

≥ min{IfN (x1), I
f
N (y1)} = min{IN (x), IN (y)},

FN (x+ y) = FN (f(x1) + f(y1)) = FN (f(x1 + y1)) = F f
N (x1 + y1)

≤ max{F f
N (x1), F

f
N (y1)} = max{FN (x), FN (y)},

TN(αx) = TN(αf(x1)) = TN(f(αx1)) = T f
N(αx1) ≥ T f

N (x1) = TN(x),

IN (αx) = iN(αf(x1)) = IN (f(αx1)) = IfN (αx1) ≥ IfN (x1) = IN (x),

FN (αx) = FN (αf(x1)) = FN (f(αx1)) = F f
N (αx1) ≤ F f

N (x1) = FN (x).

Similarly,

TN ([x, y]) = TN ([f(x1), f(y1)]) = TN (f([x1, y1])) = T f
N([x1, y1])

≥ T f
N (x1) = TN(x),

IN ([x, y]) = IN ([f(x1), f(y1)]) = IN (f([x1, y1])) = IfN ([x1, y1])

≥ IfN (x1) = IN (x),

FN ([x, y]) = FN ([f(x1), f(y1)]) = FN (f([x1, y1])) = F f
N ([x1, y1])

≤ F f
N (x1) = FN (x).

This shows that N = (TN , IN , FN ) is an SVN Lie ideal of L2. �

Definition 3.21 LetN = (TN , IN , FN ) be an SVN Lie ideal in L . Define inductively a sequence

of SVN Lie ideals in L by

N0 = N, N1 = [N0, N0], N2 = [N1, N1], . . . , Nn = [Nn−1, Nn−1].

Nn is called the nth derived SVN Lie ideal of L . A series

N0 ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Nn ⊇ · · ·

is called derived series of an SVN Lie ideal N in L .

Definition 3.22 An SVN Lie ideal N in L is called a solvable SVN Lie ideal, if there exists a

positive integer n such that

N0 ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Nn = (0, 0, 0).
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Theorem 3.23 Homomorphic images of solvable SVN Lie ideals are solvable SVN Lie ideals.

Proof Let f : L1 → L2 be a homomorphism of Lie algebras. Suppose that N = (TN , IN , FN )

is an SVN Lie ideal in L1. We prove by induction on n that f(Nn) ⊇ [f(N)]n, where n is any

positive integer. First we claim that f([N,A]) ⊇ [f(N), f(N)]. Let y ∈ L2. Then

f(≪ TN , TN ≫)(y) = sup{≪ TN , TN ≫ (x) | f(x) = y}

=sup{sup{min(TN (a), TN (b)) | a, b ∈ L1, [a, b] = x, f(x) = y}}

=sup{min(TN (a), TN(b)) | a, b ∈ L1, [a, b] = x, f(x) = y}

=sup{min(TN (a), TN(b)) | a, b ∈ L1, [f(a), f(b)] = x}

=sup{min(TN (a), TN(b)) | a, b ∈ L1, f(a) = u, f(b) = v, [u, v] = y}

≥ sup{min( sup
a∈f−1(u)

TN (a), sup
b∈f−1(v)

TN (b)) | [u, v] = y}

=sup{min(f(TN)(u), f(TN )(v)) | [u, v] = y}

= ≪ f(TN ), f(TN) ≫ (y),

f(≪ IN , IN ≫)(y) = sup{≪ IN , IN ≫ (x) | f(x) = y}

=sup{sup{min(IN (a), IN (b)) | a, b ∈ L1, [a, b] = x, f(x) = y}}

=sup{min(IN (a), IN (b)) | a, b ∈ L1, [a, b] = x, f(x) = y}

=sup{min(IN (a), IN (b)) | a, b ∈ L1, [f(a), f(b)] = x}

=sup{min(IN (a), IN (b)) | a, b ∈ L1, f(a) = u, f(b) = v, [u, v] = y}

≥ sup{min( sup
a∈f−1(u)

IN (a), sup
b∈f−1(v)

IN (b)) | [u, v] = y}

=sup{min(f(IN )(u), f(IN )(v)) | [u, v] = y}

= ≪ f(IN ), f(IN ) ≫ (y),

f(≪ FN , FN ≫)(y) = inf{≪ FN , FN ≫)(x) | f(x) = y}

= inf{inf{max(FN (a), FN (b)) | a, b ∈ L1, [a, b] = x, f(x) = y}}

= inf{max(FN (a), FN (b)) | a, b ∈ L1, [a, b] = x, f(x) = y}

= inf{max(FN (a), FN (b)) | a, b ∈ L1, [f(a), f(b)] = x}

= inf{max(FN (a), FN (b)) | a, b ∈ L1, f(a) = u, f(b) = v, [u, v] = y}

≤ inf{max( inf
a∈f−1(u)

FN (a), inf
b∈f−1(v)

FN (b)) | [u, v] = y}

= inf{max(f(FN )(u), f(FN )(v)) | [u, v] = y}

= ≪ f(FN ), f(FN ) ≫ (y).

Thus

f([N,N ]) ⊇ f(≪ A,A ≫) ⊇≪ f(N), f(N) ≫= [f(N), f(N)].

Now for n > 1, we get

f(Nn) =f([Nn−1, Nn−1]) ⊇ [f(Nn−1), f(Nn−1)]
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⊇[(f(N))n−1, (f(N))n−1] = (f(N))n.

This completes the proof. �

Definition 3.24 Let N = (TN , IN , FN ) be an SVN Lie ideal in L . We define inductively a

sequence of SVN Lie ideals in L by

N0 = N, N1 = [N,N0], N2 = [N,N1], . . . , Nn = [N,Nn−1].

A series

N0 ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Nn ⊇ · · ·

is called descending central series of an intuitionistic fuzzy Lie ideal N in L . An SVN Lie ideal

N in L is called a nilpotent SVN Lie ideal, if there exists a positive integer n such that

N0 ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Nn = (0, 0, 0).

Theorem 3.25 Homomorphic image of a nilpotent SVN Lie ideal is a nilpotent SVN Lie ideal.

Proof Straightforward. �

Theorem 3.26 Let J be a Lie ideal of a Lie algebra L . If N = (TN , IN , FN ) is an SVN Lie

ideal of L , then the SVN set N = (TN , FN ) of L /J defined by

TN (a+ J) = sup
x∈J

TN(a+ x),

IN (a+ J) = sup
x∈J

IN (a+ x),

FN (a+ J) = inf
x∈J

FN (a+ x)

is an SVN Lie ideal of the quotient Lie algebra L /J of L with respect to J .

Proof Clearly, N is well-defined. Let x+ J , y + J ∈ L /J . Then

IN ((x+ J) + (y + J)) =IN ((x+ y) + J) = sup
z∈J

TN((x + y) + z)

= sup
z=s+t∈J

TN((x + y) + (s+ t))

≥ sup
s, t∈J

min{TN(x+ s), TN(y + t)}

=min{sup
s∈J

TN (x+ s), sup
t∈J

TN(y + t)}

=min{IN (x+ J), IN (y + J)},

IN (α(x + J)) =IN (αx+ J) = sup
z∈J

T (αx+ z) ≥ sup
z∈J

T (x+ z) = IN(x + J),

IN ([x+ J, y + J ]) =IN ([x, y] + J) = sup
z∈J

TN([x, y] + z) ≥ sup
z∈J

TN (x+ z) = IN (x+ J).

Thus IN is an SVN Lie ideal of L /J . In a similar way we can verify that TN and FN are SVN

Lie ideals of L /J . Hence N = (TN , IN , FN ) is an SVN Lie ideal of L /J . �
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Theorem 3.27 Let J be a Lie ideal of a Lie algebra L . Then there is a one-to-one correspon-

dence between the set of SVN Lie ideals N = (TN , IN , FN ) of L such that N(0) = A(s) for all

s ∈ J and the set of all SVN Lie ideals N = (TN , IN , FN ) of L /J .

Proof Let N = (TN , IN , FN ) be an SVN Lie ideal of L . Using Theorem 3.26, we prove that

TN and FN defined by

TN (a+ J) = sup
x∈J

TN(a+ x),

IN (a+ J) = sup
x∈J

IN (a+ x),

FN (a+ J) = inf
x∈J

FN (a+ x),

are SVN Lie ideals of L /J . Since TN(0) = TN (s), FN (0) = FN (s) for all s ∈ J ,

TN (a+ s) ≥ min(TN (a), TN(s)) = TN(a),

IN (a+ s) ≥ min(IN (a), IN (s)) = IN (a),

FN (a+ s) ≤ max(FN (a), FN (s)) = FN (a).

Again,

TN (a) = TN(a+ s− s) ≥ min(TN(a+ s), TN (s)) = TN (a+ s),

IN (a) = IN (a+ s− s) ≥ min(IN (a+ s), IN (s)) = IN (a+ s),

FN (a) = FN (a+ s− s) ≤ max(FN (a+ s), FN (s)) = FN (a+ s).

Thus N(a+ s) = N(a) for all s ∈ J . Hence the correspondence N 7→ N is one-to-one. Let N be

an SVN Lie ideal of L /J and define an SVN set N = (TN , IN , FN ) in L by TN (a) = TN (a+J),

IN (a) = IN (a+ J), FN (a) = FN (a+ J) for all a ∈ J . For x, y ∈ L , we have

TN (x+ y) =TN ((x+ y) + J) = TN ((x+ J) + (y + J))

≥min{TN (x + J), TN (y + J)}

=min{TN(x), TN (y)},

TN (αx) =TN (αx+ J) ≥ TN (x + J) = TN(x),

TN([x, y]) =TN ([x, y] + J) = TN ([x+ J, y + J ])

≥TN (x+ J) = TN(x).

Thus TN is an SVN Lie ideal of L . In a similar way we can verify that IN and FN are SVN Lie

ideal of L . Hence N = (TN , IN , FN ) is an SVN Lie ideal of L . Note that TN(z) = TN (z+J) =

TN(J), IN (z) = IN (z + J) = IN (J), FN (z) = FN (z + J) = FN (J) for all z ∈ J , which shows

that N(z) = N(0) for all z ∈ J . This completes the proof. �
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