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Abstract: The existence of neutral /indeterminacy degrees reflects the more practical aspects
of decision-making scenarios. Thus, this paper has studied the intuitionistic fuzzy multiobjective
linear programming problems (IFMOLPPs) under neutrosophic uncertainty. To highlight the degrees
of neutrality in IFMOLPPs, we have investigated the neutrosophic optimization techniques with
intuitionistic fuzzy parameters. The marginal evaluation of each objective is determined by three
different membership functions, such as truth, indeterminacy, and falsity membership degrees under
the neutrosophic environment. The marginal evaluation of each objective function is elicited by
various sorts of membership functions such as linear, exponential, and hyperbolic types of membership
functions, which signifies an opportunity for decision-makers to select the desired membership
functions. The developed neutrosophic optimization technique is implemented on existing numerical
problems that reveal the validity and applicability of the proposed methods. A comparative study is
also presented with other approaches. At last, conclusions and future research directions are addressed
based on the proposed work.

Keywords: intuitionistic fuzzy parameters; indeterminacy membership function; neutrosophic
optimization technique; multiobjective linear programming problem
Mathematics Subject Classification: 03B52, 03F55, 62J05, 62J99

1. Introduction

Optimization techniques have much importance and popularity in real life while solving
optimization problems. A variety of mathematical models exists while dealing with real-life scenarios
of different problems. Hence, the mathematical models contain some specific objective function(s)
along with a set of well-defined constraint(s) subject to which the problems are to be optimized (either
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maximized or minimized). Thus, a mathematical programming problem having multiple conflicting
objectives under a set of mixed constraints is termed as a multiobjective programming problem
(MOPP). In real life, the different fields of optimization such as transportation problem, inventory
control, assignment problems, portfolio optimization, supplier selection, manufacturing system,
supply chain management, engineering problems, etc. contain more than one conflicting objectives
(either minimization or maximization) and take the form of MOPP. While dealing with multiple
objectives, it is not always possible to obtain a single solution that optimizes each objective efficiently.
However, a compromise solution is possible that satisfies each objective simultaneously. Therefore
the concept of compromise solution is an important aspect and leads in search of the global optimality
criterion. In the past few decades, a tremendous amount of research has been presented in the context
of multiobjective optimization techniques.

Initially, the fuzzy set (FS) was investigated by [35], which contains the degree of belongingness
(membership functions) for the element into the feasible solution set. Based on FS, [39] presented the
fuzzy programming approach (FPA) for MOPP in which membership functions represent the
marginal evaluation of each objective. In FPA, the decision-makers satisfaction level is achieved by
maximizing the membership function of each objective. Later on, the extensions of FPA such fuzzy
interval programming, fuzzy stochastic programming, fuzzy goal programming, etc. have been
presented and successfully applied to solve the MOPP according to the nature of the problem and
appropriate requirement of the techniques.

In some cases, only the membership function may not be the best representative of the degree of
belongingness of an element into the feasible solution set. However, the degree of non-belongingness
would be better to represent the hesitation aspects of an element into the feasible solution set. As a
result, intuitionistic fuzzy set (IFS) was presented by [11], which is the generalization and extension of
the FS. The IFS deals with both the degree of belongingness and non-belongingness of the element into
the feasible solution simultaneously. Based on the IFS, P. P. Angelov [10] suggested the intuitionistic
fuzzy programming approach (IFPA) to solve the MOPP in which the marginal evaluation of each
objective function is determined by the membership as well as non-membership functions. In IFPA,
the satisfaction level of the decision-maker is achieved by maximizing the membership and minimizing
the non-membership functions of each objective simultaneously. Afterward, the extended version of
IFPA, such as intuitionistic fuzzy stochastic programming, intuitionistic fuzzy goal programming, etc.
have been developed and applied to various decision-making problems.

Further extension of FS and IFS has been presented because indeterminacy degree also exist in
decision-making processes. To cope with the degree of indeterminacy/neutrality, F. Smarandache [32]
proposed the neutrosophic set (NS). The NS considers three different membership functions namely;
the truth (degree of belongingness), indeterminacy (degree of belongingness up to some extent) and
a falsity (degree of non-belongingness) membership functions for the element into a feasible solution
set. Recently, many authors have used the concept of NS such as [2,4,5,26] while making the optimal
decisions. An indeterminacy degree are the areas of ignorance of propositions’ points between the truth
and a falsity degree. It means that the indeterminacy degrees are independent and can be optimized
simultaneously. For example, if we collect some information from scholars regarding a journal and
the possibility that the journal is good is 0.7, the journal is not good is 0.6, and do not know about the
journal is 0.3. Then, this kind of linguistic vagueness or impreciseness are beyond the scope of FS and
IFS and consequently beyond FPA and IFPA to decision making process respectively. Therefore, it is
worth to incorporate the indeterminacy degree while dealing with MOPP.

AIMS Mathematics Volume 6, Issue 5, 4556–4580.
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A continuous effort is being made by many researchers or practitioners to obtain the best possible
solution of multiobjective linear programming problems (MOLPPs). A large part of the literature is full
of fuzzy-based optimization techniques for MOLPPs. In the past few years, the generalized concept
of a fuzzy set is utilized to solve the MOLPPs. An intuitionistic fuzzy-based optimization method
is also implemented by many researchers and gained a wide range of applicability and acceptability
while optimizing the MOLPPs. However, the existing approaches have some limitations and can be
overcome by applying the proposed neutrosophic optimization technique. The following are some
essential points that ensure a remarkable contribution to the domain of multiobjective optimization
techniques.

• An indeterminacy degree is the region of ignorance of propositions’ values between the truth and
falsity degrees. This aspect can only be managed with the neutrosophic optimization method.
• The existing methods of solving MOLPPs [19, 28, 36] considered only the membership function

whereas [22, 30, 31] included the membership as well as non-membership degrees of each
objective function. They do not cover the indeterminacy degree while making decisions. We
have successfully cope with the concept of neutrality and hence suggested indeterminacy degree
along with membership and non-membership degrees simultaneously.
• The methods of handling MOLPPs [13, 17] only take care of the degree of belongingness among

the parameters and do not consider the degree of non-belongingness. Therefore, this study
captured the concepts of belongingness and non-belongingness degrees among the parameters
and dealt with the hesitation aspects.
• The presented approach by [18] is applicable only for single-objective problems. Hence the

addressed method can be easily applied to MOLPPs with different types of membership functions.
• The study presented by [30, 36] does not permit the versatility of vagueness degree (shape

parameters) in indeterminacy degrees, but while applying exponential-type membership function
under neutrosophic environment, it can be availed.

The rest of the paper has been summarized as follows: In Section 2, related research work have
been discussed whereas Section 3 represents the preliminary concepts regarding intuitionistic fuzzy
and neutrosophic sets. The Section 4 represents modeling of IFMOLPPs. The proposed neutrosophic
optimization technique is presented in Section 5, whereas in Section 6, numerical illustration, and
comparative study with other existing approaches is depicted to verify the performance of the
propounded solution method. Finally, concluding remarks and future research direction is presented
in Section 7.

2. Literature review

Literature suggests lots of research has been carried out to solve the multiobjective programming
problems using fuzzy, intuitionistic fuzzy, and neutrosophic programming approaches. [20] presented
a satisfying solution approach for multiple objectives, which comprise the more critical objective
attainting the higher satisfying degree. A modified method based on the fuzzy ranking function is
suggested by [33] and the crisp model so obtained. An uncertain goal programming approach was
proposed by [21] for the solution of uncertain MOPP. P. Singh, et al. [28] discussed an efficient
method that carries the quality of three different approaches, namely, fuzzy programming, goal
programming, and interactive programming. Furthermore, the developed algorithm is applied to the
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multiobjective transportation problem. The MOPP under uncertainty was addressed by [38] and
named as an uncertain multiobjective programming problem. The knowledge of efficiency concepts
with different forms, such as expected-value, proper expected value, and their relationships with each
other, have been established under the uncertain environment. A multiobjective fractional
programming problem was presented by [14], and a novel linearization strategic technique has been
developed to solve the problem. J. Dong, et al. [16] also suggested a new approach based on ranking
function and TOPSIS to solve the MOPP under uncertainty. A new approach is proposed by [17] to
solve the fully fuzzy MOPP under fuzzy parameters that reduces the computational complexity of the
problem. A solution approach is also discussed by [13] to solve the fully fuzzy multiobjective linear
programming problem under fuzzy trapezoidal parameters. S. L. Tilahu [34] developed a feasibility
reduction approach for hierarchical decision-making in MOPP, and the preference free method (ideal
point method) is applied to solve it.

The intuitionistic fuzzy goal programming approach is discussed by [25] that has taken the
advantages of intuitionistic fuzzy set, goal programming, and interactive procedures, to solve the
MOPP. A. K. Nishad, et al. [23] addressed an intuitionistic fuzzy goal programming to solve the
MOPP under imprecise objectives and constraints and; implemented to solve the agricultural
production management system. D. Rani, et al. [24] also suggested an algorithm to solve MOPP
under an intuitionistic fuzzy environment. The proposed approach has been compared with other
existing approaches. S. K. Singh, et al. [30] also addressed intuitionistic fuzzy MOPP under triangular
intuitionistic fuzzy parameters and mixed constraints and; solved the MOPP using different
membership functions. V. Singh, et al. [31] presented the modeling and optimization framework for
MOPP under an intuitionistic fuzzy environment with an optimistic and pessimistic point of view.
S. K. Singh, et al. [29] solved the multi-objective mixed integer programming problem under
intuitionistic fuzzy environment and implemented on the supply chain planning problem. Recently, A.
A. H. Ahmadini, et al. [9] investigateed a novel preference scheme for multiobjective goal
programming problems under different sorts of membership functions.

Based on neutrosophic set theory, F. Ahmad, et al. [6] addressed a modified neutrosophic
optimization algorithm for supply chain management in an uncertain situation. S. Zeng, et al. [37]
presented multi-criteria supplier selection framework bassed on the neutrosophic fuzzy data set.
Recently, many authors have contributed to the application of neutrosophic optimizaation theory in
various real-life problems. F. Ahmad [8] discussed the supplier selection problem under Type-2 fuzzy
parameters and solved using the interactive neutrosophic programming approach. A. Y. Adhami, et
al. [1] also proposed a novel Pythagorean-hesitant fuzzy optimization technique and applied it to
solve the transportation problem. F. Ahmad, et al. [7] performed a study on Energy-Food-Water
security nexus management and applied the neutrosophic programming approach to solve the
propounded model. Hence, the proposed neutrosophic approach emphasizes indeterminacy and truth
and falsity degrees while making the decisions. It also generalizes the fuzzy and intuitionistic
fuzzy-based approaches under different types of membership functions such as linear, exponential,
and hyperbolic membership functions.

3. Preliminary concepts

In this section, we have discussed some basic concepts related to intuitionistic fuzzy and
neutrosophic sets.

AIMS Mathematics Volume 6, Issue 5, 4556–4580.
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Definition 1. [11] (Intuitionistic Fuzzy Set) Consider a universal discourse W; then an intuitionistic
fuzzy set (IFS) Ỹ in W is depicted by the ordered triplets as follows:

Ỹ = {w, µỸ(w), νỸ(w) | w ∈ W}

where µỸ(w) : W → [0, 1] denotes the membership function and νỸ(w) : W → [0, 1] denotes the
non-membership function of the element w into the set Ỹ , respectively, with the conditions
0 ≤ µỸ(w) + νỸ(w) ≤ 1.

Definition 2. [30] (Trapeziodal intuitionistic fuzzy number) An intuitionistic fuzzy number Ỹ is said
to be trapeziodal intuitionistic fuzzy number (TrIFN) if the membership function µỸ(w) and
non-membership function νỸ(w) is given by

µỸ(w) =



w − a1

a2 − a1
, if a1 ≤ w ≤ a2,

1, if a2 ≤ w ≤ a3,
a4 − w
a4 − a3

, if a3 ≤ w ≤ a4,

0, if otherwise.

and νỸ(w) =



a′2 − w
a′2 − a′1

, if a′1 ≤ w ≤ a′2,

0, if a′2 ≤ w ≤ a′3,
w − a′3
a′4 − a′3

, if a′3 ≤ w ≤ a′4,

1, if otherwise.

where a′1 ≤ a1 ≤ a′2 ≤ a2 ≤ a3 ≤ a′3 ≤ a4 ≤ a′4 and is represented by
Ỹ = {(a1, a2, a3, a4; µỸ); (a′1, a

′
2, a

′
3, a

′
4; νỸ)}.

Remark 1. If a′2 = a2 = a3 = a′3 then TrIFN Ỹ = a′1 ≤ a1 ≤ a′2 ≤ a2 ≤ a3 ≤ a′3 ≤ a4 ≤ a′4 is reduced into
triangular intuitionistic fuzzy number (TIFN). (see Figure 1)

Figure 1. Trapeziodal intuitionistic fuzzy number.

Definition 3. [22] A TrIFN Ỹ = {(a1, a2, a3, a4; µỸ); (a′1, a
′
2, a

′
3, a

′
4; νỸ)} is said to be a non-negative

TrIFN if and only iff a′1 ≥ 0.

Definition 4. [22] Arithmetic operations on TrIFNs.
Assume that Ã = {(a1, a2, a3, a4); (a′1, a

′
2, a

′
3, a

′
4)} and B̃ = {(b1, b2, b3, b4); (b′1, b

′
2, b

′
3, b

′
4)} be two TrIFNs.

Then

AIMS Mathematics Volume 6, Issue 5, 4556–4580.
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Addition : Ã + pB̃ =

{ (
a1 + pb1, a2 + pb2, a3 + pb3, a4 + pb4; a′1 + pb′1, a

′
2 + pb′2, a

′
3 + pb′3, a

′
4 + pb′4

)
, p ≥ 0(

a1 + pb4, a2 + pb3, a3 + pb2, a4 + pb1; a′1 + pb′4, a
′
2 + pb′3, a

′
3 + pb′2, a

′
4 + pb′1

)
, p < 0

Multiplication : Ã × B̃ =
(
a1b1, a2b2, a3b3, a4b4; a′1b′1, a

′
2b′2, a

′
3b′3, a

′
4b′4

)
, when a′1, b

′
1 ≥ 0.

Definition 5. [22] (Accuracy function) The accuracy function φ for TrIFN
Ã = {(a1, a2, a3, a4); (a′1, a

′
2, a

′
3, a

′
4)} can be represented as follows:

φ(Ã) =
(a1 + a2 + a3 + a4 + a′1 + a′2 + a′3 + a′4)

8

Theorem 1. Suppose that Ã and B̃ be two TrIFNs. Then the accuracy function φ : IF( R ) → R is a
linear function i.e., φ(Ã + B̃) = φ(Ã) + pφ(B̃) for all p ∈ R .
Proof: Let us consider that Ã = {(a1, a2, a3, a4); (a′1, a

′
2, a

′
3, a

′
4)} and B̃ = {(b1, b2, b3, b4); (b′1, b

′
2, b

′
3, b

′
4)}

be two TrIFNs. Then, based on the nature of p, two different cases will arise:
Case I: when p ≥ 0, then

Ã + pB̃ =
(
a1 + pb1, a2 + pb2, a3 + pb3, a4 + pb4; a′1 + pb′1, a

′
2 + pb′2, a

′
3 + pb′3, a

′
4 + pb′4

)
Therefore,

φ(Ã + B̃) =

(
a1 + pb1 + a2 + pb2 + a3 + pb3 + a4 + pb4 + a′1 + pb′1 + a′2 + pb′2 + a′3 + pb′3 + a′4 + pb′4

)
8

=

(
a1 + a2 + a3 + a4 + a′1 + a′2 + a′3 + a′4

)
8

+

(
pb1 + pb2 + pb3 + pb4 + pb′1 + pb′2 + pb′3 + pb′4

)
8

= φ(Ã) + pφ(B̃).

Case II: when p < 0, then

Ã + pB̃ =
(
a1 + pb4, a2 + pb3, a3 + pb2, a4 + pb1; a′1 + pb′4, a

′
2 + pb′3, a

′
3 + pb′2, a

′
4 + pb′1

)
Such that,

φ(Ã + B̃) =

(
a1 + pb4 + a2 + pb3 + a3 + pb2 + a4 + pb1 + a′1 + pb′4 + a′2 + pb′3 + a′3 + pb′2 + a′4 + pb′1

)
8

=

(
a1 + a2 + a3 + a4 + a′1 + a′2 + a′3 + a′4

)
8

+

(
pb′1 + pb′2 + pb′3 + pb′4 + pb1 + pb2 + pb3 + pb4

)
8

= φ(Ã) + pφ(B̃).

In each case, we have proved that φ(Ã + B̃) = φ(Ã) + pφ(B̃). Thus accuracy function φ is linear.

Definition 6. [2] (Neutrosophic Set (NS)) Suppose that X be a universal discourse such that x ∈ X. A
neutrosophic set A in X can be stated by three membership functions namely, truth µA(x), indeterminacy
λA(x) and a falsity νA(x), which can be represented by the following expressions:

A = {< x, µA(x), λA(x), νA(x) > |x ∈ X}

AIMS Mathematics Volume 6, Issue 5, 4556–4580.
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where µA(x), λA(x) and νA(x) are real standard or non-standard subsets belong to ]0−, 1+[, also given as,
µA(x) : X → ]0−, 1+[, λA(x) : X → ]0−, 1+[, and νA(x) : X → ]0−, 1+[. There is no restriction on the
sum of µA(x), λA(x) and νA(x), so we have,

0− ≤ sup µA(x) + λA(x) + sup νA(x) ≤ 3+

Definition 7. [2] Suppose that X be a universe of discourse. A single valued neutrosophic set A can be
represented as follows:

A = {< x, µA(x), λA(x), νA(x) > |x ∈ X}

where µA(x), λA(x) and νA(x) ∈ [0, 1] and 0 ≤ µA(x) + λA(x) + νA(x) ≤ 3 for each x ∈ X.

Definition 8. [5] Consider that there be two different single valued neutrosophic sets W and Y . The
union of W and Y also results in a single valued neutrosophic set Z, i.e., Z = (W ∪ Y), whose truth
µZ(x), indeterminacy λZ(x) and falsity νZ(x) membership functions can be represented as follows:
µZ(x) = max (µW(x), µY(x))
λZ(x) = max (λW(x), λY(x))
νZ(x) = min (νW(x), νY(x)) for each x ∈ X.

Definition 9. [5] Consider that there be two different single valued neutrosophic sets W and Y . The
intersection of W and Y also results in a single valued neutrosophic set Z, i.e., Z = (W ∩ Y), whose
truth µZ(x), indeterminacy λZ(x) and falsity νZ(x) membership functions can be represented as follows:
µZ(x) = min (µW(x), µY(x))
λZ(x) = min (λW(x), λY(x))
νZ(x) = max (νW(x), νY(x)) for each x ∈ X.

4. Intuitionistic fuzzy multiobjective linear programming problem

Most often, real-life problems exhibits optimization of more than one objectives at a time. The
most promising solution set that satisfies each objective efficiently is termed as the best compromise
solution. Hence the conventional form of multiobjective linear programming problem (MOLPP) with
k objectives is given as follows (4.1):

Minimize O(x) = [O1(x),O2(x), · · · ,Ok(x)]
s.t. ∑J

j=1 ai jx j ≥ bi, i = 1, 2, · · · , I1,∑J
j=1 ai jx j ≤ bi, i = I1 + 1, I1 + 2, · · · , I2,∑J
j=1 ai jx j = bi, i = I2 + 1, I2 + 2, · · · , I.

x j ≥ 0, j = 1, 2, · · · , J.

(4.1)

where Ok(x) =
∑K

k=1 ck jx j, ∀ k = 1, 2, · · · ,K is the k-th objective function and is linear in nature,
bi, ∀ i = 1, 2, · · · , I and; x j, ∀ j = 1, 2, · · · , J are the right hand sides and a set of decision
variables, respectively.

Definition 10. Assume that G be the set of feasible solution for (4.1). Then a point x∗ is said to be an
efficient or Pareto optimal solution of (4.1) if and only if there does not exist any x ∈ G such that,
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Ok(x∗) ≥ Ok(x), ∀ k and Ok(x∗) > Ok(x) for all at least one k.

Definition 11. A point x∗ ∈ G is said to be weak Pareto optimal solution for (4.1) if and only if there
does not exist any x ∈ G such that, Ok(x∗) ≥ Ok(x), ∀ k = 1, 2, · · · ,K.

In MOLPP (4.1), if all the parameters are intuitionistic fuzzy number then it is termed as
intuitionistic fuzzy multiobjective linear programming problem (IFMOLPP). It is assumed that all the
parameters present in problem (4.2) is trapeziodal intuitionistic fuzzy number. Thus the mathematical
formulation of IFMOLPP can be stated as follows (4.2):

Minimize ÕIF(x) =
[
ÕIF

1 (x), ÕIF
2 (x), · · · , ÕIF

k (x)
]

s.t. ∑J
j=1 ãIF

i j x j ≥ b̃IF
i , i = 1, 2, · · · , I1,∑J

j=1 ãIF
i j x j ≤ b̃IF

i , i = I1 + 1, I1 + 2, · · · , I2,∑J
j=1 ãIF

i j x j = b̃IF
i , i = I2 + 1, I2 + 2, · · · , I.

x j ≥ 0, j = 1, 2, · · · , J.

(4.2)

where ÕIF
k (x) =

∑K
k=1

(
c̃k j

)IF
x j, ∀ k = 1, 2, · · · ,K is the k-th objective function with trapeziodal

intuitionistic fuzzy parameters.

With the aid of accuracy function (Theorem 1) which is linear, the IFMOLPP (4.2) can be converted
into the following deterministic MOLPP (4.3):

Minimize O
′

(x) =
[
O
′

1(x),O
′

2(x), · · · ,O
′

k(x)
]

s.t. ∑J
j=1 a

′

i jx j ≥ b
′

i, i = 1, 2, · · · , I1,∑J
j=1 a

′

i jx j ≤ b
′

i, i = I1 + 1, I1 + 2, · · · , I2,∑J
j=1 a

′

i jx j = b
′

i, i = I2 + 1, I2 + 2, · · · , I.
x j ≥ 0, j = 1, 2, · · · , J.

(4.3)

where O
′

k(x) = φ
(
ÕIF

k (x)
)

=
∑K

k=1 φ
((

c̃k j

)IF
)

x j, ∀ k = 1, 2, · · · ,K; b
′

i = φ
(
b̃IF

i

)
and a

′

i j = φ
(
ãIF

i j

)
, for

all i = 1, 2, · · · , I, j = 1, 2, · · · , J are the crisp version of all the objective functions and parameters.

Theorem 2. An efficient solution for deterministic MOLPP (4.3) is also an efficient solution for
IFMOLPP (4.2).
Proof: Assume that X = (x1, x2, · · · , xn) be an efficient solution of problem (4.3). Then X is feasible
for problem (4.3), it means that the following condition will hold:∑J

j=1 a
′

i jx j ≥ b
′

i, i = 1, 2, · · · , I1,∑J
j=1 a

′

i jx j ≤ b
′

i, i = I1 + 1, I1 + 2, · · · , I2,∑J
j=1 a

′

i jx j = b
′

i, i = I2 + 1, I2 + 2, · · · , I.
x j ≥ 0, j = 1, 2, · · · , J.
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Since it has been proved that φ is linear (Theorem 1), then we have∑J
j=1 φ

(
ãIF

i j

)
x j ≥ φ

(
b̃IF

i

)
, i = 1, 2, · · · , I1,∑J

j=1 φ
(
ãIF

i j

)
x j ≤ φ

(
b̃IF

i

)
, i = I1 + 1, I1 + 2, · · · , I2,∑J

j=1 φ
(
ãIF

i j

)
x j = φ

(
b̃IF

i

)
, i = I2 + 1, I2 + 2, · · · , I.

x j ≥ 0, j = 1, 2, · · · , J.

Consequently, we have ∑J
j=1 ãIF

i j x j ≥ b̃IF
i , i = 1, 2, · · · , I1,∑J

j=1 ãIF
i j x j ≤ b̃IF

i , i = I1 + 1, I1 + 2, · · · , I2,∑J
j=1 ãIF

i j x j = b̃IF
i , i = I2 + 1, I2 + 2, · · · , I.

x j ≥ 0, j = 1, 2, · · · , J.

Hence, X is a feasible solution for problem (4.2).
Moreover, since X is an efficient solution for problem (4.3), there does not exist any
X∗ =

(
x∗1, x

∗
2, · · · , x

∗
n

)
such that Ok(X∗) ≤ Ok(X) ∀ k = 1, 2, · · · ,K and Ok(X∗) < Ok(X) for at least one

k. Thus we have no X∗ such that Min
∑K

k=1 φ
((

c̃k j

)IF
)

x j ≤ Min
∑K

k=1 φ
((

c̃k j

)IF
)

x∗j ∀ k = 1, 2, · · · ,K

and Min
∑K

k=1 φ
((

c̃k j

)IF
)

x j < Min
∑K

k=1 φ
((

c̃k j

)IF
)

x∗j for at least one k.
Since φ is a linear function (Theorem 1), we have no X∗ such that

Min
∑K

k=1 φ
((

c̃k j

)IF
)

x j ≤ Min
∑K

k=1 φ
((

c̃k j

)IF
)

x∗j ∀ k = 1, 2, · · · ,K and

Min
∑K

k=1 φ
((

c̃k j

)IF
)

x j < Min
∑K

k=1 φ
((

c̃k j

)IF
)

x∗j for at least one k.
Thus X is efficient solution for problem (4.2).

Consider a single-objective intuitionistic fuzzy linear programming problem (SOIFLPP) as given in
problem (4.4):

Minimize ÕIF(x)
s.t. ∑J

j=1 ãIF
i j x j ≥ b̃IF

i , i = 1, 2, · · · , I1,∑J
j=1 ãIF

i j x j ≤ b̃IF
i , i = I1 + 1, I1 + 2, · · · , I2,∑J

j=1 ãIF
i j x j = b̃IF

i , i = I2 + 1, I2 + 2, · · · , I.
x j ≥ 0, j = 1, 2, · · · , J.

(4.4)

Using the accuracy function which is linear in nature, SOIFLPP (4.4) can be converted into the
following deterministic single-objective linear programming problem (SOLPP) (4.5):

Minimize O
′

(x)
s.t. ∑J

j=1 a
′

i jx j ≥ b
′

i, i = 1, 2, · · · , I1,∑J
j=1 a

′

i jx j ≤ b
′

i, i = I1 + 1, I1 + 2, · · · , I2,∑J
j=1 a

′

i jx j = b
′

i, i = I2 + 1, I2 + 2, · · · , I.
x j ≥ 0, j = 1, 2, · · · , J.

(4.5)
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Theorem 3. An optimal solution for the deterministic SOLPP (4.5) is also an optimal solution for
SOIFLPP (4.4).
Proof. Same as Proof 2.
Hence the optimal solution for an IFLPP can be easilly transformed into deterministic LPP with the
aid of accuracy function. Now, we will proceed towards the solution procedures of the MOLPP (4.3)
under neutrosophic environment.

5. Proposed neutrosophic fuzzy optimization technique

Many multiobjective optimization techniques are popular among researchers. Based on the fuzzy
set, different fuzzy optimization method came into existence. In the fuzzy programming approach, the
marginal evaluation of each objective function is depicted by only the membership functions and can
be achieved by maximizing it. The extension of the fuzzy optimization method is presented by
introducing intuitionistic fuzzy optimization techniques. It is comparatively more advanced than the
fuzzy technique because the marginal evaluation of each objective function is depicted by the
membership and non-membership functions, which can be achieved by maximizing the membership
and minimizing the non-membership functions, respectively. The real-life complexity most often
creates the indeterminacy situation while making optimal decisions. Apart from the acceptance and
rejection degrees in the decision-making process, the indeterminacy degree also has much
importance. Thus to cover the indeterminacy degree of the element into the feasible solution set, F.
Smarandache [32] investigated a neutrosophic set. The name “neutrosophic” is the advance
combination of two explicit terms, namely; “neutre” extracted from French means, neutral, and
“sophia” adopted from Greek means, skill/wisdom, that unanimously provide the definition
“knowledge of neutrality degree” (see [2, 32]). The NS considers three sorts of membership functions,
such as truth (degree of belongingness), indeterminacy (degree of belongingness up to some extent),
and a falsity (degree of non-belongingness) degrees into the feasible solution set. The idea of
independent indetermincy degree differs the NS with all the uncertain decision sets such as FS and
IFS. The updated literature work solely highlights that many practitioners or researchers have taken
the deep interest in the neutrosophic research field (see, [3–5, 26]). The NS research domain would
get exposure in the future and assist in dealing with indeterminacy in the decision-making process.
This study also fetches the novel ideas of neutrosophic optimization techniques based on the NS. The
marginal evaluation of each objective function is quantified by the truth, indeterminacy, and falsity
membership functions under the neutrosophic decision set. Thus the NS plays a vital role while
optimizing the multiobjective optimization problems by incorporating, executing, and implementing
the indeterminacy degrees .

R. E. Bellman, et al. [12] first propounded the idea of a fuzzy decision set. After that, it is widely
adopted by many researchers. The fuzzy decision concept comprises fuzzy decision (D), fuzzy goal
(G), and fuzzy constraints (C), respectively. Here we recall the most extensively used fuzzy decision
set with the aid of following mathematical expressions:

D = O ∩C

Consequently, we also depict the neutrosophic decision set DN , which contemplate over neutrosophic
objectives and constraints as follows:

DN = (∩K
k=1Ok)(∩I

i=1Ci) = (x, µD(x), λD(x), νD(x))
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where

µD(x) = min
{
µO1(x), µO2(x), ..., µOK (x)
µC1(x), µC2(x), ..., µCI (x)

}
∀ x ∈ X

λD(x) = max
{
λO1(x), λO2(x), ..., λOK (x)
λC1(x), λC2(x), ..., λCI (x)

}
∀ x ∈ X

νD(x) = max
{
νO1(x), νO2(x), ..., νOK (x)
νC1(x), νC2(x), ..., νCI (x)

}
∀ x ∈ X

where µD(x), λD(x) and νD(x) are the truth, indeterminacy and a falsity membership functions of
neutrosophic decision set DN respectively.

In order to depict the different membership functions for MOLPP (4.3), the minimum and maximum
values of each objective functions have been represented by Lk and Uk and; can be obtained as follows:

Uk = max [Ok(x)] and Lk = min [Ok(x)] ∀ k = 1, 2, 3, ...,K. (5.1)

The bounds for k-th objective function under the neutrosophic environment can be obtained as
follows:

Uµ
k = Uk, Lµk = Lk f or truth membership (5.2)

Uλ
k = Lµk + sk, Lλk = Lµk f or indeterminacy membership (5.3)

Uν
k = Uµ

k , Lνk = Lµk + tk f or f alsity membership (5.4)

where sk and tk ∈ (0, 1) are predetermined real numbers prescribed by decision-makers.

5.1. Various membership functions

In MOPPs, the marginal evaluation of each objective function is depicted by its respective
membership functions. In general, the most extensive and widely used membership function is a
linear one due to its simple structure and more accessible implications. The linear-type membership
function contemplates over the constant marginal rate of satisfaction or dissatisfaction degrees
towards an objective. Most commonly, the marginal evaluations have been evaluated by using linear
membership function to obtain the objective. However, it may be possible to represent each
objective’s aspiration level with the aid of non-linear membership function. The flexible behavior of
non-linear membership also functions well enough to determine the marginal evaluation of objectives
satisfaction degree. It also depends on some parameters’ value, which is well enough to efficiently
execute the DM(s) strategy. An exponential membership reflects the situation when the
decision-maker is worse off concerning an objective and chooses a higher marginal rate of
satisfaction. Thus by preferring an exponential membership function, the decision-maker can also
reduce duality gaps by selecting appropriate shape parameters involved in the development of
membership function. A hyperbolic membership function shows the flexible characteristic behavior
for the objective function. The hyperbolic membership function shows the convexity behavior over a
portion of the objective and reveals concavity characteristic features for the remaining portion. A
worse-off situation of the decision concerning a goal is depicted by the convex portion of the
hyperbolic membership function, and the decision-maker intends to gain a higher marginal rate of
satisfaction level. Despite this, a better-off condition of the decision concerning a goal is depicted by
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the concave portion of the hyperbolic membership function, and the decision-maker intends to gain a
lower marginal rate of satisfaction level concerning that goal. Therefore, to deal with the IFMOLPPs,
one can apply linear, exponential, or hyperbolic membership functions, depending upon the choice of
decision-maker.

Thus the linear, exponential, and hyperbolic membership functions are constructed under the
neutrosophic environment. Each of them is defined for the truth, indeterminacy, and a falsity
membership function, which seems to be more realistic.

5.1.1. Linear-type membership functions approach (LTMFA)

The linear-type truth µL
k (Ok(x)), indeterminacy λL

k (Ok(x)) and a falsity νL
k (Ok(x)) membership

functions under neutrosophic environment can be furnished as follows:

µL
k (Ok(x)) =


1 i f Ok(x) ≤ Lµk
Uµ

k−Ok(x)
Uµ

k−Lµk
i f Lµk ≤ Ok(x) ≤ Uµ

k

0 i f Ok(x) ≥ Uµ
k

(5.5)

λL
k (Ok(x)) =


1 i f Ok(x) ≤ Lλk
Uλ

k−Ok(x)
Uλ

k−Lλk
i f Lλk ≤ Ok(x) ≤ Uλ

k

0 i f Ok(x) ≥ Uλ
k

(5.6)

νL
k (Ok(x)) =


0 i f Ok(x) ≤ Lνk
Ok(x)−Lνk

Uν
k−Lνk

i f Lνk ≤ Ok(x) ≤ Uν
k

1 i f Ok(x) ≥ Uν
k

(5.7)

In the above case, L(.)
k , U (.)

k for all k objective function. If for any membership L(.)
k = U (.)

k , then the
value of these membership will be equal to 1 (see Figure 2).

Figure 2. Diagrammatic representation of truth, indeterminacy and a falsity membership
degree for objective function.
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Using the concept of [12], we maximize the objective function to reach the optimal solution of each
objectives. The mathematical expression for objective function is defined as follows:

Max mink=1,2,3,...,K µ(·)
k (Ok(x))

Min maxk=1,2,3,...,K λ(·)
k (Ok(x))

Min maxk=1,2,3,...,K ν(·)
k (Ok(x))

subject to
all the constraints of (4.3)

(5.8)

Also, assume that µL
k (Ok(x)) ≥ α, λL

k (Ok(x)) ≤ β and νL
k (Ok(x)) ≤ γ, for all k.

Using auxiliary parameters α, β and γ, the problem (5.8) can be transformed into the following problem
(5.9):

(LT MFA) Max α − β − γ

subject to
Ok(x) + (Uµ

k − Lµk )α ≤ Uµ
k ,

Ok(x) − (Uλ
k − Lλk )β ≤ Lλk ,

Ok(x) − (Uν
k − Lνk)γ ≤ Lνk,

α ≥ β, α ≥ γ, α + β + γ ≤ 3
α, β, γ ∈ (0, 1)
all the constraints of (4.3)

(5.9)

Remark 2. The ultimate aim of problem (5.9) (LTMFA) manifests the maximization of minimum
possibility level (truth) to accept the best possible solution and; minimization of maximum possibility
level (indeterminacy) and (a falsity) to reject the worst possible solution by considering all the
objective functions at a time. It means that we try to determine a solution in such a way that it
maximizes the minimum truth degree (acceptance) and minimize the maximum indeterminacy
(rejection upto some extent) and a falsity (rejection) degrees by taking all objectives simultaneously,
to attain the optimal compromise solution.

Theorem 4. A unique optimal solution of problem (5.9) (LTMFA) is also an efficient solution for the
problem (4.3).
Proof: Suppose that

(
x̄, ᾱ, β̄, γ̄

)
be a unique optimal solution of problem (5.9) (LTMFA). Then,(

ᾱ − β̄ − γ̄
)
> (α − β − γ) for any (x, α, β, γ) feasible to the problem (5.9) (LTMFA). On the contrary,

assume that
(
x̄, ᾱ, β̄, γ̄

)
is not an efficient solution of the problem (4.3). For that, there exists

x∗ (x∗ , x̄) feasible to problem (4.3), such that Ok(x∗) ≤ Ok(x̄) for all k = 1, 2, · · · ,K and
Ok(x∗) < Ok(x̄) for at least one k.
Therefore, we have Ok(x∗)−Lk

Uk−Lk
≤

Ok(x̄)−Lk
Uk−Lk

for all k = 1, 2, · · · ,K and Ok(x∗)−Lk
Uk−Lk

< Ok(x̄)−Lk
Uk−Lk

for at least one k.

Hence, max
k

(
Ok(x∗)−Lk

Uk−Lk

)
≤ (<) max

k

(
Ok(x̄)−Lk

Uk−Lk

)
.

Suppose that γ∗ = max
k

(
Uk−Ok(x∗)

Uk−Lk

)
, then γ∗ ≤ (<) γ̄.

Also, consider that β∗ = max
k

(
Uk−Ok(x∗)

Uk−Lk

)
, then β∗ ≤ (<) β̄.

In the same manner, we have Uk−Ok(x∗)
Uk−Lk

≥
Uk−Ok(x̄)

Uk−Lk
for all k = 1, 2, · · · ,K and Uk−Ok(x∗)

Uk−Lk
> Uk−Ok(x̄)

Uk−Lk
for at

least one k.
Thus, min

k

(
Uk−Ok(x∗)

Uk−Lk

)
≥ (>) min

k

(
Uk−Ok(x̄)

Uk−Lk

)
.
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Assume that α∗ = min
k

(
Uk−Ok(x∗)

Uk−Lk

)
, this gives

(
ᾱ − β̄ − γ̄

)
< (α∗ − β∗ − γ∗) which means that the

solution is not unique optimal. Thus, we have arrived at a contradiction with the fact that
(
x̄, ᾱ, β̄, γ̄

)
is

the unique optimal solution of (LTMFA). Therefore, it is also an efficient solution of the problem
(5.9). This completes the proof of Theorem 4.

5.1.2. Exponential-type membership functions approach (ETMFA)

The exponential-type truth µE
k (Ok(x)), indeterminacy λE

k (Ok(x)) and a falsity νE
k (Ok(x)) membership

functions under neutrosophic environment can be stated as follows:

µE
k (Ok(x)) =


1 i f Ok(x) ≤ Lµk

e
−d

(
Ok (x)−Lµk

Uµk −Lµk

)
− e−d

1 − e−d i f Lµk ≤ Ok(x) ≤ Uµ
k

0 i f Ok(x) ≥ Uµ
k

(5.10)

λE
k (Ok(x)) =


1 i f Ok(x) ≤ Lλk

e
−d

(
Uλk −Ok (x)

Uλk −Lλk

)
− e−d

1 − e−d i f Lλk ≤ Ok(x) ≤ Uλ
k

0 i f Ok(x) ≥ Uλ
k

(5.11)

νE
k (Ok(x)) =


0 i f Ok(x) ≤ Lνk

e
−d

(
Uνk−Ok (x)

Uνk−Lνk

)
− e−d

1 − e−d i f Lνk ≤ Ok(x) ≤ Uν
k

1 i f Ok(x) ≥ Uν
k

(5.12)

where d is the measures of vagueness degree (shape parameter) and assigned by the decision-makers.

Followed by problem (5.8), we assume that µE
k (Ok(x)) ≥ α, λE

k (Ok(x)) ≤ β and νE
k (Ok(x)) ≤ γ, for

all k. Using auxiliary parameters α, β and γ, the problem (5.8) can be converted into the following
problem (5.13):

(ET MFA) Max α − β − γ

subject to

e
−d

(
Ok (x)−Lµk

Uµk −Lµk

)
− e−d

1 − e−d ≥ α,

e
−d

(
Uλk −Ok (x)

Uλk −Lλk

)
− e−d

1 − e−d ≤ β,

e
−d

(
Uνk−Ok (x)

Uνk−Lνk

)
− e−d

1 − e−d ≤ γ,

α ≥ β, α ≥ γ, α + β + γ ≤ 3
α, β, γ ∈ (0, 1)
all the constraints of (4.3)

(5.13)
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Remark 3. If d → 0, then the exponential-type membership functions will be reduced into linear-type
membership functions.

Theorem 5. A unique optimal solution of problem (5.13) (ETMFA) is also an efficient solution for the
problem (4.3).
Proof. This will be proved by arriving at a contradiction.
Suppose that

(
x̄, ᾱ, β̄, γ̄

)
be a unique optimal solution of problem (5.13) (ETMFA) which is not an

efficient solution for the problem (4.3). Then, there exists x∗ (x∗ , x̄) feasible to problem (4.3), such
that Ok(x∗) ≤ Ok(x̄) for all k = 1, 2, · · · ,K and Ok(x∗) < Ok(x̄) for at least one k.
Consequently, we have Ok(x∗)−Lk

Uk−Lk
≤

Ok(x̄)−Lk
Uk−Lk

for all k = 1, 2, · · · ,K and Ok(x∗)−Lk
Uk−Lk

< Ok(x̄)−Lk
Uk−Lk

for at least one
k.
Hence, we have

e
−d

(
Ok (x∗)−Lk

Uk−Lk

)
−e−d

1−e−d ≥ e
−d

(
Ok (x̄)−Lk

Uk−Lk

)
−e−d

1−e−d for all k = 1, 2, · · · ,K and

e
−d

(
Ok (x∗)−Lk

Uk−Lk

)
−e−d

1−e−d > e
−d

(
Ok (x̄)−Lk

Uk−Lk

)
−e−d

1−e−d for at least one k.

Thus, min
k

 e
−d

(
Ok (x∗)−Lk

Uk−Lk

)
−e−d

1−e−d

 ≥ (>) min
k

 e
−d

(
Ok (x̄)−Lk

Uk−Lk

)
−e−d

1−e−d

.
If α∗ = min

k

 e
−d

(
Ok (x∗)−Lk

Uk−Lk

)
−e−d

1−e−d

, then α∗ ≥ (>) ᾱ.

Similarly, we have Uk−Ok(x∗)
Uk−Lk

≥
Uk−Ok(x̄)

Uk−Lk
for all k = 1, 2, · · · ,K and Uk−Ok(x∗)

Uk−Lk
> Uk−Ok(x̄)

Uk−Lk
for at least one k.

Consequently, it gives

e
−d

(
Uk−Ok (x∗)

Uk−Lk

)
−e−d

1−e−d ≤ e
−d

(
Uk−Ok (x̄)

Uk−Lk

)
−e−d

1−e−d for all k = 1, 2, · · · ,K and

e
−d

(
Uk−Ok (x∗)

Uk−Lk

)
−e−d

1−e−d < e
−d

(
Uk−Ok (x̄)

Uk−Lk

)
−e−d

1−e−d for at least one k.

Hence, max
k

 e
−d

(
Uk−Ok (x∗)

Uk−Lk

)
−e−d

1−e−d

 ≤ (<) max
k

 e
−d

(
Uk−Ok (x̄)

Uk−Lk

)
−e−d

1−e−d

.
Assuming β∗ = max

k

 e
−d

(
Uk−Ok (x∗)

Uk−Lk

)
−e−d

1−e−d

, we have β∗ ≤ (<) β̄.

Again, by considering γ∗ = max
k

 e
−d

(
Uk−Ok (x∗)

Uk−Lk

)
−e−d

1−e−d

, we get γ∗ ≤ (<) γ̄.

This gives
(
ᾱ − β̄ − γ̄

)
< (α∗ − β∗ − γ∗), that contradicts the fact that

(
x̄, ᾱ, β̄, γ̄

)
is the unique optimal

solution of the problem (5.13) (ETMFA). Hence, the Theorem 5 is proved.

5.1.3. Hyperbolic-type membership functions approach (HTMFA)

The hyperbolic-type truth µH
k (Ok(x)), indeterminacy λH

k (Ok(x)) and a falsity νH
k (Ok(x)) membership

functions under neutrosophic environment can be depicted as follows:

µH
k (Ok(x)) =


1 i f Ok(x) ≤ Lµk
1
2

[
1 + tanh

(
θk

(
Uµ

k + Lµk
2

− Ok(x)
))]

i f Lµk ≤ Ok(x) ≤ Uµ
k

0 i f Ok(x) ≥ Uµ
k

(5.14)
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λH
k (Ok(x)) =


1 i f Ok(x) ≤ Lλk
1
2

[
1 + tanh

(
θk

(
Uλ

k + Lλk
2

− Ok(x)
))]

i f Lλk ≤ Ok(x) ≤ Uλ
k

0 i f Ok(x) ≥ Uλ
k

(5.15)

νH
k (Ok(x)) =


0 i f Ok(x) ≤ Lνk
1
2

[
1 + tanh

(
θk

(
Ok(x) −

Uν
k + Lνk

2

))]
i f Lνk ≤ Ok(x) ≤ Uν

k

1 i f Ok(x) ≥ Uν
k

(5.16)

where θk = 6
Uk−Lk

, ∀ k = 1, 2, . . . ,K.

Moving with the same procedure upto problem (5.8), we suppose that µH
k (Ok(x)) ≥ α, λH

k (Ok(x)) ≤
β and νH

k (Ok(x)) ≤ γ, for all k. Using auxiliary parameters α, β and γ, the problem (5.8) can be
transformed into the following problem (5.17):

Max α − β − γ

subject to
1
2

[
1 + tanh

(
θk

(
Uµ

k + Lµk
2

− Ok(x)
))]
≥ α,

1
2

[
1 + tanh

(
θk

(
Uλ

k + Lλk
2

− Ok(x)
))]
≤ β,

1
2

[
1 + tanh

(
θk

(
Ok(x) −

Uν
k + Lνk

2

))]
≤ γ,

α ≥ β, α ≥ γ, α + β + γ ≤ 3
α, β, γ ∈ (0, 1), θk = 6

Uk−Lk
, ∀ k = 1, 2, . . . ,K

all the constraints of (4.3)

(5.17)

Equivalently, we have problem (5.18) as follows:

(HT MFA) Max α − β − γ

subject to
θkOk(x) + tanh−1 (2α − 1) ≤ θk

2

(
Uµ

k + Lµk
)
,

θkOk(x) − tanh−1 (2β − 1) ≤ θk
2

(
Uµ

k + Lµk
)
,

θkOk(x) − tanh−1 (2γ − 1) ≤ θk
2

(
Uµ

k + Lµk
)
,

α ≥ β, α ≥ γ, α + β + γ ≤ 3,
α, β, γ ∈ (0, 1), θk = 6

Uk−Lk
, ∀ k = 1, 2, . . . ,K

all the constraints of (4.3)

(5.18)

Theorem 6. A unique optimal solution of problem (5.18) (HTMFA) is also an efficient solution for the
problem (4.3).

Proof. Let us consider that
(
x̄, ᾱ, β̄, γ̄

)
be a unique optimal solution of problem (5.18) (HTMFA), but

not an efficient solution for the problem (4.3). This gives, there exists x∗ (x∗ , x̄) feasible to problem
(4.3), such that Ok(x∗) ≤ Ok(x̄) for all k = 1, 2, · · · ,K and Ok(x∗) < Ok(x̄) for at least one k.
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Simultaneously, tanh
(
θk

(Uk + Lk

2
− Ok(x∗)

))
≥ tanh

(
θk

(Uk + Lk

2
− Ok(x̄)

))
for all k = 1, 2, · · · ,K and

tanh
(
θk

(Uk + Lk

2
− Ok(x∗)

))
> tanh

(
θk

(Uk + Lk

2
− Ok(x̄)

))
for at least one k.

Furthermore, it gives,

min
k

(
tanh

(
θk

(Uk + Lk

2
− Ok(x∗)

)))
≥ (>) min

k

(
tanh

(
θk

(Uk + Lk

2
− Ok(x̄)

)))
.

If α∗ = min
k

(
1
2

tanh
(
θk

(Uk + Lk

2
− Ok(x∗)

))
+

1
2

)
, then α∗ ≥ (>) ᾱ.

Similarly, we have β∗ = max
k

(
1
2

tanh
(
θk

(
Ok(x∗) −

Uk + Lk

2

))
+

1
2

)
, then β∗ ≤ (<) β̄

and γ∗ = min
k

(
1
2

tanh
(
θk

(
Ok(x∗) −

Uk + Lk

2

))
+

1
2

)
, then γ∗ ≥ (>) γ̄.

Thus, we get
(
ᾱ − β̄ − γ̄

)
< (α∗ − β∗ − γ∗). This arises a contradiction with the fact that

(
ᾱ − β̄ − γ̄

)
is the unique optimal solution of the problem (5.18) (HTMFA). Hence, the Theorem 6 is proved.

5.2. Proposed solution algorithm

The step-wise solution algorithm is summarized as follows:
Step-1. Formulate the IFMOLPP as given in problem (4.2).
Step-2. Using accuracy function, obtain the crisp version of IFMOLPP as given in problem (4.3).
Step-3. Solve each objective function individually and determine the upper and lower bound by using
Eq (5.1).
Step-4. With the aid of Uk and Lk, calculate the upper and lower bound for truth, indeterminacy and a
falsity membership under neutrosophic envirnment as given in Eqs (5.2)–(5.4).
Step-5. Elicit the different-types of membership functions under neutrosophic environment by using
Eqs (5.5–5.7), (5.10–5.12) and (5.14–5.16) according to decision-makers’ preference respectively.
Step-6. Develop the neutrosophic optimization models such as (LTMFA) or (ETMFA) or (HTMFA)
under the given set of well-defined constraints.
Step-7. Solve the neutrosophic MOPPs (5.9), (5.13) and (5.18) to determine the optimal compromise
outcomes by applying the appropriate methods or different optimization software packages.

6. Numerical illustrations

Following numerical examples are solved using different methods by many researchers. All the
crisp MOLPPs are coded in AMPL language and solved with help of solver Kintro 10.3.0 via NEOS
server version 5.0 on-line facility executed by Wisconsin Institutes for Discovery at the University of
Wisconsin in Madison for solving optimization problems, see [15, 27].

Example 1. [30] This numerical example assumes that the trapezoidal intuitionistic fuzzy number
represents all the parameters. Thus the mathematical formulation of the problem can be stated as
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follows:
Min ÕIF

1 (x) = 5̃IF x1 + 3̃IF x2

Min ÕIF
2 (x) = 2̃∗IF x1 + 7̃IF x2

s.t.
2̃@IF x1 + 4̃IF x2 ≥ 2̃5

IF

1̃∗IF x1 + 1̃@IF x2 ≥ 1̃0IF

4̃IF x1 + 5̃IF x2 ≥ 5̃0
IF

x1, x2 ≥ 0.

(6.1)

The intuitionistic fuzzy parameters related to Example 1 are furnished in Table 1. Using the
accuracy function (Definition 5), the crisp version of the Problem (6.1) can be depicted as follows:

Min O
′

1(x) = 5.125x1 + 3.33x2

Min O
′

2(x) = 2.37x1 + 6.2x2

s.t.
1.8x1 + 3.62x2 ≥ 23.75
0.9x1 + 1.06x2 ≥ 9.6
3.62x1 + 5.125x2 ≥ 51.8
x1, x2 ≥ 0.

(6.2)

Table 1. Example 1: Intuitionistic fuzzy parameters.

2̃5
IF

= (22, 25, 25, 25; 18, 25, 25, 25) 1̃0IF
= (9, 10, 10, 10; 8, 10, 10, 10) 5̃0

IF
= (50, 50, 50, 55; 50, 50, 50, 60)

5̃IF = (4, 5, 5, 6; 4, 5, 5, 7) 3̃IF = (3, 3, 3, 4; 3, 3, 3, 4.5) 2̃@IF = (1.5, 2, 2, 2; 1, 2, 2, 2)
2̃∗IF = (2, 2, 2, 3; 2, 2, 2, 4) 7̃IF = (7, 7, 7, 7.5; 6, 7, 7, 8) 4̃IF = (3, 4, 4, 4; 2, 4, 4, 4)
1̃@IF = (1, 1, 1, 1; 0.5, 1, 1, 2) 1̃∗IF = (0.5, 1, 1, 1; 0.2, 1, 1, 1.5)

• Using the LTMFA (5.9), Problem (6.2) will be equivalent to the following (6.3):

Max α − β − γ

s.t.
5.125x1 + 3.33x2 + (Uµ

1 − Lµ1)α ≤ Uµ
1 ,

5.125x1 + 3.33x2 − (Uλ
1 − Lλ1)β ≤ Lλ1,

5.125x1 + 3.33x2 − (Uν
1 − Lν1)γ ≤ Lν1,

2.37x1 + 6.2x2 + (Uµ
2 − Lµ2)α ≤ Uµ

2 ,

2.37x1 + 6.2x2 − (Uλ
2 − Lλ2)β ≤ Lλ2,

2.37x1 + 6.2x2 − (Uν
2 − Lν2)γ ≤ Lν2,

1.8x1 + 3.62x2 ≥ 23.75
0.9x1 + 1.06x2 ≥ 9.6
3.62x1 + 5.125x2 ≥ 51.8
α ≥ β, α ≥ γ, α + β + γ ≤ 3
α, β, γ ∈ (0, 1)
x1, x2 ≥ 0.

(6.3)
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• Using the ETMFA (5.13), Problem (6.2) will be equivalent to the following (6.4):

Max α − β − γ

s.t.

e
−d

(
5.125x1+3.33x2−Lµ1

Uµ1−Lµ1

)
− e−d

1 − e−d ≥ α,

e
−d

(
Uλ1−5.125x1−3.33x2

Uλ1−Lλ1

)
− e−d

1 − e−d ≤ β,

e
−d

(
Uν1−5.125x1−3.33x2

Uν1−Lν1

)
− e−d

1 − e−d ≤ γ,

e
−d

(
2.37x1+6.2x2−Lµ2

Uµ2−Lµ2

)
− e−d

1 − e−d ≥ α,

e
−d

(
Uλ2−2.37x1−6.2x2

Uλ2−Lλ2

)
− e−d

1 − e−d ≤ β,

e
−d

(
Uν2−2.37x1−6.2x2

Uν2−Lν2

)
− e−d

1 − e−d ≤ γ,

1.8x1 + 3.62x2 ≥ 23.75
0.9x1 + 1.06x2 ≥ 9.6
3.62x1 + 5.125x2 ≥ 51.8
α ≥ β, α ≥ γ, α + β + γ ≤ 3
α, β, γ ∈ (0, 1)
x1, x2 ≥ 0.

(6.4)

• Using the HTMFA (5.18), Problem (6.2) will be equivalent to the following (6.5):

Max α − β − γ

s.t.
θ1(5.125x1 + 3.33x2) + tanh−1 (2α − 1) ≤ θ1

2

(
Uµ

1 + Lµ1
)
,

θ1(5.125x1 + 3.33x2) − tanh−1 (2β − 1) ≤ θ1
2

(
Uµ

1 + Lµ1
)
,

θ1(5.125x1 + 3.33x2) − tanh−1 (2γ − 1) ≤ θ1
2

(
Uµ

1 + Lµ1
)
,

θ2(2.37x1 + 6.2x2) + tanh−1 (2α − 1) ≤ θ2
2

(
Uµ

2 + Lµ2
)
,

θ2(2.37x1 + 6.2x2) − tanh−1 (2β − 1) ≤ θ2
2

(
Uµ

2 + Lµ2
)
,

θ2(2.37x1 + 6.2x2) − tanh−1 (2γ − 1) ≤ θ2
2

(
Uµ

2 + Lµ2
)
,

1.8x1 + 3.62x2 ≥ 23.75
0.9x1 + 1.06x2 ≥ 9.6
3.62x1 + 5.125x2 ≥ 51.8
α ≥ β, α ≥ γ, α + β + γ ≤ 3
α, β, γ ∈ (0, 1)
x1, x2 ≥ 0.

(6.5)

On solving the neutrosophic optimization model (6.3), (6.4) and (6.5), the solution results are
summarized in Table 2. It is clear that the objective values are quite better than [30] method for all the
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membership functions. Also, the proposed neutrosophic’s performance measures of various
membership functions can be depicted as Hyperbolic>Exponential>Linear. Since [30] did not use the
Exponential membership functions; therefore, it is unjustifiable to perform comparisons among the
membership function. However, our proposed method’s maximum attaintment of acceptance degree
is better achieved and reveals its superiority over [30] method.

Table 2. Example 1: Optimal solution results.
Methods Membership Objective Deviations from α β γ

functions values ideal solutions
Linear (38.97, 37.12) (8.82, 5.86) 0.76 NA NA

[30] Parabolic (43.02, 39.79) (12.87, 8.53) 0.88 NA NA
Hyperbolic (39.82, 38.50) (9.67, 7.24) 1.00 NA NA
Linear (38.56, 38.28) (8.41, 7.02) 0.77 0.71 0.87

Proposed neutrosophic approach Exponential (39.42, 38.15) (9.27, 6.89) 0.91 0.67 0.81
Hyperbolic (39.07, 38.03) (8.92, 6.77) 1.00 0.51 0.76

NA: Not Applicable.

Example 2. [22] Consider the following numerical illustration.

Min ÕIF
1 (x) =

∑2
i=1

∑3
j=1 c̃(1)IF

i j xi j

Min ÕIF
2 (x) =

∑2
i=1

∑3
j=1 c̃(2)IF

i j xi j

s.t. ∑2
i=1

∑3
j=1 xi j ≤ (50, 70, 90, 110; 40, 60, 100, 120)∑2

i=1
∑3

j=1 xi j ≤ (35, 55, 75, 95; 25, 45, 85, 105)∑2
i=1

∑3
j=1 xi j ≥ (25, 45, 65, 85; 15, 35, 75, 95)∑2

i=1
∑3

j=1 xi j ≥ (15, 25, 35, 45; 10, 20, 40, 50)∑2
i=1

∑3
j=1 xi j ≥ (45, 55, 65, 75; 40, 50, 70, 80)

xi j ≥ 0 ∀ i = 1, 2 & j = 1, 2, 3.

The intuitionistic fuzzy parameters related to Example 2 are summarized in Table 3. On solving
each objective individually (Example 2), we get the upper and lower bounds
U1 = 8631.25, U2 = 3163.75, L1 = 7981.25 and L2 = 2923.75 for the first and second objective
functions respectively. On implementing the neutrosophic MOPPs (5.9), (5.13) and (5.18), the
solution results are summarized in Table 4. For this example, the objective values are quite better
than [22] method for all the membership functions. The performance measures of the proposed
neutrosophic of various membership functions can be depicted as Hyperbolic>Exponential>Linear.
Thus, the proposed neutrosophic optimization technique outperforms [22] method for all the
membership functions. However, the maximum attaintment of acceptance degree is better achieved by
our proposed technique that shows the most promising method over [22] method.

Table 3. Example 2: Intuitionistic fuzzy parameters for c̃(1)IF
i j and c̃(2)IF

i j .
c̃(1)IF

11 = (15, 25, 35, 45; 10, 20, 40, 50) c̃(1)IF
12 = (45, 55, 65, 75; 40, 50, 70, 90) c̃(1)IF

13 = (75, 85, 105, 115; 70, 80, 110, 120)
c̃(1)IF

21 = (40, 50, 60, 70; 35, 45, 65, 75) c̃(1)IF
22 = (50, 60, 80, 100; 45, 55, 95, 105) c̃(1)IF

23 = (25, 35, 55, 65; 20, 30, 40, 70)
c̃(2)IF

11 = (6, 10, 12, 16; 4, 8, 14, 18) c̃(2)IF
12 = (25, 35, 40, 50; 20, 30, 45, 55) c̃(2)IF

13 = (14, 22, 26, 34; 10, 18, 30, 38)
c̃(2)IF

21 = (20, 30, 35, 45; 15, 25, 40, 50) c̃(2)IF
22 = (8, 14, 17, 23; 5, 11, 20, 26) c̃(2)IF

23 = (16, 24, 28, 36; 12, 20, 32, 40)

AIMS Mathematics Volume 6, Issue 5, 4556–4580.



4576

Table 4. Example 2: Optimal solution results.
Methods Membership Objective Deviations from α β γ

functions values ideal solutions
Linear (9575, 3270) (1593.75, 346.25) 0.5 0.5 NA

[22] Exponential (9563, 3252) (1581.75, 328.25) 0.3775 0.0 NA
Hyperbolic (9575, 3270) (1593.75, 346.25) 0.5 0.5 NA
Linear (9471, 3189) (1489.75, 265.25) 0.74 0.61 0.67

Proposed neutrosophic approach Exponential (9302, 3126) (1320.75, 202.25) 0.835 0.56 0.53
Hyperbolic (9249, 3107) (1267.75, 183.25) 0.88 0.21 0.36

NA: Not Applicable.

Example 3. [22] Let us consider the following numerical example.

Min ÕIF
1 (x) =

∑2
i=1

∑3
j=1 c̃(1)IF

i j xi j

Min ÕIF
2 (x) =

∑2
i=1

∑3
j=1 c̃(2)IF

i j xi j

s.t. ∑2
i=1

∑3
j=1 xi j ≤ (20, 24, 28; 18, 24, 32)∑2

i=1
∑3

j=1 xi j ≤ (15, 18, 24; 12, 18, 30)∑2
i=1

∑3
j=1 xi j ≥ (16, 18, 22; 14, 18, 24)∑2

i=1
∑3

j=1 xi j ≥ (8, 12, 16; 6, 12, 20)∑2
i=1

∑3
j=1 xi j ≥ (11, 12, 14; 10, 12, 18)

xi j ≥ 0 ∀ i = 1, 2 & j = 1, 2, 3.

The intuitionistic fuzzy parameters related to Example 3 are summarized in Table 5. On solving
each objective individually (Example 3), we get the upper and lower bounds
U1 = 428.25, U2 = 531.75, L1 = 378.00 and L2 = 484.12 for the first and second objective functions
respectively. By applying the neutrosophic MOPPs (5.9), (5.13) and (5.18), the solution results are
summarized in Table 6. On solving the final neutrosophic optimization model, the obtained objective
values are more promising than [22] method for all the membership functions. The working efficiency
of the proposed neutrosophic method under various membership functions can be depicted as
Hyperbolic >Exponential>Linear. Thus, the proposed neutrosophic technique is the most prominent
method compared to [22] method under all the membership functions. Moreover, the maximum
attaintment of acceptance degree is better achieved by our proposed technique that can be a preferable
method over [22] method.

Table 5. Example 3: Intuitionistic fuzzy parameters for c̃(1)IF
i j and c̃(2)IF

i j .

c̃(1)IF
11 = (4, 6, 8; 2, 6, 10) c̃(1)IF

12 = (5, 7, 9; 3, 7, 11) c̃(1)IF
13 = (6, 8, 10; 4, 8, 12)

c̃(1)IF
21 = (7, 9, 11; 5, 9, 13) c̃(1)IF

22 = (12, 14, 16; 10, 14, 18) c̃(1)IF
23 = (10, 12, 14; 8, 12, 16)

c̃(2)IF
11 = (3, 6, 9; 0, 6, 12) c̃(2)IF

12 = (7, 10, 13; 4, 10, 16) c̃(2)IF
13 = (10, 15, 20; 5, 15, 25)

c̃(2)IF
21 = (8, 12, 16; 4, 12, 20) c̃(2)IF

22 = (10, 14, 18; 6, 14, 20) c̃(2)IF
23 = (12, 16, 20; 8, 16, 24)
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Table 6. Example 3: Optimal solution results.
Methods Membership Objective Deviations from α β γ

functions values ideal solutions
Linear (454, 546) (76, 61.88) 0.72 0.278 NA

[22] Exponential (437, 531) (59, 46.88) 0.6138 0.0 NA
Hyperbolic (454, 546) (76, 61.88) 0.9335 0.5 NA
Linear (427, 526) (49, 41.88) 0.743 0.25 0.47

Proposed neutrosophic approach Exponential (421, 519) (43, 34.88) 0.787 0.16 0.53
Hyperbolic (418, 513) (40, 28.88) 0.967 0.34 0.41

NA: Not Applicable.

7. Conclusions

In this paper, an effective modeling and optimization framework for the IFMOLPP is presented
under neutrosophic fuzzy uncertainty. The proposed optimization technique has been designed under
the neutrosophic environment, consisting of independent indeterminacy degree in decision-making
processes. The satisfactory degree of decision-maker is always maximized in different forms to achieve
the best possible compromise solution of each objective function. We have also developed a variety of
membership functions to determine the best possible optimal solution. The use of linear, exponential,
and hyperbolic membership functions more flexible and realistic in decision-making processes due
to the indeterminacy degree while obtaining the optimal compromise solution. The proposed models
are implemented on three different existing numerical examples, and a comparative study is done.
The solution results obtained by our proposed neutrosophic optimization technique outperforms as
compared to others for all the discussed numerical examples. An ample opportunity to select the
different solution results is also depicted by incorporating various sorts of membership functions under
the neutrosophic environment. In the case of exponential-type membership function, a set of different
optimal solution results can be generated by tuning the shape parameters.

Several advantages can be availed by applying the proposed approach efficiently in both numerical
problems as well as real-life applications.

• The proposed neutrosophic optimization techniques deal with the indeterminacy degree, which is
the area of ignorance of propositions’ values between the acceptance and rejection degrees.
• The proposed multiobjective modeling approach deals with the intuitionistic fuzzy parameters,

which involves membership as well as non-membership functions and are more realistic as
compared to fuzzy parameters.
• Different sorts of membership functions under the neutrosophic environment provide an

opportunity to select the desired membership functions according to decision-makers’ choices.
• The shape parameter (d) in exponential-type membership functions depicts the degree of

uncertainty at a different level and provides more flexibility in decision-making processes.
• An ample scope for generating a variety of compromise solution sets by tuning the parameters in

indeterminacy degrees is also a benchmarking advantage of the proposed approach.
• It can be easily implemented on different real-life problems such as transportation, supplier

selection, supply chain, manufacturing, inventory control, assignment problems, etc.

The propounded study has some limitations that can be addressed in future research. Various
metaheuristic approaches may be applied to solve the proposed neutrosophic model as a future
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research scope. The discussed models can be applied to various real-life applications such as
transportation problems, supplier selection problems, inventory control, portfolio optimization, etc.
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