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Abstract: Neutrosophic sets (NSs) are used to illustrate uncertain, inconsistent, and indeterminate
information existing in real-world problems. Double-valued neutrosophic sets (DVNSs) are an
alternate form of NSs, in which the indeterminacy has two distinct parts: indeterminacy leaning
toward truth membership, and indeterminacy leaning toward falsity membership. The aim of
this article is to propose novel Dice measures and generalized Dice measures for DVNSs, and to
specify Dice measures and asymmetric measures (projection measures) as special cases of generalized
Dice measures via specific parameter values. Finally, the proposed generalized Dice measures and
generalized weighted Dice measures were applied to pattern recognition and medical diagnosis to
show their effectiveness.

Keywords: double-valued neutrosophic set; Dice similarity measure; pattern recognition;
medical diagnosis

1. Introduction

The fuzzy set (FS) theory introduced by Zadeh [1] is applied to various fields and has various
successful applications. In FSs, the degree of membership of an element is a single value in the
closed interval [0, 1]. However, in real situations, one may not always be confident that the degree
of non-membership of an element in the FS is simply equal to one minus degree of membership.
That is to say, there may be a degree of hesitation. For this purpose, the concept of intuitionistic
fuzzy sets (IFSs) [2] was introduced by Atanassov as a generalization of FSs. The only limitation
of IFSs is that the degree of hesitation is not defined independently. To overcome this shortcoming,
Smarandache [3] proposed the concept of neutrosophic sets (NSs), which were the generalization of IFSs
and FSs. After that, some researchers defined subclasses of NSs, such as single-valued neutrosophic
sets (SVNSs) [4], interval neutrosophic sets (INSs) [5], and simplified neutrosophic sets (SNS) [6].
Zhang et al. [7] proposed some basic operational laws for cubic neutrosophic numbers, and defined
some aggregation operators for its application to multiple attribute decision making (MADM).
Ye et al. [8] proposed correlation co-efficients for normal neutrosophic numbers, and applied them to
MADM. Liu et al. [9–11] proposed prioritized aggregation operators and power Heronian-mean
aggregation operators for hesitant interval neutrosophic sets, hesitant intuitionistic fuzzy sets,
and linguistic neutrosophic sets, and applied them to MADM and multiple attribute group decision
making (MAGDM).

In recent years, distance and similarity measures gained much more attention from researchers,
due to their wide applications in various fields such as data mining, pattern recognition, medical
diagnosis, and decision making. For this reason, several distances and similarity measures were
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developed for IFSs [12–14]. De et al. [15] gave an application of IFSs in medical diagnosis.
Dengfeng et al. [16] and Grzegorzewski et al. [17] developed some new similarity measures for IFSs
based on the Hausdorff metric, and applied them to pattern recognition. Hwang et al. [18] and
Khatibi et al. [19] proposed similarity measures for IFSs based on the Sugeno integral, and presented
their application in pattern recognition. Tang et al. [20] developed generalized Dice similarity
measures for IFSs, and gave their application in MADM. Ye [21,22] proposed cosine and Dice similarity
measures for IFS and interval-valued intuitionistic fuzzy sets (IVIFSs). Similar to IFSs, several authors
developed distance and similarity measures for NSs and its subclasses. Majumdar et al. [23] developed
similarity and entropy measures for NSs. Ye [24–26] further proposed distance and vector similarity
measures, and generalized Dice similarity measures for SNSs and INSs, and applied them to MADM.
Some authors found drawbacks of the proposed cosine similarity measures for SNSs, and Ye [27]
further proposed improved cosine similarity measures for SNSs, and gave their applications in medical
diagnosis and pattern recognition.

Let us consider a situation where we ask someone about a statement; he/she may be sure that
the possibility of the statement being true is 0.8, and that the possibility of the statement being
false is 0.4. Additionally, the degree to which he/she is not sure but thinks it is true is 0.3, and the
degree to which he/she is not sure but thinks it is false is 0.4. In order to deal with such kinds of
information, Kandasamy [28] introduced the concept of double-valued neutrosophic sets (DVNSs)
as an alternate form of NSs, providing more reliability and clarity to indeterminacy. In DVNSs,
indeterminacy is empathized into two parts: indeterminacy leaning toward truth membership and
indeterminacy leaning toward falsity membership. The first refinement of neutrosophic sets was
done by Smarandache [29] in 2013, whereby the truth value (T) was refined into various types of
sub-truths such as T1, T2, etc., and similarly, indeterminacy (I) was split/refined into various types of
sub-indeterminacies such as I1, I2, etc., and the sub-falsehood (F) was split into F1, F2, etc. DVNSs are
a special case of n-valued neutrosophic sets.

Currently, the research on DVNSs is rare, and it is necessary to study some basic theories about
DVNSs. As such, the aims of this article were (1) to propose two forms of Dice measures [30] for
DVNSs; (2) to propose two types of weighted Dice measures for DVNSs; (3) to propose weighted
generalized Dice measures for DVNSs; and (4) to show the effectiveness of the proposed Dice measures
in pattern recognition and medical diagnosis.

In order to do so, the remainder of this article is structured as follows: in Section 2, some basic
concepts related to DVNSs and Dice similarity measures are reviewed; in Section 3, some Dice measures
and weighted Dice measures for DVNSs are proposed; in Section 4, another form of Dice measure
for DVNSs is proposed; in Section 5, some generalized Dice measures and generalized weighted
Dice measures for DVNSs are proposed; in Section 6, applications of the proposed Dice measures for
DVNSs in pattern recognition and medical diagnosis are discussed, using numerical examples. Finally,
comparisons, discussions, conclusions, and references are given.

2. Preliminaries

In this section, some basic concepts related to DVNSs and Dice similarity measures are given.

2.1. Double-Valued Neutrosophic Sets and Their Operational Laws

Definition 1. [28] Let Ũ be the universe of the discourse set. A DVNS is an object of the form,

D =
{〈

u,
(

tD(u), itD (u), i fD (u), fD(u)
)〉∣∣∣u ∈ Ũ

}
, (1)

where tD(u), itD (u), i fD (u) and fD(u) represent the truth membership, indeterminacy leaning toward truth
membership, indeterminacy leaning toward falsity membership, and the falsity-membership functions of the
element u ∈ Ũ, respectively, with the condition 0 ≤ tD(u) + itD (u) + i fD (u) + fD(u) ≤ 4.
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Definition 2. [28] The complement of a DVNS, D, is denoted by Dc, and is defined as

tDc(u) = fD(u), itDc (u) = 1− itD (u), i fDc (u) = 1− i fD (u), fD(u) = tD(u).

For all u ∈ Ũ.

Definition 3. [28] Let D1 and D2 be two DVNSs. Then, we can say that D1 ⊆ D2, if and only if

tD1 ≤ tD2 , itD1
(u) ≥ itD2

(u), i fD1
(u) ≤ i fD2

(u), fD1(u) ≥ fD2(u).

For all u ∈ Ũ.

Definition 4. [28] Let D1 and D2 be two DVNSs. Then, we can say that D1 = D2, if and only if

tD1 = tD2 , itD1
(u) = itD2

(u), i fD1
(u) = i fD2

(u), fD1(u) = fD2(u).

For all u ∈ Ũ.

Definition 5. [28] Let D1 and D2 be two DVNSs. Then, the union and intersection of D1 and D2 is denoted
and defined as follows:

D1 ∪ D2 = C =
(

tC(u), itC (u), i fC (u), fC(u)
)
=
(
max

(
tD1(u), tD2(u)

)
, max

(
itD1

(u), itD2
(u)
)

,

min
(

i fD1
(u), i fD2

(u)
)

, min
(

fD1(u), fD2(u)
))

and
D1 ∩ D2 = D =

(
tD(u), itD (u), i fD (u), fD(u)

)
=
(
min

(
tD1(u), tD2(u)

)
, min

(
itD1

(u), itD2
(u)
)

,

max
(

i fD1
(u), i fD2

(u)
)

, max
(

fD1(u), fD2(u)
))

.

2.2. Some Dice Similarity Measures

In this subsection, the concept of Dice similarity measures is defined, adapted from [30].

Definition 6. [30] Let A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bm} be two vectors of length m, where all
coordinates are positive real numbers. Then, the Dice measure is denoted and defined as

D̃(A, B) = 2A.B
‖A||22+‖B||22

=
2

m
∑

i=1
aibi

m
∑

i=1
(ai)

2+
m
∑

i=1
(ai)

2

, (2)

where A.B =
m
∑

i=1
aibi is called the inner product of the vector A and B, and ‖A‖2 =

√
m
∑

i=1
(ai)

2 and

‖B‖2 =

√
m
∑

i=1
(bi)

2 are the L2 norms of A and B (also called Euclidean norms).

The Dice similarity measures take a value in the closed interval [0, 1]. However, the Dice measure is
undefined if ai = bi = 0 f or i = 1, 2, . . . , m. So, let us assume that the Dice measure is zero, whenever
ai = bi = 0 f or i = 1, 2, . . . , m.
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3. Dice Similarity Measures for DVNSs

In this section, we develop some Dice similarity measures for DVNSs, and the related properties
are satisfied.

Definition 7. Let D̃1 = {d11, d12, . . . , d1m} and D̃2 = {d21, d22, . . . , d2m} be two collections of DVNSs.
If d1i =

〈
t1i, it1i , i f1i

, f1i

〉
and d2i =

〈
t2i, it2i , i f2i

, f2i

〉
are the i− th DVNNs in D̃1 and D̃2, respectively, then

the Dice distance measure between D̃1 and D̃2 is defined as

DDVNS1

(
D̃1, D̃2

)
= 1

m

m
∑

i=1

2d1i ·d2i
|d1i |2+|d2i |2

= 1
m

m
∑

i=1

2
(

t1it2i+it1i it2i+i f1i
i f2i

+ f1i f2i

)
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+
(

t2
2i+i2t2i+i2 f2i

+ f 2
2i

) . (3)

Obviously, the above-defined Dice similarity measure between DVNSs, D̃1 and D̃2, satisfies the
following assertions:

(1) 0 ≤ DDVNS1

(
D̃1, D̃2

)
≤ 1;

(2) DDVNS1

(
D̃1, D̃2

)
= DDVNS1

(
D̃2, D̃1

)
;

(3) DDVNS1

(
D̃1, D̃2

)
= 1, i f D̃1 = D̃2; that is t1i = t2i, it1i = it2i , i f1i

= i f2i
, f1i = f2i, f or i = 1, 2, . . . , m.

Proof:

(1) Let us assume the i− th DVNN in the summation of Equation (3).

DDVNS1(d1i, d2i) =
2
(

t1it2i + it1i it2i + i f1i
i f2i

+ f1i f2i

)
(

t2
1i + i2t1i + i2 f1i

+ f 2
1i

)
+
(

t2
2i + i2t2i + i2 f2i

+ f 2
2i

) .

Obviously, DDVNS1(d1i, d2i) ≥ 0, and according to the inequality, x2 + y2 ≥ 2xy, we have(
t2

1i + i2t1i + i2 f1i
+ f 2

1i

)
+
(

t2
2i + i2t2i + i2 f2i

+ f 2
2i

)
≥ 2

(
t1it2i + it1i it2i + i f1i

i f2i
+ f1i f2i

)
.

Therefore, 0 ≤ DDVNS1(d1i, d2i) ≤ 1. Hence, from Equation (3), the summation of m terms is

0 ≤ DDVNS1

(
D̃1, D̃2

)
≤ 1.

(2) Obviously, it is true.
(3) When D̃1 = D̃2, then d1i = d2i, so t1i = t2i, it1i = it2i , i f1i

= i f2i
, f1i = f2i, f or i = 1, 2, . . . , m. So,

we get

DDVNS1

(
D̃1, D̃2

)
= 1

m

m
∑

i=1

2
(

t1it2i+it1i it2i+i f1i
i f2i

+ f1i f2i

)
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+
(

t2
2i+i2t2i+i2 f2i

+ f 2
2i

)
= 1

m

m
∑

i=1

2
(

t1it1i+it1i it1i+i f1i
i f1i

+ f1i f1i

)
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
= 1

m

m
∑

i=1

2
(

t1i
2+it1i

2+i f1i
2+ f1i

2
)

2
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

) = 1

,

which completes the proof of (8). �

In real-life problems, one usually takes the importance degree of each element DVNN
dzi (z = 1,2;i = 1,2,. . . ,n) into account. Let W̃ = (v1, v2, . . . , vm)

T be the importance degree for
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dzi (z = 1, 2; i = 1, 2, . . . , n) with vi ≥ 0 and
n
∑

i=1
vi = 1. Then, based on Equation (3), we further

proposed the concept of weighted Dice similarity measures of DVNSs as follows:

WDWDVNN1(D̃1, D̃2) =
n
∑

i=1
vi

2d1i ·d2i
|d1i |2+|d2i |2

=
n
∑

i=1
vi

2
(

t1it2i+it1i it2i+i f1i
i f2i

+ f1i f2i

)
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+
(

t2
2i+i2t2i+i2 f2i

+ f 2
2i

) . (4)

In particular, if W̃ =
(

1
m , 1

m , . . . , 1
m

)T
, then the weighted Dice similarity measure reduces to the

Dice similarity measure defined in Equation (3).
Obviously, the above-defined weighted Dice similarity measure between DVNSs, D̃1 and D̃2,

satisfies the following assertions:

(1) 0 ≤WDDVNS1

(
D̃1, D̃2

)
≤ 1;

(2) WDDVNS1

(
D̃1, D̃2

)
= WDDVNS1

(
D̃2, D̃1

)
;

(3) WDDVNS1

(
D̃1, D̃2

)
= 1, i f D̃1 = D̃2; that is t1i = t2i, it1i = it2i , i f1i

= i f2i
, f1i = f2i, f or i = 1, 2, . . . , m.

The proof of these properties is the same as above.
The above-defined similarity measures have the disadvantage of not being flexible. So, in the

following section, we defined another form of the above Dice similarity measure.

4. Another Form of the Dice Similarity Measure for DVNSs

In this section, another form of the Dice similarity measure for DVNSs is proposed, which is
defined below.

Definition 8. Let D̃1 = {d11, d12, . . . , d1m} and D̃2 = {d21, d22, . . . , d2m} be two DVSSs.
If d1i =

〈
t1i, it1i , i f1i

, f1i

〉
and d2i =

〈
t2i, it2i , i f2i

, f2i

〉
are the i − th DVNNs in D̃1 and D̃2, respectively,

then the Dice similarity measure between D̃1 and D̃2 is defined as

DDVNN2

(
D̃1, D̃2

)
=

2(D̃1.D̃2)

|D̃1|2+|D̃2|2

=
2

n
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
n
∑

i=1

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+

n
∑

i=1

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

) . (5)

Obviously, the above-defined Dice similarity measure in Equation (5) satisfies the
following properties:

(1) 0 ≤ DDVNS2

(
D̃1, D̃2

)
≤ 1;

(2) DDVNS2

(
D̃1, D̃2

)
= DDVNS2

(
D̃2, D̃1

)
;

(3) DDVNS2

(
D̃1, D̃2

)
= 1, i f D̃1 = D̃2; that is t1i = t2i, it1i = it2i , i f1i

= i f2i
, f1i = f2i, f or i = 1, 2, . . . , m.

Proof: The proof is the same as previously shown proofs. �

For real applications, the importance degree of each element dzi (z = 1, 2; i = 1, 2, . . . , n)
is under consideration. Then, let W̃ = (v1, v2, . . . , vn) be the importance degree for
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dzi (z = 1, 2; i = 1, 2, . . . , n), vi ≥ 0 and
n
∑

i=1
vi = 1. So, based on Equation (5), we further proposed

the concept of weighted Dice similarity measures of DVNSs as follows:

WDDVNN2

(
D̃1, D̃2

)
=

2(D̃1.D̃2)v

|D̃1|v2+|D̃2|v2

=
2

n
∑

i=1
v2

i

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
n
∑

i=1
v2

i

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+

n
∑

i=1
v2

i

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

) . (6)

In particular, if W̃ =
(

1
m , 1

m , . . . , 1
m

)T
, then the weighted Dice similarity measure reduces to the

Dice similarity measure defined in Equation (5).
Obviously, the above-defined weighted Dice similarity measures in Equation (6) satisfy the

following properties:

(1) 0 ≤WDDVNS2

(
D̃1, D̃2

)
≤ 1;

(2) WDDVNS2

(
D̃1, D̃2

)
= WDDVNS2

(
D̃2, D̃1

)
;

(3) WDDVNS2

(
D̃1, D̃2

)
= 1, i f D̃1 = D̃2; that is t1i = t2i, it1i = it2i , i f1i

= i f2i
, f1i = f2i, f or i = 1, 2, . . . , m.

As discussed earlier, the above-defined similarity measures have the disadvantage of not being
flexible. As such, in the following section, we defined a generalized Dice similarity measure to
overcome the shortcoming of the above Dice similarity measures.

5. A Generalized Dice Similarity Measure of DVNSs

In this section, we propose a generalized Dice similarity measure for DVNSs, as a generalization
of the above-defined Dice similarity measures.

Definition 9. Let D̃1 = {d11, d12, . . . , d1m} and D̃2 = {d21, d22, . . . , d2m} be two DVSSs. If d1i =〈
t1i, it1i , i f1i

, f1i

〉
and d2i =

〈
t2i, it2i , i f2i

, f2i

〉
are the i − th DVNNs in D̃1 and D̃2, respectively, then the

generalized Dice similarity measure between D̃1 and D̃2 is defined as

GDDVNS1

(
D̃1, D̃2

)
= 1

n

n
∑

i=1

d1i ·d2i
ρ|d1i |2+(1−ρ)|d2i |2

= 1
n

n
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−ρ)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

) ; (7)

GDDVNS2

(
D̃1, D̃2

)
= D̃1.D̃2

ρ|D̃1|2+(1−ρ)|D̃2|2

=

n
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ

n
∑

i=1

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−ρ)

n
∑

i=1

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

) , (8)

where ρ is a positive parameter for 0 ≤ ρ ≤ 1.

Obviously, the above-defined Dice similarity measure between DVNSs, D̃1 and D̃2, satisfies the
following assertions:

(1) 0 ≤ GDDVNS1

(
D̃1, D̃2

)
≤ 1;

(2) GDDVNS1

(
D̃1, D̃2

)
= GDDVNS1

(
D̃2, D̃1

)
;

(3) GDDVNS1

(
D̃1, D̃2

)
= 1, i f D̃1 = D̃2; that is t1i = t2i, it1i = it2i , i f1i

= i f2i
, f1i = f2i, f or i = 1, 2, . . . , m.
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and

(1) 0 ≤ GDDVNS2

(
D̃1, D̃2

)
≤ 1;

(2) GDDVNS2

(
D̃1, D̃2

)
= GDDVNS2

(
D̃2, D̃1

)
;

(3) GDDVNS2

(
D̃1, D̃2

)
= 1, i f D̃1 = D̃2; that is t1i = t2i, it1i = it2i , i f1i

= i f2i
, f1i = f2i, f or i = 1, 2, . . . , m.

Now, we discuss some special cases of generalized Dice similarity measures for the parameter ρ.

(1) If ρ = 0.5, then the two generalized Dice similarity measures defined in Equation (7) and
Equation (8) reduce to Dice similarity measures defined in Equation (3) and Equation (5):

GDDVNS1

(
D̃1, D̃2

)
= 1

m

m
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−ρ)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
= 1

m

m
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
0.5
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−0.5)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
= 1

m

m
∑

i=1

2
(

t1it2i+it1i it2i+i f1i
i f2i

+ f1i f2i

)
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+
(

t2
2i+i2t2i+i2 f2i

+ f 2
2i

)
,

and

GDDVNS2

(
D̃1, D̃2

)
=

n
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ

n
∑

i=1

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−ρ)

n
∑

i=1

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=

n
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
0.5

n
∑

i=1

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−0.5)

n
∑

i=1

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=
2

n
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
n
∑

i=1

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+

n
∑

i=1

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

.

(2) When ρ = 0, 1, Equations (7) and (8) reduce to the following asymmetric similarity measures:

GDDVNS1

(
D̃1, D̃2

)
= 1

m

m
∑

i=1

d1i ·d2i
ρ|d1i |2+(1−ρ)|d2i |2

= 1
m

m
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−ρ)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
= 1

m

m
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
0
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−0)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
= 1

m

m
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
(

t2
2i+i2t2i+i2 f2i

+ f 2
2i

) f orρ = 0

, (9)

GDDVNS1

(
D̃1, D̃2

)
= 1

m

m
∑

i=1

d1i ·d2i
ρ|d1i |2+(1−ρ)|d1i |2

= 1
m

m
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−ρ)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
= 1

m

m
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
1
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−1)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
= 1

n

n
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

) f or ρ = 1

, (10)



Mathematics 2018, 6, 121 8 of 16

GDDVNS2

(
D̃1, D̃2

)
= D̃1.D̃2

ρ|D̃1|2+(1−ρ)|D̃2|2

=

m
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ

m
∑

i=1

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−ρ)

m
∑

i=1

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=

n
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
0

n
∑

i=1

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−0)

n
∑

i=1

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=

n
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
n
∑

i=1

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

) f or ρ = 0

, (11)

GDDVNS2

(
D̃1, D̃2

)
= D̃1.D̃2

ρ|D̃1|2+(1−ρ)|D̃2|2

=

m
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ

m
∑

i=1

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−ρ)

m
∑

i=1

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=

n
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
1

n
∑

i=1

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−1)

n
∑

i=1

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=

n
∑

i=1

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
n
∑

i=1

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

) f or ρ = 1

. (12)

From the above investigation, the four asymmetric similarity measures are the extension of
the relative projection measure of interval numbers [31]. Therefore, the four asymmetric similarity
measures can be assumed as the projection measures of DVNSs.

For real applications, the importance degree of each element dzi (z = 1, 2; i = 1, 2, . . . , n)
is under consideration. Then, let W̃ = (v1, v2, . . . , vn) be the importance degree for

dzi (z = 1, 2; i = 1, 2, . . . , n), vi ≥ 0 and
n
∑

i=1
vi = 1. So, based on Equations (7) and (8), we further

proposed the concept of weighted generalized Dice similarity measures of DVNSs, which are defined
as follows:

WGDDVNS1

(
D̃1, D̃2

)
=

m
∑

i=1
vi

d1i ·d2i
ρ|d1i |2+(1−ρ)|d2i |2

=
m
∑

i=1
vi

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−ρ)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

) , (13)

WGDDVNS2

(
D̃1, D̃2

)
=

(D̃1.D̃2)v

ρ|D̃1|v2+(1−ρ)|D̃2|v2

=

m
∑

i=1
v2

i

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ

m
∑

i=1
v2

i

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−ρ)

m
∑

i=1
v2

i

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

) . (14)

In particular, if W̃ =
(

1
m , 1

m , . . . , 1
m

)T
, then the weighted Dice similarity measure reduces to the

Dice similarity measure defined in Equation (7) and Equation (8).
Now, similar to the generalized Dice similarity measures defined in Equation (7) and Equation (8),

the weighted generalized similarity measures defined above also have some special cases according to
the parameter ρ.
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(1) If ρ = 0.5, then

WGDDVNS1

(
D̃1, D̃2

)
=

m
∑

i=1
vi

d1i ·d2i
ρ|d1i |2+(1−ρ)|d2i |2

=
m
∑

i=1
vi

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−ρ)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
=

m
∑

i=1
vi

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
0.5
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−0.5)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
=

m
∑

i=1
vi

2
(

t1it2i+it1i it2i+i f1i
i f2i

+ f1i f2i

)
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+
(

t2
2i+i2t2i+i2 f2i

+ f 2
2i

)

. (15)

(2) If ρ = 0, 1, then Equation (13) reduces to the following asymmetric weighted generalized Dice
similarity measures:

WGDDVNS1

(
D̃1, D̃2

)
=

m
∑

i=1
vi

d1i ·d2i
ρ|d1i |2+(1−ρ)|d2i |2

=
m
∑

i=1
vi

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−ρ)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
=

m
∑

i=1
vi

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
0
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−0)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
=

n
∑

i=1
vi

2
(

t1it2i+it1i it2i+i f1i
i f2i

+ f1i f2i

)
(

t2
2i+i2t2i+i2 f2i

+ f 2
2i

) f or ρ = 0

, (16)

WGDDVNS1

(
D̃1, D̃2

)
=

m
∑

i=1
vi

d1i ·d2i
ρ|d1i |2+(1−ρ)|d2i |2

=
m
∑

i=1
vi

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−ρ)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
=

m
∑

i=1
vi

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
1
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

)
+(1−1)

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)
=

m
∑

i=1
vi

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ
(

t2
1i+i2t1i+i2 f1i

+ f 2
1i

) f or ρ = 1

. (17)

Similarly, when ρ = 0.5 in Equation (14), then

WGDDVNS2

(
D̃1, D̃2

)
=

(D̃1.D̃2)v

ρ|D̃1|v2+(1−ρ)|D̃2|v2

=

m
∑

i=1
v2

i

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ

m
∑

i=1
v2

i

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−ρ)

m
∑

i=1
v2

i

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=

m
∑

i=1
v2

i

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
0.5

m
∑

i=1
v2

i

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−0.5)

m
∑

i=1
v2

i

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=
2
(

m
∑

i=1
v2

i

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

))
m
∑

i=1
v2

i

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+

m
∑

i=1
v2

i

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

. (18)
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(3) If ρ = 0, 1, then Equation (14) reduces to the following asymmetric similarity measures:

WGDDVNS2

(
D̃1, D̃2

)
=

(D̃1.D̃2)v

ρ|D̃1|v2+(1−ρ)|D̃2|v2

=

m
∑

i=1
v2

i

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ

m
∑

i=1
v2

i

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−ρ)

m
∑

i=1
v2

i

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=

m
∑

i=1
v2

i

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
0

m
∑

i=1
v2

i

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−0)

m
∑

i=1
v2

i

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=

n
∑

i=1
v2

i

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
n
∑

i=1
v2

i

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

) f or ρ = 0

, (19)

WGDDVNS2

(
D̃1, D̃2

)
=

(D̃1.D̃2)v

ρ|D̃1|v2+(1−ρ)|D̃2|v2

=

m
∑

i=1
v2

i

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
ρ

m
∑

i=1
v2

i

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−ρ)

m
∑

i=1
v2

i

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=

m
∑

i=1
v2

i

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

)
1

m
∑

i=1
v2

i

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

)
+(1−1)

m
∑

i=1
v2

i

(
t2

2i+i2t2i+i2 f2i
+ f 2

2i

)

=
2
(

n
∑

i=1
v2

i

(
t1it2i+it1i it2i+i f1i

i f2i
+ f1i f2i

))
n
∑

i=1
v2

i

(
t2

1i+i2t1i+i2 f1i
+ f 2

1i

) f or ρ = 1

. (20)

From the above investigation, the four asymmetric similarity measures are the extension of
the relative projection measure of interval numbers [31]. Therefore, the four asymmetric similarity
measures can be assumed as the projection measures of DVNSs.

6. Applications of Generalized Dice Similarity Measures for DVNSs

6.1. Pattern Recognition

In order to show the effectiveness of the proposed generalized Dice measures for DVNSs in
pattern recognition, we present an example in this subsection.

Example 1. Let us suppose that we have three patterns R̃1, R̃2 and R̃3. Then, the patterns are represented by
the following DVNSs on Ũ = {ũ1, ũ2, ũ3, ũ4}.

R̃1 = {〈ũ1, (0.5, 0.2, 0.2, 0.4)〉, 〈ũ2, (0.7, 0.1, 0.2, 0.1)〉, 〈ũ3, (0.4, 0.3, 0.2, 0.5)〉, 〈ũ4, (0.6, 0.2, 0.3, 0.4)〉},
R̃2 = {〈ũ1, (0.5, 0.1, 0.3, 0.4)〉, 〈ũ2, (0.6, 0.1, 0.1, 0.2)〉, 〈ũ3, (0.2, 0.2, 0.3, 0.7)〉, 〈ũ4, (0.7, 0.2, 0.3, 0.3)〉},
R̃3 = {〈ũ1, (0.6, 0.3, 0.2, 0.3)〉, 〈ũ2, (0.8, 0.1, 0.1, 0.2)〉, 〈ũ3, (0.4, 0.2, 0.3, 0.5)〉, 〈ũ4, (0.7, 0.2, 0.1, 0.2)〉}

and the unknown pattern, P̃, is given as follows:

P̃ = {〈ũ1, (0.4, 0.3, 0.3, 0.5)〉, 〈ũ2, (0.8, 0.1, 0.2, 0.1)〉, 〈ũ3, (0.3, 0.2, 0.1, 0.6)〉, 〈ũ4, (0.7, 0.1, 0.1, 0.3)〉}.

The aim was to find out to which known pattern the unknown pattern, P̃, belonged. To show
this, the generalized Dice distance measures between the known and unknown patterns were
calculated, and then, the unknown pattern, P̃, was assigned to one of the known patterns using
the following formula:

Z∗ = arg maxl

{
D
(

R̃l , P̃
)}

f or l = 1, 2, 3.
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Furthermore, if the weight is considered, then we used the following formula:

Z̃∗ = arg maxl

{
GWD

(
R̃l , P̃

)}
f or l = 1, 2, 3.

In Table 1, the generalized Dice measures between the unknown and known patterns are shown,
calculated using Equation (7).

Table 1. Generalized Dice measures.

ρ
GDDVNS1(

R̃1, P̃
) GDDVNS1(

R̃2, P̃
) GDDVNS1(

R̃3, P̃
)

0 0.9376 0.9471 0.9619
0.3 0.9528 0.9445 0.9598
0.6 0.9721 0.9561 0.9580
0.8 0.9876 0.9734 0.9569
1 1.0060 1.0001 0.9560

The generalized Dice measures calculated using Equation (8) are given in Table 2.

Table 2. Generalized Dice measures.

ρ
GDDVNS2(

R̃1, P̃
) GDDVNS2(

R̃2, P̃
) GDDVNS2(

R̃3, P̃
)

0 0.9331 0.9330 0.9623
0.3 0.9522 0.9437 0.9821
0.6 0.9721 0.9546 1.0030
0.8 0.9858 0.9620 1.0170
1 1.0000 0.9696 1.0314

Let us assume that the weight vector of ũ1, ũ2, ũ3 and ũ4 is v = (0.3, 0.25, 0.25, 0.2)T .
Then, the weighted Dice measures, calculated using Equation (13), are given in Table 3.

Table 3. Generalized weighted Dice measures.

ρ
GWDDVNS1(

R̃1, P̃
) GWDDVNS1(

R̃2, P̃
) GWDDVNS1(

R̃3, P̃
)

0 0.9325 0.9387 0.9593
0.3 0.9512 0.9407 0.9570
0.6 0.9743 0.9568 0.9549
0.8 0.9925 0.9770 0.9537
1 1.0130 1.0070 0.9526

Additionally, the generalized weighted Dice measures, calculated using Equation (14), are given
in Table 4.

Table 4. Generalized weighted Dice measures.

ρ
GWDDVNS2(

R̃1, P̃
) GWDDVNS2(

R̃2, P̃
) GWDDVNS2(

R̃3, P̃
)

0 0.9231 0.9172 0.9569
0.3 0.9490 0.9362 0.9982
0.6 0.9765 0.9560 1.0431
0.8 0.9957 0.9697 1.0754
1 1.0150 0.9838 1.1098
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From Table 1, we can see that, when the parameter ρ = 0, 0.3, then the unknown pattern, P̃,
belonged to pattern R̃3. When the value of parameter ρ was greater than 0.3, that is ρ = 0.6, 0.8, 1, then
the unknown pattern, P̃, belonged to pattern R̃1. Furthermore, from Table 2, we can see that, if the
values of the parameter ρ were changed, the unknown pattern, P̃, belonged to pattern R̃3.

Similarly, from Tables 3 and 4, the weighted generalized measures displayed the same situation
discussed above.

6.2. Medical Diagnoses

In this subsection, we show the effectiveness of the proposed generalized Dice measures in
medical diagnoses, using an example.

Example 2. Let us assume that there are four patients, and the names of the patients
are Al, Bob, Jeo, and Ted. Their symptoms are temperature, headache, stomach pain,
cough, and chest pain. The set of patients and symptoms are denoted by H =

{Al, Bob, Jeo, Ted} and L = {Temprature, Headache, Stomach pain, cough, Chest pain}. Let
us assume that the set of diagnoses under consideration is defined and denoted by Y =

{Malaria, viral f ever, Typhoid, Stomach problem, Heart problem}. The characteristic information
of H, L and Y is represented in the form of DVNSs, given in Tables 5 and 6 below.

Table 5. Symptom characteristics for the patient.

Patients Temperature Headache Stomach pain Cough Chest Pain

Al 〈0.7, 0.1, 0.1, 0.1〉 〈0.4, 0.2, 0.1, 0.1〉 〈0.2, 0.3, 0.2, 0.4〉 〈0.4, 0.2, 0.1, 0.1〉 〈0.1, 0.1, 0.3, 0.4〉
Bob 〈0.1, 0.2, 0.3, 0.5〉 〈0.3, 0.2, 0.3, 0.4〉 〈0.4, 0.2, 0.1, 0.1〉 〈0.1, 0.2, 0.2, 0.5〉 〈0.1, 0.3, 0.4, 0.5〉
Jeo 〈0.7, 0.1, 0.1, 0.1〉 〈0.7, 0.1, 0.1, 0.1〉 〈0.1, 0.1, 0.2, 0.4〉 〈0.2, 2, 0.3, 0.4〉 〈0.1, 0.1, 0.3, 0.3〉
Ted 〈0.4, 0.2, 0.1, 0.1〉 〈0.5, 0.1, 0.2, 0.5〉 〈0.3, 0.2, 0.1, 0.4〉 〈0.6, 0.1, 0.1, 0.2〉 〈0.3, 0.1, 0.2, 0.3〉

Table 6. Symptom characteristics for the diagnoses.

Diagnoses Temperature Headache Stomach pain Cough Chest Pain

Malaria 〈0.3, 0.1, 0.1, 0.1〉 〈0.2, 0.3, 0.2, 0.4〉 〈0.1, 0.3, 0.4, 0.5〉 〈0.1, 0.2, 0.4, 0.4〉 〈0.1, 0.3, 0.4, 0.5〉
Viral fever 〈0.6, 0.1, 0.1, 0.1〉 〈0.2, 0.1, 0.3, 0.5〉 〈0.1, 0.1, 0.4, 0.7〉 〈0.6, 0.1, 0.1, 0.1〉 〈0.1, 0.1, 0.3, 0.7〉
Typhoid 〈0.3, 0.1, 0.1, 0.3〉 〈0.5, 0.1, 0.2, 0.1〉 〈0.2, 0.1, 0.2, 0.6〉 〈0.2, 0.1, 0.3, 0.5〉 〈0.1, 0.1, 0.4, 0.8〉

Stomach problem 〈0.1, 0.1, 0.3, 0.6〉 〈0.2, 0.2, 0.2, 0.5〉 〈0.8, 0.1, 0.1, 0.1〉 〈0.2, 0.2, 0.3, 0.7〉 〈0.2, 0.2, 0.3, 0.7〉
Heart problem 〈0.1, 0.1, 0.3, 0.6〉 〈0.1, 0.2, 0.4, 0.8〉 〈0.2, 0.1, 0.3, 0.7〉 〈0.2, 0.1, 0.4, 0.6〉 〈0.8, 0.1, 0.1, 0.1〉

Subsequently, using Equations (7) and (8), we calculated the generalized Dice measures for the
parameter ρ = 0, and the results are given in Tables 7 and 8.

Table 7. Generalized Dice measures.

Malaria Viral Fever Typhoid Stomach Problem Heart Problem

Al 0.9018 0.7191 0.7813 0.4406 0.3675
Bob 0.8756 0.5695 0.8100 0.7899 0.5693
Jeo 0.9702 0.6765 0.9216 0.4808 0.4314
Ted 0.8422 0.7779 0.7781 0.5780 0.5084
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Table 8. Generalized Dice measures.

Malaria Viral Fever Typhoid Stomach Problem Heart Problem

Al 0.7337 0.7008 0.6912 0.4382 0.3574
Bob 0.8152 0.5574 0.7512 0.7633 0.5486
Jeo 0.7826 0.6516 0.7788 0.4735 0.4138
Ted 0.7337 0.7295 0.6866 0.5406 0.5266

Similarly, for other values of parameter ρ using two types of generalized Dice measures, the results
are given in Tables 9 and 10.

Table 9. Generalized Dice measures for different values of parameter ρ.

Malaria Viral Fever Typhoid Stomach Problem Heart Problem

Al

ρ = 0.2 0.7844 0.7571 0.7500 0.4835 0.4042
ρ = 0.6 0.7899 0.8817 0.8259 0.6146 0.5205
ρ = 0.8 0.8419 0.9826 0.9057 0.7228 0.6219
ρ = 1 0.9226 1.1286 1.0438 0.8933 0.7960

Bob

ρ = 0.2 0.8148 0.5856 0.7916 0.8350 0.6159
ρ = 0.6 0.7817 0.6299 0.7990 0.9644 0.7569
ρ = 0.8 0.7886 0.6643 0.8234 1.0660 0.8460
ρ = 1 0.8125 0.7196 0.8649 1.2243 0.9911

Jeo

ρ = 0.2 0.8328 0.6921 0.8664 0.5088 0.4724
ρ = 0.6 0.8153 0.7770 0.8777 0.6149 0.5996
ρ = 0.8 0.8726 0.8718 0.9495 0.7175 0.7076
ρ = 1 0.9877 1.0543 1.1239 0.9029 0.8871

Ted

ρ = 0.2 0.8005 0.8004 0.7678 0.6007 0.5595
ρ = 0.6 0.7794 0.8926 0.7948 0.6980 0.7071
ρ = 0.8 0.7996 0.9777 0.8447 0.7904 0.8221
ρ = 1 0.8474 1.1140 0.9544 0.9441 0.8739

Table 10. Generalized Dice measures for different values of parameter ρ.

Malaria Viral Fever Typhoid Stomach Problem Heart Problem

Al

ρ = 0.2 0.7567 0.7553 0.7324 0.4814 0.3980
ρ = 0.6 0.8074 0.7125 0.8315 0.5996 0.5154
ρ = 0.8 0.8354 0.9850 0.8918 0.6836 0.6045
ρ = 1 0.8654 1.0962 0.9615 0.7949 0.7308

Bob

ρ = 0.2 0.8152 0.5862 0.7747 0.8207 0.5993
ρ = 0.6 0.8152 0.5296 0.8266 0.9660 0.7353
ρ = 0.8 0.8152 0.6939 0.8552 1.0599 0.8294
ρ = 1 0.8152 0.7391 0.8859 1.1739 0.9511

Jeo

ρ = 0.2 0.7869 0.6883 0.8071 0.5111 0.4536
ρ = 0.6 0.7956 0.7756 0.8702 0.6074 0.5617
ρ = 0.8 0.8000 0.8281 0.9057 0.6707 0.6377
ρ = 1 0.8045 0.8883 0.9441 0.7486 0.7374

Ted

ρ = 0.2 0.7434 0.7753 0.7163 0.5867 0.5801
ρ = 0.6 0.7636 0.8865 0.7842 0.7070 0.7279
ρ = 0.8 0.7741 0.9549 0.8232 0.7878 0.8342
ρ = 1 0.7849 1.0349 0.8663 0.8895 0.9767

From Tables 7 and 8, we can see that all patients suffered from malaria when the value of parameter
ρ = 0. On the other hand, from Table 9, we can see that, when ρ = 0.2, Al suffered from malaria, Bob
suffered from a stomach problem, Jeo suffered from typhoid, and Ted suffered from malaria. When the
values of parameter ρ = 0.6, 0.8, 1, then Al and Ted suffered from a viral fever, and Bob suffered from a
stomach problem, while Jeo suffered from typhoid. From Table 10, we can see that, when ρ = 0.2, 0.6,
Al suffered from malaria and typhoid, while Bob, Jeo, and Ted suffered from a stomach problem,
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malaria, and a viral fever. When ρ = 0.8, 1, then Al suffered from a viral fever, while Bob, Jeo, and Ted
suffered from a stomach problem, malaria, and a viral fever, respectively.

7. Comparison and Discussion

A DVN set is a generalization of the neutrosophic set, intuitionistic fuzzy set, and fuzzy set.
A DVNS is an illustration of the NS, which provides more perfection and clarity with regards to
representing the existing indeterminate, vague, insufficient, and inconsistent information. A DVNS
has the additional characteristic of being able to relate, with more sensitivity, the indeterminate and
inconsistent information. While an SVNS can handle indeterminate and inconsistent information,
it cannot relate the existing indeterminacy.

If we take Example 1 and use the distance measure defined by Kandasamy [28] for DVNSs,
then the Hamming distance and Euclidean distance with known and unknown patterns are given in
Table 11.

Table 11. Hamming and Euclidean distance measures.

Dis
(

R̃1, P
)

Dis
(

R̃2, P
)

Dis
(

R̃3, P
)

Hamming Distance 0.863 0.095 0.085
Euclidean Distance 0.491 0.0602 0.565

From Table 11, we can see that the unknown pattern, P, belonged to known pattern R̃2.
When calculating our proposed Dice measure, we can see from Table 1, that when parameter ρ = 0, 0.3,
then the unknown pattern, P̃, belonged to pattern R̃3. When the value of parameter ρ was greater than
0.3, that is ρ = 0.6, 0.8, 1, then the unknown pattern, P̃, belonged to pattern R̃1. Furthermore, from
Table 2, we can see that, if the values of parameter ρ were changed, the unknown pattern, P̃, belonged
to pattern R̃3.

Thus, our proposed Dice similarity measure is more suitable for use in pattern recognition or
medical diagnosis.

8. Conclusions

Neutrosophic sets (NSs) are used to illustrate uncertain, inconsistent, and indeterminate
information which exists in real-world problems. Double-valued neutrosophic sets (DVNSs) are an
alternate form of neutrosophic sets, in which the indeterminacy has two distinct parts: indeterminacy
leaning toward truth membership, and indeterminacy leaning toward falsity membership. The aim of
this article was to propose novel Dice measures and generalized Dice measures for DVNSs, and to
specify that the Dice measures and the asymmetric measures (projection measures) were special cases
of the generalized Dice measures using specific parameter values. Finally, the proposed generalized
Dice measures and generalized weighted Dice measures were applied to pattern recognition and
medical diagnosis to show their effectiveness.
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