Some new classes of neutrosophic minimal open sets

Selvaraj Ganesan1, Florentin Smarandache2

1PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India. (Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India). Orchid iD: 0000-0002-7728-8941
2Mathematics & Science Department, University of New Mexico, 705 Gurley Ave, Gallup, NM 87301, USA. ORCID iD: 0000-0002-5560-5926

Received: 14 Feb 2021 • Accepted: 19 Mar 2021 • Published Online: 28 Apr 2021

Abstract: This article focuses on N_m-β-open, β-interior and β-closure operators using neutrosophic minimal structures. We investigate properties of such concepts and we introduced the concepts of N_m-β-continuous, N_m-β-closed graph, N_m-β-compact and almost N_m-β-compact. Finally, we introduced the concepts of N_m-regular-open sets and N_m-π-open sets and investigate some properties.

Key words: N_m-β-continuous, N_m-β-closed graph, N_m-β-compact, almost N_m-β-compact, N_m-regular-open and N_m-π-open

1. Introduction
Zadeh’s [17] Fuzzy set laid the foundation of many fields such as intuitionistic fuzzy, neutrosophic set, rough sets. Later, researchers developed K. T. Atanassov’s [4] intuitionistic fuzzy set theory in many fields such as differential equations, topology, computer science and so on. F. Smarandache [15, 16] found that some objects have indeterminacy or neutral other than membership and non-membership. So he coined the notion of neutrosophy. V. Popa & T. Noiri [12] introduced the notions of minimal structure which is a generalization of a topology on a given nonempty set. We introduced the concepts of \mathcal{M}-continuous maps. M. Karthika et al [11] studied neutrosophic minimal structure spaces. S. Ganesan and F. Smarandache [9] studied N_m-semi-open in neutrosophic minimal structure spaces. S. Ganesan et al [10] studied N_m-pre-continuous maps. This article focuses on N_m-β-open, β-interior and β-closure operators using neutrosophic minimal structures. We investigate properties of such concepts and we introduced the notions of N_m-β-continuous, N_m-β-closed graph, N_m-β-compact and almost N_m-β-compact and investigate some properties for such concepts. Finally, we introduced N_m-regular-open, N_m-π-open sets and investigate fundamental properties.

2. Preliminaries
Definition 2.1. [15, 16] Neutrosophic set (in short ns) K on a set $G \neq \emptyset$ is defined by $K = \{ \prec a, P_K(a), Q_K(a), R_K(a) : a \in G \}$, where $P_K : G \to [0,1]$, $Q_K : G \to [0,1]$ and $R_K : G \to [0,1]$ denotes the membership of an object, indeterminacy and non-membership of an object, for each a on G to K, respectively and $0 \leq P_K(a) + Q_K(a) + R_K(a) \leq 3$ for each $a \in G$.

Proposition 2.1. [13] For any ns S, then the following conditions are holds:

© Asia Mathematika, DOI: 10.5281/zenodo.4724804
*Correspondence: sgsgsgsgsg77@gmail.com
1. \(0 \leq S, 0 \leq 0 \).

2. \(S \leq 1 \), \(1 \leq 1 \).

Definition 2.2. [13] Let \(K = \{ \prec a, P_K(a), Q_K(a), R_K(a) \succ : a \in G \} \) be a ns.

1. A ns \(K \) is an empty set i.e., \(K = 0 \) if 0 is membership of an object and 0 is an indeterminacy and 1 is an non-membership of an object respectively. i.e., \(0 = \{ g, (0, 0, 1) : g \in G \} \)

2. A ns \(K \) is a universal set i.e., \(K = 1 \) if 1 is membership of an object and 1 is an indeterminacy and 0 is an non-membership of an object respectively. \(1 = \{ g, (1, 1, 0) : g \in G \} \)

3. \(K_1 \cup K_2 = \{ a, \max\{P_{K_1}(a), P_{K_2}(a)\}, \max\{Q_{K_1}(a), Q_{K_2}(a)\}, \min\{R_{K_1}(a), R_{K_2}(a)\} : a \in G \} \)

4. \(K_1 \cap K_2 = \{ a, \min\{P_{K_1}(a), P_{K_2}(a)\}, \min\{Q_{K_1}(a), Q_{K_2}(a)\}, \max\{R_{K_1}(a), R_{K_2}(a)\} : a \in G \} \)

5. \(K_C = \{ \prec a, R_K(a), 1 - Q_K(a), P= P_K(a) \succ : a \in G \} \)

Definition 2.3. [13] Neutrosophic topology (nt) in Salama’s sense on a nonempty set \(G \) is a family \(\tau \) of ns in \(G \) satisfying three conditions:

1. Empty set (0) and universal set (1) are members of \(\tau \).
2. \(K_1 \cap K_2 \in \tau \) where \(K_1, K_2 \in \tau \).
3. \(\cup K_\delta \in \tau \) for every \(\{ K_\delta : \delta \in \Delta \} \subseteq \tau \).

Definition 2.4. [11] The neutrosophic minimal structure space over a universal set \(G \) be denoted by \(N_m \). \(N_m \) is said to be neutrosophic minimal structure space (in short, nms) over \(G \) if it satisfying following the axiom: \(0, 1 \in N_m \). A family of neutrosophic minimal structure space is denoted by \((G, N_mG) \). Note that neutrosophic empty set and neutrosophic universal set can form a topology and it is known as neutrosophic minimal structure space.

Definition 2.5. [11] A is \(N_m \)-closed if and only if \(N_m \text{cl}(A) = A \). Similarly, A is a \(N_m \)-open if and only if \(N_m \text{int}(A) = A \).

Definition 2.6. [11] Let \(N_m \) be any nms and A be any neutrosophic set. Then

1. Every A \(\in N_m \) is open and its complement is \(N_m \) closed.
2. \(N_m \)-closure of A = \(\min\{F : F \text{ is a nmc and } F \geq A\} \) and it is denoted by \(N_m \text{cl}(A) \).
3. \(N_m \)-interior of A = \(\max\{F : F \text{ is a nmo and } F \leq A\} \) and it is denoted by \(N_m \text{int}(A) \).

In general \(N_m \text{int}(A) \) is subset of A and A is a subset of \(N_m \text{cl}(A) \).

Proposition 2.2. [11] Let R and S are any ns of nms \(N_m \) over \(G \). Then

1. \(N_C^i = \{ 0, 1, R^i \} \) where \(R^i \) is a complement of ns \(R_i \).
2. \(G - N_m \text{int}(S) = N_m \text{cl}(G - S)\).

3. \(G - N_m \text{cl}(S) = N_m \text{int}(G - S)\).

4. \(N_m \text{cl}(R^C) = (N_m \text{cl}(R))^C = N_m \text{int}(R)\).

5. \(N_m\) closure of an empty set is an empty set and \(N_m\) closure of a universal set is a universal set. Similarly, \(N_m\) interior of an empty set and universal set respectively an empty and a universal set.

6. If \(S\) is a subset of \(R\) then \(N_m \text{cl}(S) \leq N_m \text{cl}(R)\) and \(N_m \text{int}(S) \leq N_m \text{int}(R)\).

7. \(N_m \text{cl}(N_m \text{cl}(R)) = N_m \text{cl}(R)\) and \(N_m \text{int}(N_m \text{int}(R)) = N_m \text{int}(R)\).

8. \(N_m \text{cl}(R \lor S) = N_m \text{cl}(R) \lor N_m \text{cl}(S)\).

9. \(N_m \text{cl}(R \land S) = N_m \text{cl}(R) \land N_m \text{cl}(S)\).

\textbf{Definition 2.7.} Let \((G, N_mG)\) be a nms and \(S \leq G\) is said to be

1. \(N_m\)-semi-open set (in short, \(N_m\)-so) \([9]\) if \(S \leq N_m \text{cl}(N_m \text{int}(S))\).

2. \(N_m\)-pre-open set (in short, \(N_m\)-po) \([10]\) if \(S \leq N_m \text{int}(N_m \text{cl}(S))\).

The complement of above \(N_m\)-open set is called an \(N_m\)-closed set.

\textbf{Definition 2.8.} \([11]\) Let \((G, N_mG)\) be nms.

1. Arbitrary union of \(N_m\) in \((G, N_mG)\) is \(N_m\) (Union Property).

2. Finite intersection of \(N_m\) in \((G, N_mG)\) is \(N_m\) (intersection Property).

\textbf{Definition 2.9.} \([11]\) A function \(f: (G, N_mG) \to (H, N_mH)\) is called neutrosophic minimal continuous map iff \(f^{-1}(V) \in N_mG\) whenever \(V \in N_mH\).

\textbf{Definition 2.10.} \([11]\) Let \(A\) be a ns in nms \((G, N_mG)\). Then \(Y\) is said to be neutrosophic minimal subspace if \((H, N_mH) = \{A \cap U : U \in N_mH\}\).

\textbf{3. \(N_m\)-\(\beta\)-open sets}

\textbf{Definition 3.1.} \((G, N_mG)\) be a nms \& \(S \leq G\) is said to be \(N_m\)-\(\beta\)-open set (in short, \(N_m\)-\(\beta\)o) if \(S \leq N_m \text{cl}(N_m \text{int}(N_m \text{cl}(S)))\).

The complement of an \(N_m\)-\(\beta\)o is called an \(N_m\)-\(\beta\)-closed set (in short, \(N_m\)-\(\beta\)c)

\textbf{Remark 3.1.} \((G, T)\) be a nt \& \(S \leq G\) is said to be \(N\)-\(\beta\)-open set \([3]\) if \(S \leq N \text{cl}(N \text{int}(N \text{cl}(S)))\). If the nms \(N_mG\) is a topology, clearly an \(N_m\)-\(\beta\)o is \(N\)-\(\beta\)-open.

Above definition of 3.1, trivially the following statement are obtained.

\textbf{Lemma 3.1.} Consider \((G, N_mG)\) be a nms.

1. Every \(N_m\)-open is \(N_m\)-\(\beta\)o.

2. \(S\) is an \(N_m\)-\(\beta\)o iff \(S \leq N_m \text{cl}(N_m \text{int}(N_m \text{cl}(S)))\).
3. Every N_m-closed set is $N_m\beta$-closed.

4. S is an $N_m\beta$-closed set iff $N_m\text{int}(N_m\text{cl}(N_m\text{int}(S))) \leq S$.

Theorem 3.1. (G, N_mG) be a nms. Any union of $N_m\beta o$ is $N_m\beta o$.

Proof. Suppose A_δ be an $N_m\beta o$ for $\delta \in \Delta$. Above definition 3.1 and Proposition 2.2(6), $A_\delta \leq N_m\text{cl}(N_m\text{int}(N_m\text{cl}(A_\delta))) \leq N_m\text{cl}(N_m\text{int}(N_m\text{cl}(A_\delta))))$. This implies $\bigcup A_\delta \leq N_m\text{cl}(N_m\text{int}(N_m\text{cl}(A_\delta))))$. Hence $\bigcup A_\delta$ is an $N_m\beta o$.

Remark 3.2. Consider (G, N_mG) be a nms. Intersection of any 2 $N_m\beta o$ may not be $N_m\beta o$.

Example 3.1. Consider $G = \{a\}$ with $N_m = \{0_\sim, P, Q, R, S, 1_\sim\}$ and $N_mC = \{1_\sim, I, J, K, L, 0_\sim\}$

- $P = \prec (0.5, 0.6, 0.6)\succ$
- $Q = \prec (0.4, 0.6, 0.8)\succ$
- $R = \prec (0.4, 0.7, 0.9)\succ$
- $S = \prec (0.5, 0.7, 0.6)\succ$
- $I = \prec (0.6, 0.4, 0.5)\succ$
- $J = \prec (0.8, 0.4, 0.4)\succ$
- $K = \prec (0.9, 0.3, 0.4)\succ$
- $L = \prec (0.6, 0.3, 0.5)\succ$

We know that $0_\sim = \{\prec g, 0, 0, 1 \succ : g \in G\}$, $1_\sim = \{\prec g, 1, 1, 0 \succ : g \in G\}$ and $0_C = \{\prec g, 1, 1, 0 \succ : g \in G\}$

Now we define the two $N_m\beta o$s as follows:

- $A = \prec (0.6, 0.7, 0.9)\succ$
- $B = \prec (0.5, 0.8, 0.4)\succ$

Here $N_mC(A) = 0_C$, $N_m\text{int}(N_mC(A)) = 1_\sim$, $N_m\text{cl}(N_m\text{int}(N_mC(A))) = 0_C$ and $N_mC(B) = 0_C$, $N_m\text{int}(N_mC(B)) = 1_\sim$, $N_m\text{cl}(N_m\text{int}(N_mC(B))) = 0_C$. But $A \wedge B = \prec (0.5, 0.7, 0.9)\succ$ is not a $N_m\beta o$ in G.

Proposition 3.1. Let (G, N_mG) be a nms.

1. If S is a N_m then it is a $N_m\beta o$.
2. If S is a N_m-po then it is a $N_m\beta o$.

Proof. (1) The proof is straightforward from the definitions.

(2) The proof is straightforward from the definitions.

Definition 3.2. Let (G, N_mG) be a nms.

1. $N_m\beta$-closure of $A = \min \{ S : S \text{ is } N_m\beta \text{-closed set and } S \geq A \}$ and it is denoted by $N_m\beta \text{cl} (A)$.

2. $N_m\beta$-interior of $A = \max \{ V : V \text{ is } N_m\beta o \text{ and } V \leq A \}$ and it is denoted by $N_m\beta \text{int}(A)$.

Theorem 3.2. Suppose (G, N_mC) be a nms and $R, S \leq G$. Then

1. $N_m\beta \text{int}(0_\sim) = 0_\sim$.
2. $N_m\beta \text{int}(1_\sim) = 1_\sim$.
3. $N_m\beta \text{int}(R) \leq R$.
4. If $R \leq S$, then $N_m\beta \text{int}(R) \leq N_m\beta \text{int}(S)$.
5. R is $N_m^{-\beta}o$ iff $N_m^{-\beta}\text{int}(R) = R$.

6. $N_m^{-\beta}\text{int}(N_m^{-\beta}\text{int}(R)) = N_m^{-\beta}\text{int}(R)$.

7. $N_m^{-\beta}\text{cl} (G - R) = G - N_m^{-\beta}\text{int}(R)$.

Proof. (1), (2) are Obvious.

(3), (4) are Obvious.

(5) It follows from Theorem 3.1.

(6) It follows condition from (5).

(7) For $R \leq G$, $G - N_m^{-\beta}\text{int}(R) = G - \max \{U : U \leq R, U is N_m^{-\beta}o\} = \min \{G - U : U \leq R, U is N_m^{-\beta}o\} = N_m^{-\beta}\text{cl} (G - R)$.

Theorem 3.3. Let (G, N_mG) be a nms and $R, S \leq G$. Then

1. $N_m^{-\beta}\text{cl} (0_\sim) = 0_\sim$.
2. $N_m^{-\beta}\text{cl} (1_\sim) = 1_\sim$.
3. $R \leq N_m^{-\beta}\text{cl} (R)$.

4. If $R \leq S$, then $N_m^{-\beta}\text{cl} (R) \leq N_m^{-\beta}\text{cl} (S)$.

5. R is $N_m^{-\beta}c$ iff $N_m^{-\beta}\text{cl} (R) = R$.

6. $N_m^{-\beta}\text{cl} (N_m^{-\beta}\text{cl} (R)) = N_m^{-\beta}\text{cl} (R)$.

7. $N_m^{-\beta}\text{int}(G - R) = G - N_m^{-\beta}\text{cl} (R)$.

Proof. It is similar to the proof of above Theorem 3.2.

Theorem 3.4. Let (G, N_mG) be a nms and $S \leq G$. Then

1. $g \in N_m^{-\beta}\text{cl} (S)$ iff $S \cap V \neq \emptyset$ for every $N_m^{-\beta}o V$ containing g.

2. $g \in N_m^{-\beta}\text{int}(S)$ iff there exists an $N_m^{-\beta}o U$ such that $U \leq S$.

Proof. (1) Suppose there is an $N_m^{-\beta}o V$ containing g such that $S \cap V = \emptyset$. Then $G - V$ is an $N_m^{-\beta}c$ such that $S \leq G - V$, $g \notin G - V$. This implies $g \notin N_m^{-\beta}\text{cl} (S)$.

The reverse relation is obvious.

(2) Obvious.

Lemma 3.2. Let (G, N_mG) be a nms and $S \leq G$. Then

1. $N_m\text{int}(N_m\text{cl}(N_m\text{int}(S))) \leq N_m\text{int}(N_m\text{cl}(N_m\text{int}(N_m^{-\beta}\text{int}(S)))) \leq N_m^{-\beta}\text{int}(S)$.

2. $N_m^{-\beta}\text{cl} (S) \leq N_m\text{cl}(N_m\text{int}(N_m\text{cl}(N_m^{-\beta}\text{cl}(S)))) \leq N_m\text{cl}(N_m\text{int}(N_m\text{cl}(S)))$.

Proof. (1) For $S \leq G$, by Theorem 3.3, $N_m^{-\beta}\text{cl} (S)$ is an $N_m^{-\beta}c$ set. Hence from Lemma 3.1, we have $N_m\text{int}(N_m\text{cl}(N_m\text{int}(S))) \leq N_m\text{int}(N_m\text{cl}(N_m^{-\beta}\text{int}(S)))) \leq N_m^{-\beta}\text{int}(S)$.

(2) It is similar to the proof of (1).
4. N_m-β-continuous map

Definition 4.1. Map $f : (G, N_mG) \to (H, N_mH)$ is said to be N_m-β-continuous if $f^{-1}(O)$ is a N_m-βo in G, for each N_m-open O in H.

Theorem 4.1. Every neutrosophic minimal continuous is N_m-β-continuous but not conversely.

2. Every N_m-semi-continuous is N_m-β-continuous but not conversely.

3. Every N_m-pre-continuous is N_m-β-continuous but not conversely.

Proof. (1) The proof follows from [Lemma 3.1 (1)].

(2) The proof follows from [Proposition 3.1 (1)].

(3) The proof follows from [Proposition 3.1 (2)].

Theorem 4.2. Map $f : G \to H$ be a function on 2 nms (G, N_mG) and (H, N_mH). Then the following statements are equivalent:

1. f is N_m-β-continuous.

2. $f^{-1}(O)$ is an N_m-βo, for each N_m-open set O in H.

3. $f^{-1}(S)$ is an N_m-βc set, for each N_m-closed S in H.

4. $f(N_m$-$\beta cl (R)) \leq N_m cl(f(R))$, for $R \subseteq G$.

5. N_m-$\beta cl (f^{-1}(S)) \leq f^{-1}(N_m cl(S))$, for $S \subseteq H$.

6. $f^{-1}(N_m$-$\beta int(S)) \leq N_m$-$\beta int(f^{-1}(S))$, for $S \subseteq H$.

Proof. (1) \Rightarrow (2) Let O be an N_m-open in H and $g \in f^{-1}(O)$. By hypothesis, there exists an N_m-βo U_g containing g such that $f(U) \leq O$. This implies $g \in U_g \leq f^{-1}(O)$ for all $g \in f^{-1}(O)$. Hence by Theorem 3.1, $f^{-1}(O)$ is N_m-βo.

(2) \Rightarrow (3) Obvious.

(3) \Rightarrow (4) For $R \subseteq G$, $f^{-1}(N_m cl(f(R))) = f^{-1}(\min \{F \subseteq H : f(R) \subseteq F \text{ and } F \text{ is } N_m\text{-closed}\}) = \min \{f^{-1}(F) \subseteq G : R \subseteq f^{-1}(F) \text{ and } F \text{ is } N_m\text{-closed} \} \geq \min \{K \subseteq G : R \subseteq K \text{ and } K \text{ is } N_m\text{-}\beta c \} = N_m \beta cl (R)$. Hence $f(N_m \beta cl (R)) \leq N_m cl(f(R))$.

(4) \Rightarrow (5) For $R \subseteq G$, from (4), it follows $f(N_m \beta cl (f^{-1}(R))) \leq N_m cl(f(f^{-1}(R))) \leq N_m cl(R)$. Hence we get (5).

(5) \Rightarrow (6) For $S \subseteq H$, from $N_m int(S) = Y - N_m cl(H - S)$ and (5), it follows: $f^{-1}(N_m int(S)) = f^{-1}(Y - N_m cl(H - S)) = G - f^{-1}(N_m cl(H - S)) \leq G - N_m \beta cl (f^{-1}(H - S)) = N_m \beta int(f^{-1}(S))$. Hence (6) is obtained.

(6) \Rightarrow (1) Let $g \in G$ and O an N_m-open set containing $f(g)$. Then from (6) and Proposition 2.2, it follows $g \in f^{-1}(O) = f^{-1}(N_m int(O)) \leq N_m \beta int(f^{-1}(O))$. So from Theorem 3.4, we can say that there exists an N_m-βo U containing g such that $g \in U \leq f^{-1}(O)$. Hence f is N_m-β-continuous.

Theorem 4.3. Map $f : G \to H$ be a function on 2 nms (G, N_mG) and (H, N_mH). Then the following statements are equivalent:
1. f is N_m-β-continuous.

2. $f^{-1}(O) \leq N_m \text{cl}(N_m \text{int}(f^{-1}(O)))$, for each N_m-open O in H.

3. $N_m \text{int}(N_m \text{cl}(f^{-1}(F))) \leq f^{-1}(F)$, for each N_m-closed set F in H.

4. $f(N_m \text{int}(N_m \text{cl}(R))) \leq N_m \text{cl}(f(R))$, for $R \leq G$.

5. $N_m \text{int}(N_m \text{cl}(f^{-1}(S))) \leq f^{-1}(N_m \text{cl}(S))$, for $S \leq H$.

6. $f^{-1}(N_m \text{cl}(S)) \leq N_m \text{cl}(N_m \text{int}(f^{-1}(S)))$, for $S \leq H$.

Proof. (1) \iff (2) It follows from Theorem 4.2 and Definition of N_m-βos.

(1) \iff (3) It follows from Theorem 4.2 and Lemma 3.1.

(3) \implies (4) Let $R \leq X$. Then from Theorem 4.2(4) and Lemma 3.2, it follows $N_m \text{int}(N_m \text{cl}(R)) \leq N_m \text{cl}(f(R)))$. Hence $f(N_m \text{int}(N_m \text{cl}(R))) \leq N_m \text{cl}(f(R))$.

(4) \implies (5) Obvious.

(5) \implies (6) From (5) and Proposition 2.2, it follows: $f^{-1}(N_m \text{int}(S)) = f^{-1}(H - N_m \text{cl}(H - S)) = G - f^{-1}(N_m \text{cl}(H - S)) \leq G - N_m \text{int}(N_m \text{cl}(f^{-1}(H - S)))$

$= N_m \text{cl}(N_m \text{int}(f^{-1}(S)))$. Hence, (6) is obtained.

(6) \Rightarrow (1) Let O be an N_m-open in H. Then by (6) and Proposition 2.2, we have $f^{-1}(O) = f^{-1}(N_m \text{int}(O)) \leq N_m \text{cl}(N_m \text{int}(f^{-1}(O)))$. This implies $f^{-1}(O)$ is an N_m-β-o. Hence by (2), f is N_m-β-continuous. \square

Definition 4.2. [10] (G, N_mG) be a nms. Then G is said to be N_m-T_2 if for each distinct points g and h of G, there exist two disjoint N_m-open U, V such that $g \in U$ and $h \in V$.

Definition 4.3. (G, N_mG) be a nms. Then G is said to be N_m-β-T_2 if for any distinct points g and h of G, there exist disjoint N_m-β-open C, D such that $g \in C$ and $h \in D$.

Theorem 4.4. Map $f : G \to H$ be a map on two nms (G, N_mG) and (H, N_mH). If f is an injective and N_m-β continuous map and if H is N_m-T_2, then G is N_m-β-T_2.

Proof. Obvious. \square

Theorem 4.5. Map $f : G \to H$ be a map on two nms (G, N_mG) and (H, N_mH). If f is an injective and N_m-β continuous map with an N_m-β-closed graph, then G is N_m-β-T_2.

Proof. Suppose g_1 and g_2 be any distinct points of G. Then $f(g_1) \neq f(g_2)$, so $(g_1, f(g_2)) \in (G \times H) - L(f)$. Since the graph $L(f)$ is N_m-β-c, there exist an N_m-β-o containing g_1 and $D \in N_mH$ containing $f(g_2)$ such that $f(C) \cap D = \emptyset$. Since f is N_m-β continuous, $f^{-1}(D)$ is an N_m-β-o containing g_2 such that $C \cap f^{-1}(D) = \emptyset$. Hence G is N_m-β-T_2. \square

Definition 4.4. [10] (G, N_mG) be a nms and $S \leq G$, S is called N_m-compact (respectively, almost N_m-compact) relative to S if every collection $\{U_i : i \in \Delta\}$ of N_m-open subsets of G such that $S \leq \max \{U_i : i \in \Delta\}$, there exists a finite subset Δ_0 of Δ such that $S \leq \max \{U_j : j \in \Delta_0\}$ (respectively, $S \leq \max \{N_m \text{cl}(U_j) : j \in \Delta_0\}$). (G, N_mG) be a nms and $S \leq G$, S is said to be N_m-compact (respectively, almost N_m-compact) if S is N_m-compact (respectively, almost N_m-compact) as a neutrosophic minimal subspace of G. 109
Definition 4.5. \((G, N_mG)\) be a nms and \(S \leq G\), \(S\) is called \(N_m\)-\(\beta\)-compact (respectively, almost \(N_m\)-\(\beta\)-compact) relative to \(S\) if every collection \(\{U_\delta : \delta \in \Delta\}\) of \(N_m\)-\(\beta\)-open subsets of \(G\) such that \(S \leq \max \{U_\delta : \delta \in \Delta\}\) (respectively, \(S \leq \max \{N_m \beta cl (U_\omega) : \omega \in \Omega\}\)). \((G, N_mG)\) be a nms and \(S \leq G\), \(S\) is said to be \(N_m\)-\(\beta\)-compact (resp. almost \(N_m\)-\(\beta\)-compact) if \(S\) is \(N_m\)-\(\beta\)-compact (resp. almost \(N_m\)-\(\beta\)-compact) as a neutrosophic minimal subspace of \(G\).

Theorem 4.6. Map \(f : G \to H\) be a map on 2 nms \((G, N_mG)\) and \((H, N_mH)\). If \(S\) is an \(N_m\)-\(\beta\)-compact set, then \(f(S)\) is \(N_m\)-compact.

Proof. Obvious.

5. \(N_m\)-regular open
We introduce following definitions

Definition 5.1. \((G, N_mG)\) be a nms and \(A \leq G\), \(A\) is called \(N_m\)-regular open (in short, \(N_m\)-ro) if \(A = N_m int(N_m cl(A))\).

Theorem 5.1. Any \(N_m\)-ro is \(N_m\)-open.

Proof. If \(A\) is \(N_m\)-ro in \((G, N_mG)\), \(A = N_m int(N_m cl(A))\). Then \(N_m int(A) = N_m int(N_m int(N_m cl(A))) = N_m int(N_m cl(A)) = A\). That is, \(A\) is \(N_m\)-open in \((G, N_mG)\).

Example 5.1. \(G = \{a\}\) with \(N_m = \{0_~, P, 1_~\}\) and \(N_mC = \{1_~, Q, 0_~\}\) where \(P = \prec (0.1, 0.5, 0.1)\succ\); \(Q = \prec (0.5, 0.5, 0.5)\succ\)

Now we define the \(N_m\)-ro sets as follows:
\(A = \prec (0.5, 0.5, 0.5)\succ\)
Here \(N_m cl(A) = Q\), \(N_m int(N_m cl(A)) = P\) is a \(N_m\)-ro set in \(G\).

Definition 5.2. \((G, N_mG)\) be a nms and \(S \leq G\), \(S\) is said to be \(N_m\)-\(\pi\)-open set if \(S\) is the finite union of \(N_m\)-ro.

Remark 5.1. For a subset of \(A\) of an nms \((G, N_mG)\), we have following implications:

\[\text{\(N_m\)-regular open} \Rightarrow \text{\(N_m\)-\(\pi\)-open} \Rightarrow \text{\(N_m\)-open}\]

Diagram-I

Example 5.2. \(G = \{a\}\) with \(N_m = \{0_~, P, L, 1_~\}\) and \(N_mC = \{1_~, M, N, 0_~\}\) where \(P = \prec (0.1, 0.5, 0.1)\succ\); \(L = \prec (0.5, 0.5, 0.5)\succ\)

Now we define the two \(N_m\)-ro sets as follows:
\(A = \prec (0.1, 0.5, 0.1)\succ\)
\(B = \prec (0.5, 0.5, 0.5)\succ\)
Here \(N_m cl(A) = M\), \(N_m int(N_m cl(A)) = P\); \(N_m cl(B) = N\), \(N_m int(N_m cl(B)) = L\) is a \(N_m\)-ro set in \(G\). Here, \(A \lor B = \prec (0.5, 0.5, 0.1)\succ\) is a \(N_m\)-\(\pi\)-open sets but it is not a \(N_m\)-ro.
Example 5.3. \(G = \{ a \} \) with \(N_m = \{ 0_\sim, A, 1_\sim \} \) and \(N_m^C = \{ 1_\sim, B, 0_\sim \} \) where
\[
A = \prec (0.6, 0.7, 0.3) \succ ; B = \prec (0.3, 0.3, 0.6) \succ
\]
Now we define the \(N_m \)-ro sets as follows:
\[
R = \prec (0, 0, 1) \succ ; S = \prec (1, 1, 0) \succ
\]
Here \(R \lor S \prec (1, 1, 0) \succ \) is a \(N_m \)-\(\pi \)-open set in \(G \). Here, \(A = \prec (0.6, 0.7, 0.3) \succ \) is \(N_m \)-open but it is not a \(N_m \)-\(\pi \)-open.

Conclusion

We presented several definitions, properties, explanations and examples inspired from the concept of \(N_m \)-\(\beta \)-open, \(N_m \)-regular-open and \(N_m \)-\(\pi \)-open. The results of this study may be help in many reserches.

Acknowledgment

We thank to referees for giving their useful suggestions and help to improve this article.

References

[9] S Ganesan and F. Smarandache, On \(N_m \)-semi-open sets in neutrosophic minimal structure spaces (communicated)
