

Some new classes of neutrosophic minimal open sets

Selvaraj Ganesan¹*, Florentin Smarandache² ¹PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India. (Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India). Orchid iD: 0000-0002-7728-8941 ² Mathematics & Science Department, University of New Maxico, 705 Gurley Ave, Gallup, NM 87301, USA. ORCID iD: 0000-0002-5560-5926

Received: 14 Feb 2021•Accepted: 19 Mar 2021•Published Online: 28 Apr 2021

Abstract: This article focuses on $N_m - \beta$ -open, β -interior and β -closure operators using neutrosophic minimal structures. We investigate properties of such concepts and we introduced the concepts of $N_m - \beta$ -continuous, $N_m - \beta$ -closed graph, $N_m - \beta$ -compact and almost $N_m - \beta$ -compact. Finally, we introduced the concepts of N_m -regular-open sets and $N_m - \pi$ -open sets and investigate some properties.

Key words: N_m- β -continuous, N_m- β -closed graph, N_m- β -compact, almost N_m- β -compact, N_m-regular-open and N_m- π -open

1. Introduction

Zadeh's [17] Fuzzy set laid the foundation of many fields such as intuitionistic fuzzy, neutrosophic set, rough sets. Later, researchers developed K. T. Atanassov's [4] intuitionistic fuzzy set theory in many fields such as differential equations, topology, computerscience and so on. F. Smarandache [15, 16] found that some objects have indeterminacy or neutral other than membership and non-membership. So he coined the notion of neutrosophy. V. Popa & T. Noiri [12] introduced the notions of minimal structure which is a generalization of a topology on a given nonempty set. We introduced the concepts of \mathcal{M} -continuous maps. M. Karthika et al [11] studied neutrosophic minimal structure spaces. S. Ganesan and F. Smarandache [9] studied N_msemi-open in neutrosophic minimal structure spaces. S. Ganesan et al [10] studied N_m-pre-continuous maps. This article focuses on N_m- β -open, β -interior and β -closure operators using neutrosophic minimal structures. We investigate properties of such concepts and we introduced the notions of N_m- β -continuous, N_m- β -closed graph, N_m- β -compact and almost N_m- β -compact and investigate some properties for such concepts. Finally, we introduced N_m-regular-open, N_m- π -open sets and investigate fundamental properties.

2. Preliminaries

Definition 2.1. [15, 16] Neutrosophic set (in short ns) K on a set $G \neq \emptyset$ is defined by $K = \{ \prec a, P_K(a), Q_K(a), R_K(a) \succ : a \in G \}$, where $P_K : G \rightarrow [0,1], Q_K : G \rightarrow [0,1]$ and $R_K : G \rightarrow [0,1]$ denotes the membership of an object, indeterminacy and non-membership of an object, for each a on G to K, respectively and $0 \leq P_K(a) + Q_K(a) + R_K(a) \leq 3$ for each $a \in G$.

Proposition 2.1. [13] For any ns S, then the following conditions are holds:

[©]Asia Mathematika, DOI: 10.5281/zenodo.4724804

^{*}Correspondence: sgsgsgsgsg77@gmail.com

- 1. $\theta_{\sim} \leq S, \ \theta_{\sim} \leq \theta_{\sim}$.
- 2. $S \leq 1_{\sim}, 1_{\sim} \leq 1_{\sim}.$

Definition 2.2. [13] Let $K = \{ \prec a, P_K(a), Q_K(a), R_K(a) \succ : a \in G \}$ be a ns.

- 1. A ns K is an empty set i.e., $K = 0_{\sim}$ if 0 is membership of an object and 0 is an indeterminacy and 1 is an non-membership of an object respectively. i.e., $0_{\sim} = \{g, (0, 0, 1) : g \in G\}$
- 2. A ns K is a universal set i.e., $K = 1_{\sim}$ if 1 is membership of an object and 1 is an indeterminacy and 0 is an non-membership of an object respectively. $1_{\sim} = \{g, (1, 1, 0) : g \in G\}$
- 3. K₁ \cup K₂ = {a, max { $P_{K_1}(a), P_{K_2}(a)$ }, max { $Q_{K_1}(a), Q_{K_2}(a)$ }, min { $R_{K_1}(a), R_{K_2}(a)$ } : a \in G}
- 4. K₁ \cap K₂ = {a, min { $P_{K_1}(a), P_{K_2}(a)$ }, min { $Q_{K_1}(a), Q_{K_2}(a)$ }, max { $R_{K_1}(a), R_{K_2}(a)$ } : a \in G}
- 5. $K_1^C = \{ \prec a, R_K(a), 1 Q_K(a), P = P_K(a) \succ : a \in G \}$

Definition 2.3. [13] Neutrosophic topology (nt) in Salama's sense on a nonempty set G is a family τ of ns in G satisfying three conditions:

- 1. Empty set (0_{\sim}) and universal set (1_{\sim}) are members of τ .
- 2. $K_1 \cap K_2 \in \tau$ where $K_1, K_2 \in \tau$.
- 3. $\cup K_{\delta} \in \tau$ for every $\{K_{\delta} : \delta \in \Delta\} \leq \tau$.

neutrosophic minimal structure space.

Definition 2.4. [11] The neutrosophic minimal structure space over a universal set G be denoted by N_m . N_m is said to be neutrosophic minimal structure space (in short, nms) over G if it satisfying following the axiom: $0_{\sim}, 1_{\sim} \in N_m$. A family of neutrosophic minimal structure space is denoted by (G, N_{mG}). Note that neutrosophic empty set and neutrosophic universal set can form a topology and it is known as

Remark 2.1. [11] Each ns in nms is neutrosophic minimal open set (in short, nmo). Complement of nmo is neutrosophic minimal closed set (in short, nmc).

Definition 2.5. [11] A is N_m -closed if and only if $N_m cl(A) = A$. Similarly, A is a N_m -open if and only if $N_m int(A) = A$.

Definition 2.6. [11] Let N_m be any nms and A be any neutrosophic set. Then

- 1. Every A \in N_m is open and its complement is N_m closed.
- 2. N_m-closure of A = min {F : F is a nmc and F \geq A} and it is denoted by N_m cl(A).
- 3. N_m -interior of $A = \max \{F : F \text{ is a nmo and } F \leq A\}$ and it is denoted by N_m int(A).

In general N_m int(A) is subset of A and A is a subset of N_m cl(A).

Proposition 2.2. [11] Let R and S are any ns of nms N_m over G. Then

1. $N_m^C = \{0, 1, R_i^C\}$ where R_i^C is a complement of ns R_i .

- 2. $G N_m int(S) = N_m cl(G S).$
- 3. $G N_m cl(S) = N_m int(G S).$
- 4. $N_m cl(R^C) = (N_m cl(R))^C = N_m int(R).$
- 5. N_m closure of an empty set is an empty set and N_m closure of a universal set is a universal set. Similarly, N_m interior of an empty set and universal set respectively an empty and a universal set.
- 6. If S is a subset of R then $N_m cl(S) \leq N_m cl(R)$ and $N_m int(S) \leq N_m int(R)$.
- 7. $N_m cl(N_m cl(R)) = N_m cl(R)$ and $N_m int(N_m int(R)) = N_m int(R)$.
- 8. $N_m cl(R \lor S) = N_m cl(R) \lor N_m cl(S)$.
- 9. $N_m cl(R \land S) = N_m cl(R) \land N_m cl(S).$

Definition 2.7. Let (G, N_{mG}) be a nms and $S \leq G$ is said to be

- 1. N_m -semi-open set (in short, N_m -so) [9] if $S \leq N_m cl(N_m int(S))$.
- 2. N_m -pre-open set (in short, N_m -po) [10] if $S \leq N_m int(N_m cl(S))$. The complement of above N_m -open set is called an N_m -closed set.

Definition 2.8. [11] Let (G, N_{mG}) be nms.

- 1. Arbitrary union of nmo in (G, N_{mG}) is nmo. (Union Property).
- 2. Finite intersection of nmo in (G, N_{mG}) is nmo. (intersection Property).

Definition 2.9. [11] A function f: (G, N_{mG}) \rightarrow (H, N_{mH}) is called neutrosophic minimal continuous map iff $f^{-1}(V) \in N_{mG}$ whenever $V \in N_{mH}$.

Definition 2.10. [11] let A be a ns in nms (G, N_{mG}). Then Y is said to be neutrosophic minimal subspace if (H, N_{mH}) = {A \cap U : U \in N_{mH} }.

3. N_m - β -open sets

Definition 3.1. (G, N_{mG}) be a nms & $S \leq G$ is said to be $N_m - \beta$ -open set (in short, $N_m - \beta o$) if $S \leq N_m \operatorname{cl}(N_m \operatorname{int}(N_m \operatorname{cl}(S)))$.

The complement of an $N_m - \beta o$ is called an $N_m - \beta$ -closed set(in short, $N_m - \beta c$)

Remark 3.1. (G, \mathcal{T}) be a nt & $S \leq G$ is said to be \mathcal{N} - β -open set [3] if $S \leq \mathcal{N} cl(\mathcal{N} int(\mathcal{N} cl(S)))$. If the nms N_{mG} is a topology, clearly an N_m - β o is \mathcal{N} - β -open.

Above definition of 3.1, trivially the following statement are obtained.

Lemma 3.1. Consider (G, N_{mG}) be a nms.

- 1. Every N_m -open is N_m - β o.
- 2. S is an $N_m \beta o$ iff $S \leq N_m cl(N_m int(N_m cl(S)))$.

- 3. Every N_m -closed set is N_m - β -closed.
- 4. S is an $N_m \beta$ -closed set iff $N_m int(N_m cl(N_m int(S))) \leq S$.

Theorem 3.1. (G, N_{mG}) be a nms. Any union of $N_m - \beta o$ is $N_m - \beta o$.

Proof. Suppose A_{δ} be an N_m - β o for $\delta \in \Delta$. Above definition 3.1 and Proposition 2.2(6), $A_{\delta} \leq N_m \operatorname{cl}(N_m \operatorname{int}(N_m \operatorname{cl}(A_{\delta})))$ $\leq N_m \operatorname{cl}(N_m \operatorname{int}(N_m \operatorname{cl}(\bigcup A_{\delta})))$. This implies $\bigcup A_{\delta} \leq N_m \operatorname{cl}(N_m \operatorname{int}(N_m \operatorname{cl}(\bigcup A_{\delta})))$. Hence $\bigcup A_{\delta}$ is an N_m - β o.

Remark 3.2. Consider (G, N_{mG}) be a nms. Intersection of any $2 N_m - \beta o$ may not be $N_m - \beta o$.

Example 3.1. Consider $G = \{a\}$ with $N_m = \{0_{\sim}, P, Q, R, S, 1_{\sim}\}$ and $N_m^C = \{1_{\sim}, I, J, K, L, 0_{\sim}\}$ where $P = \prec (0.5, 0.6, 0.6) \succ; Q = \prec (0.4, 0.6, 0.8) \succ$ $R = \prec (0.4, 0.7, 0.9) \succ; S = \prec (0.5, 0.7, 0.6) \succ$ $I = \prec (0.6, 0.4, 0.5) \succ; J = \prec (0.8, 0.4, 0.4) \succ$ $K = \prec (0.9, 0.3, 0.4) \succ; L = \prec (0.6, 0.3, 0.5) \succ$ We know that $0_{\sim} = \{\prec g, 0, 0, 1 \succ; g \in G\}, 1_{\sim} = \{\prec g, 1, 1, 0 \succ; g \in G\}$ and $0_{\sim}^C = \{\prec g, 1, 1, 0 \succ; g \in G\}, 1_{\sim}^C = \{\prec g, 0, 0, 1 \succ; g \in G\}.$ Now we define the two N_m - β os as follows: $A = \prec (0.6, 0.7, 0.9) \succ; B = \prec (0.5, 0.8, 0.4) \succ$ Here $N_m cl(A) = 0_{\sim}^C, N_m int(N_m cl(A)) = 1_{\sim}, N_m cl(N_m int(N_m cl(A))) = 0_{\sim}^C$ and $N_m cl(B) = 0_{\sim}^C, N_m int(N_m cl(B)) = 1_{\sim}, N_m cl(N_m int(N_m cl(A))) = 0_{\sim}^C$. But $A \land B = \prec (0.5, 0.7, 0.9) \succ$ is not a N_m - β o in G.

Proposition 3.1. Let (G, N_{mG}) be a nms.

- 1. If S is a N_m so then it is a N_m - β o.
- 2. If S is a N_m -po then it is a N_m - β o.

Proof. (1) The proof is straightforward from the definitions.(2) The proof is straightforward from the definitions.

Definition 3.2. Let (G, N_{mG}) be a nms.

- 1. $N_m \beta$ -closure of $A = \min \{S : S \text{ is } N_m \beta$ -closed set and $S \ge A\}$ and it is denoted by $N_m \beta cl (A)$.
- 2. $N_m \beta$ -interior of $A = \max \{V : V \text{ is } N_m \beta \text{ o and } V \leq A\}$ and it is denoted by $N_m \beta \operatorname{int}(A)$.

Theorem 3.2. Suppose (G, N_{mG}) be a nms and $R, S \leq G$. Then

- 1. $N_m \beta int(\theta_{\sim}) = \theta_{\sim}$.
- 2. $N_m \beta int(1_{\sim}) = 1_{\sim}$.
- 3. $N_m \beta int(R) \leq R$.
- 4. If $R \leq S$, then $N_m \beta int(R) \leq N_m \beta int(S)$.

- 5. R is $N_m \beta o$ iff $N_m \beta int(R) = R$.
- 6. $N_m \beta int(N_m \beta int(R)) = N_m \beta int(R).$
- 7. $N_m \beta cl (G R) = G N_m \beta int(R).$

Proof. (1), (2) are Obvious.

- (3), (4) are Obvious.
- (5) It follows from Theorem 3.1.
- (6) It follows condition from (5).

(7) For $R \leq G$, $G - N_m - \beta int(R) = G - max \{U : U \leq R, U \text{ is } N_m - \beta o\} = min \{G - U : U \leq R, U \text{ is } N_m - \beta o\} = min \{G - U : G - R \leq G - U\}$, U is $N_m - \beta o\} = N_m - \beta cl (G - R)$.

Theorem 3.3. Let (G, N_{mG}) be a nms and $R, S \leq G$. Then

- 1. $N_m \beta c l (0_{\sim}) = 0_{\sim}$.
- 2. $N_m \beta c l (1_{\sim}) = 1_{\sim}$.
- 3. $R \leq N_m \beta cl (R)$.
- 4. If $R \leq S$, then $N_m \beta cl (R) \leq N_m \beta cl (S)$.
- 5. R is $N_m \beta c$ iff $N_m \beta cl (R) = R$.
- 6. $N_m \beta cl (N_m \beta cl (R)) = N_m \beta cl (R).$
- 7. $N_m \beta int(G R) = G N_m \beta cl (R).$

Proof. It is similar to the proof of above Theorem 3.2.

Theorem 3.4. Let (G, N_{mG}) be a nms and $S \leq G$. Then

- 1. $g \in N_m \beta cl (S)$ iff $S \cap V \neq \emptyset$ for every $N_m \beta o V$ containing g.
- 2. $g \in N_m \beta \operatorname{int}(S)$ iff there exists an $N_m \beta \circ U$ such that $U \leq S$.

Proof. (1) Suppose there is an N $_m$ - β o V containing g such that S \cap V = \emptyset . Then G - V is an N $_m$ - β c such that S \leq G - V, g \notin G - V. This implies g \notin N $_m$ - β cl (S).

The reverse relation is obvious. (2) Obvious.

Lemma 3.2. Let (G, N_{mG}) be a nms and $S \leq G$. Then

- 1. $N_m int(N_m cl(N_m int(S))) \leq N_m int(N_m cl(N_m int(N_m \beta int(S)))) \leq N_m \beta int(S).$
- 2. $N_m \beta cl(S) \leq N_m cl(N_m int(N_m cl(N_m \beta cl(S)))) \leq N_m cl(N_m int(N_m cl(S))).$

Proof. (1) For $S \leq G$, by Theorem 3.3, $N_m - \beta cl$ (S) is an $N_m - \beta c$ set. Hence from Lemma 3.1, we have $N_m int(N_m cl(N_m int(S))) \leq N_m int(N_m cl(N_m int(N_m - \beta int(S)))) \leq N_m - \beta int(S)$. (2) It is similar to the proof of (1).

4. N_m - β -continuous map

Definition 4.1. Map $f: (G, N_{mG}) \to (H, N_{mH})$ is said to be $N_m - \beta$ -continuous if $f^{-1}(O)$ is a $N_m - \beta o$ in G, for each N_m -open O in H.

Theorem 4.1. Every neutrosophic minimal continuous is $N_m - \beta$ -continuous but not conversely.

- 2. Every N_m -semi-continuous is N_m - β -continuous but not conversely.
- 3. Every N_m -pre-continuous is N_m - β -continuous but not conversely.

Proof. (1) The proof follows from [Lemma 3.1 (1)].

- (2) The proof follows from [Proposition 3.1 (1)].
- (3) The proof follows from [Proposition 3.1 (2)].

Theorem 4.2. Map $f: G \to H$ be a function on 2 nms (G, N_{mG}) and (H, N_{mH}) . Then the following statements are equivalent:

- 1. f is $N_m \beta$ -continuous.
- 2. $f^{-1}(O)$ is an $N_m \beta o$, for each N_m -open set O in H.
- 3. $f^{-1}(S)$ is an N_m - βc set, for each N_m -closed S in H.
- 4. $f(N_m \beta cl(R)) \leq N_m cl(f(R)), \text{ for } R \leq G.$
- 5. $N_m \beta cl (f^{-1}(S)) \leq f^{-1}(N_m cl(S)), \text{ for } S \leq H.$
- 6. $f^{-1}(N_m int(S)) \leq N_m \beta int(f^{-1}(S)), \text{ for } S \leq H.$

Proof. (1) \Rightarrow (2) Let O be an N_m-open in H and $g \in f^{-1}(O)$. By hypothesis, there exists an N_m- $\beta o U_g$ containing g such that $f(U) \leq O$. This implies $g \in U_g \leq f^{-1}(O)$ for all $g \in f^{-1}(O)$. Hence by Theorem 3.1, $f^{-1}(O)$ is N_m- βo .

 $(2) \Rightarrow (3)$ Obvious.

 $(3) \Rightarrow (4) \text{ For } \mathbf{R} \leq \mathbf{G}, \ \mathbf{f}^{-1}(\mathbf{N}_m \operatorname{cl}(\mathbf{f}(\mathbf{R}))) = \mathbf{f}^{-1}(\min \{\mathbf{F} \leq \mathbf{H} : \mathbf{f}(\mathbf{R}) \leq \mathbf{F} \text{ and } \mathbf{F} \text{ is } \mathbf{N}_m \text{-closed}\}) = \min \{\mathbf{f}^{-1}(\mathbf{F}) \leq \mathbf{G} : \mathbf{R} \leq \mathbf{f}^{-1}(\mathbf{F}) \text{ and } \mathbf{F} \text{ is } \mathbf{N}_m \text{-}\beta \operatorname{c}\} \geq \min \{\mathbf{K} \leq \mathbf{G} : \mathbf{R} \leq \mathbf{K} \text{ and } \mathbf{K} \text{ is } \mathbf{N}_m \text{-}\beta \operatorname{c}\} = \mathbf{N}_m \text{-}\beta \operatorname{cl}(\mathbf{R}). \text{ Hence } \mathbf{f}(\mathbf{N}_m \text{-}\beta \operatorname{cl}(\mathbf{R})) \leq \mathbf{N}_m \operatorname{cl}(\mathbf{f}(\mathbf{R})).$

(4) \Rightarrow (5) For R \leq G, from (4), it follows $f(N_m - \beta \operatorname{cl}(f^{-1}(R))) \leq N_m \operatorname{cl}(f(f^{-1}(R))) \leq N_m \operatorname{cl}(R)$. Hence we get (5).

(5) \Rightarrow (6) For S \leq H, from N_mint(S) = Y - N_mcl(H - S) and (5), it follows: $f^{-1}(N_mint(S)) = f^{-1}(Y - N_mcl(H - S)) = G - f^{-1}(N_mcl(H - S)) \leq G - N_m - \beta cl (f^{-1}(H - S)) = N_m - \beta int(f^{-1}(S))$. Hence (6) is obtained.

(6) \Rightarrow (1) Let $g \in G$ and O an N_m -open set containing f(g). Then from (6) and Proposition 2.2, it follows $g \in f^{-1}(O) = f^{-1}(N_m \operatorname{int}(O)) \leq N_m - \beta \operatorname{int}(f^{-1}(O))$. So from Theorem 3.4, we can say that there exists an $N_m - \beta \circ U$ containing g such that $g \in U \leq f^{-1}(O)$. Hence f is $N_m - \beta$ -continuous.

Theorem 4.3. Map $f : G \to H$ be a function on 2 nms (G, N_{mG}) and (H, N_{mH}) . Then the following statements are equivalent:

- 1. f is $N_m \beta$ -continuous.
- 2. $f^{-1}(O) \leq N_m \operatorname{cl}(N_m \operatorname{int}(f^{-1}(O))))$, for each N_m -open O in H.
- 3. $N_m int(N_m cl(f^{-1}(F))) \leq f^{-1}(F)$, for each N_m -closed set F in H.
- 4. $f(N_m int(N_m cl(R))) \leq N_m cl(f(R)), \text{ for } R \leq G.$
- 5. $N_m int(N_m cl(f^{-1}(S))) \leq f^{-1}(N_m cl(S)), \text{ for } S \leq H.$
- 6. $f^{-1}(N_m int(S)) \leq N_m cl(N_m int(f^{-1}(S))), \text{ for } S \leq H.$

Proof. (1) \Leftrightarrow (2) It follows from Theorem 4.2 and Definition of N_m- β os.

(1) \Leftrightarrow (3) It follows from Theorem 4.2 and Lemma 3.1.

 $(3) \Rightarrow (4) \text{ Let } \mathbf{R} \leq \mathbf{X}. \text{ Then from Theorem 4.2}(4) \text{ and Lemma 3.2, it follows } \mathbf{N}_m \operatorname{int}(\mathbf{N}_m \operatorname{cl}(\mathbf{R})) \leq \mathbf{N}_m - \beta \operatorname{cl}(\mathbf{R})) \\ \leq \mathbf{f}^{-1}(\mathbf{N}_m \operatorname{cl}(\mathbf{f}(\mathbf{R}))). \text{ Hence } \mathbf{f}(\mathbf{N}_m \operatorname{int}(\mathbf{N}_m \operatorname{cl}(\mathbf{R}))) \leq \mathbf{N}_m \operatorname{cl}(\mathbf{f}(\mathbf{R})).$

 $(4) \Rightarrow (5)$ Obvious.

 $(5) \Rightarrow (6) \text{ From } (5) \text{ and Proposition 2.2, it follows: } f^{-1}(N_m int(S)) = f^{-1}(H - N_m cl(H - S)) = G - f^{-1}(N_m cl(H - S)) \leq G - N_m int(N_m cl(f^{-1}(H - S)))$

= $N_m cl(N_m int(f^{-1}(S)))$. Hence, (6) is obtained.

(6) \Rightarrow (1) Let O be an N_m-open in H. Then by (6) and Proposition 2.2, we have $f^{-1}(O) = f^{-1}(N_m int(O)) \leq N_m cl(N_m int(f^{-1}(O)))$. This implies $f^{-1}(O)$ is an N_m- β o. Hence by (2), f is N_m- β -continuous.

Definition 4.2. [10] (G, N_{mG}) be a nms. Then G is said to be N_m - T_2 if for each distinct points g and h of G, there exist two disjoint N_m -open U, V such that $g \in U$ and $h \in V$.

Definition 4.3. (G, N_{mG}) be a nms. Then G is said to be $N_m - \beta - T_2$ if for any distinct points g and h of G, there exist disjoint $N_m - \beta \circ C$, D such that $g \in C$ and $h \in D$.

Theorem 4.4. Map $f: G \to H$ be a map on two nms (G, N_{mG}) and (H, N_{mH}) . If f is an injective and $N_m - \beta$ continuous map and if H is $N_m - T_2$, then G is $N_m - \beta - T_2$.

Proof. Obvious.

Theorem 4.5. Map $f: G \to H$ be a map on two nms (G, N_{mG}) and (H, N_{mH}) . If f is an injective and $N_m - \beta$ continuous map with an $N_m - \beta$ -closed graph, then G is $N_m - \beta - T_2$.

Proof. Suppose g_1 and g_2 be any distinct points of G. Then $f(g_1) \neq f(g_2)$, so $(g_1, f(g_2)) \in (G \times H) - L(f)$. Since the graph L(f) is $N_m - \beta c$, there exist an $N_m - \beta c$ containing g_1 and $D \in N_{mH}$ containing $f(g_2)$ such that $f(C) \cap D = \emptyset$. Since f is $N_m - \beta$ continuous, $f^{-1}(D)$ is an $N_m - \beta c$ containing g_2 such that $C \cap f^{-1}(D) = \emptyset$. Hence G is $N_m - \beta - T_2$.

Definition 4.4. [10] (G, N_{mG}) be a nms and $S \leq G$, S is called N_m -compact (respectively, almost N_m compact) relative to S if every collection $\{U_i : i \in \Delta\}$ of N_m -open subsets of G such that $S \leq \max\{U_i : i \in \Delta\}$, there exists a finite subset Δ_0 of Δ such that $S \leq \max\{U_j : j \in \Delta_0\}$ (respectively, $S \leq \max\{N_m cl(U_j) : j \in \Delta_0\}$). (G, N_{mG}) be a nms and $S \leq G$, S is said to be N_m -compact (respectively, almost N_m -compact) if S is N_m -compact (respectively, almost N_m -compact) as a neutrosophic minimal subspace of G.

Definition 4.5. (G, N_{mG}) be a nms and $S \leq G$, S is called $N_m - \beta$ -compact (respectively, almost $N_m - \beta$ compact) relative to S if every collection $\{U_{\delta} : \delta \in \Delta\}$ of $N_m - \beta$ -open subsets of G such that $S \leq \max \{U_{\delta} : \delta \in \Delta\}$, there exists a finite subset Ω of Δ such that $S \leq \max \{U_{\omega} : \omega \in \Omega\}$ (respectively, $S \leq \max \{N_m \beta cl(U_{\omega}) : \omega \in \Omega\}$). (G, N_{mG}) be a nms and $S \leq G$, S is said to be $N_m - \beta$ -compact (respectively, almost $N_m - \beta$ -compact) if S is $N_m - \beta$ -compact (resp. almost $N_m - \beta$ -compact) as a neutrosophic minimal subspace of G.

Theorem 4.6. Map $f: G \to H$ be a map on 2 nms (G, N_{mG}) and (H, N_{mH}) . If S is an N_m - β -compact set, then f(S) is N_m -compact.

Proof. Obvious.

5. N_m -regular open

We introduce following definitions

Definition 5.1. (G, N_{mG}) be a nms and $A \leq G$, A is called N_m -regular open (in short, N_m -ro) if $A = N_m int(N_m cl(A))$.

Theorem 5.1. Any N_m -ro is N_m -open.

Proof. If A is N_m -ro in (G, N_{mG}), $A = N_m int(N_m cl(A))$. Then $N_m int(A) = N_m int(N_m int(N_m cl(A))) = N_m int(N_m cl(A)) = A$. That is, Ais N_m -open in (G, N_{mG}).

Example 5.1. $G = \{a\}$ with $N_m = \{0_{\sim}, P, 1_{\sim}\}$ and $N_m^C = \{1_{\sim}, Q, 0_{\sim}\}$ where $P = \prec (0.5, 0.5, 0.5) \succ$; $Q = \prec (0.5, 0.5, 0.5) \succ$ Now we define the N_m -ro sets as follows: $A = \prec (0.5, 0.5, 0.5) \succ$ Here $N_m cl(A) = Q$, $N_m int(N_m cl(A)) = P$ is a N_m -ro in G.

Definition 5.2. (G, N_{mG}) be a nms and S \leq G, S is said to be N_m- π -open set if S is the finite union of N_m-ro.

Remark 5.1. For a subset of A of an nms (G, N_{mG}) , we have following implications:

$$N_m$$
-regular open $\Rightarrow N_m$ - π -open $\Rightarrow N_m$ -open

Diagram-I

Example 5.2. $G = \{a\}$ with $N_m = \{0_{\sim}, P, L, 1_{\sim}\}$ and $N_m^C = \{1_{\sim}, M, N, 0_{\sim}\}$ where $P = \prec (0.1, 0.5, 0.1) \succ ; L = \prec (0.5, 0.5, 0.5) \succ$ $M = \prec (0.1, 0.5, 0.1) \succ ; N = \prec (0.5, 0.5, 0.5) \succ$ Now we define the two N_m -ro sets as follows: $A = \prec (0.1, 0.5, 0.1) \succ$ $B = \prec (0.5, 0.5, 0.5) \succ$ Here $N_m cl(A) = M$, $N_m int(N_m cl(A)) = P$; $N_m cl(B) = N$, $N_m int(N_m cl(B)) = L$ is a N_m -ro set in G. Here, $A \lor B = \prec (0.5, 0.5, 0.1) \succ$ is a N_m - π -open sets but it is not a N_m -ro. **Example 5.3.** $G = \{a\}$ with $N_m = \{0_{\sim}, A, 1_{\sim}\}$ and $N_m^C = \{1_{\sim}, B, 0_{\sim}\}$ where $A = \prec (0.6, 0.7, 0.3) \succ ; B = \prec (0.3, 0.3, 0.6) \succ$ Now we define the N_m -ro sets as follows: $R = \prec (0, 0, 1) \succ ; S = \prec (1, 1, 0) \succ$ Here $R \lor S \prec (1, 1, 0) \succ$ is a N_m - π -open set in G. Here, $A = \prec (0.6, 0.7, 0.3) \succ$ is N_m -open but it is not a N_m - π -open.

Conclusion

We presented several definitions, properties, explanations and examples inspired from the concept of $N_m - \beta$ -open, N_m -regular-open and $N_m - \pi$ -open. The results of this study may be help in many reserches.

Acknowledgment

We thank to referees for giving their useful suggestions and help to improve this article.

References

- M. Abdel-Basset, A. Gamal, L. H. Son and F. Smarandache, A bipolar neutrosophic multi criteria decision Making frame work for professional selection. Appl. Sci.(2020), 10, 1202.
- [2] M. Abdel-Basset, R. Mohamed, A. E. N. H. Zaied, A. Gamal, A and F. Smarandache, Solving the supply chain problem using the best-worst method based on a novel plithogenic model. In Optimization Theory Based on Neutrosophic and Plithogenic Sets, (2020), (pp. 1-19). Academic Press.
- [3] I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala1, On some new notions and functions in neutrosophic topological spaces. Neutrosophic Sets and Systems, (2017), 16, 16-19.
- [4] K. T. Atanassov, Intuitionstic fuzzy sets. Fuzzy sets and systems, (1986), 20, 87-96.
- [5] T. Bera and N. K. Mahapatra, Study of the group theory in neutrosophic soft sense, Asia Mathematika, (2019), 3(2), 1-18.
- [6] V. Christianto and F. Smarandache, Remark on vacuum fluctuation as the cause of Universe creation: Or How Neutrosophic Logic and Material Point Method may Resolve Dispute on the Origin of the Universe through rereading Gen. 1:1-2, Asia Mathematika, (2019), 3(1), 10-20.
- [7] S. Ganesan, C. Alexander, M. Sugapriya and A. N. Aishwarya, Decomposition of nα-continuity & n*μ_α-continuity, Asia Mathematika, (2020), 4(2), 109-116.
- [8] S Ganesan, P Hema, S. Jeyashri and C. Alexander, Contra n*I*_{*μ}-continuity Asia Mathematika, (2020), 4(2), 127-133.
- [9] S. Ganesan and F. Smarandache, On N_m-semi-open sets in neutrosophic minimal structure spaces (communicated)
- [10] S. Ganesan, C. Alexander, K. Jeyabal and F. Smarandache, On N_m-pre-continuous maps (communicated)
- [11] M. Karthika, M. Parimala and F. Smarandache, An introduction to neutrosophic minimal structure spaces. Neutrosophic Sets and Systems, (2020), 36, 378-388.
- [12] V. Popa and T. Noiri, On *M*-continuous functions. Anal. Univ. Dunarea de Jos Galati. Ser. Mat. Fiz. Mec. Teor. Fasc, II, (2000), 18(23), 31-41.
- [13] A. A. Salama and S. A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces. IOSR J. Math, (2012), 3, 31-35.
- [14] A.A. Salama, I.M.Hanafy and M. S. Dabash, Semi-Compact and Semi-Lindelof Spaces via Neutrosophic Crisp Set Theory, Asia Mathematika, (2018), 2(2), 41-48.

- [15] F. Smarandache, Neutrosophy and Neutrosophic Logic. First International Conference on Neutrosophy, Neutrosophic Logic Set, Probability and Statistics, University of New Mexico, Gallup, NM, USA, (2002).
- [16] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press: Rehoboth, NM, USA, (1999).
- [17] L. A. Zadeh, Fuzzy Sets. Information and Control, (1965), 18, 338-353.