

https://doi.org/10.26637/MJM0901/0014

Some new open sets in μ_N topological space

G. Hari Siva Annam¹* and N. Raksha Ben²

Abstract

In this article we lay a stress on the open sets which have a enormous impact on the μ_N topological space. Several types of μ_N -Open sets were contrived and their roles and natures were enunciated. Also Continuous functions on the μ_N topological spaces were asseverated.

Keywords

 μ_N -Semi open sets, μ_N - Pre Open Sets, μ_N - α Open sets, μ_N - β open Sets, μ_N -Continuous.

AMS Subject Classification

03E72.

¹PG and Research Department of Mathematics, Kamaraj College, Thoothukudi-628003, Tamil Nadu, India.
²Research Scholar [Reg no.19212102092010], PG and Research Department of Mathematics, Kamaraj College, Thoothukudi-628003, Tamil

Nadu, India.

^{1,2} Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.

*Corresponding author: 1 hsannam@yahoo.com; 2 rakshaarun218@gmail.com

Article History: Received 14 October 2020; Accepted 29 December 2020

©2021 MJM.

Contents

1	Introduction	89
2	Preliminaries	89
3	Open sets in μ_N topological space	90
4	μ_N - Continuous Functions	91
5	Conclusion	94
6	Acknowledgment	94
	References	94

1. Introduction

In 1965, Zadeh[15] found out fuzzy set theory which plays a vital role in real life application in order to cope up with uncertainty. In 1968, Chang[3] invented fuzzy topology which gives an utterance in the field of topology. Keeping these two as aspirations, In 1983, K.Attanassov [1] explored intuitionistic fuzzy sets by giving attention to both membership and non-membership of the elements. Several notions of fuzzy sets and fuzzy topology were explored after the existence of intuitionistic fuzzy sets .In 1997, by marking Attanassov's work as inspiration ,Coker[5] worked with the Intuitionististic fuzzy sets by applying the concepts of fuzziness and got Intuitionistic fuzzy topological space which helped Attanossov to discover the interval valued intuitionistic fuzzy set on a universe X as an object $A = \{< x, \mu_A(x), \sigma_A(x), \gamma_A(x) >: x \in X\}$. F.Smarandache[6] foccused his views towards the degree of indeterminancy and which led into neutrosophic sets. Later on , A.A.Salama and S.A .Albowi[11] introduced the neutrosophic topological spaces with the help of neutrosophic sets and proceeding this A.A. Salama, F.Smarandache and Valeri Kromov[13] introduced the continuous functions in neutrosophic topological spaces. By setting all these works together as inspiration, In 2020 we[10] contrived μ_N Topological Space and their basic properties were discussed.In this discourse, we explore our thoughts towards various open sets in μ_N Topological Space which can be developed later and some of their basic properties were discussed. Also, μ_N continuous functions were introduced and also their features were contemplated.

2. Preliminaries

The concepts given here are used to brush up our memories regarding the basic concepts of μ_N Topological Space.

Definition 2.1. [11] Let X be a non-empty fixed set. A Neutrosophic set [NS for short] A is an object having the form $A = \{ \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X \}$ where $\mu_A(x), \sigma_A(x)$ and $\gamma_A(x)$ which represents the degree of membership function, the degree of indeterminacy and the degree of non-membership function respectively of each element $x \in X$ to the set A.

Remark 2.2. [11] A neutrosophic set $A = \{ < x, \mu_A(x), \sigma_A(x), \gamma_A(x) > : x \in X \}$ can be identified to an ordered triple $A = \{ < \mu_A(x), \sigma_A(x), \gamma_A(x) > \}$ in]⁻⁰, 1⁺[on X.

Remark 2.3. [11] For the sake of simplicity, we shall use the symbol $A = \{ < \mu(x), \sigma(x), \gamma(x) > \}$ for the neutrosophic set $A = \{ < x, \mu_A(x), \sigma_A(x), \gamma_A(x) > : x \in X \}$

Remark 2.4. Every intuitionistic fuzzy set A is a non empty set in X is obviously on Neutrosophic sets having the form $A = \{ < \mu_A(x), 1 - \mu_A(x) + \sigma_A(x), \gamma_A(x) > : x \in X \}$. In order to construct the tools for developing Neutrosophic Set and Neutrosophic topology, here we introduce the neutrosophic sets 0_N and 1_N in X as follows:

 $\begin{array}{l} 0_N \ may \ be \ defined \ as \ follows \\ (0_1)0_N = \{< x, 0, 0, 1 >: x \in X\} \\ (0_2)0_N = \{< x, 0, 1, 1 >: x \in X\} \\ (0_3)0_N = \{< x, 0, 1, 0 >: x \in X\} \\ (0_3)0_N = \{< x, 0, 1, 0 >: x \in X\} \\ (0_1)0_N = \{< x, 0, 0, 0 >: x \in X\} \\ (1_1)1_N = \{< x, 1, 0, 0 >: x \in X\} \\ (1_2)1_N = \{< x, 1, 0, 1 >: x \in X\} \\ (1_3)1_N = \{< x, 1, 1, 0 >: x \in X\} \\ (1_4)1_N = \{< x, 1, 1, 1 >: x \in X\} \end{array}$

Definition 2.5. [11] Let $A = \{ < \mu_A, \sigma_A, \gamma_A > \}$ be a NS on X, then the complement of the set A [C(A) for short] may be defined in three ways as follows:

Definition 2.6. [11] Let X be a non-empty set and neutrosophic sets A and B in the form

 $A = \{ < x, \mu_A(x), \sigma_A(x), \gamma_A(x) >: x \in X \} and$ $B = \{ < x, \mu_B(x), \sigma_B(x), \gamma_B(x) >: x \in X \}.$ Then we may consider two possibilities for definitions for subsets $(A \subseteq B)$. $A \subseteq B \text{ may be defined as }:$ $(A \subseteq B)$ $\iff \mu_A(x) \le \mu_B(x), \sigma_A(x) \le \sigma_B(x), \gamma_A(x) \ge \gamma_B(x), \forall x \in X$ $(A \subseteq B)$

 $\iff \mu_A(x) \le \mu_B(x), \sigma_A(x) \ge \sigma_B(x), \gamma_A(x) \ge \gamma_B(x), \forall x \in X$

Proposition 2.7. [11] For any neutrosophic set A, the following conditions holds: $0_N \subseteq A, 0_N \subseteq 0_N$ $A \subseteq 1_N, 1_N \subseteq 1_N$

Definition 2.8. [11] Let X be a non empty set and $A = \{ < x, \mu_A(x), \sigma_A(x), \gamma_A(x) >: x \in X \}, B = \{ < x, \mu_B(x), \sigma_B(x), \gamma_B(x) >: x \in X \} are NSs.$ Then $A \cap B$ may be defined as : $(I_1)A \cap B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cap B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > A \cup B$ may be defined as : $(I_1)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup B = < x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) > (I_2)A \cup A = (I_2)A \cup A =$

Definition 2.9. [10] A μ_N topology is a non - empty set X is a family of neutrosophic subsets in X satisfying the following axioms:

 $(\mu_{N_1}) 0_N \in \mu_N$ $(\mu_{N_2}) G_1 \cup G_2 \in \mu_N$ for any $G_1, G_2 \in \mu_N$.

Remark 2.10. [10] The elements of μ_N are μ_N -open sets and their complement is called μ_N closed sets.

Definition 2.11. [10] Let (X, μ_N) be a μ_N TS and $A = \{ < x, \mu_A(x), \sigma_A(x), \gamma_A(x) > \}$ be a neutrosophic set in X. Then the μ_N - Closure is the intersection of all μ_N closed sets containing A.

Definition 2.12. [10] Let (X, μ_N) be a μ_N TS and $A = \{ < x, \mu_A(x), \sigma_A(x), \gamma_A(x) > \}$ be a neutrosophic set in X. Then the μ_N - Interior is the union of all μ_N open sets contained in A.

Definition 2.13. [13] A NS A of a NTS X is said to be

(*i*) a neutrosophic pre-open if $A \subseteq NInt(NClA)$

(*ii*) a neutrosophic Semi-open if $A \subseteq NCl(NIntA)$

(iii) a neutrosophic α -open if $A \subseteq NInt(NCl(NIntA))$.

Definition 2.14. [13] Let (X, τ) and (Y, σ) be neutrosophic topological spaces. Then a map $f : (X, \tau) \to (Y, \sigma)$ is called neutrosophic continuous (in short N-continuous) function if the inverse image of every neutrosophic open set in (Y, σ) is neutrosophic open set in (X, τ) .

3. Open sets in μ_N topological space

Definition 3.1. A neutrosophic set in a μ_N topological space is said to be μ_N Semi Open if $A \subseteq \mu_N Cl(\mu_N IntA)$.

Theorem 3.2. Every μ_N - open set is μ_N -Semi Open.

Proof. Let U be a μ_N - open set in X which implies us that $\mu_N IntU = U$.

Hence, we get $U \subseteq \mu_N Cl(U) \Rightarrow U = \mu_N Cl(\mu_N IntU)$. Thus, $U \subseteq \mu_N Cl(\mu_N IntU)$. Hence, it is μ_N -Semi Open.

Remark 3.3. Converse of the theorem need not be true. It is furnished by the following example.

Let $X = \{a\}; \mu_N = \{0_N, A, B, C\}$ where A = < 0.3, 0.3, 0.5 >B = < 0.1, 0.2, 0.3 >, C = < 0.3, 0.2, 0.3 >, D = < 0.3, 0.6, 0.2 >, E = < 0.3, 0.8, 0.5 >. Here, The μ_N -Semi Open sets are $\{0_N, A, B, C, E\}$ which tell us that E is μ_N -Semi Open but it is not μ_N - open set.

Definition 3.4. A neutrosophic set in a μ_N topological space is said to be μ_N Pre-Open if $A \subseteq \mu_N Int(\mu_N ClA)$.

Theorem 3.5. Every μ_N - open set is μ_N -Pre Open.

Proof. We have $A \subseteq \mu_N ClA$ which implies us obviously that $\mu_N IntA \subseteq \mu_N Int(\mu_N ClA)$. As we all know that $\mu_N IntA \subseteq A$. Hence, we get $A \subseteq \mu_N Int(\mu_N ClA)$.

Remark 3.6. The reversal concept of the above theorem need be necessarily true. The following problem gives us the crystal clear idea about it.

Example 3.7. Let $X = \{a, b\}, Y = \{u, v\}$ and $(X, \tau), (Y, \sigma)$ be the μ_N TS where $\tau = \{A, B, C, D, 0_N\}$ and $\sigma = \{D, E, 0_N\}$, A = < 0.7, 0.3, 0.8 > < 0.5, 0.8, 0.9 >, B = < 0.4, 0.9, 0.9 > < 0.3, 0.9, 0.9 >, C = < 0.5, 0.8, 0.7 > < 0.5, 0.8, 0.8 >, D = < 0.5, 0.8, 0.8 > < 0.5, 0.8, 0.7 >, E = < 0.3, 0.9, 0.9 > < 0.4, 0. $9, 0.9 >. Here A, B, C, D, E, 0_N are <math>\mu_N$ -Pre Open sets of (X, τ) . Particularly E is μ_N -Pre Open set of (X, τ) but it is not μ_N open in (X, τ) .

Definition 3.8. A neutrosophic set in a μ_N topological space is said to be $\mu_N \alpha$ -Open if $A \subseteq \mu_N Int(\mu_N Cl(m_N IntA))$.

Theorem 3.9. Every μ_N - open set is $\mu_N \alpha$ - Open.

Proof. Let *A* be μ_N - open set which yields us that $\mu_N IntA = A$. We have $A \subseteq \mu_N Cl(A)$, From this we obtain $\mu_N IntA \subseteq \mu_N Int(\mu_N Cl(\mu_N IntA)) \Rightarrow A \subseteq \mu_N Int(\mu_N Cl(\mu_N IntA))$. Hence. It is $\mu_N \alpha$ - Open.

Remark 3.10. Converse statement of the theorem need not be true. The Scenario is explained below.

Let $X = \{a\}$; $\mu_N = \{0_N, A, C\}$ where A = < 0.7, 0.8, 0.9 >,B = < 0.3, 0.4, 0.6 >, C = < 0.9, 0.7, 0.6 >. Here, The $\mu_N \alpha$ -Open sets are $\{0_N, A, B, C, \}$. In this, B is $\mu_N \alpha$ - Open set but it is not μ_N - open set.

Theorem 3.11. *Every* μ_N *- open set is* $\mu_N\beta$ *- Open.*

Proof. Let *A* be μ_N - open set then that $\mu_N IntA = A$. We have $A \subseteq \mu_N ClA$ which gives us that $\mu_N IntA \subseteq \mu_N Int(\mu_N ClA) \Rightarrow A \subseteq \mu_N Int(\mu_N ClA)$.

Now we have , $A \subseteq \mu_N ClA$ and $A \subseteq \mu_N Int(\mu_N ClA)$. Both togetherly gives us $A \subseteq \mu_N Cl(\mu_N Int(\mu_N ClA))$.

Remark 3.12. Converse of the above theorem need not be true which explained with the help of an example as below. Let $X = \{a\}$; $\mu_N = \{0_N, A, B\}$ where A = < 0.3, 0.6, 0.9 >, B = < 0.4, 0.6, 0.7 >, C = < 0.5, 0.7, 0.8 >. Here, The $\mu_N\beta$ -Open sets are $\{0_N, A, B, C\}$. In this, B is $\mu_N\beta$ -Open set but it is not μ_N -open set.

Theorem 3.13. Every μ_N Pre-open set is $\mu_N\beta$ - Open.

Proof. Let *A* be a μ_N pre-open set which leads us to have $A \subseteq \mu_N Int(\mu_N ClA)$. Now let us remind the basic property , $A \subseteq \mu_N ClA$. By making use of this we obtain that $\mu_N ClA \subseteq \mu_N Cl(\mu_N Int(\mu_N ClA))$ which obviously yields that $A \subseteq \mu_N Cl(\mu_N Int(\mu_N ClA))$.

Remark 3.14. The reverse statement of the above theorem is not true. Let me picturize the concept using an example. Let $X = \{a\}, \mu_N = \{0_N, A, B, C\}, A = < 0.3, 0.3, 0.5 >, B = < 0.1, 0.2, 0.3 >, C = < 0.3, 0.2, 0.3 >, D = < 0.3, 0.6, 0.2 >, E$ $= < 0.3, 0.8, 0.5 >. The <math>\mu_N$ Pre-open sets are $\{0_N, A, B, C\}$ and $\mu_N\beta$ - Open sets are $\{0_N, A, B, C, D, E, 1_N\}$. Here $D, E, 1_N$ are $\mu_N\beta$ - Open sets but not μ_N Pre-open sets.

Theorem 3.15. Every $\mu_N \alpha$ -open set is μ_N Semi- Open.

Proof. Let *A* be a $\mu_N \alpha$ -open set which leads us to have $A \subseteq \mu_N Int(\mu_N Cl(\mu_N IntA))$. From this it can be easily derived as $A \subseteq (\mu_N Cl(\mu_N IntA))$. Hence, Every $\mu_N \alpha$ -open set is μ_N Semi-Open.

Remark 3.16. The reversal statement of the above theorem need not be true. Let $X = \{a\}$, $\mu_N = \{0_N, A, B, C\}$, A = < 0.3, 0.3, 0.5 >, B = < 0.1, 0.2, 0.3 >, C = < 0.3, 0.2, 0.3 >, D = < 0.3, 0.6, 0.2 >, E = < 0.3, 0.8, 0.5 >.

The μ_N Semi-open sets are $\{0_N, A, B, C, E\}$ and $\mu_N \alpha$ - Open sets are $\{0_N, A, B, C, \}$. Here, E is μ_N Semi- Open set but not $\mu_N \alpha$ -open set.

Definition 3.17. A neutrosophic set in a μ_N topological space is said to be

- (*i*) μ_N -Semi Closed if μ_N Int $(\mu_N ClA) \subseteq A$.
- (*ii*) μ_N -*Pre Closed if* $\mu_N Cl(\mu_N IntA) \subseteq A$.
- (iii) $\mu_N \alpha$ Closed if $\mu_N Cl(\mu_N Int(\mu_N ClA)) \subseteq A$.
- (iv) $\mu_N \beta$ -Closed sets if $\mu_N Int(\mu_N Cl(\mu_N IntA)) \subseteq A$.

4. μ_N - Continuous Functions

Definition 4.1. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be μ_N - Continuous function if the inverse image of μ_N - closed sets in (Y, σ) is μ_N - closed in (X, τ) .

Example 4.2. Let $X = \{a, b, c\}$ and $Y = \{u, v, w\}$ and $\tau = \{A, B, 0_N\}, \sigma = \{C, D, 0_N\}$ where $A = < 0.5, 0.8, 0.9 > < 0.7, 0.3, 0.8 > < 0.2, 0.5, 0.7 >, B = < 0.7, 0.2, 0.4 > < 0.8, 0.9 > < 0.2, 0.5, 0.7 >, D = < 0.7, 0.3, 0.8 > < 0.5, 0.8, 0.9 > < 0.2, 0.5, 0.7 >, D = < 0.8, 0.2, 0.1 > < 0.7, 0.2, 0.4 > < 0.8, 0.9 > < 0.2, 0.5, 0.7 >, D = < 0.8, 0.2, 0.1 > < 0.7, 0.2, 0.4 > < 0 < 0.8, 0.4, 0.3 >. We define a mapping <math>f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Hence, we get $f^{-1}(C) = < 0.5, 0.8, 0.9 > < 0.7, 0.3, 0.8 > < 0.2, 0.5, 0.7 > = A and <math>f^{-1}(D) = < 0.7, 0.2, 0.4 > < 0.8, 0.2, 0$. 1 > < 0.8, 0.4, 0.3 > = B. Hence $f : (X, \tau) \to (Y, \sigma)$ is μ_N - Continuous.

Theorem 4.3. Let $f : (X, \tau) \to (Y, \sigma)$ be a μ_N - Continuous function if and only if the inverse image of μ_N - open sets in (Y, σ) is μ_N - open in (X, τ) .

Proof. Essential condition: Let $f : (X, \tau) \to (Y, \sigma)$ be a μ_N -Continuous function and U be a μ_N - open sets in (Y, σ) . Since f is μ_N - Continuous, $f^{-1}(Y - U) = X - f^{-1}(U)$ is μ_N - closed set in (X, τ) and hence $f^{-1}(U)$ is μ_N - open in (X, τ) .

Sufficient Condition: Assume that $f^{-1}(V)$ is μ_N - open in (X, τ) for each μ_N - open set in (Y, σ) .Let V be a μ_N - closed set in (Y, σ) which yields that Y - V is μ_N - open set in (Y, σ) .Now, $f^{-1}(Y - V) = X - f^{-1}(V)$ is μ_N - closed set in (X, τ) which implies us that $f^{-1}(V)$ is μ_N - open in (X, τ) . Hence, f is μ_N - Continuous .

Theorem 4.4. Let $(X, \tau), (Y, \sigma), (Z, \rho)$ be three μ_N - topological spaces. If $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \rho)$ are μ_N - Continuous then $g \circ f : (X, \tau) \to (Z, \rho)$ is μ_N - Continuous.

Proof. Let U be any μ_N - open set in (Z, ρ) . Since g is μ_N -Continuous, $g^{-1}(U)$ is μ_N - open and hence it is μ_N - open in (Y, σ) . Also ,Since f is μ_N - Continuous , $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(V)$ is μ_N - open. Hence, $g \circ f$ is μ_N - Continuous \Box

Definition 4.5. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be μ_N -Semi Continuous function if the inverse image of μ_N -closed sets in (Y, σ) is μ_N -Semi closed sets in (X, τ) .

Theorem 4.6. Let $f: (X, \tau) \to (Y, \sigma)$ be a μ_N -Semi Continuous function if and only if the inverse image of μ_N - open sets in (Y, σ) is μ_N -Semi open in (X, τ) . Proof is similar to the proof of theorem 4.4.

Theorem 4.7. Every μ_N - Continuous is μ_N -Semi Continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a μ_N - Continuous mapping. Let A be a μ_N - open set in (Y, σ) . By hypothesis we get $f^{-1}(A)$ is μ_N - open in (X, τ) . Since, every μ_N - open set is μ_N -Semi Open, we get $f^{-1}(A)$ is μ_N - Semi open in (X, τ) . Thus we obtain that f is μ_N -Semi Continuous.

Remark 4.8. Converse of theorem 4.7 is not true. This condition can be explored by the following example.

Example 4.9. Let $X = \{a, b\}$ and $Y = \{u, v\}, \tau = \{A, B, C, D, 0_N\}$ and $\sigma = \{D, E, 0_N\}$ where A = < 0.7, 0.3, 0.8 > < 0.5, 0.8, 0.9 >, B = < 0.4, 0.9, 0.9 > < 0.3, 0.9, 0.9 >, C = < 0.5, 0.8, 0.7 > < 0.5, 0.8, 0.8 >, D = < 0.5, 0.8, 0.8 > < 0.5, 0.8, 0.7 > , E = < 0.3, 0.9, 0.9 > < 0.4, 0.9, 0.9 >.

We define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Here, $f^{-1}(D) = D$ and $f^{-1}(E) = E$ where D and E are μ_N -Semi Open sets of (X, τ) but E is not μ_N - Open in (X, τ) . Thus we conclude that Every μ_N -Semi Continuous function need not be μ_N - Continuous.

Definition 4.10. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be μ_N -Pre Continuous function if the inverse image of μ_N - closed sets in (Y, σ) is μ_N -Pre closed sets in (X, τ) .

Theorem 4.11. Let $f : (X, \tau) \to (Y, \sigma)$ be a μ_N -Pre Continuous function if and only if the inverse image of μ_N - open sets in (Y, σ) is μ_N -Pre open in (X, τ) . Proof is similar to the proof of theorem 4.4.

Theorem 4.12. Every μ_N - Continuous is μ_N -Pre Continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a μ_N - Continuous mapping. Let A be a μ_N - open set in (Y, σ) . Since f is μ_N - Continuous we get $f^{-1}(A)$ is μ_N - open in (X, τ) . Since, every μ_N - open set is μ_N -Pre Open. Thus, that f is μ_N -Pre Continuous. \Box

Remark 4.13. *The reverse statement of the above theorem need not be true .The Scenario will be emanated in the forthcoming example. Let* $X = \{a, b\}$ *and* $Y = \{U, V\}$, $\tau = \{A, B, C\}$ $\{D, 0_N\}\$ and $\sigma = \{D, E, 0_N\}\$ where $A =< 0.7, 0.3, 0.8 >< 0.5, 0.8, 0.9 >, B =< 0.4, 0.9, 0.9 >< 0.3, 0.9, 0.9 >, C =< 0.5, 0.8, 0.7 >< 0.5, 0.8, 0.8 >, D =< 0.5, 0.8, 0.8 >< 0.5, 0.8, 0.7 >, E =< 0.3, 0.9, 0.9 >< 0.4, 0.9, 0.9 > we define a mapping <math>f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Here, $f^{-1}(D) = D$ and $f^{-1}(E) = E$ where D and E are μ_N -Pre Open sets of (X, τ) but E is not μ_N - Open in (X, τ) . Thus we deduced that Every μ_N - Pre Continuous function need not be μ_N - Continuous.

Definition 4.14. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be $\mu_N - \alpha$ Continuous function if the inverse image of μ_N - closed sets in (Y, σ) is $\mu_N - \alpha$ closed sets in (X, τ) .

Theorem 4.15. Let $f : (X, \tau) \to (Y, \sigma)$ be a $\mu_N - \alpha$ Continuous function if and only if the inverse image of μ_N - open sets in (Y, σ) is $\mu_N - \alpha$ open in (X, τ) . Proof is similar to the proof of theorem 4.4.

Theorem 4.16. Every μ_N - Continuous is $\mu_N - \alpha$ Continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a μ_N - Continuous mapping. Let A be a μ_N - open set in (Y, σ) . Since f is μ_N - Continuous we get $f^{-1}(A)$ is μ_N - open in (X, τ) . Since, every μ_N - open set is $\mu_N - \alpha$ Open, $f^{-1}(A)$ is $\mu_N - \alpha$ open in (X, τ) . Thus, that f is $\mu_N - \alpha$ Continuous.

Remark 4.17. Converse of the above theorem need not be true. It is explained by the example given below.

Example 4.18. Let $X = \{a, b\}$ and $Y = \{U, V\}$, $\tau = \{A, B, C, D, 0_N\}$ and $\sigma = \{D, E, 0_N\}$ where $A = < 0.7, 0.3, 0.8 > < 0.5, 0.8, 0.9 >, B = < 0.4, 0.9, 0.9 > < 0.3, 0.9, 0.9 >, C = < 0.5, 0.8, 0.7 > < 0.5, 0.8, 0.8 >, D = < 0.5, 0.8, 0.8 > < 0.5, 0.8, 0.7 >, E = < 0.3, 0.9, 0.9 > < 0.4, 0.9, 0.9 > we define a mapping <math>f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Here, $f^{-1}(D) = D$ and $f^{-1}(E) = E$ where D and E are $\mu_N - \alpha$ Open sets of (X, τ) but E is not μ_N - Open in (X, τ) .Thus we conclude that Every $\mu_N - \alpha$ Continuous function need not be μ_N - Continuous.

Definition 4.19. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be $\mu_N - \beta$ Continuous function if the inverse image of μ_N - closed sets in (Y, σ) is $\mu_N - \beta$ closed sets in (X, τ) .

Theorem 4.20. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be $\mu_N - \beta$ Continuous function if and only if the inverse image of μ_N - open sets in (Y, σ) is $\mu_N - \beta$ open in (X, τ) . Proof is similar to the proof of theorem 4.4.

Theorem 4.21. Every μ_N - Continuous is $\mu_N - \beta$ Continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a μ_N - Continuous mapping. Let A be a μ_N - open set in (Y, σ) . The inverse image of A is μ_N open set in (X, τ) . We know that every μ_N - open set is $\mu_N - \beta$ Open set in (X, τ) . Hence, f is $\mu_N - \beta$ Continuous.

Remark 4.22. Converse of the above theorem need not be true. The scenario is given in the preceeding exemplary.

Example 4.23. Let $X = \{a, b\}, Y = \{U, V\}, \tau = \{A, B, C, D, 0_N\}$ and $\sigma = \{C, E, 0_N\}$ be two μ_N - topological spaces where A = < 0.6, 0.4, 0.8 > < 0.8, 0.6, 0.9 >, B = < 0.6, 0.3, 0.8 > < 0.9, 0.2, 0.7 >, C = < 0.5, 0.4, 0.9 > < 0.7, 0.8, 0.9 >, D = < 0.4, 0.6, 0.9 > < 0.6, 0.8, 0.9 >, E = < 0.3, 0.7, 0.9 > < 0.5, 0.9, 0.9 > . We define a mapping <math>f(a) = u and f(b) = v. Hence we get $f^{-1}(C) = C$ and $f^{-1}(E) = E$ where C and E are $\mu_N - \beta$ Open sets of (X, τ) but the inverse image of $E \in \sigma$ is E which is not μ_N - Open in (X, τ) . Hence, Every $\mu_N - \beta$ Continuous need not be μ_N - Continuous.

Theorem 4.24. Every $\mu_N - \alpha$ Continuous is μ_N - Semi Continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\mu_N - \alpha$ Continuous mapping. Let A be a $\mu_N - \alpha$ open set in X. By hypothesis we get $f^{-1}(A)$ is $\mu_N - \alpha$ open in (X, τ) . Since, every $\mu_N - \alpha$ open set is μ_N -Semi Open we get $f^{-1}(A)$ is μ_N -Semi open in (X, τ) . Thus we obtain that f is μ_N -Semi Continuous.

Remark 4.25. *The reversal statement of the above theorem need not be true .It can be delineated below with the help of an example.*

Example 4.26. Let $X = \{a, b\}, Y = \{U, V\}, \tau = \{A, B, C, D, 0_N\}$ and $\sigma = \{C, E, 0_N\}$ be two μ_N - topological spaces where A = < 0.6, 0.4, 0.8 > < 0.8, 0.6, 0.9 >, B = < 0.6, 0.3, 0.8 > < 0.9, 0.2, 0.7 >, C = < 0.5, 0.4, 0.9 > < 0.7, 0.8, 0.9 >, D = < 0.4, 0.6, 0.9 > < 0.6, 0.8, 0.9 >, E = < 0.3, 0.7, 0.9 > < 0.5, 0.9, 0.9 > . We define a mapping <math>f(a) = u and f(b) = v. Hence we get $f^{-1}(C) = C$ and $f^{-1}(E) = E$ where C and E are μ_N -Semi Open sets of (X, τ) but the inverse image of $E \in \sigma$ is E which is not μ_N - Open in (X, τ) . Hence, very μ_N - Semi Continuous need not be μ_N - Continuous.

Theorem 4.27. Every μ_N - Pre Continuous is $\mu_N - \beta$ Continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a μ_N -Pre Continuous mapping. Let A be a μ_N -Pre open set in X. By hypothesis we get $f^{-1}(A)$ is μ_N - Pre open in (X, τ) .Since, every μ_N - Pre open set is $\mu_N - \beta$ Open we get $f^{-1}(A)$ is $\mu_N - \beta$ open in (X, τ) . Thus we obtain that f is $\mu_N - \beta$ Continuous.

Remark 4.28. The reversal statement of the above theorem need not be true. It can be explained with the help of an example as below:

Example 4.29. Let $X = \{a, b\}, Y = \{U, V\}, \tau = \{A, B, C, D, 0_N\}$ and $\sigma = \{C, E, 0_N\}$ be two μ_N - topological spaces where A = < 0.6, 0.4, 0.8 > < 0.8, 0.6, 0.9 >, B = < 0.6, 0.3, 0.8 > < 0.9, 0.2, 0.7 >, C = < 0.5, 0.4, 0.9 > < 0.7, 0.8, 0.9 >, D = < 0.4, 0.6, 0.9 > < 0.6, 0.8, 0.9 >, E = < 0.3, 0.7, 0.9 > < 0.5, 0.9, 0.9 > . We define a mapping <math>f(a) = u and f(b) = v. Hence we get $f^{-1}(C) = C$ and $f^{-1}(E) = E$ where C and E are $\mu_N - \beta$ Open sets of (X, τ) but the inverse image of $E \in \sigma$ is E which is not μ_N -pre Open in (X, τ) .Hence, every $\mu_N - \beta$ Continuous need not be μ_N - Continuous.

Theorem 4.30. Let $(X, \tau), (Y, \sigma), (Z, \rho)$ be three μ_N topological spaces. If $f : (X, \tau) \to (Y, \sigma)$ is μ_N - Semi Continuous and $g : (Y, \sigma) \to (Z, \rho)$ is μ_N - Continuous then $g \circ f : (X, \tau) \to$ (Z, ρ) is μ_N - Semi Continuous.

Proof. Let *V* be any μ_N - open in (Z, ρ) . Since, $g : (Y, \sigma) \rightarrow (Z, \rho)$ is μ_N - Continuous, $g^{-1}(V)$ is μ_N - open in (Y, σ) . Since, *f* is μ_N - Semi Continuous, $f^{-1}(g^{-1}(U))$ is μ_N - Semi open , $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is μ_N - Semi Continuous. \Box

Composition of two μ_N - Semi Continuous need not be μ_N - Semi Continuous. Let $(X, \tau), (Y, \sigma), (Z, \rho)$ be three μ_N topological spaces. Let us assume $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \rho)$ be two μ_N - Semi Continuous functions. Let *V* be any μ_N - open in (Z, ρ) .Since, $g : (Y, \sigma) \to (Z, \rho)$ is μ_N -Semi Continuous, $g^{-1}(V)$ is μ_N -Semi open in (Y, σ) . We know every μ_N -Semi open sets need not be μ_N - open. Since *f* is μ_N - Semi Continuous functions, we have to get the inverse image of μ_N - open sets in (Y, σ) must be μ_N - Semi open in (X, τ) . But here all the element of (Y, σ) are μ_N -Semi open. So we cannot explore a μ_N - Semi Continuous function.

Theorem 4.31. Let $(X, \tau), (Y, \sigma), (Z, \rho)$ be three μ_N topological spaces. If $f : (X, \tau) \to (Y, \sigma)$ is μ_N - Pre Continuous and $g : (Y, \sigma) \to (Z, \rho)$ is μ_N - Continuous then $g \circ f : (X, \tau) \to$ (Z, ρ) is μ_N - Pre Continuous.

Proof. Let V be any μ_N - open in (Z, ρ) .Since, $g : (Y, \sigma) \rightarrow (Z, \rho)$ is μ_N - Continuous, $g^{-1}(V)$ is μ_N - open in (Y, σ) . Since, f is μ_N - Pre Continuous, $f^{-1}(g^{-1}(U))$ is μ_N - Pre open in $(X, \tau), f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is μ_N - Pre Continuous.

Composition of two μ_{N^-} Pre Continuous need not be μ_{N^-} Pre Continuous. Let $(X, \tau), (Y, \sigma), (Z, \rho)$ be three μ_N topological spaces. Let us assume $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \rho)$ be two μ_{N^-} Pre Continuous functions. Let V be any μ_{N^-} open in (Z, ρ) .Since, $g : (Y, \sigma) \to (Z, \rho)$ is μ_{N^-} Pre Continuous, $g^{-1}(V)$ is μ_N -Pre open in (Y, σ) .We know every μ_N -Pre open sets need not be μ_{N^-} open. Since f is μ_N -pre Continuous functions, we have to get the inverse image of μ_N - open sets in (Y, σ) must be μ_N - Pre open in (X, τ) . But here all the element of (Y, σ) are μ_N -Pre open, every μ_N -Pre open sets need not be μ_N - Pre open sets need not be μ_N -Pre open function.

Theorem 4.32. Let $(X, \tau), (Y, \sigma), (Z, \rho)$ be three μ_N topological spaces. If $f : (X, \tau) \to (Y, \sigma)$ is $\mu_N - \alpha$ Continuous and $g : (Y, \sigma) \to (Z, \rho)$ is μ_N - Continuous then $g \circ f : (X, \tau) \to$ (Z, ρ) is $\mu_N - \alpha$ Continuous.

Proof. Let *V* be any μ_N - open in (Z, ρ) .Since, $g : (Y, \sigma) \rightarrow (Z, \rho)$ is μ_N - Continuous, $g^{-1}(V)$ is μ_N - open in (Y, σ) . Since, *f* is $\mu_N - \alpha$ Continuous, $f^{-1}(g^{-1}(U))$ is $\mu_N - \alpha$ open in $(X, \tau), f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is $\mu_N - \alpha$ Continuous.

Composition of two $\mu_N - \alpha$ Continuous need not be $\mu_N - \alpha$ Continuous. Let $(X, \tau), (Y, \sigma), (Z, \rho)$ be three μ_N topological spaces. Let us assume $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \rho)$ be two $\mu_N - \alpha$ Continuous functions. Let *V* be any μ_N -open in (Z, ρ) .Since, $g : (Y, \sigma) \to (Z, \rho)$ is $\mu_N - \alpha$ Continuous, $g^{-1}(V)$ is $\mu_N - \alpha$ open in (Y, σ) . Since *f* is $\mu_N - \alpha$ Continuous functions, we have to get the inverse image of μ_N -open sets in (Y, σ) must be $\mu_N - \alpha$ open in (X, τ) . But here all the element of (Y, σ) are $\mu_N - \alpha$ open, every $\mu_N - \alpha$ open sets need not be μ_N - open So we cannot explore a $\mu_N - \alpha$ Continuous function.

Theorem 4.33. Let $(X, \tau), (Y, \sigma), (Z, \rho)$ be three μ_N topological spaces. If $f : (X, \tau) \to (Y, \sigma)$ is $\mu_N - \beta$ Continuous and $g : (Y, \sigma) \to (Z, \rho)$ is μ_N - Continuous then $g \circ f : (X, \tau) \to$ (Z, ρ) is $\mu_N - \beta$ Continuous.

Proof. Let *V* be any μ_N - open in (Z, ρ) . Since, $g: (Y, \sigma) \rightarrow (Z, \rho)$ is μ_N - Continuous, $g^{-1}(V)$ is μ_N - open in (Y, σ) . Since, *f* is $\mu_N - \beta$ Continuous, $f^{-1}(g^{-1}(U))$ is $\mu_N - \beta$ open in (X, τ) , $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is $\mu_N - \beta$ Continuous. \Box

Composition of two $\mu_N - \beta$ Continuous need not be $\mu_N - \beta$ Continuous. Let $(X, \tau), (Y, \sigma), (Z, \rho)$ be three μ_N topological spaces. Let us assume $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \rho)$ be two $\mu_N - \beta$ Continuous functions. Let *V* be any μ_N -open in (Z, ρ) . Since, $g : (Y, \sigma) \to (Z, \rho)$ is $\mu_N - \beta$ Continuous, $g^{-1}(V)$ is $\mu_N - \beta$ open in (Y, σ) . Since *f* is $\mu_N - \beta$ Continuous functions, we have to get the inverse image of μ_N - open sets in (Y, σ) must be $\mu_N - \beta$ open in (X, τ) . But here all the element of (Y, σ) are $\mu_N - \beta$ open, every $\mu_N - \beta$ open sets need not be μ_N - open So we cannot explore a $\mu_N - \beta$ Continuous function.

5. Conclusion

In this paper, we have explored some new open sets in μ_N topological spaces and their features were investigated. The continuous functions of μ_N topological spaces and the composite functions of μ_N topological spaces were discovered and their features were discussed. We made a comparison on continuous functions of μ_N topological spaces with different types of μ_N continuous functions and their nature were contemplated. Subsequently ,we build up our research towards μ_N - compact, μ_N - connected and so on.

6. Acknowledgment

The authors are grateful to the reviewers for their comments towards the betterment of this article.

References

- Atanassov.K.T: Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 20(1986), 87–96.
- ^[2] Al-Omeri, W.; Smarandache, F.: *New Neutrosophic Sets via Neutrosophic Topological Spaces. In Neutrosophic*

Operational Research, Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2017; Volume I, pp. 189–209.

- ^[3] Chang.C.L, : Fuzzy topological spaces, *Journal of Mathematical Analysis and Application*, 24(1968), 183–190.
- [4] Dhavaseelan. R and Jafari,: Generalized Neutrosophic closed sets, *New Trends in Neutrosophic Theory and Applications*, 2(2018), 261–273.
- [5] Dogan Coker: An introduction to intuitionstic fuzzy topological spaces, *Fuzzy Sets and Systems*, 88(1997), 81–89.
- [6] Floretin Smarandache,: Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.
- [7] Floretin Smarandache, : Neutrosophic Set:- A Generalization of Intuitionistic Fuzzy set, *Journal of Defense Resourses Management*, 1(2010), 107–116.
- [8] Floretin Smarandache,: A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, Neutrosophic set, Neutrosophic Probability, Ameican Research Press, Rehoboth, NM, 1999.
- [9] Iswarya .P, K. Bageerathi,: A Study on neutrosophic Frontier and neutrosophic semi frontier in Neutrosophic topological spaces, *Neutrosophic Sets and Systems*, 16(2017), 1–10.
- [10] Raksha Ben .N, Hari Siva Annam.G.: Generalized Topological Spaces via Neutrosophic Sets, J. Math. Comput. Sci., 11(2021), Accepted Manuscript.
- [11] Salama A.A and Alblowi S.A, : Neutrosophic set and Neutrosophic topological space, *ISOR J. Mathematics*, 3(4)(2012), 31–35.
- [12] Salama.A.A and Alblowi.S.A, : Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces, *Journal computer Sci. Engineering*, 2(7)(2012), 12–23.
- [13] Salama A.A, Florentin Smarandache and Valeri Kroumov,
 Neutrosophic Closed set and Neutrosophic Continuous Function, *Neutrosophic Sets and Systems*, 4(2014), 4–8.
- [14] Wadel Faris Al-Omeri and Florentin Smarandache, : New Neutrosophic Sets via Neutrosophic Topological Spaces, New Trends in Neutrosophic Theory and Applications, (2)(2016), 1-10.
- [15] Zadeh. L.A: Fuzzy set, Inform and Control, 8(1965), 338– 353.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******