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Abstract
The single-valued neutrosophic set plays a crucial role to handle indeterminant and inconsistent information during decision
making process. In recent research, a development in neutrosophic theory is emerged, called single-valued neutrosophic
matrices, are used to address uncertainties. The beauty of single-valued neutrosophic matrices is that the utilizing of several
fruitful operations in decision making. In this paper, some novel operations on neutrosophic matrices of are introduced,
that is, type-1 product (�̃), type-2 product (⊗̃) and minus (�̃) between two single-valued neutrosophic matrices. Also, we
introduced complement, transpose, upper and lower α−level matrices of single-valued neutrosophic matrices and discussed
related properties. Furthermore, we propose a multi-criteria group decision making method based on these new operations,
and give an application of the proposed method in a real life problem. Finally, we compare proposed method in this paper
with proposed methods previously.

Keywords Single-valued neutrosophic set · Single-valued neutrosophic matrix · Product operation · Complement matrix ·
α−level of matrices · Decision making

1 Introduction

To describe situations mathematically which are indetermi-
nant or inconsistent in nature, Smarandache introduced the
theory of neutrosophic sets based on neutrosophy which
is branch of philosopy. A neutrosophic set is characterized
by three membership functions called truth- membership
function (T), indeterminacy-membership function (I) and
falsity-membership function (F). Range of all of the mem-
bership functions is real and non-real interval ]−0, 1+[. In
some areas such as engineering and real scientific fields,
modeling of problems by using real standard or nonstan-
dard subsets of ]−0, 1+[ may not be easy sometimes. To
cope with this issue concepts of single-valued neutrosophic
set (SVN-set) and interval neutrosophic set (IN-set) were
defined by Wang et al. in [23] and [24], respectively. Ye [41]
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defined concept of simplified neutrosophic sets (SNSs), and
proposed a multi-criteria decision making method using
aggregating operators of SNSs. Peng et al. [27] pointed out
some problems in operations of SNSs defined by [41], and
defined novel operations between simplified neutrosophic
numbers(SNNs).

In many areas such as science, engineering, social sci-
ences we encounter data, and need to stand for and com-
puterize with matrix structures. From this aspect matrices
have very important role. However, in the modeling of some
problems involving uncertain data classical matrix theory
may not be sufficient. Therefore, many researcher studied
on matrix structures under fuzzy environment [16, 29, 32],
intuitionistic fuzzy environment [13, 24, 25], soft environ-
ment [4], fuzzy soft environment [5] and intuitionistic fuzzy
soft environment [9, 22]. As we know, fuzzy set and intu-
itionistic fuzzy sets are important tools for dealing with
problems containing uncertainty and incomplete informa-
tion. However, sometimes fuzzy sets and intuitionistic fuzzy
sets may not suffice to model indeterminate and incon-
sistent information encountered in real world. Also men-
tioned failing are available fuzzy and intuitionistic fuzzy
matrices. Therefore, concept of the neutrosophic matrix
and square neutrosophic fuzzy matrices of which elements
are belong to a neutrosophic field K(I), was defined by
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Kandasamy and Smarandache [12], and they investigated
some properties of them. They also for first time intro-
duced notions of super neutrosophic matrices and quasi
super neutrosophic matrices, and studied on their proper-
ties [11]. Dhar et al. [8] defined operations of addition
and multiplication between two neutrosophic fuzzy matrices
based on definitions given by Kandasamy and Smaran-
dache, and obtained some properties of these operations. In
2014, Arockiarani and Sumathi [1] defined notion of fuzzy
neutrosophic soft matrices. They also developed an deci-
sion making technique by defining a new score function
which allows to evaluate proper of the alternatives. Deli and
Broumi [6] introduced concept of neutrosophic soft matri-
ces and operations between two neutrosophic soft matrices,
and they also proposed a decision making method called
NSM-decision making based on neutrosophic soft matri-
ces. Determinants of neutrosophic matrices were studied in
[14, 35]. Neutrosophic set is useful tool in multi-criteria
decision making in terms of modeling of indeterminate and
inconsistent information. Up to now, a lot of multi-criteria
decision making (MCDM) and multi-criteria group deci-
sion making (MCGDM) method have been developed under
neutrosophic environment. For example, Ye [39] introduced
correlation and correlation coefficient of single-valued neu-
trosophic sets (SVNSs) and proposed a decision making
method based on weighted correlation coefficient or the
weighted cosine similarity measure of SVNSs. Ye [40]
defined single valued neutrosophic cross entropy, and pro-
posed a multi-criteria decision-making method based on the
proposed single valued neutrosophic cross entropy. Ye [41]
introduced concept of simplified neutrosophic set and pro-
posed a simplified neutrosophic weighted arithmetic aver-
age operator and a simplified neutrosophic weighted geo-
metric average operator, and then utilized two aggregation
operators to develop a method for multi-criteria decision
making problems under simplified neutrosophic environ-
ments. Peng et al. [26] developed some new operations of
simplified neutrosophic set and proposed a novel outranking
approach for multi-criteria decision-making (MCDM) prob-
lems. Peng et al. [27] pointed out certain problems regarding
the existing operations of simplified neutrosophic numbers,
their aggregation operators and the comparison method, and
defined the new operations of simplified neutrosophic num-
bers. They also developed a multi-criteria decision making
method and comparison method. Liu et al. [19] combined
Hamacher operations and generalized aggregation operators
to neutrosophic sets, and proposed some new operational
rules for neutrosophic numbers (NNs) based on Hamacher
operations. They also proposed some new operators such as
generalized neutrosophic number Hamacher weighted aver-
aging (GNNHWA) operator, generalized neutrosophic num-
ber Hamacher ordered weighted averaging (GNNHOWA)
operator and generalized neutrosophic number Hamacher

hybrid averaging (GNNHHA) operator, and they obtained
some properties of them. Furthermore they proposed a multi
attributive group decision making method based on these
new operations. Other works on aggregating operators and
multi-criteria (group) decision making under neutrosophic
environment made by Liu et al. can be refer to [18, 20, 21].
Zhan and Wu [46] developed a new multi-criteria decision
making with incomplete weight information under single-
valued neutrosophic environment and applied a proposed
method to a best global supplier selection problem. Tian
et al. [34] proposed a MCDM method to solve problems
including criteria that have different priority levels in form
of simplified neutrosophic uncertain linguistic elements.
In [33], in order to solve green product design selection
problems using neutrosophic linguistic information they
proposed a multi-criteria decision making method. Ji et al.
[10] defined some new concepts such as Frank operations of
SVNNs and Frank normalized prioritized Bonferroni mean
(SVNFNPBM) operator for SVN-sets. Then developed a
method for selecting TPL providers based on the proposed
operator. Wu et al. [37] defined prioritized weighted average
operator and prioritized weighted geometric operator for
simplified neutrosophic numbers and proposed a new cross-
entropy measures for simplified neutrosophic sets. Then
they proposed a MCDM method based on these operators
and cross-entropy measure. Biswas et al. [2] proposed a
multi-attribute group decision-making by extending TOP-
SIS under single-valued neutrosophic environment. Peng et
al. [28] suggested a multi-valued neutrosophic multi-criteria
decision-making method based on extension of Elimina-
tion and Choice Translating Reality (ELECTRE) method,
and supported this method by the comparison analysis with
other existing methods. Some works related to multi-criteria
decision making method under neutrosophic ( single-valued
neutrosophic, simplified neutrosophic etc.) in literature can
be found in [17, 31, 38, 47].

Aim of this paper is to define some new operations
between single-valued neutrosophic matrices, to investigate
some of their properties and to propose a multi-criteria
group decision making method based on these new matrix
operations. The remaining part of this paper is organized
as follows: In Section 2, some definitions and operations
related to single-valued neutrosophic set, single-valued
neutrosophic matrices are recalled. In Section 3, some
new operations of single-valued neutrosophic matrices
called type-1 product (�̃), type-2 product (⊗̃), minus
(�̃), complement and transpose, based on single-valued
neutrosophic number operations, and is obtained some
results related to defined operations. In Section 4, a
multi-criteria group decision making (MCGDM) method
is proposed. In Section 5, an application of the proposed
method is given to choose optimum alternative among firms
considered to invest. In Section 6, it is given comparison
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proposed method with other methods developed previously.
In Section 7, the concluding remarks are presented.

2 Preliminaries

In this section, we present the basic definitions of single-
valued neutrosophic sets and single-valued neutrosophic
matrices, which would be useful for subsequent discussions.

2.1 Single-valued neutrosophic sets

A neutrosophic set A on the universe of discourse X is
defined as

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X}
where TA, IA, FA : X →]−0, 1+[ and −0 ≤ TA(x) +
IA(x) + FA(x) ≤ 3+ [30]. From a philosophical point
of view, the neutrosophic set takes the value from real
standard or non-standard subsets of ]−0, 1+[. But in real
life application in scientific and engineering problems it
is difficult to use neutrosophic set with value from real
standard or non-standard subset of ]−0, 1+[. Hence we
consider the neutrosophic set which takes the value from
the subset of [0, 1]. In some real life applications, modeling
of problems by using real standard or nonstandard subsets
of ]−0, 1+[ may not be easy sometimes. Therefore concept
of single valued neutrosophic set (SVN-set) was defined by
Wang et al. [36].

Let X 
= ∅, with a generic element in X denoted
by x. A single-valued neutrosophic set (SV N-set) A is
characterized by three functions called truth membership
function TA(x), indeterminacy membership function IA(x)

and falsity membership function FA(x) such that TA(x),
IA(x), FA(x) ∈ [0, 1] for all x ∈ X.

If X is continuous, a SV N-set A can be written as
follows:

A =
∫

X

〈TA(x), IA(x), FA(x)〉 /x, for all x ∈ X.

If X is crisp set, a SV N-set A can be written as follows:

A =
∑
x

〈TA(x), IA(x), FA(x)〉 /x, for all x ∈ X.

Here 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for all x ∈ X. Also,
we can denote SVN-set A over X by separating three parts
as follows:

TA = {(x, TA(x)) : x ∈ X}, IA = {(x, IA(x)) : x ∈ X},
FA = {(x, FA(x)) : x ∈ X}.

Operations and relations between two SVN-sets are defined
in [36]. Let A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X} and

B = {〈x, TB(x), IB(x), FB(x)〉 : x ∈ X} be two SVN-sets.
Then,

1. A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥
IB(x), FA(x) ≥ FB(x) for all x ∈ X,

2. A = B if and only if A ⊆ B and B ⊆ A for all x ∈ X,
3. Ac={〈x, FA(x), 1 − IA(x), TA(x)〉 : x ∈ X},
4. A∪B= {〈x, (TA(x)∨TB(x)), (IA(x)∧IB(x)), (FA(x)∧

FB(x))〉 : x ∈ X},
5. A∩B= {〈x, (TA(x)∧TB(x)), (IA(x)∨IB(x)), (FA(x)∨

FB(x))〉 : x ∈ X}.
Operations between two SVN-numbers are defined by

Liu and Wang [20]. Let μ(x) = 〈μt(x), μi(x), μf (x)〉
and μ(y) = 〈μt(y), μi(y), μf (y)〉 be two SVN-numbers.
Then,

1. μ(x) ⊕ μ(y) = 〈μt(x) + μt(y) − μt(x)μt (y),

μi(x)μi(y), μf (x)μf (y)〉,
2. μ(x)⊗ μ(y) = 〈μt(x)μt (y), μi(x)+ μi(y)− μi(x)+

μi(y), μf (x) + μf (y) − μf (x) + μf (y)〉,
3. λμ(x) = 〈1 − (1 − μt(x))λ, μi(x)λ, μf (x)λ〉, λ > 0,
4. μ(x)λ = 〈(μt (x))λ, 1−(1−μi(x))λ, 1−(1−μf (x))λ〉,

λ > 0.

Let μj = 〈μt
j , μ

i
j , μ

f
j 〉 (j = 1, 2, ..., n) be a collection

of SNNs, SNNWA : SNNn → SNN

SNNWAw(μ1, μ2, ..., μn) =
n∑

j=1

wjμj , (1)

the SNNWA operator is called the simplified neutrosophic
number weighted averaging operator of dimension n, where
w = (w1, w2, ..., wn) is the weight vector of μj (j =
1, 2, ..., n), with wj ≥ 0 (j = 1, 2, ..., n) and

∑n
j=1 wj = 1

(see [27]). Here if it is taken all of wj (j = 1, 2, ..., n) as
equal, then (1) can be written as follows:

SNNWA(μ1, μ2, ..., μn) =
n⊕

j=1

μj . (2)

Similarly, neutrosophic number weighted geometric
operator of dimension n can be defined as follows:

SNNWG(μ1, μ2, ..., μn) =
n⊗

j=1

μj . (3)

[27]
Equations (2) and (3) can be written as more explicit,

respectively, as follows:

n⊕
j=1

μj =
〈

1 −
n∏

j=1

(1 − μt
j ),

n∏
j=1

μi
j ,

n∏
j=1

μ
f
j

〉
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and

n⊗
j=1

μj =
〈

n∏
j=1

μt
j , 1 −

n∏
j=1

(1 − μi
j ), 1 −

n∏
j=1

(1 − μ
f
j )

〉
.

Let I 3 = [0, 1] × [0, 1] × [0, 1] and N(I 3) =
{(α1, α2, α3) : α1, α2, α3 ∈ [0, 1]}. Then, (N(I 3) is a
lattice together with partial ordered relation �, where order
relation � on N(I 3) can be defined by

(0, 1, 1) � (α1, α2, α3) � (β1, β2, β3)

� (1, 0, 0) ⇔ α1 ≤ β1, α2 ≥ β2, α3 ≥ β3

for (α1, α2, α3), (β1, β2, β3) ∈ N(I 3) (see [15]).

Definition 1 Let Mm(I 3) = {Â = [(μt
pq, μi

pq, μ
f
pq)]m×m :

(μt
pq, μi

pq, μ
f
pq) ∈ I 3)}, where I 3 = [0, 1] × [0, 1] × [0, 1]

is Cartesian product of unit intervals of the real line. Any
matrix Â in Mm(I 3) is called a single-valued neutrosophic
matrix (SVN-matrix).

3 Some new operations on SVN-matrices

In this section, we present some new operations on SVN-
matrices based on the operations of SVNs. The type-
1 product and type-2 product are introduced as in the
following:

Definition 2 Let μ = [〈μt
pq, μi

pq, μ
f
pq〉]n×r and ν =

[〈νt
pq, νi

pq, ν
f
pq〉]n×r be two SVN-matrices. Then, type-1

product operation between SVN-matrices μ and ν, denoted
by μ�̃ν, is defined as follows:

μ�̃ν =
[
〈μt

pqνt
pq , μi

pq +νi
pq −μi

pqνi
pq , μ

f
pq +ν

f
pq −μ

f
pqν

f
pq〉
]
n×r

.

Definition 3 Let μ = [〈μt
pq, μi

pq, μ
f
pq〉]n×n, and

ν = [〈νt
pq, νi

pq, ν
f
pq〉]n×r . Then, type-2 product operation

between SVN-matrices μ and ν, μ⊗̃ν, is defined as follows:

μ⊗̃ν = [〈ct
pq, ci

pq, c
f
pq〉]n×r ,

where ct
pq = 1 −∏n

s=1(1 − (μt
psν

t
sq)), ci

pq =∏n
s=1(μ

i
ps +

νi
sq −μi

psν
i
sq) and c

f
pq =∏n

s=1(μ
f
ps + ν

f
sq −μ

f
psν

f
sq) for all

1 ≤ p ≤ n and 1 ≤ q ≤ r .

Now the addition operation on SVN-matrices is pre-
sented as follow:

Definition 4 Let μ = [〈μt
pq, μi

pq, μ
f
pq〉]n×r , and ν =

[〈νt
pq, νi

pq, ν
f
pq〉]n×r be two SVN-matrices. Then, addition

operation between SVN-matrices μ and ν, μ⊕̃ν, is defined
as follows:

μ⊕̃ν = [〈μt
pq + νt

pq − μt
pqνt

pq, μi
pqνi

pq, μ
f
pqν

f
pq〉]n×r .

Transpose of SVN-matrix ν is defined as follows:

ν′ = [〈νt
qp, νi

qp, ν
f
qp〉]n×m.

Definition 5 Let μ = [〈μt
pq, μi

pq, μ
f
pq〉]n×n be a square

SVN-matrix. If

μ = 〈μt
pq, μi

pq, μ
f
pq〉 =

{
(1, 0, 0), p = q

(0, 1, 1), p 
= q
,

then μ is called SVN-unit matrix, and especially denoted by
In = [〈I t

pq, I i
pq, I

f
pq〉]n×n.

Here

μ0 = In = [〈I t
pq, I i

pq, I
f
pq〉]n×n.

If (μt
pq, μi

pq, μ
f
pq) � (νt

pq, νi
pq, ν

f
pq) for all 1 ≤ p ≤

n,and 1 ≤ q ≤ r , then SVN-matrix μ is smaller than
SVN-matrix ν, and denoted by μ�̃ν (see [14, 35]).

Now we define some new operations related to SVN-
matrices.

Definition 6 Let μ = [〈μt
pq, μi

pq, μ
f
pq〉]m×m and ν =

[〈νt
pq, νi

pq, ν
f
pq〉]m×m be two SVN-matrices. Then, minus

operation between SVN-matrices μ and ν, denoted by μ�̃ν,
is defined as follows:

μ�̃ν = [〈μt
pq � νt

pq, μi
pq � νi

pq, μ
f
pq � ν

f
pq〉]m×m,

where μt
pq � νt

pq =
{

μt
pq, μt

pq > νt
pq

0, μt
pq ≤ νt

pq

, μi
pq � νi

pq =
{

1, μi
pq ≥ νi

pq

μi
pq, μi

pq < νi
pq

and μ
f
pq � ν

f
pq =

{
1, μ

f
pq ≥ ν

f
pq

μ
f
pq, μ

f
pq < ν

f
pq

Definition 7 Let μ = [〈μt
pq, μi

pq, μ
f
pq〉]m×n and α =

(αt , αi, αf ). Then upper α−level matrix of SVN-matrix μ,
denoted by μ(α), is defined as follows:

μ(α) = [〈(μt
pq)α

t

, (μi
pq)α

i

, (μ
f
pq)α

f 〉]m×n,

where

(μt
pq)α

t =
{

1, μt
pq ≥ αt ,

0, μt
pq < αt ,

, (μi
pq)α

i =
{

1, μi
pq > αi,

0, μi
pq ≤ αi,

,

(μ
f
pq)α

f =
{

1, μ
f
pq > αf ,

0, μ
f
pq ≤ αf .
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Fig. 1 Single-valued neutrosophic matrix μ

Definition 8 Let μ = [〈μt
pq, μi

pq, μ
f
pq〉]m×n and α =

(αt , αi, αf ). Then lower α−level matrix of SVN-matrix μ,
denoted by μ(α), is defined as follows:

μ(α) = [〈(μt
pq)αt , (μi

pq)αi , (μ
f
pq)αf 〉]m×n,

where

(μt
pq)αt =

{
μt

pq, μt
pq ≥ αt ,

0, μt
pq < αt ,

, (μi
pq)αi =

{
1, μi

pq > αi,

μi
pq, μi

pq ≤ αi,
,

(μ
f
pq)αf =

{
1, μ

f
pq > αf ,

μ
f
pq, μ

f
pq ≤ αf .

Definition 9 Let μ = [〈μt
pq, μi

pq, μ
f
pq〉]m×n be a SVN-

matrix. Then, complement of SVN-matrices μ denoted by
μc, is defined as follows:

μc = [〈μf
pq, 1 − μi

pq, μt
pq〉]m×n.

In order to demonstrate these operation an example is
presented and results are shown in images (Figs. 1, 2, 3, 4,
5, 6, 7, 8 and 9).

Fig. 2 Single-valued neutrosophic matrix ν

Fig. 3 Single-valued neutrosophic matrix μ�̃ν

Example 1 Let us consider SVN-matrices μ and ν given as
follows:

μ =
⎛
⎝ 〈0.5, 0.1, 0.5〉 〈0.6, 0.4, 0.7〉 〈0.3, 0.2, 0.4〉

〈0.4, 0.5, 0.6〉 〈0.1, 0.6, 0.8〉 〈0.2, 0.4, 0.3〉
〈0.8, 0.3, 0.2〉 〈0.7, 0.9, 0.8〉 〈0.9, 0.8, 0.7〉

⎞
⎠ ,

ν =
⎛
⎝ 〈0.4, 0.6, 0.5〉 〈0.5, 0.7, 0.4〉 〈0.6, 0.4, 0.8〉

〈0.8, 0.5, 0.4〉 〈0.9, 0.3, 0.5〉 〈0.1, 0.8, 0.9〉
〈0.3, 0.4, 0.7〉 〈0.5, 0.1, 0.6〉 〈0.2, 0.5, 0.5〉

⎞
⎠ .

Type-1 product on μ and ν:

μ�̃ν =
( 〈0.2, 0.64, 0.75〉 〈0.3, 0.82, 0.82〉 〈0.18, 0.52, 0.88〉

〈0.32, 0.75, 0.76〉 〈0.09, 0.72, 0.9〉 〈0.02, 0.88, 0.93〉
〈0.24, 0.58, 0.76〉 〈0.35, 0.91, 0.92〉 〈0.18, 0.9, 0.85〉

)

Type-2 product on μ and ν:

μ⊗̃ν =
( 〈0.62, 0.23, 0.50〉 〈0.71, 0.12, 0.45〉 〈0.38, 0.24, 0.54〉

〈0.27, 0.41, 0.56〉 〈0.34, 0.28, 0.49〉 〈0.28, 0.45, 0.54〉
〈0.78, 0.60, 0.48〉 〈0.88, 0.60, 0.41〉 〈0.60, 0.51, 0.57〉

)

Fig. 4 Single-valued neutrosophic matrix μ⊗̃ν
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Fig. 5 Single-valued neutrosophic matrix μ⊕̃ν

The addition operation on μ and ν:

μ⊕̃ν =
( 〈0.7, 0.06, 0.25〉 〈0.8, 0.28, 0.28〉 〈0.72, 0.08, 0.32〉

〈0.88, 0.25, 0.24〉 〈0.91, 0.18, 0.40〉 〈0.28, 0.32, 0.27〉
〈0.86, 0.12, 0.14〉 〈0.85, 0.09, 0.48〉 〈0.92, 0.40, 0.35〉

)

The minus operation on μ and ν:

μ�̃ν =
⎛
⎝ 〈0.5, 0.1, 1.0〉 〈0.6, 0.4, 1.0〉 〈0.0, 0.2, 0.4〉

〈0.0, 1.0, 1.0〉 〈0.0, 1.0, 1.0〉 〈0.2, 0.4, 0.3〉
〈0.8, 0.3, 0.2〉 〈0.7, 1.0, 1.0〉 〈0.9, 1.0, 1.0〉

⎞
⎠

Now, suppose α = (0.4, 0.5, 0.3). Then upper and
lower α − level of μ are calculated as in the following:

μ(α) =
⎛
⎝ 〈1, 0, 1〉 〈1, 0, 1〉 〈0, 0, 1〉

〈1, 0, 1〉 〈0, 1, 1〉 〈0, 0, 0〉
〈1, 0, 0〉 〈1, 1, 1〉 〈1, 1, 1〉

⎞
⎠ ,

μ(α) =
⎛
⎝ 〈0.5, 0.1, 1〉 〈0.6, 0.4, 1〉 〈0, 0.2, 1〉

〈0.4, 1, 1〉 〈0, 1, 1〉 〈0, 0.4, 0.3〉
〈0.8, 0.3, 0.2〉 〈0.7, 1, 1〉 〈0.9, 1, 1〉

⎞
⎠ .

Fig. 6 Single-valued neutrosophic matrix μ�̃ν

Fig. 7 Single-valued neutrosophic matrix μ(α)

Next, the complement of μ is calculated as follows:

μc =
⎛
⎝ 〈0.5, 0.9, 0.5〉 〈0.7, 0.6, 0.6〉 〈0.4, 0.8, 0.3〉

〈0.6, 0.5, 0.4〉 〈0.8, 0.4, 0.1〉 〈0.3, 0.6, 0.2〉
〈0.2, 0.7, 0.8〉 〈0.8, 0.1, 0.7〉 〈0.7, 0.2, 0.9〉

⎞
⎠ ,

Proposition 1 Let μ, ν and γ be three m×n SVN-matrices.
Then,

1. μ⊕̃ν = ν⊕̃μ

2. (μ⊕̃ν)⊕̃γ = μ⊕̃(ν⊕̃γ )

3. μ�̃ν = ν�̃μ

4. (μ�̃ν)�̃γ = μ�̃(ν�̃γ )

Proof The proofs are obvious from definition of operations.

Proposition 2 Let μ and ν be two m × n and n × p

SVN-matrices. Then,

(μ⊗̃ν)⊗̃γ = μ⊗̃(ν⊗̃γ )

Fig. 8 Single-valued neutrosophic matrix μ(α)
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Fig. 9 Single-valued neutrosophic matrix μc

Note that μ⊗̃ν 
= ν⊗̃μ. Let us explain this situation with
an example.

Example 2 Let us consider SVN-matrices μ and ν given in
Example 1. We know that

μ⊗̃ν =
( 〈0.62, 0.23, 0.50〉 〈0.71, 0.12, 0.45〉 〈0.38, 0.24, 0.54〉

〈0.27, 0.41, 0.56〉 〈0.34, 0.28, 0.49〉 〈0.28, 0.45, 0.54〉
〈0.78, 0.60, 0.48〉 〈0.88, 0.60, 0.41〉 〈0.60, 0.51, 0.57〉

)

and

ν⊗̃μ =
( 〈0.67, 0.32, 0.39〉 〈0.58, 0.63, 0.69〉 〈0.64, 0.49, 0.36〉

〈0.65, 0.31, 0.52〉 〈0.56, 0.49, 0.72〉 〈0.43, 0.33, 0.40〉
〈0.43, 0.16, 0.43〉 〈0.33, 0.39, 0.75〉 〈0.33, 0.22, 0.50〉

)
,

μ⊗̃ν 
= ν⊗̃μ.

Proposition 3 Let μ, ν and γ be three n×n SVN-matrices.
Then,

1. μ⊕̃ν�̃μ�̃ν,
2. μ⊕̃μ�̃μ,
3. μ�̃μ�̃μ,
4. μ⊕̃ν�̃μ�̃ν,
5. μ⊕̃(ν�̃γ )�̃(μ⊕̃ν)�̃(μ⊕̃γ ),
6. μ�̃(ν⊕̃γ )�̃(μ�̃ν)⊕̃(μ�̃γ ),
7. If μ�̃ν, then μ⊕̃γ �̃ν⊕̃γ , μ�̃γ �̃ν�̃γ , μ⊗̃γ �̃ν⊗̃γ

and μ�̃γ �̃ν�̃γ .

Proof See Appendix A.1

Proposition 4 Let μ, ν and γ be three n×n SVN-matrices.
Then

1. μ⊕̃ν = ν⊕̃μ

2. (μ⊕̃ν)⊕̃γ = μ⊕̃(ν⊕̃γ )

3. μ�̃ν = ν�̃μ

4. (μ�̃ν)�̃γ = μ�̃(ν�̃γ )

5. μ⊗̃I = μ

6. (μ⊗̃ν)⊗̃γ = μ⊗̃(ν⊗̃γ )

Proof The proofs are obvious from definitions of opera-
tions.

Note that μ⊕̃I 
= μ and μ�̃I 
= μ. Let us consider
SVN-matrices μ and ν given in Example 1. Then,

μ⊕̃I =
⎛
⎝ 〈0.5, 0.1, 0.5〉 〈0.6, 0.4, 0.7〉 〈0.3, 0.2, 0.4〉

〈0.4, 0.5, 0.6〉 〈0.1, 0.6, 0.8〉 〈0.2, 0.4, 0.3〉
〈0.8, 0.3, 0.2〉 〈0.7, 0.9, 0.8〉 〈0.9, 0.8, 0.7〉

⎞
⎠

⊕̃
⎛
⎝ 〈1, 0, 0〉 〈0, 1, 1〉 〈0, 1, 1〉

〈0, 1, 1〉 〈1, 0, 0〉 〈0, 1, 1〉
〈0, 1, 1〉 〈0, 1, 1〉 〈1, 0, 0〉

⎞
⎠

=
⎛
⎝ 〈1, 0, 0〉 〈0.6, 0.4, 0.7〉 〈0.3, 0.2, 0.4〉

〈0.4, 0.5, 0.6〉 〈1, 0, 0〉 〈0.2, 0.4, 0.3〉
〈0.8, 0.3, 0.2〉 〈0.7, 0.9, 1〉 〈1, 0.8, 0〉

⎞
⎠


= μ

μ�̃I =
⎛
⎝ 〈0.5, 0.1, 0.5〉 〈0.6, 0.4, 0.7〉 〈0.3, 0.2, 0.4〉

〈0.4, 0.5, 0.6〉 〈0.1, 0.6, 0.8〉 〈0.2, 0.4, 0.3〉
〈0.8, 0.3, 0.2〉 〈0.7, 0.9, 0.8〉 〈0.9, 0.8, 0.7〉

⎞
⎠

�̃
⎛
⎝ 〈1, 0, 0〉 〈0, 1, 1〉 〈0, 1, 1〉

〈0, 1, 1〉 〈1, 0, 0〉 〈0, 1, 1〉
〈0, 1, 1〉 〈0, 1, 1〉 〈1, 0, 0〉

⎞
⎠

=
⎛
⎝ 〈0.5, 0.1, 0.5〉 〈0, 1, 1〉 〈0, 1, 1〉

〈0, 1, 1〉 〈1, 0.6, 0.8〉 〈0, 1, 1〉
〈0, 1, 1〉 〈0, 1, 1〉 〈0.9, 0.8, 0.7〉

⎞
⎠


= μ.

Proposition 5 Letμ and ν be two n×n SVN-matrices. Then

1. (μ⊕̃ν)′ = μ′⊕̃ν′
2. (μ�̃ν)′ = μ′�̃ν′
3. (μ⊗̃ν)′ = ν′⊗̃μ′
4. (μ�̃ν)′ = μ′�̃ν′

Proof See Appendix A.2

Proposition 6 Letμ and ν be two n×n SVN-matrices. Then

1. (μ⊕̃ν)c = μc�̃νc

2. (μ�̃ν)c = μc⊕̃νc

3. (μ�̃ν)c�̃μc�̃νc.

Proof See Appendix A.3

Proposition 7 Let μ be a n × n SVN-matrix and let α be a
SVN-value. Then,

μ(α)�̃μ(α).

Proof The proof is clear from definitions of μα and μα .
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Proposition 8 Let μ and ν be two n × n SVN-matrices and
let α be a SVN-value. If μ�̃ν, then

μ(α)�̃ν(α).

Proposition 9 Let μ be a n × n SVN-matrix and let α, β be
two SVN-values such that α � β. Then,

1. μ(β)�̃μ(α)

2. μ(β)�̃μ(α).

Proof See Appendix A.4

Proposition 10 Let μ and ν be two n×n SVN-matrices and
let α be a SVN-value. Then,

1. (μ⊕̃ν)(α)�̃μ(α)⊕̃ν(α).
2. (μ⊕̃ν)(α)�̃μ(α)⊕̃ν(α).

Proof See Appendix A.5

Proposition 11 Let μ and ν be two n×n SVN-matrices and
let α be a SVN-value. Then,

1. (μ�̃ν)(α)�̃μ(α)�̃ν(α).
2. (μ�̃ν)(α)�̃μ(α)�̃ν(α).

Proof See Appendix A.6

Proposition 12 Let μ and ν be two n×n SVN-matrices and
let α be a SVN-value. Then,

1. (μ�̃ν)(α)�̃μ(α)�̃ν(α).
2. (μ�̃ν)(α)�̃μ(α)�̃ν(α).

Proof See Appendix A.7

4Multi-criteria group decisionmaking
method

Let D = {D1, D2, ..., Ds} be set of decision makers,
A1, A2, ..., Ap be possible alternatives among which deci-
sion makers have to choose an optimal alternative and
C1, C2, ..., Cr be criteria which alternatives performance
are measured. The procedure of the proposed method as
follows:

4.1 Constructing of decisionmatrices
Dk (i = 1, 2, ..., s)

Suppose that d̃k
ij = 〈dk

ij (t), d
k
ij (i), d

k
ij (f )〉 is the evaluation

value of the criteria Cj with respect to alternative Ai which

is made by decision maker Dk . Then, decision matrix for
decision maker Dk can be write as follows:

Dk =

⎛
⎜⎜⎜⎜⎝

d̃k
11 d̃k

12 · · · d̃k
1r

d̃k
21 d̃k

22j · · · d̃k
2r

...
...

...
...

d̃k
p1 d̃k

p2 · · · d̃k
pr

⎞
⎟⎟⎟⎟⎠ (4)

4.2 Constructing of referencematrix R

Let C+ be a criteria set for positive ideal solution and C−
be a criteria set for negative ideal solution. Then, reference
matrix R is constructed as follows:

R =

⎛
⎜⎜⎜⎝

r̃11 r̃12 · · · r̃1r

r̃21 r̃22 · · · r̃2r

...
...

...
...

r̃p1 r̃p2 · · · r̃pr

⎞
⎟⎟⎟⎠ (5)

where

r̃ij =

⎧⎪⎨
⎪⎩

〈 1
n

∑n
k=1 d̃k

ij (t),
1
n

∑n
k=1 d̃k

ij (i),
1
n

∑n
k=1 d̃k

ij (f )〉, if Cj ∈ C+

〈 1
n

∑n
k=1 d̃k

ij (f ),
1
n

∑n
k=1(1−d̃k

ij (i)),
1
n

∑n
k=1 d̃k

ij (t)〉, if Cj ∈ C−
(6)

4.3 Construction of minusmatrices
Mk (k = 1, 2, ..., s)

Let Dk = [〈dk
ij (t), d

k
ij (i), d

k
ij (f )〉]p×r be a decision maker

matrix related to decision maker Dk . Then, minus matrix
related to Dk , denoted by Mk is constructed as follows:

Mk =Dk�̃R=

⎛
⎜⎜⎜⎝

m̃k
11 m̃k

12 · · · m̃k
1r

m̃k
21 m̃k

22 · · · m̃k
2r

...
...

...
...

m̃k
p1 m̃k

p2 · · · m̃k
pr

⎞
⎟⎟⎟⎠, (k = 1, 2, ..., s) (7)

where m̃k
ij = 〈dk

ij (t) � r̃ij (t), d
k
ij (i) � r̃ij (i), d

k
ij (f ) � r̃ij (f )〉.

4.4 Finding of additionmatrix A

Addition matrix, denoted by A, is calculated by using
Definition 4 as follows:

A=
s⊕

k=1

Mk =

⎛
⎜⎜⎜⎝

⊕s
k=1 m̃k

11

⊕s
k=1 m̃k

12 · · ·⊕s
k=1 m̃k

1r⊕s
k=1 m̃k

21

⊕s
k=1 m̃k

22 · · ·⊕s
k=1 m̃k

2r
...

...
...

...⊕s
k=1 m̃k

p1

⊕s
k=1 m̃k

p2 · · ·⊕s
k=1 m̃k

pr

⎞
⎟⎟⎟⎠(8)

4.5 Constructing of score matrix based on addition
matrix

We use following formula given in [27].
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Definition 10 [27] Let μ = 〈μt , μi, μf 〉 be a SVN-
number. Then, the score function of SVN-number μ,
denoted by s(μ), is defined as follows:

s(μ) = μt + 1 − μi + 1 − μf

3
(9)

Let us consider addition matrix A. Then, score matrix
is a matrix constructed by calculating scores of elements
of addition matrix A, and score matrix of A is denoted by
S(A) = [s̃ij ]p×r , where s̃ij = s(

⊕s
k=1 m̃k

ij ).

4.6 Calculating of decision values of the alternatives

Let us consider score matrix S(A). Then decision value of
alternative Ai , denoted by DV (Ai), is calculated by

DV (Ai) =
r∑

j=1

s̃ij . (10)

4.7 Determining of optimum alternative

We determine the addition matrix by summing the elements
of minus matrix and we calculate decision values of
alternatives according to scores of elements of addition
matrix. Therefore, we rank the decision values of the
alternatives and choose alternative which has minimum
decision value as an optimum element.

The procedures of the proposed method is shown as an
algorithm as follows:

5 Illustrative case study

In this section, a case study has been demonstrated to reveal
the success of proposed method.

5.1 Firm selection problem

Let us consider numerical example in [18] where one
investment company intends to select an firm from the
following four alternatives to invest. The four firms are
marked by Ai(i = 1, 2, 3, 4), and they are measured
by the three criteria: (1) C1 (the risk index); (2) C2(the
growth index); (3) C3(environmental impact index). Also
there are three investment specialist as decision maker in the
company. We denote these decision makers by D1, D2 and
D3.

The problem has been solved with proposed group
decision making method as in the following steps:

Step 1: Construct decision matrix based on SVN-values
of firms provided by DMs.

The SVN-values of the four firms provided by DMs as in
Table 1, 2 and 3:

Step 2: Obtain reference matrix R based on decision
matrix:

Let C+ = {C2, C3} and C− = {C1}. Then, reference
matrix R is obtained by using (6) as follows:

R =

⎛
⎜⎜⎝

〈0.467, 0.700, 0.600〉 〈0.400, 0.533, 0.400〉 〈0.367, 0.567, 0.333〉
〈0.767, 0.533, 0.367〉 〈0.633, 0.367, 0.467〉 〈0.533, 0.367, 0.533〉
〈0.300, 0.533, 0.633〉 〈0.567, 0.433, 0.500〉 〈0.567, 0.567, 0.500〉
〈0.400, 0.467, 0.533〉 〈0.667, 0.400, 0.333〉 〈0.800, 0.433, 0.500〉

⎞
⎟⎟⎠ .

Step 3: Find minus matrix: Minus matrices for each of
decision makers are obtained by using Eq. 7 as follows:

M1 = D1�̃R =

⎛
⎜⎜⎝

〈0.600, 0.700, 1.000〉 〈0.000, 1.000, 0.400〉 〈0.000, 1.000, 0.333〉
〈0.000, 0.533, 1.000〉 〈0.000, 0.367, 1.000〉 〈0.000, 1.000, 0.533〉
〈0.900, 0.533, 0.633〉 〈0.800, 1.000, 1.000〉 〈0.700, 0.567, 0.500〉
〈0.000, 1.000, 0.533〉 〈0.000, 1.000, 0.333〉 〈0.000, 1.000, 0.500〉

⎞
⎟⎟⎠ ,

M2 = D2�̃R =

⎛
⎜⎜⎝

〈0.000, 0.700, 0.600〉 〈0.500, 1.000, 1.000〉 〈0.000, 1.000, 0.333〉
〈0.000, 0.533, 1.000〉 〈0.000, 1.000, 0.467〉 〈0.600, 0.367, 0.533〉
〈0.700, 1.000, 0.633.〉 〈0.000, 0.433, 0.500〉 〈0.900, 1.000, 0.500〉
〈0.000, 0.467, 0.533〉 〈0.800, 0.400, 1.000〉 〈0.000, 0.433, 1.000〉

⎞
⎟⎟⎠ ,

M3 = D3�̃R =

⎛
⎜⎜⎝

〈0.700, 0.700, 0.600〉 〈0.000, 0.533, 1.000〉 〈0.500, 0.567, 1.000〉
〈0.000, 0.533, 1.000〉 〈0.900, 0.367, 1.000〉 〈0.600, 1.000, 1.000〉
〈0.000, 0.533, 0.633〉 〈0.000, 0.433, 0.500〉 〈0.000, 0.567, 1.000〉
〈0.800, 0.467, 0.533〉 〈0.700, 1.000, 0.333〉 〈0.900, 0.433, 1.000〉

⎞
⎟⎟⎠ .
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Step 4: Calculate addition matrix: Addition matrix A is
calculated by using (8) as follows:

A =

⎛
⎜⎜⎝

〈0.880, 0.343, 0.360〉 〈0.500, 0.533, 0.400〉 〈0.500, 0.567, 0.111〉
〈0.000, 0.152, 1.000〉 〈0.900, 0.134, 0.467〉 〈0.840, 0.367, 0.284〉
〈0.970, 0.284, 0.254〉 〈0.800, 0.188, 0.250〉 〈0.970, 0.321, 0.250〉
〈0.800, 0.218, 0.152〉 〈0.940, 0.400, 0.111〉 〈0.900, 0.188, 0.500〉

⎞
⎟⎟⎠ .

Step 5: Construct score matrix: Score matrix S(A) is
constructed by using (9) as follows:

S(A) =

⎛
⎜⎜⎝

0.726 0.522 0.607
0.283 0.766 0.730
0.811 0.787 0.800
0.810 0.810 0.737

⎞
⎟⎟⎠ .

Step 6: Find decision values of alternatives: Decision
values of alternatives are found by using (10) as follows:

DV (A1) = 1.855, DV (A2) = 1.779 DV (A3) =
2.398 DV (A4) = 2.357.

Step 7: Rank decision values of the alternatives and select
optimum element:

Ranking of decision values of the alternatives is
DV (A2) < DV (A1) < DV (A4) < DV (A3). Then,
optimum element is A2.

6 Comparison and discussion

In section, we compare our multi-criteria decision making
procedure with the methods presented by Mukherjee et al.

[23], Broumi et al. [7], Ye [42, 43, 45] and Ye and Fu [44].
Firstly, we modify similarity measure methods according to
the proposed MCGDM method and then in Table 4 we give
ranking orders of alternatives obtained by using existing
methods and proposed method

1. Hamming Distance [23]:

LH (Dk(Ai), R) = 1

6

r∑
j=1

{
|dk

ij (t)−r̃ij (t)|+|dk
ij (i)

− r̃ij (i)|+|dk
ij (f )−r̃ij (f )|

}
. (11)

2. Normalized Hamming distance [23]:

LNH (Dk(Ai), R) = 1

6r

r∑
j=1

{
|dk

ij (t)−r̃ij (t)|+|dk
ij (i)

− r̃ij (i)|+|dk
ij (f )−r̃ij (f )|

}
. (12)

3. Euclidean distance [23]:

LE(Dk(Ai), R) =
√√√√1

6

r∑
j=1

{
(dk

ij (t) − r̃ij (t))2 + (dk
ij (i) − r̃ij (i))2 + (dk

ij (f ) − r̃ij (f ))2
}

. (13)

4. Normalized Euclidean distance [23]:

LNE(Dk(Ai), R) =
√√√√ 1

6r

r∑
j=1

{
(dk

ij (t) − r̃ij (t))2 + (dk
ij (i) − r̃ij (i))2 + (dk

ij (f ) − r̃ij (f ))2
}

. (14)

5. Extended(Normalized) Hausdorff Distance [7]:

LEH (Dk(Ai), R) = 1

r

r∑
j=1

max
{
|dk

ij (t)−r̃ij (t)|, |dk
ij (i)

− r̃ij (i)|, |dk
ij (f )−r̃ij (f )|

}
.(15)

We also modified Extended (normalized) Euclidean Haus-
dorff distance given in [3].

6. Extended (normalized) Euclidean Hausdorff distance
[3]:
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LEEH (Dk(Ai), R) =
√√√√1

r

r∑
j=1

max
{
|dk

ij (t) − r̃ij (t)|2, |dk
ij (i) − r̃ij (i)|2, |dk

ij (f ) − r̃ij (f )|2
}

. (16)

Similarity measure is defined by Mukherjee et al. [23] as
follows:

S(Dk) = 1

1 + L(Dk, R)

Based on this similarity measure formula, we define
similarity score functions of alternatives, denoted by S(Ai),
and similarity measures, denoted by SM(Ai, R), as follows:

S(Ai) = 1

s

s∑
k=1

L(Dk(Ai), R) (17)

and

SM(Ai, R) = 1

1 + S(Ai)
(18)

7. Jaccard similarity measure [42]:

SJ (Dk(Ai), R) = 1

n

n∑
j=1

= dk
ij (t)r̃ij (t) + dk

ij (i)r̃ij (i) + dk
ij (f )r̃ij (f )(

(d2
ij (t) + d2

ij (i) + d2
ij (f ) + r̃2

ij (t) + r̃2
ij (t) + r̃2

ij (t))

−(dk
ij (t)r̃ij (t) + dk

ij (i)r̃ij (i) + dk
ij (f )r̃ij (f ))

) (19)

8. Dice similarity measure [42]:

SD(Dk(Ai), R) = 1

n

n∑
j=1

2(dk
ij (t)r̃ij (t) + dk

ij (i)r̃ij (i) + dk
ij (f )r̃ij (f ))

(d2
ij (t) + d2

ij (i) + d2
ij (f ) + r̃2

ij (t) + r̃2
ij (t) + r̃2

ij (t))

(20)

9. Cosine similarity measure [42]:

SC(Dk(Ai), R) = 1

n

n∑
j=1

(dk
ij (t)r̃ij (t) + dk

ij (i)r̃ij (i) + dk
ij (f )r̃ij (f ))√

d2
ij (t) + d2

ij (i) + d2
ij (f )

√
r̃2
ij (t) + r̃2

ij (t) + r̃2
ij (t)

(21)

10. Improved cosine similarity measure [43]:

SC1(Dk(Ai), R) = 1

n

n∑
j=1

cos

(
π(|dk

ij (t) − r̃ij (t)| ∨ |dk
ij (i) − r̃ij (i)| ∨ |dk

ij (f ) − r̃ij (f )|)
2

)
(22)

SC2(Dk(Ai), R) = 1

n

n∑
j=1

cos

(
π(|dk

ij (t) − r̃ij (t)| + |dk
ij (i) − r̃ij (i)| + |dk

ij (f ) − r̃ij (f )|)
6

)
(23)

11. Tangent similarity measure [44]:

ST1(Dk(Ai), R) = 1 − 1

n

n∑
j=1

tan
(π

4
max(|dk

ij (t) − r̃ij (t)|, |dk
ij (i)

− r̃ij (i)|, |dk
ij (f ) − r̃ij (f )|)

)
(24)

ST2(Dk(Ai), R) = 1 − 1

n

n∑
j=1

tan
( π

12
(|dk

ij (t) − r̃ij (t)| + |dk
ij (i)

− r̃ij (i)| + |dk
ij (f ) − r̃ij (f )|)

)
(25)

12. Cotangent similarity measure [45]:

SCT1(Dk(Ai), R) = 1

n

n∑
j=1

cot
(π

4
+ π

4
max(|dk

ij (t) − r̃ij (t)|, |dk
ij (i)

− r̃ij (i)|, |dk
ij (f ) − r̃ij (f )|)

)
(26)

SCT2(Dk(Ai), R) = 1

n

n∑
j=1

cot
(π

4
+ π

12
(|dk

ij (t) − r̃ij (t)| + |dk
ij (i)

− r̃ij (i)| + |dk
ij (f ) − r̃ij (f )|)

)
(27)
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Table 1 The evaluations of
firms by decision maker 1 (D1)
for Firm Selection Problem

C1 C2 C3

A1 〈0.6, 0.5, 0.7〉 〈0.4, 0.7, 0.2〉 〈0.3, 0.6, 0.1〉
A2 〈0.3, 0.5, 0.8〉 〈0.6, 0.2, 0.7〉 〈0.4, 0.4, 0.4〉
A3 〈0.9, 0.2, 0.5〉 〈0.8, 0.6, 0.9〉 〈0.7, 0.5, 0.4〉
A4 〈0.4, 0.7, 0.4〉 〈0.5, 0.4, 0.3〉 〈0.8, 0.9, 0.1〉

Table 2 The evaluations of
firms by decision maker 2 (D2)
for Firm Selection Problem

C1 C2 C3

A1 〈0.3, 0.3, 0.5〉 〈0.5, 0.6, 0.6〉 〈0.3, 0.6, 0.1〉
A2 〈0.3, 0.5, 0.8〉 〈0.4, 0.7, 0.1〉 〈0.6, 0.3, 0.5〉
A3 〈0.7, 0.7, 0.3〉 〈0.5, 0.3, 0.2〉 〈0.9, 0.7, 0.2〉
A4 〈0.4, 0.1, 0.5〉 〈0.8, 0.3, 0.4〉 〈0.7, 0.2, 0.6〉

Table 3 The evaluations of
firms by decision maker 3 (D3)
for Firm Selection Problem

C1 C2 C3

A1 〈0.7, 0.1, 0.2〉 〈0.3, 0.3, 0.4〉 〈0.5, 0.5, 0.8〉
A2 〈0.6, 0.4, 0.7〉 〈0.9, 0.2, 0.6〉 〈0.6, 0.4, 0.7〉
A3 〈0.3, 0.5, 0.1〉 〈0.4, 0.4, 0.4〉 〈0.1, 0.5, 0.9〉
A4 〈0.8, 0.2, 0.2〉 〈0.7, 0.5, 0.3〉 〈0.9, 0.2, 0.8〉

Table 4 Ranking orders by our method and existing methods

Ranking order methods A1 A2 A3 A4 Ranking order

Based on Hamming Distance [23] 0.745 0.844 0.776 0.812 A2 � A4 � A3 � A1

Based on Normalized Hamming Distance [23] 0.950 0.956 0.933 0.945 A2 � A1 � A4 � A3

Based on Euclidean Distance [23] 0.735 0.778 0.687 0.727 A2 � A1 � A4 � A3

Based on Normalized Euclidean Distance [23] 0.847 0.875 0.814 0.842 A2 � A1 � A4 � A3

Base on Hausdorff distance [7] 0.796 0.846 0.774 0.799 A2 � A4 � A1 � A3

Extended Euclidean Hausdorff distance [3] 0.693 0.761 0.664 0.696 A2 � A4 � A1 � A3

Jaccard similarity measure [42] 0.886 0.918 0.844 0.896 A2 � A4 � A1 � A3

Dice similarity measure [42] 0.946 0.939 0.907 0.966 A4 � A1 � A2 � A3

Cosine similarity measure [42] 0.9552 0.9617 0.9498 0.9615 A2 � A4 � A1 � A3

Improved cosine similarity measure-1 [43] 0.914 0.950 0.885 0.909 A2 � A1 � A4 � A3

Improved cosine similarity measure-2 [43] 0.9732 0.9739 0.9477 0.9650 A2 � A1 � A4 � A3

Based on tangent function-1 [44] 0.796 0.856 0.765 0.798 A2 � A4 � A1 � A3

Based on tangent function-2 [44] 0.889 0.902 0.847 0.878 A2 � A1 � A4 � A3

Based on cotangent function-1 [45] 0.665 0.755 0.626 0.673 A2 � A4 � A1 � A3

Based on cotangent function-2 [45] 0.802 0.828 0.740 0.787 A2 � A1 � A4 � A3

Proposed group decision making method 1.855 1.779 2.398 2.357 A2 � A1 � A4 � A3
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Table 5 Obtained results by using (12)-(27) and proposed method

Case 1 Case 2 Case 3 Case 4

X (0, 0, 0) (0.2, 0.3, 0.4) (1,0,0) (1,0,0)

Y (0, 0, 0) (0.2, 0.3, 0.4) (0,0,0) (0,1,1)

Based on Hamming Distance [23] 1 1 0.857 0.667

Based on Normalized Hamming Distance [23] 1 1 0.960 0.889

Based on Euclidean Distance [23] 1 1 0.710 0.586

Based on Normalized Euclidean Distance [23] 1 1 0.830 0.739

Base on Hausdorff distance [7] 1 1 0.750 0.750

Extended Euclidean Hausdorff distance [3] 1 1 0.634 0.634

Jaccard similarity measure [42] null 1 0 0

Dice similarity measure [42] null 1 0 0

Cosine similarity measure [42] null 1 null 0

Improved cosine similarity measure-1 [43] 1 1 0 0

Improved cosine similarity measure-2 [43] 1 1 0.866 0

Based on tangent function-1 [44] 1 1 0 0

Based on tangent function-2 [44] 1 1 0.732 0

Based on cotangent function-1 [45] 1 1 0 0

Based on cotangent function-2 [45] 1 1 0.577 0

Proposed decision making method 1 1 0.667 0

We see that the proposed method in this paper is consistent
with the other methods proposed previously.

For the comparison of the ranking order methods based
on the proposed method with existing methods based on
distance measures and similarity measures methods [7, 23,
42–45] in single-valued neutrosophic setting, a numerical
example is presented to demonstrate the effectiveness
and rationality of the proposed ranking order method
of SVNSs. Let us consider two SVNSs X and Y in
A = {a} and compare the proposed method with
the existing methods based on similarity measures and
distance similarity measures in [7, 23, 42–45] for pattern
recognitions. By applying (12)-(27), the similarity measure
results for the pattern recognitions are indicated by the
numerical example,as shown in Table 5.

By the Table 5:

1. In Case 1, values of Jaccard, Dice and Cosine similarity
measures are undefined or unmeaningful.

2. In Case 3, similarity value based on improved cosine
similarity-2 is equal 0, but similarity value based on
improved cosine similarity-2 is equal 0.866. Hence the
similarity measures are not suitable for some applica-
tions handling ranking order of alternatives and pattern
recognition. Similar situations valid for similarity mea-
sures based on tangent function-1 and tangent function-
2 and cotangent function-1 and cotangent function-2.

3. In case 4, since complement of (1,0,0) is (0,1,1), values
of similarity measures based on Hamming distance,
normalized Hamming distance, Euclidean distance,

normalized Euclidean distance, Hausdorff distance
and extended Euclidean Hausdorff distance are not
meaningful.

As a result, we can say that proposed decision making
method is more suitable for ranking order than other
methods. Also, in the other methods many operations such
as extraction, absolute value, e.i. are used. In our method,
we use minus operation instead of distance measure, thus
we obtain the results for ranking order easier.

7 Conclusion

In this paper, we defined some new operations on
SVN-matrices, an investigated some properties of them.
Especially, type-1 product operation of the SVN-matrices
is similar Hadamard product of matrices. Therefore, type-
1 product allows to make some applications related to
Hadamard product under SVN environment. Also, in future
it may be derived some properties of these operations
under determinant function. Furthermore researchers may
study on inverses of SVN-matrices and may propose a
new decision making methods based on upper and lover
(α)−level SVN-matrices.
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Appendix A

A.1

1. Let α = μ⊕̃ν and β = μ�̃ν. Then αt
pq = μt

pq +νt
pq −

μt
pqνt

pq and βt
pq = μt

pqνt
pq . The proof will be made

for membership, indeterminacy and non-membership
degrees of elements of SVN-matrices.

(a) Suppose that μt
pq + νt

pq − μt
pqνt

pq ≥ μt
pqνt

pq .
Since 0 ≤ μt

pq ≤ 1 and 0 ≤ νt
pq ≤ 1, μt

pq(1 −
νt
pq) + νt

pq(1 − μt
pq) ≥ 0. Hence αt

pq ≥ βt
pq .

(b) Suppose that μi
pqνi

pq ≤ μi
pq + νi

pq − μi
pqνi

pq .
Since 0 ≤ μi

pq ≤ 1 and 0 ≤ νi
pq ≤ 1, 0 ≤

μi
pq(1 − νi

pq) + νi
pq(1 − μi

pq). Hence αi
pq ≤ βi

pq .

(c) It can be shown that α
f
pq ≤ β

f
pq with similar way

to proof of αi
pq ≤ βi

pq .

2. Let α = μ⊕̃μ. Then α = (μt
pq + νt

pq − μt
pqνt

pq,

μi
pqνi

pq, μ
f
pqν

f
pq). Since each of μt

pq, μi
pq, μ

f
pq , νt

pq,

νt
pq and ν

f
pq are in interval [0,1], it is clear that μt

pq +
νt
pq − μt

pqνt
pq ≥ μt

pq , μi
pqνi

pq ≤ μi
pq and μ

f
pqν

f
pq ≤

μ
f
pq . Therefore μ⊕̃μ � μ.

3. Let α = μ�̃μ. Then α = (μt
pqμt

pq, μi
pq + μi

pq −
μi

pqμi
pq, μ

f
pq +μ

f
pq −μ

f
pqμ

f
pq). Since μt

pqνt
pq ≤ μt

pq ,

μi
pq + μi

pq − μi
pqμi

pq ≥ μi
pq and μ

f
pq + μ

f
pq −

μ
f
pqμ

f
pq ≥ μ

f
pq , μ�̃μ � μ.

4. Let αpq = 〈μt
pq + νt

pq − μt
pqνt

pq, μi
pqνi

pq, μ
f
pqν

f
pq〉

be an element of SVN-matrix μ⊕̃ν. From definition
of μ�̃ν, we know that for truth-membership values
of elements of SVN-matrix μ�̃ν, if μt

pq ≥ νt
pq ,

μt
pq � νt

pq = μt
pq and if μt

pq < νt
pq , μt

pq �
νt
pq = 0. Since μt

pq + νt
pq − μt

pqνt
pq ≥ μt

pq

and μt
pq + νt

pq − μt
pqνt

pq ≥ 0, truth-membership
values of elements of SVN-matrix μ⊕̃ν are always
greater than or equal to truth-membership values of
elements of SVN-matrix μ�̃ν. From definition of μ�̃ν,
if μi

pq ≥ νi
pq , μi

pq � νi
pq = 1, and if μi

pq < νi
pq ,

μi
pq � νi

pq = μpq . Since 1 ≥ μi
pqνi

pq and μi
pq ≥

μi
pqνi

pq , indeterminacy-membership values of elements
of SVN-matrix μ⊕̃ν are always smaller than or equal
to indeterminacy-membership values of elements of
SVN-matrix μ�̃ν. Also, it can be shown that falsity-
membership values of elements of SVN-matrix μ⊕̃ν

are always smaller than or equal to falsity-membership
values of elements of SVN-matrix μ�̃ν. It is concluded
that μ⊕̃ν�̃μ�̃ν.

5. Let αpq and βpq be the pqth elements of the SVN-
matrices μ⊕̃(ν�̃γ ) and (μ⊕̃ν)�̃(μ⊕̃γ ), respectively.
The proof will be made for three cases.

Case 1: For truth-membership values of the SVN-
matrices. From Definition 6,

αt
pq =

{
μt

pq + νt
pq − μt

pqνt
pq, νt

pq > γ t
pq,

μt
pq, νt

pq ≤ γ t
pq .

Since μt
pq + νt

pq − μt
pqνt

pq > μt
pq + γ t

pq − μt
pqγ t

pq

for νt
pq > γ t

pq , and μt
pq + νt

pq − μt
pqνt

pq ≤ μt
pq +

γ t
pq − μt

pqγ t
pq for νt

pq ≤ γ t
pq ,

βt
pq =

{
μt

pq + νt
pq − μt

pqνt
pq, νt

pq > γ t
pq,

0, νt
pq ≤ γ t

pq .

Hence αt
pq ≥ βt

pq .
Case 2: For indeterminacy-membership values of the
SVN-matrices. From Definition 6,

αi
pq =

{
μi

pq, νi
pq ≥ γ i

pq,

μi
pqνi

pq, νi
pq < γ i

pq .

Since μi
pqνi

pq ≥ μi
pqγ i

pq for νi
pq ≥ γ i

pq , and
μi

pqνi
pq < μi

pqγ i
pq for νi

pq < γ i
pq ,

βi
pq =

{
1, νi

pq ≥ γ i
pq,

μi
pqνi

pq, νi
pq < γ i

pq .

Thus αi
pq ≤ βi

pq

Case 3: For falsity-membership values of the SVN-
matrices. From Definition 6,

α
f
pq =

{
μ

f
pq, ν

f
pq ≥ γ

f
pq,

μ
f
pqν

f
pq, ν

f
pq < γ

f
pq .

Since μ
f
pqν

f
pq ≥ μ

f
pqγ

f
pq for ν

f
pq ≥ γ

f
pq , and

μ
f
pqν

f
pq < μ

f
pqγ

f
pq for ν

f
pq < γ

f
pq ,

β
f
pq =

{
1, ν

f
pq ≥ γ

f
pq,

μ
f
pqν

f
pq, ν

f
pq < γ

f
pq .

Thus α
f
pq ≤ β

f
pq and αpq � βpq .

From Case 1,2 and 3, it is concluded that
μ⊕̃(ν�̃γ )�̃(μ⊕̃ν)�̃(μ⊕̃γ ).

6. The proof can be made with similar way to proof of
statement 1.

7. Let αpq, βpq, θpq, σpq, δpq, τpq, ρpq and εpq be
pqth elements of μ⊕̃γ, ν⊕̃γ, μ�̃γ, ν�̃γ, μ⊗̃γ,

ν⊗̃γ and μ�̃γ, ν�̃γ , respectively. Since μ�̃ν,
μt

pq ≤ νt
pq, μi

pq ≥ νi
pq and μ

f
pq ≥ ν

f
pq . It is clear that

αt
pq = μt

pq + γ t
pq − μt

pqγ t
pq ≤ νt

pq + γ t
pq − νt

pqγ t
pq =

βt
pq , αi

pq = μi
pqγ i

pq ≥ νi
pqγ i

pq = βt
pq and

α
f
pq = μ

f
pqγ

f
pq ≥ ν

f
pqγ

f
pq = β

f
pq . Therefore αpq � βpq

and μ⊕̃γ �̃ν⊕̃γ .
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By given condition θ t
pq = μt

pqγ t
pq ≤ νt

pqγ t
pq = σ t

pq ,
θi
pq = μi

pq + γ i
pq − μi

pqγ i
pq ≥ νi

pq + γ i
pq − νi

pqγ i
pq =

σ t
pq and θ

f
pq = μ

f
pq + γ

f
pq − μ

f
pqγ

f
pq ≥ ν

f
pq + γ

f
pq −

ν
f
pqγ

f
pq = σ

f
pq , θpq � σpq . Therefore μ�̃γ �̃ν�̃γ .

By given condition δt
pq = 1 − ∏n

k=1(1 −
(μt

pkγ
t
kq))≤ 1 − ∏n

k=1(1 − (νt
pkγ

t
kq)) = τ t

pq , δi
pq =∏n

k=1(μ
i
pkγ

i
kq) ≥ ∏n

k=1(ν
i
pkν

i
kq) = τ i

pq and δ
f
pq =∏n

k=1(μ
f
pkγ

f
kq) ≥ ∏n

k=1(ν
f
pkν

f
kq) = τ

f
pq , δpq � τpq .

Therefore μ⊗̃γ �̃ν⊗̃γ .
Since

ρt
pq =

{
μt

pq, μt
pq ≥ γ t

pq

0, μt
pq < γ t

pq

, εt
pq =

{
νt
pq, νt

pq ≥ γ t
pq

0, νt
pq < γ t

pq

and μt
pq ≤ νt

pq from hypothesis, ρt
pq ≤ εt

pq . Also
since

ρi
pq =

{
1, μi

pq ≥ γ i
pq

μi
pq, μi

pq < γ i
pq

, εi
pq =

{
1, νi

pq ≥ γ i
pq

νi
pq, νi

pq < γ i
pq

and μi
pq ≥ νi

pq from hypothesis, ρi
pq ≥ εi

pq .

Similarly, ρ
f
pq =

{
1, μ

f
pq ≥ γ

f
pq

μ
f
pq, μ

f
pq < γ

f
pq

, ε
f
pq =

{
1, ν

f
pq ≥ γ

f
pq

ν
f
pq, ν

f
pq < γ

f
pq

and μ
f
pq ≥ ν

f
pq from hypothesis,

ρ
f
pq ≥ ε

f
pq . Therefore ρpq � εpq and so μ�̃γ �̃ν�̃γ .

A.2

1. Suppose that αpq = 〈αt
pq, αi

pq, α
f
pq〉 and βpq =

〈βt
pq, βi

pq, β
f
pq〉 are ij th elements of μ⊕̃ν and μ′⊕̃ν′,

respectively. Then σpq = αqp is the pqth element of
(μ⊕̃ν)′ and

αpq = 〈αt
pq, αi

pq, α
f
pq〉

= 〈μt
pq + νt

pq − μt
pqνt

pq, μi
pqνi

pq, μ
f
pqν

f
pq〉

βpq = 〈βt
pq, βi

pq, β
f
pq〉

= 〈μt
qp + νt

qp − μt
qpνt

qp, μi
qpνi

qp, μ
f
qpν

f
qp〉

σpq = 〈αt
qp, αi

qp, α
f
qp〉

= 〈μt
qp + νt

qp− μt
qpνt

qp, μi
qpνi

qp, μ
f
qpν

f
qp〉

= βpq .

Thus, σpq = βpq for all p, q. Hence (μ⊕̃ν)′ = μ′⊕̃ν′.
2. Suppose that αpq = 〈αt

pq, αi
pq, α

f
pq〉 and βpq =

〈βt
pq, βi

pq, β
f
pq〉 are pqth elements of μ�̃ν and μ′�̃ν′,

respectively. Suppose that αpq = 〈αt
pq, αi

pq, α
f
pq〉 and

βpq = 〈βt
pq, βi

pq, β
f
pq〉 are pqth elements of μ�̃ν

and μ′�̃ν′, respectively. Then σpq = αqp is the pqth
element of (μ�̃ν)′ and

αpq = 〈αt
pq, αi

pq , α
f
pq 〉

= 〈μt
pqνt

pq , μi
pq + νi

pq − μi
pqνi

pq , μ
f
pq + ν

f
pq − μ

f
pqν

f
pq 〉

βpq = 〈βt
pq , βi

pq , β
f
pq 〉

= 〈μt
qpνt

qp, μi
qp + νi

qp − μi
qpνi

qp, μ
f
qp + ν

f
qp − μ

f
qpν

f
qp〉

σpq = 〈σ t
pq , σ i

pq , σ
f
pq 〉

= 〈μt
qpνt

qp, μi
qp + νi

qp − μi
qpνi

qp, μ
f
qp + ν

f
qp − μ

f
qpν

f
qp〉

Thus, σpq = βpq for all p, q. Hence (μ�̃ν)′ = μ′�̃ν′.
3. Suppose that αpq = 〈αt

pq, αi
pq, α

f
pq〉 and βpq =

〈βt
pq, βi

pq, β
f
pq〉 are pqth elements of μ⊗̃ν and ν′⊗̃μ′,

respectively. Suppose that αpq = 〈αt
pq, αi

pq, α
f
pq〉 and

βpq = 〈βt
pq, βi

pq, β
f
pq〉 are ij th elements of μ⊗̃ν and

ν′⊗̃μ′, respectively. Then σpq = αqp is the pqth
element of (μ⊗̃ν)′ and

αpq = 〈αt
pq, αi

pq , α
f
pq 〉 = 〈1 −

n∏
k=1

(1 − μt
pkν

t
kq ),

n∏
k=1

(μi
pk + νi

kq − μi
pqνi

pq),

n∏
k=1

(μ
f
pq + ν

f
pq − μ

f
pqν

f
pq)〉

βpq = 〈βt
pq , βi

pq , β
f
pq 〉 = 〈1 −

n∏
k=1

(1 − νt
qkμ

t
kp),

n∏
k=1

(νi
qk + μi

kp − νi
qkμ

i
kp),

n∏
k=1

(ν
f
qk + μ

f
kp − ν

f
qkμ

f
kp)〉

σpq = 〈σ t
pq , σ i

pq , σ
f
pq 〉 = 〈1 −

n∏
k=1

(1 − μt
qkν

t
kp),

n∏
k=1

(μi
qk + νi

kp − μi
qkν

i
kp),

n∏
k=1

(μ
f
qk + ν

f
kp − μ

f
qkν

f
kp)〉

= βpq .

Thus, σpq = βpq for all p, q. Hence (μ⊗̃ν)′ = ν′⊗̃μ′.
4. Suppose that αpq = 〈αt

pq, αi
pq, α

f
pq〉 and βpq =

〈βt
pq, βi

pq, β
f
pq〉 are pqth elements of μ�̃ν and μ′�̃ν′,

respectively. Suppose that αpq = 〈αt
pq, αi

pq, α
f
pq〉 and

βpq = 〈βt
pq, βi

pq, β
f
pq〉 are pqth elements of μ�̃ν

and μ′�̃ν′, respectively. Then σpq = αqp is the pqth
element of (μ�̃ν)′ and

αpq = 〈αt
pq, αi

pq , α
f
pq 〉=〈μt

pq � νt
pq , μi

pq � νi
pq , μ

f
pq � ν

f
pq 〉,

βpq = 〈βt
pq , βi

pq , β
f
pq 〉 = 〈μt

qp � νt
qp, μi

qp � νi
qp, μ

f
qp � ν

f
qp〉,

σpq = 〈σ t
pq , σ i

pq , σ
f
pq 〉 = 〈μt

qp � νt
qp, μi

qp � νi
qp, μ

f
qp � ν

f
qp〉,

= βpq .

Thus, σpq = βpq for all p, q. Hence (μ�̃ν)′ = μ′�̃ν′.
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A.3

1. Let αpq = 〈αt
pq, αi

pq, α
f
pq〉 and βpq = 〈βt

pq, βi
pq, β

f
pq〉

be pqth elements of μ⊕̃ν and μc�̃νc, respectively, and
let σpq = αc

pq . Then

αpq =
〈
αt

pq , αi
pq , α

f
pq

〉
=
〈
μt

pq +νt
pq −μt

pqνt
pq , μi

pqνi
pq , μ

f
pqν

f
pq

〉

σpq = αc
pq =

〈
α

f
pq , 1−αi

pq , αt
pq

〉
=
〈
μ

f
pqν

f
pq , 1−μi

pqνi
pq , μt

pq

+ νt
pq − μt

pqνt
pq

〉

βpq = 〈βt
pq , βi

pq , β
f
pq 〉=

〈
μ

f
pq, 1−μi

pq , μt
pq

〉
�
〈
ν

f
pq , 1−νi

pq , νt
pq

〉

=
〈
μ

f
pqν

f
pq , 1 − μi

pqνi
pq , μt

pq + νt
pq − μt

pqνt
pq

〉
.

Thus, σpq = βpq . Hence (μ⊕̃ν)c = μc�̃νc.
2. The proof can be proved by similar way to proof of 1.
3. Let αpq = 〈αt

pq, αi
pq, α

f
pq〉 and βpq = 〈βt

pq, βi
pq, β

f
pq〉

be pqth elements of μ�̃ν and μc�̃νc, respectively, and
let σpq = αc

pq . Then,

αpq = 〈αt
pq, αi

pq, α
f
pq〉

=
〈{

μt
pq, μt

pq > νt
pq

0, μt
pq ≤ νt

pq

,

{
1, μi

pq ≥ νi
pq

μi
pq, μi

pq < νi
pq

,

{
1, μ

f
pq ≥ ν

f
pq

μt
pq, μ

f
pq < ν

f
pq

〉

σpq = αc
pq =

〈{
1, μ

f
pq ≥ ν

f
pq

μt
pq, μ

f
pq < ν

f
pq

,

{
0, μi

pq ≥ νi
pq

1 − μi
pq, μi

pq < νi
pq

,

{
μt

pq, μt
pq > νt

pq

0, μt
pq ≤ νt

pq

〉

βpq =
〈
μ

f
pq, 1 − μi

pq, μt
pq

〉
�̃
〈
ν

f
pq, 1 − νi

pq, νt
pq

〉

=
〈{

μ
f
pq, μ

f
pq ≥ ν

f
pq

0, μ
f
pq < ν

f
pq

,

{
1 − μi

pq, μi
pq > νi

pq

1 μi
pq ≤ νi

pq

,

{
1, μt

pq ≥ νt
pq

μt
pq, μt

pq < νt
pq

〉
.

For μ
f
pq ≥ ν

f
pq , since μ

f
pq ≤ 1, 1 − μi

pq ≥ 0, 1 ≥ μt
pq

and 0 ≤ μ
f
pq , 1 ≥ 1 − μi

pq , μi
pq ≥ 0, σpq � βpq . Thus

(μ�̃ν)c�̃μc�̃νc.

A.4

1. Let α � β. Then αt ≤ βt , αi ≥ βi and αf ≥ βf .
The proof will be made each of μt

ij , μ
i
pq and μ

f
pq .

Let μt
pq ≥ βt . Then (μt

pq)β
t = 1. Since βt ≥ αt ,

μt
pq ≥ αt , (μt

pq)α
t = 1. Therefore (μt

pq)α
t = (μt

pq)β
t
.

If μt
pq < βt , there are two cases.

Case 1: If μt
pq < αt ≤ βt , then (μt

pq)β
t = 0 =

(μt
pq)α

t
.

Case 2: If αt ≤ μt
pq < βt , then (μt

pq)β
t = 0 < 1 =

(μt
pq)α

t
. Thus, (μt

pq)β
t ≤ (μt

pq)α
t
.

Let μi
pq ≥ βi . Then, there are two cases;

Case 1: If μi
pq ≥ αi ≥ βi , then (μi

pq)α
i =

(μi
pq)β

i = 1.

Case 2: If αi ≥ μi
pq ≥ βi , then (μi

pq)α
i = 0 <

(μi
pq)β

i = 1. Also if μi
pq < βi , then (μi

pq)β
i = 0.

Since βi ≤ αi , μi
pq ≤ αi , (μi

pq)α
i = 0. Thus,

(μi
pq)β

i ≥ (μi
pq)α

i
.

Let μ
f
pq ≥ βf . Then, there are two cases;

Case 1: If μ
f
pq ≥ αf ≥ βf , then (μ

f
pq)α

f =
(μ

f
pq)β

f = 1.

Case 2: If αf ≥ μ
f
pq ≥ βf , then (μ

f
pq)α

f = 0 <

(μ
f
pq)β

f = 1. Also if μ
f
pq < βf , then (μ

f
pq)β

f = 0.

Since βf ≤ αf , μ
f
pq ≤ αf , (μ

f
pq)α

f = 0. Thus,

(μ
f
pq)β

f ≥ (μ
f
pq)α

f
.

It is concluded that μ(β)�̃μ(α).
2. The proof can be made by similar way to proof of

statement 1.

A.5

1. The proof will be made for truth, indeterminacy and
falsity membership values of elements of SVN-
matrices:

Case 1: For truth-membership values:

Subcase 1: Let μt
pq, νt

pq ≥ αt . Then, μt
pq ⊕ νt

pq =
μt

pq + νt
pq − μt

pqνt
pq ≥ μt

pq and νt
pq . Therefore

(μt
pq ⊕ νt

pq) ≥ αt and so (μt
pq ⊕ νt

pq) = 1. Also,

since (μt
pq)α = 1 and (νt

pq)α = 1, (μt
pq)α

t ⊕
(νt

pq)α
t = 1. Thus, (μt

pq ⊕ νt
pq)α

t = (μt
pq)α

t ⊕
(νt

pq)α
t
.
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Subcase 2: Let μt
pq, νt

pq < αt . Then, there are two
cases: μt

pq ⊕ νt
pq < αt or μt

pq ⊕ νt
pq ≥ αt .

1. If μt
pq ⊕ νt

pq < αt , (μt
pq ⊕ νt

pq)α
t = 0. Since

(μt
pq)α

t = 0 and (νt
pq)α

t = 0, (μt
pq)α

t ⊕ (νt
pq)α

t =
0. Hence (μt

pq ⊕ νt
pq)α

t = (μt
pq)α

t ⊕ (νt
pq)α

t
.

2. If μt
pq ⊕ νt

pq ≥ αt , (μt
pq ⊕ νt

pq)α
t = 1. Since

(μt
pq)α

t = 0 and (νt
pq)α

t = 0, (μt
pq)α

t ⊕ (νt
pq)α

t =
0. Thus (μt

pq ⊕ νt
pq)α

t ≥ (μt
pq)α

t ⊕ (νt
pq)α

t
.

Subcase 3: Let μt
pq < αt and νt

pq ≥ αt . Then
μt

pq ⊕ νt
pq = μt

pq + νt
pq − μt

pqνt
pq ≥ αt . Therefore

(μt
pq ⊕ νt

pq)α
t = 1. Also, since (μt

pq)α
t = 0

and (νt
pq)α

t = 1, (μt
pq)α

t ⊕ (νt
pq)α

t = 1. Thus,

(μt
pq ⊕ νt

pq)α
t = (μt

pq)α
t ⊕ (νt

pq)α
t
.

Subcase 4: Let μt
pq ≥ αt and νt

pq < αt . Then
μt

pq ⊕ νt
pq = μt

pq + νt
pq − μt

pqνt
pq ≥ αt . Therefore

(μt
pq ⊕ νt

pq)α
t = 1. Also, since (μt

pq)α
t = 1

and (νt
pq)α

t = 0, (μt
pq)α

t ⊕ (νt
pq)α

t = 1. Thus,

(μt
pq ⊕ νt

pq)α
t = (μt

pq)α
t ⊕ (νt

pq)α
t
.

Case 2: For indeterminacy-membership values:

Subcase 1: Let μi
pq, νi

pq > αi . Then, there are two
cases: μi

pq ⊕ νi
pq = μi

pqνi
pq ≤ αi or μi

pq ⊕ νi
pq =

μi
pqνi

pq > αi .

1. If μi
pq ⊕ νi

pq = μi
pqνi

pq ≤ αi , then (μi
pq ⊕

νi
pq)α

i = 0. Since (μi
pq)α

i = 1 and (νi
pq)α

i = 1,

(μi
pq)α

i ⊕ (νi
pq)α

i = 1. Hence (μi
pq ⊕ νi

pq)α
i ≤

(μi
pq)α

i ⊕ (νi
pq)α

i
.

2. If μi
pq ⊕νi

pq = μi
pqνi

pq > αi , (μi
pq ⊕νi

pq)α
i = 1.

Since (μi
pq)α

i = 0 and (νi
pq)α

i = 0, (μi
pq)α

i ⊕
(νi

pq)α
i = 1. Thus (μi

pq ⊕ νi
pq)α

i = (μi
pq)α

i ⊕
(νi

pq)α
i
.

Subcase 2: Let μi
pq, νi

pq ≤ αi . Then, μi
pq ⊕ νi

pq =
μi

pqνi
pq ≤ αi and so (μi

pq ⊕ νi
pq)α

i = 0. Since

(μi
pq)α

i = 0 and (νi
pq)α

i = 0, (μi
pq)α

i ⊕ (νi
pq)α

i =
0. Thus (μi

pq ⊕ νi
pq)α

i = (μi
pq)α

i ⊕ (νi
pq)α

i
.

Subcase 3: Let μi
pq ≤ αi and νi

pq > αi . If μi
pq = 0,

Then μi
pq ⊕ νi

pq = μi
pqνi

pq = 0 ≤ αi . Therefore

(μi
pq⊕νi

pq)α
i = 0. Since (μi

pq)α
i = 0 and (νi

pq)α
i =

1, (μi
pq)α

i ⊕ (νi
pq)α

i = 0. Thus, (μi
pq ⊕ νi

pq)α
i =

(μi
pq)α

i ⊕ (νi
pq)α

i
. If μi

pq 
= 0, then μi
pq ⊕ νi

pq =
μi

pqνi
pq ≤ αi and so (μi

pq ⊕ νi
pq)α

i = 0. Since

(μi
pq)α

i = 0 and (νi
pq)α

i = 1, (μi
pq)α

i ⊕ (νi
pq)α

i =
0. Thus, (μi

pq ⊕ νi
pq)α

i = (μi
pq)α

i ⊕ (νi
pq)α

i
.

Subcase 4: Let μi
pq > αi and νi

pq ≤ αi . If νi
pq = 0,

Then μi
pq ⊕ νi

pq = μi
pqνi

pq = 0 ≤ αi . Therefore

(μi
pq⊕νi

pq)α
i = 0. Since (μi

pq)α
i = 1 and (νi

pq)α
i =

0, (μi
pq)α

i ⊕ (νi
pq)α

i = 0. Thus, (μi
pq ⊕ νi

pq)α
i =

(μi
pq)α

i ⊕ (νi
pq)α

i
. If νi

pq 
= 0, then μi
pq ⊕ νi

pq =
μi

pqνi
pq ≤ αi and so (μi

pq ⊕ νi
pq)α

i = 0. Since

(μi
pq)α

i = 0 and (νi
pq)α

i = 1, (μi
pq)α

i ⊕ (νi
pq)α

i =
0. Thus, (μi

pq ⊕ νi
pq)α

i = (μi
pq)α

i ⊕ (νi
pq)α

i
.

Case 3: For indeterminacy-membership values: The
proof can be made by similar way to proof of case 2.

When it is considered all of the cases, it is concluded
that (μ⊕̃ν)(α)�̃μ(α)⊕̃ν(α).

2. The proof can be made by similar way to proof of
statement 1.

A.6

1. The proof will be made for truth, indeterminacy
and falsity-memberships values of elements of SVN-
matrices.

1. For truth-membership values: There are four cases,
Case 1: μt

pq, νt
pq ≥ αt .

Subcase 1: Let μt
pq > νt

pq . Then μt
pq � νt

pq = μt
pq .

Since μt
pq ≥ αt , (μt

pq � νt
pq)α

t = 1. Also since

(μt
pq)α

t = 1 and (νt
pq)α

t = 1, (μt
pq)α

t � (νt
pq)α

t =
0. Therefore (μt

pq � νt
pq)α

t ≥ (μt
pq)α

t � (νt
pq)α

t
.

Subcase 2: Let μt
pq ≤ νt

pq . Then μt
pq � νt

pq = 0.

Since 0 ≤ αt , (μt
pq � νt

pq)α
t = 0 or 1. Also since

(μt
pq)α

t = 1 and (νt
pq)α

t = 1, (μt
pq)α

t � (νt
pq)α

t =
0. Therefore (μt

pq � νt
pq)α

t ≥ (μt
pq)α

t � (νt
pq)α

t
.

Case 2: μt
pq, νt

pq < αt .
Subcase 1: Let μt

pq > νt
pq . Then μt

pq � νt
pq = μt

pq .

Since μt
pq ≥ αt , (μt

pq � νt
pq)α

t = 1. Also since

(μt
pq)α

t = 0 and (νt
pq)α

t = 0, (μt
pq)α

t � (νt
pq)α

t =
0. Therefore (μt

pq � νt
pq)α

t ≥ (μt
pq)α

t � (νt
pq)α

t
.

Subcase 2: Let μt
pq ≤ νt

pq . Then μt
pq � νt

pq = 0.

Since 0 ≤ αt , (μt
pq � νt

pq)α
t = 0 or 1. Also since

(μt
pq)α

t = 0 and (νt
pq)α

t = 0, (μt
pq)α

t � (νt
pq)α

t =
0. Therefore, (μt

pq � νt
pq)α

t ≥ (μt
pq)α

t � (νt
pq)α

t
.

Case 3: Let μt
pq < αt and νt

pq ≥ αt . Then, μt
pq <

νt
pq and (μt

pq �νt
pq)α

t = 0. Also, since (μt
pq)α

t = 0

and (νt
pq)α

t = 1, (μt
pq)α

t � (νt
pq)α

t = 0 � 1 = 0.

Therefore (μt
pq � νt

pq)α
t = (μt

pq)α
t � (νt

pq)α
t
.

Case 4: Let μt
pq ≥ αt and νt

pq < αt . Then, μt
pq >

νt
pq and (μt

pq � νt
pq) = μt

pq . Since μt
pq ≥ αt ,

(μt
pq � νt

pq)α
t = 1. Also, since (μt

pq)α
t = 1 and
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(νt
pq)α

t = 0, (μt
pq)α

t � (νt
pq)α

t = 1 � 0 = 1.

Therefore (μt
pq � νt

pq)α
t = (μt

pq)α
t � (νt

pq)α
t
.

For indeterminacy-membership values: There are
four cases,
Case 1: μi

pq, νi
pq > αi .

Subcase 1: Let μi
pq ≥ νi

pq . Then μi
pq � νi

pq = 1.

Since 1 ≥ αi , (μi
pq � νi

pq)α
i = 1 or 0. Also since

(μi
pq)α

i = 1 and (νi
pq)α

i = 1, (μi
pq)α

i � (νi
pq)α

i =
1. Therefore (μi

pq � νi
pq)α

i ≤ (μi
pq)α

i � (νi
pq)α

i
.

Subcase 2: Let μi
pq < νi

pq . Then μi
pq � νi

pq = μi
pq .

Since μi
pq > αi , (μi

pq � νi
pq)α

i = 1. Also since

(μi
pq)α

i = 1 and (νi
pq)α

i = 1, (μi
pq)α

i � (νi
pq)α

i =
1. Therefore (μi

pq � νi
pq)α

i = (μi
pq)α

i � (νi
pq)α

i
.

Case 2: μi
pq, νi

pq ≤ αi .
Subcase 1: Let μi

pq ≥ νi
pq . Then μi

pq � νi
pq = 1.

Since μi
pq ≤ αi , (μi

pq � νi
pq)α

i = 0. Also since

(μi
pq)α

i = 0 and (νi
pq)α

i = 0, (μi
pq)α

i � (νi
pq)α

i =
1. Hence, (μi

pq � νi
pq)α

i ≤ (μi
pq)α

i � (νi
pq)α

i
.

Subcase 2: Let μi
pq < νi

pq . Then μi
pq � νi

pq = μi
pq .

Since μi
pq ≤ αi , (μi

pq � νi
pq)α

i = 0. Also since

(μi
pq)α

i = 0 and (νi
pq)α

i = 0, (μi
pq)α

i � (νi
pq)α

i =
1. Therefore (μi

pq � νi
pq)α

i ≤ (μi
pq)α

i � (νi
pq)α

i
.

Case 3: Let μi
pq ≤ αi and νi

pq > αi . Then, μi
pq <

νi
pq and μi

pq � νi
pq = μi

pq . Since μi
pq ≤ αi ,

(μi
pq � νi

pq)α
i = 0. Also, since (μi

pq)α
i = 0 and

(νi
pq)α

i = 1, (μi
pq)α

i � (νi
pq)α

i = 0 � 1 = 0. Thus,

(μt
pq � νt

pq)α
t = (μt

pq)α
t � (νt

pq)α
t
.

Case 4: Let μi
pq > αi and νi

pq ≤ αi . Then, μi
pq >

νi
pq and (μi

pq � νi
pq) = 1. Since 1 ≥ αt , (μi

pq �
νi
pq)α

i = 1 or 0. Also, since (μi
pq)α

i = 1 and

(νi
pq)α

i = 0, (μi
pq)α

i � (νi
pq)α

i = 1 � 0 = 1.

Therefore (μi
pq � νi

pq)α
i ≤ (μi

pq)α
i � (νi

pq)α
i
.

For falsity-membership values: The proof can
be made in similar way to the proof made
for indeterminacy-membership values. When it
is considered all of cases, it is concluded that
(μ�̃ν)(α)�̃(μ)(α)�̃(ν)(α).
The proof will be made for truth, indeterminacy
and falsity-memberships values of elements of SVN-
matrices.
1. For truth-membership values: There are four cases,
Case 1: μt

pq, νt
pq ≥ αt .

Subcase 1: Let μt
pq > νt

pq . Then μt
pq � νt

pq =
μt

pq . Since μt
pq ≥ αt , (μt

pq � νt
pq)αt = μt

pq .
Also since (μt

pq)αt = μt
pq and (νt

pq)αt = μt
pq ,

(μt
pq)αt � (νt

pq)αt = 0. Therefore, (μt
pq � νt

pq)αt ≥
(μt

pq)αt � (νt
pq)αt .

Subcase 2: Let μt
pq ≤ νt

pq . Then μt
pq � νt

pq =
0. Since 0 ≤ αt , (μt

pq � νt
pq)αt = 0 or μt

pq .
Also since (μt

pq)αt = μt
pq and (νt

pq)αt = μt
pq ,

(μt
pq)αt � (νt

pq)αt = 0. Therefore, (μt
pq � νt

pq)αt ≥
(μt

pq)αt � (νt
pq)αt .

Case 2: μt
pq, νt

pq < αt .
Subcase 1: Let μt

pq > νt
pq . Then, μt

pq � νt
pq = μt

pq .
Since μt

pq ≥ αt , (μt
pq � νt

pq)αt = μt
pq . Also since

(μt
pq)αt = 0 and (νt

pq)αt = 0, (μt
pq)αt � (νt

pq)αt =
0. Therefore (μt

pq � νt
pq)αt ≥ (μt

pq)αt � (νt
pq)αt .

Subcase 2: Let μt
pq ≤ νt

pq . Then μt
pq � νt

pq = 0.
Since 0 ≤ αt , (μt

pq � νt
pq)αt = 0 or μt

pq . Also since
(μt

pq)αt = 0 and (νt
pq)αt = 0, (μt

pq)αt � (νt
pq)αt =

0. Therefore (μt
pq � νt

pq)αt ≥ (μt
pq)αt � (νt

pq)αt .
Case 3: Let μt

pq < αt and νt
pq ≥ αt . Then, μt

pq <

νt
pq and (μt

pq � νt
pq) = 0. Since 0 ≤ αt , (μt

pq �
νt
pq)αt = 0 or μt

pq . Also, since (μt
pq)αt = 0 and

(νt
pq)αt = νt

pq , (μt
pq)αt � (νt

pq)αt = 0 � νt
pq = 0.

Therefore (μt
pq � νt

pq)αt ≥ (μt
pq)αt � (νt

pq)αt .
Case 4: Let μt

pq ≥ αt and νt
pq < αt . Then, μt

pq >

νt
pq and (μt

pq � νt
pq) = μt

pq . Since μt
pq ≥ αt ,

(μt
pq � νt

pq)αt = μt
pq . Also, since (μt

pq)αt = μt
pq

and (νt
pq)αt = 0, (μt

pq)αt � (νt
pq)αt = μt

pq � 0 =
μt

pq . Therefore (μt
pq � νt

pq)αt = (μt
pq)αt � (νt

pq)αt .

2. For indeterminacy-membership values: There are four
cases,

Case 1: μi
pq, νi

pq > αi .
Subcase 1: Let μi

pq ≥ νi
pq . Then μi

pq � νi
pq = 1.

Since 1 ≥ αi , (μi
pq � νi

pq)αi = 1 or μi
pq . Also since

(μi
pq)αi = 1 and (νi

pq)αi = 1, (μi
pq)αi � (νi

pq)αi =
1. Therefore (μi

pq � νi
pq)αi ≤ (μi

pq)αi � (νi
pq)αi .

Subcase 2: Let μi
pq < νi

pq . Then μi
pq � νi

pq = μi
pq .

Since μi
pq > αi , (μi

pq � νi
pq)αi = 1. Also since

(μi
pq)αi = 1 and (νi

pq)αi = 1, (μi
pq)αi � (νi

pq)αi =
1. Therefore (μi

pq � νi
pq)αi = (μi

pq)αi � (νi
pq)αi .

Case 2: μi
pq, νi

pq ≤ αi .
Subcase 1: Let μi

pq ≥ νi
pq . Then μi

pq � νi
pq =

1. Since 1 ≥ αi , (μi
pq � νi

pq)αi = 1 or μi
pq .

Also since (μi
pq)αi = μi

pq and (νi
pq)αi = νi

pq ,
(μi

pq)αi � (νi
pq)αi = μi

pq � νi
pq = 1. Therefore

(μi
pq � νi

pq)αi ≤ (μi
pq)αi � (νi

pq)αi .

Subcase 2: Let μi
pq < νi

pq . Then μi
pq � νi

pq =
μi

pq . Since μi
pq ≤ αi , (μi

pq � νi
pq)αi = μi

pq .
Also since (μi

pq)αi = μi
pq and (νi

pq)αi = νi
pq ,

(μi
pq)αi � (νi

pq)αi = μi
pq � νi

pq = μi
pq . Therefore

(μi
pq � νi

pq)αi = (μi
pq)αi � (νi

pq)αi .
Case 3: Let μi

pq ≤ αi and νi
pq > αi . Then, μi

pq <

νi
pq and μi

pq � νi
pq = μi

pq . Since μi
pq ≤ αi ,

(μi
pq � νi

pq)αi = μi
pq . Also, since (μi

pq)αi = μi
pq
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and (νi
pq)αi = 1, (μi

pq)αi �(νi
pq)αi = μi

pq�1 = 1 or
μi

pq . Therefore (μt
pq � νt

pq)αt ≤ (μt
pq)αt � (νt

pq)αt .

Case 4: Let μi
pq > αi and νi

pq ≤ αi . Then, μi
pq >

νi
pq and (μi

pq � νi
pq) = 1. Since 1 ≥ αt , (μi

pq �
νi
pq)αi = 1 or μi

pq . Also, since (μi
pq)αi = 1 and

(νi
pq)αi = νi

pq , (μi
pq)αi � (νi

pq)αi = 1 � νi
pq = 1.

Therefore (μi
pq � νi

pq)αi = (μi
pq)αi � (νi

pq)αi .
3. For falsity-membership values: The proof can
be made in similar way to the proof made for
indeterminacy-membership values.
When it is considered all of cases, it is concluded that
(μ�̃ν)(α)�̃(μ)(α)�̃(ν)(α).

A.7

1. The proof will be made for truth, indeterminacy and
falsity membership values of elements of SVN-
matrices:

Case 1: For truth-membership values:
Subcase 1: Let μt

pq, νt
pq ≥ αt . Then, μt

pq ⊕ νt
pq =

μt
pqνt

pq ≥ αt or μt
pqνt

pq > αt .

If μt
pqνt

pq ≥ αt , then (μt
pq � νt

pq)α
t = 1. Since

(μt
pq)α

t = 1 and (νt
pq)α

t = 1, (μt
pq)α

t � (νt
pq)α

t =
1. Thus (μt

pq � νt
pq)α

t = (μt
pq)α

t � (νt
pq)α

t
.

If μt
pqνt

pq < αt , then (μt
pq � νt

pq)α
t = 0. Since

(μt
pq)α

t = 1 and (νt
pq)α

t = 1, (μt
pq)α

t � (νt
pq)α

t =
1. Hence (μt

pq � νt
pq)α

t
< (μt

pq)α
t � (νt

pq)α
t
.

Subcase 2: Let μt
pq, νt

pq < αt . Then, μt
pqνt

pq =
μt

pq � νt
pq < αt and so (μt

pq � νt
pq)α

t = 0. Since

μt
pq = 0, (μt

pq)α
t �(μt

pq)α
t = (μt

pq)α
t
(μt

pq)α
t = 0.

Therefore (μt
pq � νt

pq)α
t = (μt

pq)α
t � (μt

pq)α
t
.

Subcase 3: Let μt
pq < αt and νt

pq ≥ αt . Then μt
pq �

νt
pq = μt

pqνt
pq ≥ αt . Therefore (μt

pq � νt
pq)α

t = 0.

Since (μt
pq)α

t = 0, (μt
pq)α

t � (νt
pq)α

t = 0. Hence,

(μt
pq � νt

pq)α
t = (μt

pq)α
t � (νt

pq)α
t
.

Subcase 4: Let μt
pq ≥ αt and νt

pq < αt . Then μt
pq �

νt
pq = μt

pqνt
pq < αt . Therefore (μt

pq � νt
pq)α

t = 0.

Since (νt
pq)α

t = 0, (μt
pq)α

t � (νt
pq)α

t = 0. Thus,

(μt
pq � νt

pq)α
t = (μt

pq)α
t � (νt

pq)α
t
.

Case 2: For indeterminacy-membership values:
Subcase 1: Let μi

pq, νi
pq > αi . Then, μi

pq � νi
pq =

μi
pq +νi

pq −μi
pq +νi

pq > αi and so (μi
pq �νi

pq)α
i =

1. Since (μi
pq)α

i = 1 and (νi
pq)α

i = 1, (μi
pq)α

i �
(νi

pq)α
i = 1 + 1 − 1 = 1. Thus (μi

pq � νi
pq)α

i =
(μi

pq)α
i � (νi

pq)α
i
.

Subcase 2: Let μi
pq, νi

pq ≤ αi . Then, there are two
cases:

1. If μi
pq � νi

pq = μi
pq + νi

pq − μi
pqνi

pq ≤ αi ,

then (μi
pq � νi

pq)α
i = 0. Since (μi

pq)α
i = 0 and

(νi
pq)α

i = 0, (μi
pq)α

i � (νi
pq)α

i = 0. Therefore

(μi
pq � νi

pq)α
i = (μi

pq)α
i � (νi

pq)α
i
.

2. If μi
pq � νi

pq = μi
pq + νi

pq − μi
pqνi

pq > αi , then

(μi
pq�νi

pq)α
i = 1. Since (μi

pq)α
i = 0 and (νi

pq)α
i =

0, (μi
pq)α

i � (νi
pq)α

i = 0. Hence (μi
pq � νi

pq)α
i

>

(μi
pq)α

i � (νi
pq)α

i
.

Subcase 3: Let μi
pq ≤ αi and νi

pq > αi . Then
μi

pq � νi
pq = μi

pq + νi
pq − μi

pqνi
pq > αi and so

(μi
pq�νi

pq)α
i = 1. Since (μi

pq)α
i = 0 and (νi

pq)α
i =

1, (μi
pq)α

i � (νi
pq)α

i = 0 + 1 − 0 = 1. Thus,

(μi
pq � νi

pq)α
i = (μi

pq)α
i � (νi

pq)α
i
.

Subcase 4: Let μi
pq > αi and νi

pq ≤ αi . Then

μi
pq � νi

pq = μi
pq + νi

pq − μi
pqνi

pq > αi and

so (μi
pq � νi

pq)α
i = 1. Since (μi

pq)α
i = 1 and

(νi
pq)α

i = 0, (μi
pq)α

i � (νi
pq)α

i = 1 + 0 − 0. Thus,

(μi
pq � νi

pq)α
i = (μi

pq)α
i � (νi

pq)α
i
.

Case 3: For falsity-membership values: The proof
can be made by similar way to proof of case 2.
When it is considered all of the cases, it is concluded
that (μ�̃ν)(α)�̃μ(α)�̃ν(α).

2. The proof can be made by similar way to proof of
statement 1.
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