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SOME RESULTS OF NEUTROSOPHIC NORMED SPACES
VIA FIBONACCI MATRIX
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Recently, Fibonacci matrix was introduced and studied by Kara
and Basarir [3]. In the present paper, we introduce Fibonacci statistical con-
vergence in neutrosophic normed space and examine some basic properties
like Fibonacci statistical Cauchyness and Fibonacci statistical completeness.
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1. Introduction

Zadeh [17] introduced the notion of the fuzzy theory in 1965. Since then
a large number of research papers have been published and fuzzification of
many classical theories has also been made. Atanassov [16] generalized the
fuzzy sets theory and studied the concepts of intuitionistic fuzzy sets (IFS).
In 2004, Park [11] investigated the notion of intuitionistic fuzzy metric space,
further Saadati, and Park [25] analyzed this concept in the norm.

The notion of neutrosophic sets (NS) was introduced by Smarandache
[4].This set is an extension of IFS no matter if the sum of neutrosophic com-
ponents is < 1, or > 1, or = 1. For the case when the sum of components
is 1 (as in IFS), after applying the neutrosophic aggregation operators, one
gets a different result than applying the intuitionistic fuzzy operators, since
the intuitionistic fuzzy operators ignore the indeterminacy, while the neu-
trosophic aggregation operators take into consideration the indeterminacy at
the same level as truth-membership and falsehood-nonmembership are taken.
NS is also more flexible and effective because it handles, besides independent
components, also partially independent and partially dependent components,
while IFS cannot deal with these. Smarandache [5] examined the differences
between neutrosophic logic, intuitionistic fuzzy logic, and the corresponding
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neutrosophic sets and intuitionistic fuzzy sets. Further, Smarandache [6, 7, 8]
investigated neutroalgebra which is generalization of partial algebra , neutroal-
gebraic structures and antialgebraic structures. Moreover, Bera and Mahap-
atra [27] introduced the neutrosophic soft linear space. Bera and Mahapatra
[28] studied convexity, metric, Cauchy sequence, and neutrosophic soft norm
linear space (NSNLS).

The theory of statistical convergence of sequences of real numbers was
introduced by H. Fast [9] and H. Steinhaus [10] independently. After that sev-
eral researchers analyzed these concepts in different areas (see, [12, 20, 13, 24]).
Moreover, Karakus [26] studied statistical convergence on probabilistic normed
spaces , and then Mursaleen et. al [19] further generalized statistical con-
vergence of double sequence in intuitionistic fuzzy normed spaces. Recently,
Khan et al. [29, 30] investigated ideal convergence for single and double se-
quences in intuitionistic fuzzy normed spaces. Further, Kirişci [21] studied
neutrosophic normed spaces and statistical convergence on it. Since the neu-
trosophic normed space is a natural generalization of the intuitionistic fuzzy
normed space and statistical convergence using Fibonacci matrix has an im-
portant place in the theory of sequence spaces. In this paper, we generalized
and studied the concepts given by Kirişci into neutrosophic normed spaces and
we obtained some interesting results.

2. Preliminaries

In what follows, we collect relevant definitions needed in our subsequent
discussions.

Definition 2.1. The Fibonacci numbers are the terms of the sequence of num-
bers (fn) for n = 1, 2, . . . defined by the linear recurrence equation

fn = fn−1 + fn−2 for n ≥ 2. (1)

The first two terms are f0 = 0 and f1 = 1.

Recently, Kara and Basarir [3] used the Fibonacci sequence in the theory
of sequence spaces. Later on the infinite matrix associated to the fibonacci
numbers namely Fibonacci difference matrix F was initiated by Kara in [2].
Suppose for every n ∈ N, fn be the nth Fibonacci number. Then, the infinite
matrix F̂ = (fn.k), n, k = 0, 1, ... corresponding to the Fibonacci sequence (fn)
is defined by

f̂n,k=0,1... =


−fn+1

fn
(k = n− 1)

fn
fn+1

(k = n)

0, (0 ≤ k < n− 1 or k > n)

which aids in the formation of sequence spaces corresponding to the ma-
trix domain of F̂ . Moreover, various researchers produced high-quality papers
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on the Fibonacci matrix [1, 18, 15, 22, 23].

Fibonacci numbers are strongly related to the golden ratio: Binet’s for-
mula expresses the nth Fibonacci number in terms of n and the golden ratio,
and implies that the ratio of two consecutive Fibonacci numbers tends to the
golden ratio as n increases. That is,

lim
n→∞

fn+1

fn
=

1 +
√

5

2
= α (golden ratio) (2)

n∑
k=0

fk = fn+2 − 1, (n ∈ N) (3)

∑
k=0

1

fk
converges, (4)

fn−1fn+1 − f 2
n = (−1)n+1(n ≥ 1) (Cassini formula)

It provides f 2
n−1+fnfn−1−f 2

n = (−1)n+1, if one substitutes for fn+1 in Cassini’s
formula.

Definition 2.2. [22] A sequence x = (xj) is said to be Fibonacci statistically

convergent (or F̂ xj - statistically convergent ) if there is a number ` ∈ X such

that for every ε > 0 the set Kε(F̂ ) = {j ≤ n : |F̂ xj − `| ≥ ε} has the natural

density zero, i.e., δ(Kε(F̂ )) = 0 That is

lim
n→∞

1

n
|{j ≤ n : |F̂ xj − `| ≥ ε}| = 0

In this case, we write δ(F̂ ) - lim xj = ` or xj → `(Sδ(F̂ )).

Definition 2.3. [22] A sequence x = (xj) is called Fibonacci statistically

Cauchy (or F̂ xj- statistically Cauchy) if there exists a number N = N(ε)
such that for each ε > 0

lim
n→∞

1

n
|{j ≤ n : |F̂ xj − F̂ (xN)| ≥ ε}| = 0. (5)

Definition 2.4. [16] Suppose X be a universe of discourse Then the set AIFS ⊆
X by,

AIFS = {< x,TA(x),HA(x) >: x ∈ X}, is called intuitionistic fuzzy set.
(6)

where TA(x),HA(x) : X → [0, 1] represent the degree of membership and de-
gree of nonmembership respectively, with TA(x) + HA(x) ≤ 1, and JA(x) =
1 − JA(x) − HA(x) represents degree of hesitancy. The intuitionistic fuzzy
components TA(x),HA(x) and JA(x) are dependent concerning each other.



14 Vakeel A. Khan, Mohammad Daud Khan, Mobeen Ahmad

Definition 2.5. [4] Suppose X be a universe of discourse Then the set ANS ⊆
X by,

ANS = {< x,TA(x),HA(x), JA(x) >: x ∈ X}, is called neutrosophic set. (7)

where TA(x),HA(x), JA(x) : X → [0, 1] represent the degree of truth-membership,
degree of indeterminacy-membership, and degree of false-nonmembership re-
spectively, with 0 ≤ TA(x)+HA(x)+JA(x) ≤ 3. The neutrosophic components
TA(x),HA(x) and JA(x) are independent concerning each other.

Triangular norms (t-norms) were initiated by Menger [14]. Triangular
conorms (t-conorms) are known as dual operations of t-norm. The t-norm and
t-conorm are very significant for fuzzy operations (intersections and unions)
which are defined as follows:

Definition 2.6. [14] A binary operation ? : [0, 1] × [0, 1] −→ [0, 1] is said to
be a continuous t-norm if it satisfies the following conditions:
(a) ? is associative and commutative,
(b) ? is continuous,
(c) a ? 1 = a for all a ∈ [0, 1],
(d) a ? b ≤ c ? d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

Definition 2.7. [14] A binary operation � : [0, 1] × [0, 1] −→ [0, 1] is said to
be a continuous t-conorm if it satisfies the following conditions:
(a) � is associative and commutative,
(b) � is continuous,
(c) a � 0 = a for all a ∈ [0, 1],
(d) a � b ≤ c � d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

From above definitions, we note that if we choose 0 < e1, e2 < 1 with
e1 > e2, then there exist 0 < e3, e4 < 1 such that e1 ∗ e3 ≥ e2, e1 ≥ e4 � e2.
Further, if we choose e5 ∈ (0, 1), then there exist e6, e7 ∈ (0, 1) such that
e6 ∗ e6 ≥ e5 and e7 � e7 ≤ e5.

Definition 2.8. [21] Take X as a vector space and M = {< x,T(x),H(x), J(x) >:
x ∈ X} be a normed space such that T(x),H(x), J(x) : X × R+ → [0, 1]. As-
sume ? and � be the continuous t norm and continuous t-conorm respectively.
The four-tuple (X,M, ?, �) is said to be Neutrosophic normed space (NNS) if
the subsequent conditions holds; for all x, y, z ∈ X and t, s > 0
(i) 0 ≤ T(x, t) ≤ 1, 0 ≤ H(y, t) ≤ 1, 0 ≤ J(z, t) ≤ 1, t ∈ R+,

(ii) T(x, t) + H(x, t) + J(x, t) ≤ 3, for t ∈ R+,

(iii) T(x, t) = 1 for t > 0 iff x = 0

(iv) T(αx, t) = T(x, t
|α|),
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(v) T(x, t) ? T(y, s) ≤ T(x+ y, t+ s),

(vi) T(x, ?) is continuous non-decreasing function

(vii) lim
t→∞

T(x, t) = 1

(viii) H(y, t) = 0 for t > 0 iff x = 0

(ix) H(αy, t) = H(y, t
|α|),

(x) H(y, t) �H(z, t) ≥ H(y + z, t+ s),

(xi) H(y, �) is continuous non-increasing function,

(xii) lim
t→∞

H(x, t) = 0,

(xiii) J(x, t) = 0 for t > 0 iff x = 0

(xiv) J(αx, t) = J(x, t
|α|),

(xv) J(z, t) � J(x, s) ≥ J(z + x, t+ s),

(xvi) J(z, .) is continuous non-increasing function,

(xvii) lim
t→∞

J(z, t) = 0,

(xviii) If t ≤ 0, then T(x, t) = 0, H(y, t) = 1, J(z, t) = 1.
In such case, M = (T,H, J) is said to be neutrosophic normed (NN).

Example 2.1. [21] Suppose (X, ‖ . ‖) be a NNS. Give the operations as x?y =
x+ y − xy and x � y = min(x, y). For t > ||y||,

T(y, t) =
t

t+ ||y||
, H(y, t) =

y

t+ ||y||
, J(y, t) =

||y||
t

(8)

for all x, y ∈M and t > 0. If we take t ≤ ||y||, then

T(y, t) = 0,H(y, t) = 1 and J(y, t) = 1.

Hence, (X,M, ?, �) is Neutrosophic normed space such that M : X × R+ →
[0, 1].

Definition 2.9. [21] Let (X,M, ?, �) be a Neutrosophic normed space. A se-
quence x = (xj) is said to be convergent to ` with respect to M, if for every
0 < ε < 1 and t > 0, there exists J ∈ N such that T(xj − `, t) > 1 − ε,
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H(xj − `, t) < ε and J(xj − `, t) < ε That is, for all t > 0, we have

lim
j→∞

T(xj − `, t) = 1, lim
j→∞

H(xj − `, t) = 0 and lim
j→∞

J(xj − `, t) = 0. (9)

The convergence in (X,M, ?, �) is denoted by M− limxj = `.

Definition 2.10. [21] Suppose (X,M, ?, �) be a Neutrosophic normed space.
A sequence x = (xj) is said to be Cauchy sequence with respect to M, if for
every 0 < ε < 1 and t > 0, there exists J ∈ N such that T(xj − yk, t) > 1− ε,
H(xj − yk, t) < ε and J(xj − yk, t) < ε for all j, k ∈ J

3. Main Results

Definition 3.1. Let (X,M, ?, �) be a Neutrosophic normed space. A sequence
x = (xj) is said to be Fibonacci statistical (FS)− convergent to ` ∈ X with
respect M if for every ε, t > 0

δ({j ∈ N : T(F̂ xj−`, t) ≤ 1−ε, H(F̂ xj−`, t) ≥ ε and J(F̂ xj−`, t) ≥ ε}) = 0.
(10)

or equivalently

lim
n

1

n
|{j ≤ n : T(F̂ xj−`, t) ≤ 1−ε,H(F̂ xj−`, t) ≥ ε and J(F̂ xj−`, t) ≥ ε}| = 0.

(11)

In this case we write δ(F̂ )NN − limxj = `. The set of all Fibonacci statistical

convergent sequences, denoted by FSC −NN will be denoted by M(F̂ )NN . In

case ` = 0, we will write M0(F̂ )NN

Lemma 3.1. Let (X,M, ?, �) be a Neutrosophic normed space. Then, for every
ε, t > 0. the subsequent statements are equivalent:
(1) δ(F̂ )NN − limxj = `

(2) δ({j ∈ N : T (̂̂Fxj − `, t) ≤ 1 − ε = H(̂̂Fxj − `, t) ≥ ε = J(̂̂Fxj − `, t) ≥
ε}) = 0

(3) δ({j ∈ N : T (̂̂Fxj − `, t) > 1 − ε,H(̂̂Fxj − `, t) < ε and J(̂̂Fxj − `, t) <
ε}) = 1.

(4) δ({j ∈ N : T (̂̂Fxj−`, t) > 1−ε = δ({H(̂̂Fxj−`, t) < ε = δ({J(̂̂Fxj−`, t) <
ε}) = 1

(5) M− limT (̂̂Fxj − `, t) = 1, M− limH(̂̂Fxj − `, t) = 0 and

M− lim J(̂̂Fxj − `, t) = 0.

Theorem 3.1. Let (X,M, ?, �) be a Neutrosophic normed space. If a sequence
x = (xj) is Fibonacci statistically convergent with respect to the norm M then

the δ(F̂ )NN− limit is unique.
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Proof. Let δ(F̂ )NN − limxj = `1, δ(F̂ )NN − limxj = `2 and `1 6= `2. Given
ε, s > 0 such that s � s < ε and (1− s) ? (1− s) > 1− ε. Then, for all t > 0;

KT,1(s, t) = {j ∈ N : T(F̂ xj − `1,
t

2
) ≤ 1− s}

KT,2(s, t) = {j ∈ N : T(F̂ xj − `2,
t

2
) ≤ 1− s}

KH,1(s, t) = {j ∈ N : H(F̂ xj − `1,
t

2
) ≥ s}

KH,2(s, t) = {j ∈ N : H(F̂ xj − `2,
t

2
) ≥ s}

KJ,1(s, t) = {j ∈ N : J(F̂ xj − `1,
t

2
) ≥ s}

KJ,2(s, t) = {j ∈ N : J(F̂ xj − `2,
t

2
) ≥ s}

Since δ(F̂ )NN − limxj = `1. Then

δ(KT,1(ε, t)) = δ(KH,1(ε, t)) = δ(KJ,1(ε, t)) = 0.

Also, using δ(F̂ )NN − limxj = `2, one get

δ(KT,2(ε, t)) = δ(KH,2(ε, t)) = δ(KJ,2(ε, t)) = 0.

Let us denote

K(M,t) = [KT,1(s, t)∪KT,2(s, t)]∩[KH,1(s, t)∪KH,2(s, t)]∩[KJ,1(s, t)∪KJ,2(s, t)].

It can be easily seen that δ(K(M,t)) = 0 which implies that δ(N\K(M,t)) = 1

If j ∈ N\K(M,t), then we have three possible cases:

(a) ({j ∈ N\KT,1(ε, t) ∪KT,2(ε, t)})

(b) ({j ∈ N\KH,1(ε, t) ∪KH,2(ε, t)})

(c) ({j ∈ N\KJ,1(ε, t) ∪KJ,2(ε, t)})
Now, consider (a), one has

T(`1 − `2, t) ≥ T(F̂ xj − `1,
t

2
) ? T(F̂ xj − `2,

t

2
)

> (1− s) ? (1− s)
> 1− ε

Since ε > 0 was arbitrary, we get T(`1 − `2, t) = 1 for all t > 0, which
yields `1 = `2.

Consider (b), if j ∈ N\KH,1(ε, t) ∪KH,2(ε, t). Then, one write
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H(`1 − `2, t) ≤ H(F̂ xj − `1,
t

2
) �H(F̂ xj − `2,

t

2
)

< s � s
< ε

So, we have H(`1 − `2, t) = 0 for all t > 0 , which implies `1 = `2.

and consider (c) if j ∈ N\KJ,1(ε, t) ∪KJ,2(ε, t). Then

J(`1 − `2, t) ≤ J(F̂ xj − `1,
t

2
) � J(F̂ xj − `2,

t

2
)

< s � s
< ε

(12)

It follows that J(`1 − `2, t) = 0 for all t > 0, which implies `1 = `2.
This completes the proof of the theorem. �

Theorem 3.2. Let (X,M, ?, �) be a Neutrosophic normed space. If M −
limxj = ` then δ(F̂ )NN − limxj = ` but the converse need not be true.

Proof. Let M− limxj = `. Then for each ε > 0 and t > 0, there is a number
J ∈ N so that
T(F̂ xj − `, t) > 1− ε or H(F̂ xj − `, t) < ε, J(F̂ xj − `, t) < ε for all j ≥ J .
Hence the set{

j ∈ N : T(F̂ xj − `, t) ≤ 1− ε or H(F̂ xj − `, t) ≥ ε, J(F̂ xj − `, t) ≥ ε
}

has at most a finite number of terms. Since every finite subset of N has natural
density zero. it follows that,
δ({j ∈ N : T(F̂ xj − `, t) ≤ 1− ε or H(F̂ xj − `, t) ≥ ε, J(F̂ xj − `, t) ≥ ε}) = 0.

That is, δ(F̂ )NN − limxj = `.
For converse, we construct the following example: �

Example 3.1. Let (X, ‖ . ‖) be a normed space and let a ? b = ab and a � b =
min{a+ b, 1} for all a, b ∈ [0, 1]. For all x ∈ X and every t > 0, consider

T(x, t) =
t

t+ ||x||
, H(y, t) =

y

t+ ||y||
, J(x, t) =

||x||
t

(13)

Then (X,M, ?, �) is a Neutrosophic normed space.

Now, we determine the F̂ xj = (f 2
j+1) = (1, 22, 32, 52 . . . ). Since f 2

j+1 →
∞ as j →∞ and F̂ x = (1, 0, 0, . . . ), therefore F̂ x ∈M. For ε ∈ (0, 1) and for
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any t > 0, consider

Kn(ε, t) =

{
j ≤ n : T(F̂ xj − `, t) ≤ 1− ε or H(F̂ xj − `, t) ≥ ε

or J(F̂ xj − `, t) ≥ ε

}
.

When n becomes sufficiently large, the quantity T(F̂ xj−`, t) becomes less

than 1− ε, H(F̂ xj − `, t) and J(F̂ xj − `, t) become greater than ε. Therefore,

for ε > 0 and t > 0, Kε(F̂ ) = 0.

Theorem 3.3. Let (X,M, ?, �) be a Neutrosophic normed space and δ(F̂ )NN−
limxj = ` if and only if there exists a subset K = {k1 < k2 < k3 < . . . } ⊆ N
such that δ(K) = 1 and M− limn→∞ xkn = `.

Proof. Suppose that δ(F̂ )NN − limxj = `. For α = 1, 2, . . . and for each t > 0,

SM(α, t) =

{
j ∈ N : T(F̂ xj − `, t) > 1− 1

α
and H(F̂ xj − `, t) < 1

α
,

J(F̂ xj − `, t) < 1
α

}
.

RM(α, t) =

{
j ∈ N : T(F̂ xj − `, t) ≤ 1− 1

α
or H(F̂ xj − `, t) ≥ 1

α
,

J(F̂ xj − `, t) ≥ 1
α

}

Therefore, δ(RM(s, t)) = 0. Since δ(F̂ )NN − limxj = `. Additionally, for
α = 1, 2 . . . and for all t > 0,

SM(α + 1, t) ⊂ SM(α, t) and therefore

δ(SM(α, t)) = 1. (14)

Now, we have to prove that j ∈ SM(α, t), M − limxj = `. Suppose that
M − limxj 6= ` for some j ∈ SM(α, t). Therefore there exists β > 0 and a
positive integer J such that

T(F̂ xj − `, t) ≤ 1 − β or H(F̂ xj − `, t) ≥ β, J(F̂ xj − `, t) ≥ β, for all
j ≥ J . Let
T(F̂ xj − `, t) > 1− β , H(F̂ xj − `, t) < β and J(F̂ xj − `, t) < β, for all j < J .
Then

δ
({

T(F̂ xj − `, t) > 1− β,H(F̂ xj − `, t) < β and J(F̂ xj − `, t) < β
})

= 0
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Since β > 1
α

, we have δ(MM(α, t)) = 0. which is a contradiction of equation
(14). Therefore M− limxj = `.

Conversely, suppose that there exists a subset K = {k1 < k2 < k3 <
. . . } ⊆ N such that δ(K) = 1 and M− limn→∞ yjn = `.Then for every β, t > 0,

there exists J ∈ N such that T(F̂ xj − `, t) > 1 − β , H(F̂ xj − `, t) < β and

J(F̂ xj − `, t) < β.
Now
KM(β, t) = {j ∈ N : T(F̂ xj−`, t) ≤ 1−β or H(F̂ xj−`, t) ≥ β, J(F̂ xj−`, t) ≥
β} ⊆ N− {jK+1 < jK+2 < jK+3 < . . . }.
Therefore δ(KM(β, t)) ≤ 1−1 = 0. Hence δ(F̂ )NN−limxj = `. This completes
the proof of the theorem. �

4. Fibonacci statistically complete NNS

Definition 4.1. Let (X,M, ?, �) be a Neutrosophic normed space. A sequence
x = (xj) is said to be Fibonacci statistically Cauchy with respect to norm M if
for every ε, t > 0, there exists l = l(ε) such that

δ
({
j ∈ N : T(F̂ xj − F̂ yl, t) ≤ 1− ε or H(F̂ xj − F̂ yl, t) ≥ ε, J(F̂ xj − F̂ yl, t) ≥ ε

})
= 0.

Theorem 4.1. Every Fibonacci statistically convergent sequence in (X,M, ?, �)
is Fibonacci Cauchy.

Proof. Assume that the sequence x = (xj) be Fibonacci statistically convergent

to ` with respect to the norm M, i.e., δ(F̂ )NN − limxj = `. Given ε > 0 select
γ > 0 in such way that (1− ε) ? (1− ε) > 1− γ and ε � ε < γ. Therefore, for
all t > 0, one obtain

δ(G(ε, t)) = δ({j ∈ N : T(F̂ xj−`,
t

2
) ≤ 1−ε or H(F̂ xj−`,

t

2
) ≥ ε, J(F̂ xj−`,

t

2
) ≥ ε}) = 0

(15)
which implies
δ(Gc(ε, t)) = δ({j ∈ N : T(F̂ xj − `, t2) > 1− ε and H(F̂ xj − `, t2) < ε, J(F̂ xj −
`, t

2
) < ε}) = 1.

Suppose that k ∈ Gc(ε, t). Then

T(F̂ (yk)− `, t) > 1− ε, H(F̂ (yk)− `, t) < ε and J(F̂ (yk)− `, t) < ε.
Now, suppose that,

H(γ, t) =

{
j ∈ N : T(F̂ xj − F̂ (yk), t) ≤ 1− γ or H(F̂ xj − F̂ (yk), t) ≥ γ,

J(F̂ xj − F̂ (yk), t) ≥ γ

}
.
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We need to prove that H(γ, t) ⊂ G(ε, t). Assume j ∈ H(γ, t)\G(ε, t).
Then

T(F̂ xj − F̂ (yk), t) ≤ 1− γ and T(F̂ (yk)− `, t) > 1− ε,
In particular T(F̂ (yk)− `, t2) > 1− ε. Then

1−γ ≥ T(F̂ xj− F̂ (yk), t) ≥ T(F̂ xj− `, t2)?T(F̂ (yk)− `, t2) > (1− ε)? (1− ε) >
1− γ,

which is impossible. At the same time,

H(F̂ xj − F̂ (yk), t) ≥ γ and H(F̂ xj − `,
t

2
) < ε,

In particular H(F̂ xj − `, t2) < ε. Then,

γ ≤ H(F̂ xj − F̂ (yk), t) ≤ H(F̂ xj − `, t2) ?H(F̂ (yk)− `, t2) < ε ? ε < γ,
which is impossible.

In a similar way,
J(F̂ xj − F̂ (yk), t) ≥ γ and J(F̂ xj − `, t2) < ε,

In particular J(F̂ xj − `, t2) < ε. Then

γ ≤ J(F̂ xj − F̂ (yk), t) ≤ J(F̂ xj − `, t2) ? J(F̂ (yk)− `, t2) < ε ? ε < γ,
which is impossible. Therefore H(γ, t) ⊂ G(ε, t). Hence, by equation (15),
δ(H(γ, t)) = 0. Then x = (xj) is a Fibonacci statistically Cauchy sequence
with respect to norm M.

�

Definition 4.2. A neutrosophic normed space (X,M, ?, �) is known as Fi-
bonacci Statistically complete, if every Cauchy sequence with respect to the
norm M is Fibonacci Statistically convergent with respect to the same norm.

Theorem 4.2. A neutrosophic normed space (X,M, ?, �) is Fibonacci Statis-
tically complete.

Proof. Suppose x = (xj) be Fibonacci Statistically Cauchy sequence but not
Fibonacci Statistically convergent with respect to norm M. Given ε > 0 and
t > 0, select s > 0 in such a manner that ε � ε < s and (1− ε) ? (1− ε) > 1− s.
Now

T(F̂ xj − F̂ (xl), t) ≥ T(F̂ xj − `,
t

2
) ? T(F̂ (xl)− `,

t

2
)

> (1− ε) ? (1− ε) ? (1− ε)
> 1− s

and

H(F̂ xj − F̂ (xl), t) ≤ H(F̂ xj − `,
t

2
) ?H(F̂ (xl)− `,

t

2
)

< ε ? ε

< s
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and

J(F̂ xj − F̂ (xl), t) ≤ J(F̂ xj − `,
t

2
) ? J(F̂ (xl)− `,

t

2
)

< ε ? ε

< s

Since sequence x = (xj) is not Fibonacci statistically convergent. Then
δ(Qc(ε, t)) = 0, where

Q(ε, t) = {j ≤ l : H(F̂ xj−F̂ (xl))
(ε) ≤ s}, therefore δ(Q(ε, t)) = 1,

which contradicts our assumption. Therefore, x = (xj) must be Fi-
bonacci statistically convergent. �

5. Conclusions

In this study, we have studied the concept of statistical convergence us-
ing Fibonacci matrix which has an important place in the literature. The
statistical convergence is a generalization of the usual convergence. We have
defined the Fibonacci type statistical convergence and investigated basic prop-
erties. These are illustrated by suitable examples. Their related properties
and structural characteristics have been discussed.
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