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Abstract

This article introduces a new unit distribution namely odd Fréchet power
(OFrPF) distribution. Numerous properties of the proposed model includ-
ing reliability analysis, moments, and Rényi Entropy for the proposed
distribution. The parameters of the OFrPF distribution are obtained using
different approaches such as maximum likelihood, least squares, weighted
least squares, percentile, Cramer-von Mises, Anderson-Darling. Furthermore,
a simulation was performed to study the performance of the suggested model.
We also perform a simulation study to analyze the performances of estimation
methods derived. The applications are used to show the practicality of OFrPF
distribution using two real data sets. OFrPF distribution performed better than
other competitive models.
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1 Introduction

Chosen an appropriate lifetime probability is a major issue for data modeling.
However, over the years numerous probability models have been broadly
suggested for the analysis of data sets in several areas, medical sciences, actu-
arial sciences, engineering, finance and insurance, demography, biological
sciences, and economics. Sometimes the existing probability distributions do
not provide a good fit for more peaked and heavy-tailed data sets. Thus, there
is a need to propose a new probability distribution by adding one or more
parameter(s). In literature, various approaches are available for the derivation
of new families of probability models. The famous among these families
are the Weibull-G family (Bourguignon et al., 2014), generalized odd log-
logistic-G family (Cordeiro et al., 2016), generalized odd Burr III-G family
(Haq et al., 2019), odd Fréchet-G family (Haq and Elgarhy, 2018).

In many applied situations, we have to deal with uncertainty of bounded
situations. We frequently experience factors like proportions of a specific
trademark, scores of some capacity tests, diverse lists and rates, which lie
on interval (0,1) (Cook et al., 2008; Cribari-Neto and Souza, 2013; Gupta
and Nadarajah, 2004). For precision, appropriate modeling consider this
evidence into account. The unit interval probability distributions are essential
for modeling such data sets. Some most useful unit-interval distributions
are Topp–Leone distribution (Topp and Leone, 1955), Johnson distribution
(Johnson, 1949), Kumaraswamy distribution (Kumaraswamy, 1980), unit-
Weibull distribution (J Mazucheli et al., 2018), unit-Lindley distribution
(Josmar Mazucheli et al., 2018) and unit modified Burr-III distribution (Haq
et al., 2020).

The power function (PF) distribution has many applications in the field
of reliability. It was proposed by (Dallas, 1976) using the inverse transfor-
mation on the Pareto distribution. The cumulative distribution function (cdf);
G(x) and probability density function (pdf); g(x) of power function (PF)
distribution are given by

G(x) = xβ, & g(x) = βxβ−1, 0 < x < 1, β > 0. (1)

where β is the shape parameter.
Since then, many generalizations of PF distribution are introduced and

studied, for example, beta power function by (Cordeiro and dos Santos
Brito, 2012), Weibull PF distribution by (Tahir et al., 2016), transmuted PF
distribution by (Haq et al., 2016), exponentiated Weibull power function by
(Hassan and Assar, 2017), McDonald power function by (Haq et al., 2018),
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Transmuted Weibull Power function (Haq et al., 2018) and exponentiated
transmuted power function by (Usman et al., 2018).

The foundation of this study is the odd Fréchet generated (OFr-G) family
(Haq and Elgarhy, 2018). This family is replaced by the cdf

F (x) = e
−
[
1−G(x)
G(x)

]θ
,

(2)

and its related pdf is

f(x) =
θg(x)[1−G(x)]θ−1

G(x)θ+1
e
−
[
1−G(x)
G(x)

]θ
, 0 < x < 1. (3)

where θ and β are the shape parameters.
In this article, we present a new two parameteric distribution (0,1) based

on the mixture of Fréchet and power function distribution. The new probabil-
ity distribution, Fréchet power function distribution, can be applied to define
those datasets whose range is 0 to 1. We derive major mathematical properties
of OFrPFD and obtain estimators of the its parameters using different estima-
tion approaches. We are motivated to introduce OFrPF distribution because
(i) it is capable of modeling bathtub or monotonically increasing hazard rate;
(ii) it can be viewed as a suitable distribution for fitting the skewed data.
The flexibility of the proposed model is assessed by its applications to two
real-life datasets. These applications show that it fitted real-life data better
than other three competing lifetime distributions in modeling tensile strength
of polyester fibers and rock samples from petroleum data. Additionally, a
simulation study is performed which proves the Anderson and Darling (AD)
estimators as the best estimation technique among all proposed methods.

2 The Odd Fréchet Power Function Distribution

Let X be a random variable that is OFrPF distribution. The pdf of OFrPF
distribution is given as

f(x) = θβx−(θβ+1)[1− xβ]
θ−1

e
−
[
1−xβ

xβ

]θ
, 0 < x < 1, β, θ > 0, (4)

The corresponding cdf is

F (x) = e
−
[
1−xβ

xβ

]θ
. (5)
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Figure 1 Plots for probability density functions of the OFrPF distribution.

2.1 Limiting Behavior of Probability Density Function

We observe the following conditions on the probability density function

lim
x→0

f(x) = lim
x→0

θβx−(θβ+1)[1− xβ]
θ−1

e
−
[
1−xβ

xβ

]θ = 0

lim
x→1

f(x) = lim
x→1

θβx−(θβ+1)[1− xβ]
θ−1

e
−
[
1−xβ

xβ

]θ
=

0 for θ > 1
β for θ = 1
∞ for 0 < θ < 1

From the above, it can be observed the following:

• At origin pdf curve assumes monotonically increasing trend for all
values of β > 0 and θ > 0.

• The pdf is modal, reaching the point β and possibly increasing trend at
x→ 1 for all values of β > 0 and specified values of θ.

the pdf curves of OFrPF distribution are given in Figure 1. It is observed that
the pdf curve may assume positively skewed and negatively skewed trends.

3 Properties of OFrPF Distribution

In this section, we discuss some mathematical properties of OFrPF
distribution.
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3.1 Quantile Function

Using Equation (5), the OFrPFD can be easily obtained by

X = [1 + (−log(U))
1
θ ]
− 1
β
,

where U follows Uniform (0, 1). The pth quantile of OFrPFD is given by

xp = [1 + (−log(p))
1
θ ]
− 1
β
.

The median of OFrPF distribution can be obtained as

x0.5 =

[
1 +

(
−log

(
1

2

) ) 1
θ

]− 1
β

.

3.2 Mixture Representation

Using the exponential expansion, the pdf (4) can be written as

f(x) = θβx−(θβ+1)[1− xβ]
θ−1

∞∑
j=0

(−1)j

j!

(
1− xβ

xβ

)θj
,

For β > 0 and |z| < 1, the binomial theorem can be expressed as

(1− z)β−1 =
∞∑
i=0

(−1)i
(
β − 1
i

)
zi.

The pdf can be written as

f(x) = θβ

∞∑
j=0

∞∑
k=0

(−1)j+k

j!

(
θj + θ − 1

k

)
xβk−θβ(j+1)−1. (6)

3.3 Moments

Using the pdf in Equation (6), the rth moment of OFrPFD can be obtained as
follows:

µ′r = E(Xr) =
∞∑
j=0

∞∑
k=0

(−1)j+k

j!

(
θj + θ − 1

k

)[
θβ

(r + βk − θβ(j + 1))

]
.

(7)
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Table 1 Moments, variance, skewness, and kurtosis of the OFrPFD
Parameters µ′1 µ′2 µ′3 µ′4 V(X) CS CK

θ = 1.0 β = 0.5 0.4037 0.2339 0.1617 0.1229 0.0710 0.5254 2.1580

θ = 1.0 β = 0.7 0.4980 0.3101 0.2201 0.1693 0.0620 0.2540 1.9808

θ = 1.0 β = 1.0 0.5964 0.4037 0.2982 0.2339 0.0480 0.0171 1.9815

θ = 1.0 β = 1.5 0.6970 0.5174 0.4037 0.3273 0.0316 −0.1938 2.1092

θ = 1.5 β = 0.5 0.3606 0.1721 0.0994 0.0651 0.0421 0.8166 2.9757

θ = 1.5 β = 0.7 0.4670 0.2552 0.1575 0.1066 0.0371 0.5252 2.5386

θ = 1.5 β = 1.0 0.5763 0.3606 0.2419 0.1721 0.0284 0.2937 2.3500

θ = 1.5 β = 1.5 0.6859 0.4887 0.3606 0.2744 0.0183 0.1037 2.3035

θ = 2.0 β = 0.5 0.3346 0.1389 0.0689 0.0393 0.0269 1.0133 3.7425

θ = 2.0 β = 0.7 0.4470 0.2240 0.1244 0.0755 0.0241 0.7139 3.0834

θ = 2.0 β = 1.0 0.5622 0.3346 0.2103 0.1389 0.0186 0.4888 2.7486

θ = 2.0 β = 1.5 0.6768 0.4700 0.3346 0.2441 0.0119 0.3123 2.5842

Table 1 presents the numerical values of µ1, µ′2, µ
′
3, µ
′
4, variance (V(X)),

coefficient of skewness (CS), and coefficient of kurtosis (CK) for selected
values of the parameters.

3.4 Rényi Entropy

The entropy of a random variable X is an index of diversity or uncertainty.
The Rényi entropy, say REX , is defined as

REX =
1

δ − 1
log

(∫ ∞
−∞

f(x)δdx

)
, δ ≥ 0, δ 6= 1.

As α → ∞, the Rényi entropy is increasingly defined by the events
of highest probability whereas δ → 0, the Rényi entropy increasingly
weighs all events equally, irrespective of their probabilities. Using the pdf
in Equation (4), the Rényi entropy of X can be obtained as follows:

REX =
1

δ − 1
log

∫ ∞
−∞

θβx−(θβ+1)[1− xβ]
θ−1

e
−
[
1−xβ

xβ

]θδ

dx





Statistical Inferences on Odd Fréchet Power Function Distribution 147

Consider an integral part∫ ∞
−∞

f(x)δdx =
∞∑
j=0

∞∑
k=0

(−1)j+k

j!

(
δ(θj + θ − 1)

k

)

×

[
(θβ)δ

δ[βk − θβ(j + 1)− 1] + 1

]
,

The final form of REx is

REX =
1

δ − 1
log


∞∑
j=0

∞∑
k=0

(−1)j+k

j!

(
δ(θj + θ − 1)

k

)

×

[
(θβ)δ

δ[βk − θβ(j + 1)− 1] + 1

]. (8)

From Table 2, it can be seen that the Rényi entropy increases as an
increase occurs in parameter values. Thus, its parameters effect the Rényi
entropy. Shannon’s entropy is a special case of Rényi entropy as δ → 1.
Entropies quantify the uncertainty or randomness of a structure.

Table 2 Values of the Rényi entropy of the OFrPF distribution for some parameter values
δ θ β Rényi Entropy
0.5 1.0 0.5 0.0529235

0.5 1.0 0.7 0.0676647

0.5 1.0 1.0 0.1604457

0.5 1.0 1.5 0.3459248

1.5 1.5 0.5 0.3893141

1.5 1.5 0.7 0.3630736

1.5 1.5 1.0 0.4555590

2.0 1.5 1.5 0.6601460

2.0 2.0 0.5 0.7022644

2.0 2.0 0.7 0.6602884

2.0 2.0 1.0 0.7403408

2.0 2.0 1.5 0.9349705
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4 Reliability Characteristics

4.1 Survival, Hazard (Failure) Rate Function and Cumulative
Hazard Function

The survival function, hazard rate function (hrf) and cumulative hazard rate
function of X is given, respectively as follows:

S(x) = 1− e−[
1−xβ

xβ
]
θ

, (9)

h(x) =
θβx−(θβ+1)[1− xβ]

θ−1
e
−[ 1−x

β

xβ
]
θ

1− e−[
1−xβ
xβ

]
θ , (10)

and

H(x) = −log{1− e−[
1−xβ

xβ
]
θ

}. (11)

4.2 Limiting Behavior of Hazard Rate Function

We observe the following conditions on hazard rate function

lim
x→0

h(x) = lim
x→0

θβx−(θβ+1)[1− xβ]
θ−1

e
−[ 1−x

β

xβ
]
θ

1− e−[
1−xβ
xβ

]
θ

 = 0

lim
x→1

h(x) = lim
x→1

θβx−(θβ+1)[1− xβ]
θ−1

e
−[ 1−x

β

xβ
]
θ

1− e−[
1−xβ
xβ

]
θ

 =∞

It is observed that the hrf has an increasing trend for all values of
parameters.

Some curves of hrf of the OFrPFD are plotted in Figure 2. It is observed
that the hrf can be increasing shapes.

4.3 Mean Residual Life

The aging of the process is studied using the mean residual life (MRL) is
given as

µ(t) =
1

S(t)

∫ ∞
t

xf(x)dx− t, t > 0
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Figure 2 Plots for the hrf of the OFrPFD.

Using the pdf in Equation (4), the MRL of X can be obtained as follows

µ(t) =
θβ

1− e−[
1−tβ
tβ

]
θ

∞∑
j=0

θj+θ−1∑
k=0

(−1)j+k

j!

(
θj + θ − 1

k

)

×
∫ 1

t
xβk−θβ(j+1)dx− t

µ(t) =
θβ

1− e−[
1−tβ
tβ

]
θ

∞∑
j=0

θj+θ−1∑
k=0

(−1)j+k

j!

(
θj + θ − 1

k

)

×

[
1− t1+kβ−θβ(1+j)

kβ − θβ(1 + j) + 1

]
− t (12)

4.4 Mean Inactivity Time

The mean inactivity time (MIT) function has much application in various
fields and derived for a random variable X as

m(t) = t− 1

G(t)

∫ t

0
xf(x)dx, t > 0

Using the pdf in Equation (4), the MIT of X can be given as follows

m(t) = t− θβ

e
−[ 1−tβ

tβ
]
θ

∞∑
j=0

θj+θ−1∑
k=0

(−1)j+k

j!

(
θj + θ − 1

k

)

×
∫ t

0
xβk−θβ(j+1)dx
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m(t) = t− θβ

e
−[ 1−tβ

tβ
]
θ

∞∑
j=0

θj+θ−1∑
k=0

(−1)j+k

j!

(
θj + θ − 1

k

)

×

[
t1+kβ−θβ(1+j)

1 + kβ − θβ(1 + j)

]
(13)

5 Order Statistics

Let X1, X2, . . . , Xn be a random sample from the OFrPF model of distribu-
tions and let X1:n, X2:n, . . . , Xn:n be relevant order statistics. The pdf of ith
order statistics say Xi:n, can be written as

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
v=0

(−1)v
(
n− i
v

)
F v+i−1(x),

where B(·, ·) is the beta function, using (5) and (9), we get

fi:n(x) =
θβ
∑∞

j=0

∑∞
k=0

(−1)j+k
j!

(
θj+θ−1

k

)
xβk−θβ(j+1)−1

B(i, n− i+ 1)

n−i∑
v=0

(−1)v

×
(
n− i
v

)
e
−(v+i−1)[ 1−x

β

xβ
]
θ

The pdf of Xi:n can be expressed as

fi:n(x) = θβ

n−i∑
v=0

∞∑
j,k=0

ηk
(−1)v

B(i, n− i+ 1)

×
(
n− i
v

)
xβk−θβ(j+1)−1e

−(v+i−1)[ 1−x
β

xβ
]
θ

where

ηk =
(−1)j+k

j!

(
θj + θ − 1

k

)

fi:n(x) = θ
n−i∑
v=0

∞∑
j,k=0

ηkρi,vgX(i)
(x, β)GX(i)

(x, β)j+k
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where

ρi,v =
(−1)v

B(i, n− i+ 1)

(
n− i
v

)
The moments of Xi:n can be calculated as

E(Xq
i:n) = θ

n−i∑
v=0

∞∑
j,k=0

ηkρi,vτq,j+k.

Where τq,j+k is probability generated moments of g(x).

6 Parameter Estimation

In this section, we define six estimation approaches for estimating θ, and
β parameters of OFrPF distribution. For all the methods of estimation,
we assume that x1, x2, . . . , xn is a random sample of size n from OFrPF
distribution, with unknown parameters θ and β. Besides, consider that
x(1), x(2), . . . , x(n) denote the corresponding order samples.

6.1 ML Estimation

Here, we consider the estimation of unknown parameters using the maximum
likelihood method. The MLE approach is most ideal due to its attractive
properties (Lehmann and Casella, 2006). The log-likelihood function for the
vector of parameters Φ = (θ, β)T can be expressed as

l = nlog(θβ)− (θβ + 1)
n∑
i=1

logxi + (θ − 1)
n∑
i=1

log(1− xiβ)

+
n∑
i=1

log

[
exp

{
−
(

1− xiβ

xiβ

)θ}]
.

The elements of the score vector U(Φ) are given by

Uθ =
n

θ
− β

n∑
i=1

log(xi) +

n∑
i=1

log(1− xiβ)

−
n∑
i=1

[
log(x−βi − 1)

]
(x−βi − 1)

θ
,
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Uβ =
n

β
− θ

n∑
i=1

log(xi)− (θ − 1)

n∑
i=1

xi
βlog(xi)

1− xiβ

− θ
n∑
i=1

[
log(xi)(x

−β
i − 1)

θ
]

(x−βi − 1)
−1

Setting these two non-linear equations to zero and solving them simulta-
neously yield the MLEs of the model parameters. These equations can be
solved numerically using the Newton-Raphson algorithm or the Bisection
method. Computer software such as R Language, Mathematica, MATLAB
can be used for this purpose.

Based on the asymptotic normal approximation for (θ̂, β̂), interval estima-
tion can be easily performed from the observed information matrix Jn(θ, β).
The Information matrix is defined as

Jn (θ, β) = −
[
Jθθ Jθβ
Jβθ Jββ

]
= −


∂2

∂θ2
logL(θ, β)

∂2

∂θ∂β
logL(θ, β)

∂2

∂β∂θ
logL(θ, β)

∂2

∂β2
logL(θ, β)

,
where

Jθθ = − n
θ2
−

n∑
i=1

[
log(x−βi − 1)

]2
(x−βi − 1)

θ

Jθβ = −
n∑
i=1

log(xi)−
n∑
i=1

(x−βi − 1)
θ
log(xi)(1 + θlog(x−βi − 1))

xβi − 1

+

n∑
i=1

xβi log(xi)

xβi − 1

Jββ = − n

β2
− (θ − 1)

n∑
i=1

xβi (log xi)
2

(xβi − 1)
2

+ θ

n∑
i=1

(x−βi − 1)
θ
(xβi − θ)(log xi)

2

(xβi − 1)
2

The observed covariance matrix is the inverse of Jn(θ, β), J−1n (θ, β),

and the diagonal elements of J−1n (θ̂, β̂) are the variances of θ̂ and β̂,
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which denote by V ar(θ̂) and V ar(β̂), respectively. Then, the asymptotic

(1 − α)100% confidence intervals for θ and β are θ̂ ± Zα/2

√
V ar(θ̂) &

β̂ ± Zα/2

√
V ar(β̂), where Zα/2 is the upper (α/2)th percentile of the

standard normal distribution.

6.2 Method of Least Square and Weighted Least Square
Estimation

The least-square estimates of θ and β can be determined by minimizing the
least square function defined by

LS(θ, β) =

n∑
i=1

[
exp

{
−
(

1− xi:nβ

xi:nβ

)θ}
− i

n+ 1

]2
.

The WLSEs of θ and β can be determined by minimizing the function:

WLSEs(θ, β) =
n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

×

[
exp

{
−
(

1− xi:nβ

xi:nβ

)θ}
− i

n+ 1

]2
.

6.3 Anderson and Darling (AD) Estimation

The Anderson and Darling estimates (ADEs) of θ and β can be obtained by
minimizing the function given by

ADEs(θ, β) = −n− 1

n

n∑
i=1

(2i− 1)

× {logF (xi:n; θ, β) + logF (xn+1−i:n; θ, β)},

where F (x) = 1− F (x).

6.4 Cramer–von Mises Minimum (CVM) Distance Estimation

The CVM estimators are obtained by minimizing

CVMEs(θ, β) =
1

12n
+

n∑
i=1

[
exp

{
−
(

1− xi:nβ

xi:nβ

)θ}
− 2i− 1

2n

]2
.
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6.5 Percentile Estimation

U(θ, β) =
n∑
i=1

[xi:n −Q(pi; θ, β)]2 =
n∑
i=1

[
xi:n −

[
1 + (−logpi)

1
θ

]− 1
β

]2
,

where pi = (i+ 1)/n. Thus, the percentile estimates obtained through the
following equations ∂U(θ, β)/∂θ = 0 and ∂U(θ, β)/∂β = 0, where

∂U(θ, β)

∂θ
= 2

n∑
i=1

η
(1)
i (θ, β)

[
xi:n −

[
1 + (−logpi)

1
θ

]− 1
β

]
and

∂U(θ, β)

∂β
= 2

n∑
i=1

η
(2)
i (θ, β)

[
xi:n −

[
1 + (−logpi)

1
θ

]− 1
β

]
,

where

η
(1)
i (θ, β) =

(1 + (−logpi)
1
θ )
−1− 1

β
(−logpi)

1
θLog[−logpi]

2βθ2
√

(1 + (−logpi)
1
θ )
−1/β

,

and

η
(2)
i (θ, β) =

√
(1 + (−logpi)

1
θ )
−1/β

Log[1 + (−logpi)
1
θ ]

2β2
.

These expressions are not explicit and R-language is used to obtain their
results numerically.

7 Simulation

In this section, the efficiency of the proposed distribution is examined through
the simulation analysis. A Monte Carlo simulation study is provided to
investigate the performance of estimators of different estimation techniques
discussed above. We generate N = 10000 random samples of size n = 20,
50, 100, and from OFrPF distribution. All the computations are obtained by
utilizing the R-Language (R Development Core Team, 2019). Seven sets of
the parameters are considered as: {θ = 0.5, β = 0.3}, {θ = 0.5, β =
1.0}, {θ = 1.0, β = 1.5}, {θ = 1.5, β = 1.5} and {θ = 2.0, β = 1.5}.
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This procedure is conducted by computing the average absolute bias and the
mean square error (MSE), which are given by

Bias(Φ) =
1

N

N∑
j=1

(Φ̂i − Φ) & MSE =
1

N

N∑
j=1

(Φ̂i − Φ)
2
,

for i = 1, 2, 3 . . .

The results obtained are given in Tables 3–7.
For the discussion about performances of the methods of estimation for

most of the situations we considered, we observed that:

• Both estimators are unbiased and their biases decrease to zero as n
increases.

• Also, both estimators are consistent, the MSE tends to zero when n
increases.

8 Application

In this section, we analyze two data sets to investigate the performance of
OFrPF distribution in practice. We compare the OFrPF distribution with well-
known three parametric unit distributions: beta distribution, Kumaraswamy
distribution, and Unit-Gompertz distribution.

The probability density functions of these models are:

• The beta distribution

f(x : θ, β) = B(θ, β)xθ−1(1− x)β−1, xε(0, 1).

• The Kumaraswamy distribution

f(x : θ, β) = θβxθ−1(1− xθ)β−1, xε(0, 1).

• The Unit-Gompertz distribution

f(x : θ, β) = θβx−(β+1)e−θ(x
−β−1), xε(0, 1).

The 1st data, consists of (n = 30) observations, refers to the measure-
ments of the tensile strength of polyester fibers (Quesenberry and Hales,
1980). The observations are: 0.023, 0.032, 0.054, 0.069, 0.081, 0.094, 0.105,
0.127, 0.148, 0.169, 0.188, 0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395,
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Table 3 Simulation results for ΦT = (θ = 0.5, β = 0.3)

n Estimates MLE ADE CVME OLSE WLSE PE

20 E(θ̂) 0.53623 0.51503 0.54358 0.50700 0.51032 0.50534

E(β̂) 0.32639 0.32018 0.32935 0.32228 0.32006 0.31598

Bias(θ̂) 0.03623 0.01503 0.04358 0.00700 0.01032 0.00534

Bias(β̂) 0.02639 0.02018 0.02935 0.02228 0.02006 0.01598

V ar(θ̂) 0.01503 0.01435 0.02111 0.01789 0.01667 0.02391

V ar(β̂) 0.00960 0.01084 0.01558 0.01565 0.01309 0.02659

MSE(θ̂) 0.01634 0.01458 0.02301 0.01794 0.01678 0.02394

MSE(β̂) 0.01030 0.01125 0.01644 0.01615 0.01349 0.02685

50 E(θ̂) 0.51357 0.50482 0.51607 0.50166 0.50527 0.50248

E(β̂) 0.31012 0.30769 0.31149 0.30760 0.30740 0.30728

Bias(θ̂) 0.01357 0.00482 0.01607 0.00166 0.00527 0.00248

Bias(β̂) 0.01012 0.00769 0.01149 0.00760 0.00740 0.00728

V ar(θ̂) 0.00520 0.00526 0.00663 0.00608 0.00560 0.00864

V ar(β̂) 0.00301 0.00353 0.00460 0.00434 0.00379 0.00841

MSE(θ̂) 0.00538 0.00528 0.00689 0.00608 0.00563 0.00865

MSE(β̂) 0.00311 0.00359 0.00473 0.00440 0.00384 0.00846

100 E(θ̂) 0.50717 0.50318 0.50813 0.50238 0.50298 0.50075

E(β̂) 0.30445 0.30413 0.30553 0.30339 0.30381 0.30248

Bias(θ̂) 0.00717 0.00318 0.00813 0.00238 0.00298 0.00075

Bias(β̂) 0.00445 0.00413 0.00553 0.00339 0.00381 0.00248

V ar(θ̂) 0.00234 0.00262 0.00312 0.00303 0.00268 0.00426

V ar(β̂) 0.00134 0.00169 0.00211 0.00204 0.00175 0.00389

MSE(θ̂) 0.00239 0.00263 0.00319 0.00304 0.00269 0.00426

MSE(β̂) 0.00136 0.00171 0.00214 0.00205 0.00176 0.00390

200 E(θ̂) 0.50303 0.50160 0.50339 0.50088 0.50127 0.50096

E(β̂) 0.30254 0.30224 0.30325 0.30165 0.30242 0.30171

Bias(θ̂) 0.00303 0.00160 0.00339 0.00088 0.00127 0.00096

Bias(β̂) 0.00254 0.00224 0.00325 0.00165 0.00242 0.00171

V ar(θ̂) 0.00120 0.00129 0.00150 0.00150 0.00127 0.00205

V ar(β̂) 0.00065 0.00080 0.00101 0.00099 0.00083 0.00183

MSE(θ̂) 0.00121 0.00129 0.00151 0.00150 0.00127 0.00205

MSE(β̂) 0.00066 0.00081 0.00102 0.00099 0.00084 0.00183
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Table 4 Simulation results for ΦT = (θ = 0.5, β = 1.0)

n Estimates MLE ADE CVME OLSE WLSE PE

20 E(θ̂) 0.53625 0.51618 0.54449 0.5069 0.51181 0.50126

E(β̂) 1.09350 1.06242 1.10698 1.07028 1.06976 1.08592

Bias(θ̂) 0.03625 0.01618 0.04449 0.00690 0.01181 0.00126

Bias(β̂) 0.09350 0.06242 0.10698 0.07028 0.06976 0.08592

V ar(θ̂) 0.01537 0.01456 0.02133 0.01831 0.01626 0.02007

V ar(β̂) 0.11230 0.11425 0.18845 0.16627 0.14981 0.26906

MSE(θ̂) 0.01668 0.01482 0.02331 0.01836 0.01640 0.02007

MSE(β̂) 0.12104 0.11815 0.19989 0.17121 0.15468 0.27644

50 E(θ̂) 0.51344 0.50596 0.51625 0.50261 0.50499 0.50239

E(β̂) 1.03076 1.02364 1.04275 1.02384 1.02887 1.03186

Bias(θ̂) 0.01344 0.00596 0.01625 0.00261 0.00499 0.00239

Bias(β̂) 0.03076 0.02364 0.04275 0.02384 0.02887 0.03186

V ar(θ̂) 0.00508 0.00529 0.00657 0.00627 0.00554 0.00773

V ar(β̂) 0.03157 0.03890 0.05424 0.04811 0.04364 0.05766

MSE(θ̂) 0.00526 0.00533 0.00683 0.00628 0.00556 0.00774

MSE(β̂) 0.03252 0.03946 0.05607 0.04868 0.04447 0.05868

100 E(θ̂) 0.50693 0.50368 0.50863 0.50167 0.50317 0.50047

E(β̂) 1.01570 1.01191 1.01732 1.01030 1.01357 1.01220

Bias(θ̂) 0.00693 0.00368 0.00863 0.00167 0.00317 0.00047

Bias(β̂) 0.01570 0.01191 0.01732 0.01030 0.01357 0.01220

V ar(θ̂) 0.00241 0.00258 0.00309 0.00303 0.00264 0.00392

V ar(β̂) 0.01439 0.01851 0.02291 0.02242 0.01906 0.02496

MSE(θ̂) 0.00246 0.00259 0.00316 0.00303 0.00265 0.00392

MSE(β̂) 0.01464 0.01865 0.02321 0.02253 0.01924 0.02511

200 E(θ̂) 0.50330 0.50125 0.50397 0.50019 0.50156 0.50065

E(β̂) 1.00855 1.00754 1.00936 1.00542 1.00612 1.00711

Bias(θ̂) 0.00330 0.00125 0.00397 0.00019 0.00156 0.00065

Bias(β̂) 0.00855 0.00754 0.00936 0.00542 0.00612 0.00711

V ar(θ̂) 0.00118 0.00125 0.00150 0.00143 0.00126 0.00192

V ar(β̂) 0.00746 0.00894 0.01114 0.01099 0.00923 0.01217

MSE(θ̂) 0.00119 0.00125 0.00152 0.00143 0.00126 0.00192

MSE(β̂) 0.00753 0.00900 0.01123 0.01102 0.00927 0.01222
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Table 5 Simulation results for ΦT = (θ = 1.0, β = 1.5)

n Estimates MLE ADE CVME OLSE WLSE PE

20 E(θ̂) 1.07500 1.02575 1.08120 1.00119 1.01317 1.01368

E(β̂) 1.54626 1.53254 1.55321 1.53400 1.53057 1.51912

Bias(θ̂) 0.07500 0.02575 0.08120 0.00119 0.01317 0.01368

Bias(β̂) 0.04626 0.03254 0.05321 0.03400 0.03057 0.01912

V ar(θ̂) 0.04917 0.04808 0.07411 0.06238 0.05671 0.04601

V ar(β̂) 0.06491 0.06871 0.08459 0.07948 0.07642 0.07010

MSE(θ̂) 0.05479 0.04874 0.08070 0.06238 0.05688 0.04620

MSE(β̂) 0.06705 0.06977 0.08742 0.08064 0.07735 0.07047

50 E(θ̂) 1.02712 1.0112 1.02781 1.00068 1.00877 1.01077

E(β̂) 1.52094 1.51378 1.52044 1.51160 1.51319 1.50438

Bias(θ̂) 0.02712 0.01120 0.02781 0.00068 0.00877 0.01077

Bias(β̂) 0.02094 0.01378 0.02044 0.01160 0.01319 0.00438

V ar(θ̂) 0.01658 0.01766 0.02300 0.02205 0.01872 0.01767

V ar(β̂) 0.02411 0.02588 0.02929 0.02969 0.02603 0.02681

MSE(θ̂) 0.01732 0.01779 0.02377 0.02205 0.01880 0.01779

MSE(β̂) 0.02455 0.02607 0.02971 0.02982 0.02620 0.02683

100 E(θ̂) 1.01362 1.0058 1.0165 1.00195 1.00443 1.0077

E(β̂) 1.51114 1.50764 1.50996 1.50323 1.50606 1.50476

Bias(θ̂) 0.01362 0.00580 0.01650 0.00195 0.00443 0.00770

Bias(β̂) 0.01114 0.00764 0.00996 0.00323 0.00606 0.00476

V ar(θ̂) 0.00788 0.00874 0.01112 0.01037 0.00893 0.00889

V ar(β̂) 0.01172 0.01265 0.01407 0.01385 0.01253 0.01320

MSE(θ̂) 0.00807 0.00877 0.01139 0.01037 0.00895 0.00895

MSE(β̂) 0.01184 0.01271 0.01417 0.01386 0.01257 0.01322

200 E(θ̂) 1.00647 1.00256 1.00721 1.0001 1.00262 1.00233

E(β̂) 1.50488 1.50245 1.50494 1.5016 1.50409 1.50133

Bias(θ̂) 0.00647 0.00256 0.00721 0.00010 0.00262 0.00233

Bias(β̂) 0.00488 0.00245 0.00494 0.00160 0.00409 0.00133

V ar(θ̂) 0.00384 0.00427 0.00526 0.00513 0.00433 0.00442

V ar(β̂) 0.00579 0.00621 0.00700 0.00681 0.00621 0.00625

MSE(θ̂) 0.00388 0.00428 0.00531 0.00513 0.00434 0.00443

MSE(β̂) 0.00581 0.00622 0.00702 0.00681 0.00623 0.00625
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Table 6 Simulation results for ΦT = (θ = 1.5, β = 1.5)

n Estimates MLE ADE CVME OLSE WLSE PE

20 E(θ̂) 1.61388 1.53347 1.62163 1.50390 1.51636 1.54129

E(β̂) 1.52611 1.51900 1.53028 1.51455 1.51755 1.50568

Bias(θ̂) 0.11388 0.03347 0.12163 0.00390 0.01636 0.04129

Bias(β̂) 0.02611 0.01900 0.03028 0.01455 0.01755 0.00568

V ar(θ̂) 0.10687 0.10205 0.16667 0.13379 0.12493 0.08808

V ar(β̂) 0.03029 0.03151 0.03582 0.03357 0.03352 0.03023

MSE(θ̂) 0.11984 0.10317 0.18146 0.13381 0.12520 0.08978

MSE(β̂) 0.03097 0.03187 0.03674 0.03378 0.03383 0.03026

50 E(θ̂) 1.53876 1.51475 1.54832 1.50086 1.50824 1.52052

E(β̂) 1.51139 1.50763 1.51044 1.50462 1.50694 1.50085

Bias(θ̂) 0.03876 0.01475 0.04832 0.00086 0.00824 0.02052

Bias(β̂) 0.01139 0.00763 0.01044 0.00462 0.00694 0.00085

V ar(θ̂) 0.03474 0.03790 0.05139 0.04715 0.03996 0.03487

V ar(β̂) 0.01136 0.01168 0.01339 0.01258 0.01197 0.01147

MSE(θ̂) 0.03624 0.03812 0.05372 0.04715 0.04003 0.03529

MSE(β̂) 0.01149 0.01174 0.01350 0.01260 0.01202 0.01147

100 E(θ̂) 1.52128 1.50582 1.51787 1.50215 1.50681 1.51252

E(β̂) 1.50540 1.50450 1.50507 1.50256 1.50386 1.50050

Bias(θ̂) 0.02128 0.00582 0.01787 0.00215 0.00681 0.01252

Bias(β̂) 0.00540 0.00450 0.00507 0.00256 0.00386 0.00050

V ar(θ̂) 0.01640 0.01816 0.02316 0.02259 0.01926 0.01668

V ar(β̂) 0.00559 0.00614 0.00643 0.00617 0.00586 0.00561

MSE(θ̂) 0.01685 0.01819 0.02348 0.02259 0.01931 0.01684

MSE(β̂) 0.00562 0.00616 0.00646 0.00618 0.00587 0.00561

200 E(θ̂) 1.51021 1.50233 1.51029 1.50066 1.50333 1.50748

E(β̂) 1.50297 1.50230 1.50336 1.50164 1.50137 1.50027

Bias(θ̂) 0.01021 0.00233 0.01029 0.00066 0.00333 0.00748

Bias(β̂) 0.00297 0.00230 0.00336 0.00164 0.00137 0.00027

V ar(θ̂) 0.00812 0.00899 0.01143 0.01134 0.00887 0.00843

V ar(β̂) 0.00278 0.00295 0.00323 0.00317 0.00289 0.00278

MSE(θ̂) 0.00822 0.00900 0.01154 0.01134 0.00888 0.00849

MSE(β̂) 0.00279 0.00296 0.00324 0.00317 0.00289 0.00278
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Table 7 Simulation results for ΦT = (θ = 2.0, β = 1.5)

n Estimates MLE ADE CVME OLSE WLSE PE

20 E(θ̂) 2.15099 2.0543 2.16214 2.00202 2.02344 2.06186

E(β̂) 1.51695 1.51316 1.52115 1.50875 1.50795 1.50211

Bias(θ̂) 0.15099 0.05430 0.16214 0.00202 0.02344 0.06186

Bias(β̂) 0.01695 0.01316 0.02115 0.00875 0.00795 0.00211

V ar(θ̂) 0.17961 0.18500 0.29092 0.23995 0.21578 0.15458

V ar(β̂) 0.01649 0.01741 0.01928 0.01868 0.01805 0.01686

MSE(θ̂) 0.20241 0.18795 0.31721 0.23995 0.21633 0.15841

MSE(β̂) 0.01678 0.01758 0.01973 0.01876 0.01811 0.01686

50 E(θ̂) 2.05356 2.02332 2.06229 2.00482 2.01262 2.03924

E(β̂) 1.50695 1.50370 1.50741 1.50277 1.50516 1.50092

Bias(θ̂) 0.05356 0.02332 0.06229 0.00482 0.01262 0.03924

Bias(β̂) 0.00695 0.00370 0.00741 0.00277 0.00516 0.00092

V ar(θ̂) 0.06199 0.06399 0.08959 0.08051 0.07122 0.05832

V ar(β̂) 0.00633 0.00671 0.00741 0.00726 0.00685 0.00659

MSE(θ̂) 0.06486 0.06453 0.09347 0.08053 0.07138 0.05986

MSE(β̂) 0.00638 0.00672 0.00746 0.00727 0.00688 0.00659

100 E(θ̂) 2.03195 2.00937 2.02953 2.00323 2.01215 2.02344

E(β̂) 1.50392 1.50306 1.50388 1.50088 1.50169 1.50026

Bias(θ̂) 0.03195 0.00937 0.02953 0.00323 0.01215 0.02344

Bias(β̂) 0.00392 0.00306 0.00388 0.00088 0.00169 0.00026

V ar(θ̂) 0.02818 0.03204 0.04101 0.03944 0.03353 0.02882

V ar(β̂) 0.00323 0.00338 0.00365 0.00353 0.00327 0.00321

MSE(θ̂) 0.02920 0.03213 0.04188 0.03945 0.03368 0.02937

MSE(β̂) 0.00325 0.00339 0.00367 0.00353 0.00327 0.00321

200 E(θ̂) 2.01297 2.00630 2.01200 2.00058 2.00696 2.01172

E(β̂) 1.50208 1.50228 1.50247 1.50055 1.50148 1.50134

Bias(θ̂) 0.01297 0.00630 0.01200 0.00058 0.00696 0.01172

Bias(β̂) 0.00208 0.00228 0.00247 0.00055 0.00148 0.00134

V ar(θ̂) 0.01376 0.01621 0.01978 0.01971 0.01582 0.01485

V ar(β̂) 0.00157 0.00168 0.00178 0.00178 0.00164 0.00156

MSE(θ̂) 0.01393 0.01625 0.01992 0.01971 0.01587 0.01499

MSE(β̂) 0.00157 0.00169 0.00179 0.00178 0.00164 0.00156
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0.432, 0.463, 0.481, 0.519, 0.529, 0.567, 0.642, 0.674, 0.752, 0.823, 0.887,
and 0.926.

The second data (n = 48) refers to the rock samples from petroleum
(Cordeiro and Brito, 2012). The observations are: 0.0903296, 0.2036540,
0.2043140, 0.2808870, 0.1976530, 0.3286410, 0.1486220, 0.1623940,
0.2627270, 0.1794550, 0.3266350, 0.2300810, 0.1833120, 0.1509440,
0.2000710, 0.1918020, 0.1541920, 0.4641250, 0.1170630, 0.1481410,
0.1448100, 0.1330830, 0.2760160, 0.4204770, 0.1224170, 0.2285950,
0.1138520, 0.2252140, 0.1769690, 0.2007440, 0.1670450, 0.2316230,
0.2910290, 0.3412730, 0.4387120, 0.2626510, 0.1896510, 0.1725670,
0.2400770, 0.3116460, 0.1635860, 0.1824530, 0.1641270, 0.1534810,
0.1618650, 0.2760160, 0.2538320, 0.2004470.

The OFrPFD is fitted to the given dataset and compared on the basis of
following statistics: maximum log-likelihood, Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC) criteria. The nonparametric test,
Anderson–Darling (A*), Cramer–von Mises (W*), and Kolmogorov Smirnov
(KS) are applied to measure the closeness between the empirical and fitted
distributions. Further, to illustrate the shape of data sets, we present a two
approaches which are based on graphs i.e., total time test transform (TTT)
plot and box plot.

Figures 3–4 show TTT plot and box plot for both data sets. Tables 8 and
9 give the MLEs and their standard errors (S.E.) given in parentheses and the
values of the four accuracy measures for the fitted models including OFrPFD
and other competitive distributions to the data sets I and II, respectively.
Table 10 gives the confidence interval of parameters for both 95% and 99%
levels for both data sets. Empirical data is plotted along with fitted densities
for both data sets in Figures 5–6. To illustrate the likelihood equations, we

Figure 3 TTT and box plot for data set I.
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Figure 4 TTT and box plot for data set II.

Table 8 MLEs and goodness-of-fit measures for Tensile Strength data
Model MLEs LogLik AIC BIC A W KS

OFrPF θ̂ = 1.0204
β̂ = 0.4269

3.9557 −3.9115 −1.1091 0.1229 0.0206 0.0538

Beta θ̂ = 0.9667
β̂ = 1.6205

3.3051 −2.6101 0.1923 0.1703 0.0321 0.0669

Kw θ̂ = 0.9627
β̂ = 1.6084

3.3110 −2.6221 0.1803 0.1633 0.0307 0.0750

UGD θ̂ = 1.0436
β̂ = 0.4198

3.9088 −3.8576 −1.0552 0.1299 0.0354 0.0629

Table 9 MLEs and goodness-of-fit measures for Data II.
Model MLEs LogLik AIC BIC A W KS

OFrPF θ̂ = 3.7469
β̂ = 0.3992

58.216 −112.43 −108.69 0.1882 0.0258 0.0733

Beta θ̂ = 5.9415
β̂ = 21.206

55.600 −107.20 −103.46 0.7767 0.1300 0.1427

Kw θ̂ = 2.7186
β̂ = 44.652

52.492 −100.98 −97.24 1.2892 0.2060 0.1533

UGD θ̂ = 0.0053
β̂ = 2.9893

56.644 −109.29 −105.55 0.3574 0.0433 0.0808

plot the profile of the log-likelihood of Φ = (θ, β) in Figures 7–8. We
also use some estimation methods discussed in Section 4 to estimate the
unknown parameters from both data sets. The point estimates of the OFrPF
parameters are obtained using the given six methods and the KS and P-values
are computed in Table 11.
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Table 10 Confidence intervals for parameters of OFrPF distribution
CI θ β

Data I 95% [0.7069, 1.3340] [0.3207, 0.5332]

99% [0.6085, 1.4323] [0.2873, 0.5666]

CI θ β

Data II 95% [2.9161, 4.5774] [0.3764, 0.4220]

99% [2.6551, 4.8384] [0.3693, 0.4292]

Figure 5 Fitted pdf and cdf for the data I.

Figure 6 Fitted pdf and cdf for the data II.

From Tables 8 and 9, it is found that the OFrPF distribution has the
largest Log-likelihood value and the smallest AIC, BIC, A, W, and K-S
values than other models’ measures. It is shown that the OFrPF performs
better than other fitted models to both data sets because it has larger p-values.
According to Figures 5–6, the closeness of the fitted PDF and CDF using
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Figure 7 The curves log-likelihood function of parameters data set I.

Figure 8 The curves log-likelihood function of parameters data set II.

Table 11 The parameter estimates of OFrPF distribution under different estimation methods
for data sets

Data Set I Data Set II

Method θ̂ β̂ K-S (P-value) θ̂ β̂ K-S (P-value)

MLE 1.0204 0.4269 0.9727 3.7469 0.3992 0.9596

OLS 0.9240 0.4314 0.9891 3.8186 0.3998 0.9612

WLS 0.9289 0.4270 0.9983 3.7636 0.4002 0.9401

ADE 0.9781 0.4322 0.9995 3.8358 0.4003 0.9739

CVM 0.9660 0.4366 0.9987 3.9413 0.4005 0.9690

Percentile 0.9776 0.4407 0.9691 3.5965 0.3985 0.9341

the OFrPF distribution to the empirical PDF and CDF is clear. Thus, the
OFrPF distribution fits both data sets better than other models. Also the model
parameters are estimated using six different estimation methods discussed
in Section 4, the estimates are presented in Table 11. And on the basis of
observation from Table 11, we can conclude that the ADE method provides
better estimates the OFrPF parameters for both data sets. Overall, all the
estimation methods perform well for both data sets.
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9 Conclusion

This article introduces a new odd Fréchet power (OFrPF) distribution.
Numerous properties of OFrPF distribution are obtained. Reliability analysis
is carried out for proposed distribution. The parameters of the OFrPF dis-
tribution are estimated using different methods; maximum likelihood, least
squares, weighted least squares, percentile, Cramer-von Mises, Anderson-
Darling. A simulation study is conducted for evaluation performances of
estimators of OFrPF distribution under different estimation methods. The
application of OFrPF distribution is given for two real data sets under derived
estimation methods. From the comparisons of the proposed distribution
with other existing unit models, we conclude that the proposed distribution
performs better in fitting and estimation than the existing distributions.

The present study can be extended for statistical inferences using
Bayesian analysis and different sampling plans (i.e., Rank Set Sampling
(RSS)) scheme can be considered. The reliability analysis, for example, stress
strength reliability estimation using simple random sampling and RSS can
also considered.
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