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Abstract: This paper aims to explore the algebra structure of refined neutrosophic numbers. Firstly,
the algebra structure of neutrosophic quadruple numbers on a general field is studied. Secondly,
The addition operator⊕ and multiplication operator⊗ on refined neutrosophic numbers are proposed
and the algebra structure is discussed. We reveal that the set of neutrosophic refined numbers with
an additive operation is an abelian group and the set of neutrosophic refined numbers with a
multiplication operation is a neutrosophic extended triplet group. Moreover, algorithms for solving
the neutral element and opposite elements of each refined neutrosophic number are given.

Keywords: neutrosophic extended triplet group; neutrosophic quadruple numbers; refined
neutrosophic numbers; refined neutrosophic quadruple numbers; neutrosophic set

1. Introduction

The notion of neutrosophic set was proposed by F. Smarandache [1], which is an extension of fuzzy
set and in order to solve real-world problems. A neutrosophic set has three membership functions,
and each membership degree is a real standard or non-standard subset of the nonstandard unit interval
]0−, 1+[= 0− ∪ [0, 1] ∪ 1+.

In recent years, the idea of neutrosophic set has been applicable in related algebraic structures.
Among these algebraic structures, Smarandache and Ali [2] proposed the algebraic system neutrosophic
triplet group (NTG), which is an extension of the classical group but the neutral element is different
from the classical algebraic unit element. To regard the unit element as a special neutral element,
the neutrosophic extended triplet group (NETG) has been proposed [3,4] and the classical group is
regarded as a special case of a NETG. Moreover, some research papers have carried out in-depth
research based on NTG (NETG). For example, the inclusion relations of neutrosophic sets [5],
neutrosophic triplet coset [6], neutrosophic duplet semi-groups [7], generalized neutrosophic extended
triplet group [8], AG-neutrosophic extended triplet loops [9,10], the neutrosophic set theory to
pseudo-BCI algebras [11], neutrosophic triplet ring and a neutrosophic triplet field [12,13], neutrosophic
triplet normed space [14], neutrosophic soft sets [15], neutrosophic vector spaces [16] and so on have
been studied.

As an example of NETG, Ma [8] revealed that for each n ∈ Z+, n ≥ 2, (Zn,⊗) is a commutative
NETG if and only if the factorization of n is a product of single factors. As another example, Ma [17]
showed that the set of neutrosophic quadruple numbers with a multiplication operation is a NETG.
The concept of neutrosophic numbers of the form a + bI, where I is the indeterminacy with In =

I, and, a and are real or complex numbers. If I into many types of indeterminacies I1, I2, · · · , Iq,
in [18], Smarandache extended the neutrosophic numbers a + bI into refined neutrosophic numbers
of the form a + b1 I1 + b2 I2 + · · · + bn In, where a, b1, b2, · · · , bn are real or complex numbers and
considered the refined neutrosophic set based on these refined neutrosophic numbers. The notion of
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neutrosophic quadruple number, which has form: NQ = a + bT + cI + dF where a, b, c, d are real (or
complex) numbers; and T is the truth/membership/probability; I is the indeterminacy; and F is the
false/membership/improbability are called Neutrosophic Quadruple (Real, respectively, Complex)
Numbers. “a” is called the known part of NQ, while bT + cI + dF is called the unknown part of NQ.
Similar to refined neutrosophic numbers, if T can be split into many types of truths, T1, T2, · · · , Tp, I
into many types of indeterminacies, I1, I2, · · · , Ir, and F into many types of falsities, F1, F2, · · · , Fr, we
can get the refined neutrosophic quadruple numbers. We know that the set of neutrosophic quadruple
numbers with a multiplication operation is a NETG. In this paper, we explore the algebra structure
of refined neutrosophic numbers (refined neutrosophic quadruple numbers) and give new examples
of NETG. In fact, the solving method of the neutral element and opposite elements for each refined
neutrosophic number is different from the solving method for each neutrosophic quadruple number.

The paper is organized as follows. Section 2 gives the basic concepts. In Section 3, we show that
the set of neutrosophic quadruple numbers on the general field with a multiplication operation also
consists of a NETG. In Section 4, the algebra structure of refined neutrosophic numbers and refined
neutrosophic quadruple numbers are studied. Finally, the summary and future work is presented in
Section 5.

2. Basic Concepts

In this section, we provide the related basic definitions and properties of NETG, neutrosophic
quadruple numbers, and refined neutrosophic numbers (for details, see [3,4,18–20]).

Definition 1 ([3,4]). Let N be a non-empty set together with a binary operation ∗. Then, N is called a
neutrosophic extended triplet set if, for any a ∈ N, there exists a neutral of “a” (denote by neut(a)), and an
opposite of “a”(denote by anti(a)), such that neut(a) ∈ N, anti(a) ∈ N and:

a ∗ neut(a) = neut(a) ∗ a = a, a ∗ anti(a) = anti(a) ∗ a = neut(a).

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet.

Definition 2 ([3,4]). Let (N, ∗) be a neutrosophic extended triplet set. Then, N is called a neutrosophic
extended triplet group (NETG), if the following conditions are satisfied:

(1) (N, ∗) is well-defined, i.e., for any a, b ∈ N, one has a ∗ b ∈ N.
(2) (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.

A NETG N is called a commutative NETG if for all a, b ∈ N, a ∗ b = b ∗ a.

Proposition 1 ([4]). (N, ∗) be a NETG. We have:

(1) neut(a) is unique for any a ∈ N.
(2) neut(a) ∗ neut(a) = neut(a) for any a ∈ N.
(3) neut(neut(a)) = neut(a) for any a ∈ N.

Definition 3 ([18,19]). A neutrosophic number is a number of the form (a, bI), where I is the indeterminacy
with I2 = I, and a and b are real or complex numbers. A refined neutrosophic number is a number of the form
(a0, a1 I1, a2 I2, · · · , an In), where I1, I2, · · · , In are different types of indeterminacies, and a0, a1, a2, · · · , an are
real or complex numbers. The set NN defined by

NN = {(a, bI)|a, b ∈ R or C}. (1)

is called a neutrosophic set of neutrosophic numbers. The set RNN defined by

RNN = {(a0, aI1, a2 I2, · · · , an In)|a0, a1, a2, · · · , an ∈ R or C}. (2)
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is called a neutrosophic set of refined neutrosophic numbers.

Definition 4 ([18,20]). A neutrosophic quadruple number is a number of the form (a, bT, cI, dF), where T, I
and F have their usual neutrosophic logic meanings, i.e., truth, indeterminacy and false, respectively, and
a, b, c, d ∈ R or C. The set NQ defined by

NQ = {(a, bT, cI, dF)|a, b, c, d ∈ R or C}. (3)

is called a neutrosophic set of quadruple numbers. For a neutrosophic quadruple number (a, bT, cI, dF), a is
called the known part and (bT, cI, dF) is called the unknown part. The set RNQ defined by

RNQ = {(a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr)|
a, b1, b2, · · · , bp, c1, c2, · · · , cq, d1, d2, · · · , dr ∈ R or C}. (4)

is called a neutrosophic set of refined neutrosophic quadruple numbers.

Definition 5 ([18,20]). Let N be a set, endowed with a total order a ≺ b, named “a prevailed by b”, “a less
stronger than b” or “a less preferred than b”. We consider a � b as “a prevailed by or equal to b”, “a less
stronger than or equal to b”, or “a less preferred than or equal to b”.

For any elements a, b ∈ N, with a � b, one has the absorbance law:

a · b = b · a = absorb(a, b) = max(a, b) = b. (5)

which means that the bigger element absorbs the smaller element. Clearly,

a · a = a2 = absorb(a, a) = max(a, a) = a. (6)

and
a1 · a2 · · · an = max(a1, a2, · · · , an). (7)

Analogously, we say that “a � b” and we read: “a prevails to b”, “a is stronger than b” or “a is preferred
to b”. In addition, a � b, and we read: “a prevails or is equal to b”, “a is stronger than or equal to b”, or “a is
preferred or equal to b”.

Definition 6 ([18,20]). Consider the set {T, I, F}. Suppose in an optimistic way we consider the prevalence
order T � I � F. Then, we have: TI = IT = max(T, I) = T, TF = FT = max(T, F) = T, IF = FI =

max(I, F) = I, TT = T2 = T, I I = I2 = I, FF = F2 = F.
Analogously, suppose in a pessimistic way we consider the prevalence order T ≺ I ≺ F. Then, we have:

TI = IT = max(T, I) = I, TF = FT = max(T, F) = F, IF = FI = max(I, F) = F, TT = T2 = T,
I I = I2 = I, FF = F2 = F.

Definition 7 ([18,20]). Let a = (a1, a2T, a3 I, a4F), b = (b1, b2T, b3 I, b4F) ∈ NQ. Suppose, in an pessimistic
way, the neutrosophic expert considers the prevalence order T ≺ I ≺ F. Then, the multiplication operation is
defined as follows:

a ∗ b = (a1, a2T, a3 I, a4F) ∗ (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2)T, (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I,

(a1b4 + a2b4 + a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F).
(8)

Suppose in an optimistic way the neutrosophic expert considers the prevalence order T � I � F. Then,

a ? b = (a1, a2T, a3 I, a4F) ? (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2 + a3b2 + a4b2 + a2b3 + a2b4)T,

(a1b3 + a3b1 + a3b3 + a3b4 + a4b3)I, (a1b4 + a4b1 + a4b4)F).
(9)
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Proposition 2 ([18,20]). Let NQ = {(a, bT, cI, dF) : a, b, c, d ∈ R or C}. We have:

(1) (NQ, ∗) is a commutative monoid.
(2) (NQ, ?) is a commutative monoid.

Theorem 1. [17] For the algebra system (NQ, ∗)(or (NQ, ?)), for every element a ∈ NQ, there exists
the neutral element neut(a) and opposite element anti(a), which means that the algebra system (NQ, ∗)
(or (NQ, ?)) is a NETG.

3. The Algebra Structure of Neutrosophic Quadruple Numbers on General Field

From the above section, we can see that the neutrosophic quadruple numbers are defined on
number field R or C. In this section, the notions of the neutrosophic quadruple numbers on a general
field are introduced and the algebra structure of the neutrosophic quadruple numbers on general field
is explored.

Let (F,+, ·) be a field, and 0 and 1 are the unit elements for operator + and ·, respectively. For
every a ∈ F, −a is the inverse element of a for operator +, and a−1 is the inverse element of a for
operator ·. In the following, field (F,+, ·) is denoted by F for short and a · b is denoted by ab.

Definition 8. Let F be a field; a neutrosophic quadruple number is a number of the form (a, bT, cI, dF),
where T, I, F have their usual neutrosophic logic meanings, i.e., truth, indeterminacy and false, respectively,
and a, b, c, d ∈ F. The set NQF defined by

NQF = {(a, bT, cI, dF)|a, b, c, d ∈ F}. (10)

is called a neutrosophic set of quadruple numbers on field F.

Definition 9. Let a = (a1, a2T, a3 I, a4F), b = (b1, b2T, b3 I, b4F) ∈ NQF, then the addition operator is
defined as follows:

a⊕ b = (a1 + b1, (a2 + b2)T, (a3 + b3)I, (a4 + b4)F). (11)

Definition 10. Let a = (a1, a2T, a3 I, a4F), b = (b1, b2T, b3 I, b4F) ∈ NQF. Suppose, in an pessimistic way,
the neutrosophic expert considers the prevalence order T ≺ I ≺ F. Then, the multiplication operation is defined
as follows:

a ∗ b = (a1, a2T, a3 I, a4F) ∗ (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2)T, (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I,

(a1b4 + a2b4 + a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F).
(12)

Suppose in an optimistic way the neutrosophic expert considers the prevalence order T � I � F. Then,

a ? b = (a1, a2T, a3 I, a4F) ? (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2 + a3b2 + a4b2 + a2b3 + a2b4)T,

(a1b3 + a3b1 + a3b3 + a3b4 + a4b3)I, (a1b4 + a4b1 + a4b4)F).
(13)

Theorem 2. (NQF,⊕) is an abelian group.

Proof. It is obvious.

Theorem 3. For the algebra system (NQF, ∗) (or (NQF, ?)), for every element a ∈ NQF, there exists
the neutral element neut(a) and opposite element anti(a), thus the algebra system (NQF, ∗) (or (NQF, ?))
is a NETG.
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The proof’s method is similar to the proof when F = R in [17]. The detailed proof is omitted.
For algebra system (NQF, ∗), Table 1 gives all the subsets which have the same neutral element, and
the corresponding neutral element and opposite elements. In the following, from two examples, we
show that how to solve the the neutral element and opposite elements of each element for algebra
system (NQF, ∗) on different fields.

Example 1. Let F = Z5 = {[0], [1], [2], [3], [4]}, then (Z5,+, ·) is a field, where + and · are the classical
mod addition and multiplication, respectively. For algebra system (NQF, ∗), if a = (a1, a2T, a3 I, a4F) =

([2], [4]T, [3]I, [1]F), i.e., a1 6= [0], a1 + a2 6= [0], a1 + a2 + a3 6= [0], a1 + a2 + a3 + a4 = [0],
then, from Table 1, we can get neut(a) = ([1], [0], [0], [4]F). Let anti(a) = (c1, c2T, c3 I, c4F),
so c1 = a−1

1 = [3], c2 = [3], c3 = [3], c4 ∈ Z5, thus anti(a) = ([3], [3]T, [3]I, c4F), where c4 ∈ Z5. Thus, we
can easily get the neutral element and opposite elements of each neutrosophic quadruple number on general field.
For more examples, see the following:

1. Let b = ([1], [2]T, [1]I, [3]F), then neut(b) = ([1], [0], [0], [0]) and anti(b) = ([1], [1]T, [2]I, [4]F).
2. Let c = ([0], [0], [1]I, [4]F), then neut(c) = ([0], [0], [1], [4]) and anti(c) = (c1, c2T, c3 I, c4F),

where c1 ⊕ c2 ⊕ c3 = [1], c4 ∈ Z5.
3. Let d = ([0], [1]T, [1]I, [1]F), then neut(d) = ([0], [1]T, [0], [0]) and anti(d) = (c1, c2T, [2]I, [4]F),

where c1 ⊕ c2 = [1].

Table 1. The corresponding neutral element and opposite elements for (NQF, ∗).

The Subset of NQF Neutral
Element

Opposite Elements (c1, c2T , c3 I, c4F)

{(0, 0, 0, 0)} (0, 0, 0, 0) ci ∈ F

{(0, 0, 0, a4F)|a4 6= 0} (0, 0, 0, F) c1 + c2 + c3 + c4 = a−1
4

{(0, 0, a3 I,−a3F)|a3 6= 0} (0, 0, I,−F) c1 + c2 + c3 = a−1
3 , c4 ∈ F

{(0, 0, a3 I, a4F)|a3 6= 0, a3 + a4 6= 0} (0, 0, I, 0) c1 + c2 + c3 = a−1
3 , c4 = −(a4a−1

3 (a3 + a4)
−1)

{(0, a2T,−a2 I, 0)|a2 6= 0 } (0, T,−I, 0)} c1 + c2 = a−1
2 , c3, c4 ∈ F

{(0, a2T,−a2 I, a4F)|a2 6= 0, a4 6= 0} (0, T,−I, F) c1 + c2 = a−1
2 , c3 + c4 = a−1

4 + (−a−1
2 )

{(0, a2T, a3 I, a4F)|a2 6= 0, a2 + a3 6=
0, a2 + a3 + a4 = 0}

(0, T, 0,−F) c1 + c2 = a−1
2 , c3 = −(a3a−1

2 (a2 + a3)
−1),

c4 ∈ F

{(0, a2T, a3 I, a4F)|a2 6= 0, a2 + a3 6=
0, a2 + a3 + a4 6= 0}

(0, T, 0, 0) c1 + c2 = a−1
2 , c3 = −(a3a−1

2 (a2 + a3)
−1),

c4 = −(a4(a2 + a3)
−1(a2 + a3 + a4)

−1)

{(a1,−a1T, 0, 0)|a1 6= 0} (1,−T, 0, 0)} c1 = a−1
1 , c2, c3, c4 ∈ F

{(a1,−a1T, 0, a4F)|a1 6= 0, a4 6= 0} (1,−T, 0, F) c1 = a−1
1 , c2 + c3 + c4 = a−1

4 + (−a−1
1 )

{(a1,−a1T, a3 I,−a3F)|a1 6= 0, a3 6= 0} (1,−T, I,−F) c1 = a−1
1 , c2 + c3 = a−1

3 − a−1
1 , c4 ∈ F

{(a1,−a1T, a3 I, a4F)|a1 6= 0, a3 6=
0, a3 + a4 6= 0}

(1,−T, I, 0) c1 = a−1
1 , c2 + c3 = a−1

3 + (−a−1
1 ),

c4 = −(a4a−1
3 (a3 + a4)

−1)

{(a1, a2T, a3 I, 0)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 = 0}

(1, 0,−I, 0) c1 = a−1
1 , c2 = −(a2a−1

1 (a1 + a2)
−1),

c3, c4 ∈ F

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 = 0, a4 6= 0}

(1, 0,−I, F) c1 = a−1
1 , c2 = −(a2a−1

1 (a1 + a2)
−1),

c3 + c4 = a−1
4 + (−(a1 + a2)

−1)

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 =
0}

(1, 0, 0,−F) c1 = a−1
1 , c2 = −(a2a−1

1 (a1 + a2)
−1),

c3 = −(a3(a1 + a2)
−1(a1 + a2 + a3)

−1),
c4 ∈ F

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 6=
0}

(1, 0, 0, 0) c1 = a−1
1 , c2 = −(a2a−1

1 (a1 + a2)
−1),

c3 = −(a3(a1 + a2)
−1(a1 + a2 + a3)

−1),
c4 = −(a4(a1 + a2 + a3)

−1(a1 + a2 + a3 + a4)
−1)
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Example 2. Let F4 = {0, 1, x, y}, the operators + and · on F4 is defined by Table 2.

Table 2. The operators + and · on F4.

+ 0 1 x y · 0 1 x y
0 0 1 x y 0 0 0 0 0
1 1 0 y x 1 0 1 x y
x x y 0 1 x 0 x y 1
y y x 1 0 y 0 y 1 x

Then, (F4,+, ·) is a field. Set NQF = {(a, bT, cI, dF)|a, b, c, d ∈ F4}. We have:

1. Let a = (0, 0, xI, xF), then neut(a) = (0, 0, I, F) and anti(a) = (c1, c2T, c3 I, c4F), where c1 + c2 +

c3 = y, c4 ∈ F4.
2. Let b = (0, xT, xI, yF), then neut(b) = (0, T, I, F) and anti(b) = (c1, c2T, c3 I, c4F), where c1 + c2 =

y, c3 + c4 = 1.
3. Let c = (x, xT, 0, 0), then neut(c) = (1, T, 0, 0) and anti(c) = (y, c2T, c3 I, c4F), where c2, c3, c4 ∈ F4.

In the same way, for algebra system (NQF, ?), Table 3 gives all the subsets which have the same
neutral element, and the corresponding neutral element and opposite elements.

Table 3. The corresponding neutral element and opposite elements for (NQF, ?).

The Subset of NQF Neutral
Element

Opposite Elements (c1, c2T , c3 I, c4F)

{(0, 0, 0, 0)} (0, 0, 0, 0) ci ∈ F

{(0, a2T, 0, 0)|a2 6= 0} (0, T, 0, 0) c1 + c2 + c3 + c4 = a−1
2

{(0,−a3T, a3 I, 0)|a3 6= 0} (0,−T, I, 0) c1 + c3 + c4 = a−1
3 , c2 ∈ F

{(0, a2T, a3 I, a4F)|a3 6= 0, a2 + a3 6= 0} (0, 0, I, 0) c1 + c3 + c4 = a−1
3 ,

c2 = −(a2a−1
3 (a2 + a3)

−1)

{(0, 0,−a4 I, a4F)|a4 6= 0} (0, 0,−I, F)} c1 + c4 = a−1
4 , c2, c3 ∈ F

{(0, a2T,−a4 I, a4F)|a2 6= 0, a4 6= 0} (0, T,−I, F) c1 + c4 = a−1
4 , c2 + c3 = a−1

2 + (−a−1
4 )

{(0, a2T, a3 I, a4F)|a4 6= 0, a3 + a4 6=
0, a2 + a3 + a4 = 0}

(0,−T, 0, F) c1 + c4 = a−1
4 , c3 = −(a3a−1

4 (a3 + a4)
−1),

c2 ∈ F

{(0, a2T, a3 I, a4F)|a4 6= 0, a3 + a4 6=
0, a2 + a3 + a4 6= 0}

(0, 0, 0, F) c1 + c4 = a−1
4 , c3 = −(a3a−1

4 (a3 + a4)
−1),

c2 = −(a2(a3 + a4)
−1(a2 + a3 + a4)

−1)

{(a1, 0, 0,−a1F)|a1 6= 0} (1, 0, 0,−F)} c1 = a−1
1 , c2, c3, c4 ∈ F

{(a1, a2T, 0,−a1F)|a1 6= 0, a2 6= 0} (1, T, 0,−F) c1 = a−1
1 , c2 + c3 + c4 = a−1

2 + (−a−1
1 )

{(a1,−a3T, a3 I,−a1F)|a1 6= 0, a3 6= 0} (1,−T, I,−F) c1 = a−1
1 , c3 + c4 = a−1

3 + (−a−1
1 ), c4 ∈ F

{(a1, a2T, a3 I,−a1F)|a1 6= 0, a3 6=
0, a2 + a3 6= 0}

(1, 0, I,−F) c1 = a−1
1 , c3 + c4 = a−1

3 + (−a−1
1 ),

c2 = −(a2a−1
3 (a2 + a3)

−1)

{(a1, 0, a3 I, a4F)|a1 6= 0, a1 + a4 6=
0, a1 + a3 + a4 = 0}

(1, 0,−I, 0) c1 = a−1
1 , c4 = −(a4a−1

1 (a1 + a4)
−1),

c2, c3 ∈ F

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6=
0, a1 + a3 + a4 = 0, a2 6= 0}

(1, T,−I, 0) c1 = a−1
1 , c4 = −(a4a−1

1 (a1 + a4)
−1),

c2 + c3 = a−1
2 + (−(a1 + a4)

−1)

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6=
0, a1 + a3 + a4 6= 0, a1 + a2 + a3 + a4 =
0}

(1,−T, 0, 0) c1 = a−1
1 , c4 = −(a4a−1

1 (a1 + a4)
−1),

c3 = −(a3(a1 + a4)
−1(a1 + a3 + a4)

−1),
c2 ∈ F

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6=
0, a1 + a3 + a4 6= 0, a1 + a2 + a3 + a4 6=
0}

(1, 0, 0, 0) c1 = a−1
1 , c4 = −(a4a−1

1 (a1 + a4)
−1),

c3 = −(a3(a1 + a4)
−1(a1 + a3 + a4)

−1),
c2 = −(a2(a1 + a3 + a4)

−1(a1 + a2 + a3 + a4)
−1)
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4. The Algebra Structure of Refined Neutrosophic Numbers on General Field

In the above section, we reveal that the algebra structure of the neutrosophic quadruple numbers
on general field. In this section, we explore the the algebra structure of the refined neutrosophic
numbers (refined neutrosophic quadruple numbers) on general field.

Definition 11. Let F be a field; a refined n-ary neutrosophic number is a number of the
form (a0, a1 I1, a2 I2, · · · , an In), where I1, I2, · · · , and In are different types of indeterminacies,
and a0, a1, a2, · · · , an ∈ F. The set RNFn defined by

RNFn = {(a0, a1 I1, a2 I2, · · · , an In)|a0, a1, a2, · · · , an ∈ F}. (14)

is called a refined neutrosophic set on field F.

Definition 12. Let x = (a0, a1 I1, a2 I2, · · · , an In), y = (b0, b1 I1, b2 I2, · · · , bn In) ∈ RNFn, then the addition
operator on RNFn is defined as follows:

x⊕ y = (a0 + b0, (a1 + b1)I1, (a2 + b2)I2, · · · , (an + bn)In). (15)

Definition 13. Let x = (a0, a1 I1, a2 I2, · · · , an In), y = (b0, b1 I1, b2 I2, · · · , bn In) ∈ RNFn, the neutrosophic
expert considers the prevalence order I1 ≺ I2 ≺ · · · ≺ In. Then, the multiplication operation is defined
as follows:

x ∗ y = (a0, a1 I1, a2 I2, · · · , an In) ∗ (b0, b1 I1, b2 I2, · · · , bn In)

= (a0b0, (a0b1 + a1b1 + a1b2)I1, (a0b2 + a1b2 + a2b0 + a2b1 + a2b2)I2,
· · · , (a0bn + a1bn + a2bn + · · ·+ an−1bn + anb0 + anb1 + · · ·+ anbn)In).

(16)

The neutrosophic expert considers the prevalence order I1 � I2 � · · · � In. Then,

x ? y = (a0, a1 I1, a2 I2, · · · , an In) ? (b0, b1 I1, b2 I2, · · · , bn In)

= (a0b0, (a0b1 + a1b1 + · · ·+ anb1 + a1b0 + a1b2 + a1b3 + · · ·+ a1bn)I1, · · · ,
(a0bn−1 + an−1b0 + an−1bn−1 + an−1bn + anbn−1)In−1, (a0bn + anb0 + anbn)In).

(17)

Theorem 4. (RNFn,⊕) is an abelian group.

Proof. The proof is obvious.

Theorem 5. For the algebra system (RNFn, ∗) (or (RNFn, ?)), for every element a ∈ RNFn, there exists
the neutral element neut(a) and opposite element anti(a), thus the algebra system (RNFn, ∗) (or (RNFn, ?))
is a NETG.

Proof. We use applied mathematical induction for n and only discuss the algebra system (RNFn, ∗).
The algebra system (RNFn, ?) has a similar proof.

If n = 2, for refined 2-ary neutrosophic set, which is same as neutrosophic binary numbers set
in [17], from Theorem 7 in [17], we can see that for every element a ∈ RNF2, there exists the neutral
element neut(a) and opposite element anti(a), thus the algebra system (RNF2, ∗) is a NETG.

Assume that the refined n-ary neutrosophic set RNFn is a NETG. That is, for every element
a ∈ RNFn, there exists the neutral element neut(a) and opposite element anti(a). In the following, we
prove that for the refined (n + 1)-ary neutrosophic set, which is a NETG.

For each a = (a0, a1 I1, a2 I2, · · · , an+1 In+1) ∈ RNFn+1, let a′ = (a0, a1 I1, a2 I2, · · · , an In),
being a′ ∈ RNFn, then, from the above assumption condition, neut(a′) and anti(a′) exist
and let neut(a′) = (b0, b1 I1, b2 I2, · · · , bn In), anti(a′) = (c0, c1 I1, c2 I2, · · · , cn In). We prove for
a = (a0, a1 I1, a2 I2, · · · , an+1 In+1), neut(a) and anti(a) exist. We discuss from the different cases of an+1.
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Case A: If an+1 = 0, Being (a0, a1 I1, a2 I2, · · · , an In, 0) ∗ (b0, b1 I1, b2 I2, · · · , bn In, bn+1 In+1) =

(a0, a1 I1, a2 I2, · · · , an In, 0), that is (a0 + a1 + · · ·+ an)bn+1 = 0, thus we discuss from a0 + a1 + · · ·+
an = 0 or a0 + a1 + · · ·+ an 6= 0.

Case A1: If an+1 = 0, a0 + a1 + · · · + an = 0, so (a0, a1 I1, a2 I2, · · · , an In, 0) ∗
(c0, c1 I1, c2 I2, · · · , cn In, cn+1 In+1) = (b0, b1 I1, b2 I2, · · · , bn In, bn+1 In+1), that is bn+1 = 0 and cn+1 can
be chosen arbitrarily in F.

Case A2: If an+1 = 0, a0 + a1 + · · · + an 6= 0, so from (a0 + a1 + · · ·+ an)bn+1 = 0, we have
bn+1 = 0, from (a0, a1I1, a2I2, · · · , an In, 0) ∗ (c0, c1I1, c2I2, · · · , cn In, cn+1In+1) = (b0, b1I1, b2I2, · · · , bn In, 0),
thus cn+1 = 0.

Case B: If an+1 6= 0, being (a0, a1 I1, a2 I2, · · · , an In, an+1 In+1) ∗ (b0, b1 I1, b2 I2, · · · , bn In, bn+1 In+1) =

(a0, a1 I1, a2 I2, · · · , an In, an+1 In+1), that is (a0 + a1 + · · ·+ an+1)bn+1 + an+1(b0 + b1 + · · ·+ bn) = an+1,
that is (a0 + a1 + · · ·+ an+1)bn+1 = an+1(1− b0− b1−· · ·− bn), we discuss from a0 + a1 + · · ·+ an+1 = 0
or a0 + a1 + · · ·+ an+1 6= 0.

Case B1: If an+1 6= 0, a0 + a1 + · · · + an+1 = 0, we have b0 + b1 + · · · +
bn = 1, so from (a0, a1 I1, a2 I2, · · · , an In, an+1 In+1) ∗ (c0, c1 I1, c2 I2, · · · , cn In, cn+1 In+1) =

(b0, b1 I1, b2 I2, · · · , bn In, bn+1 In+1), that is bn+1 = (c0 + c1 + · · · + cn)an+1 = bn+1 and cn+1 can be
chosen arbitrarily in F.

Case B2: If an+1 6= 0, a0 + a1 + · · ·+ an+1 6= 0, we have bn+1 = an+1(1− b0 − b1 − · · · − bn)(a0 +

a1 + a2 · · · an)−1, so from (a0, a1 I1, a2 I2, · · · , an In, an+1 In+1) ∗ (c0, c1 I1, c2 I2, · · · , cn In, cn+1 In+1) =

(b0, b1 I1, b2 I2, · · · , bn In, bn+1 In+1), that is and cn+1 = (bn+1 − an+1(c0 + c1 + · · ·+ cn))(a0 + a1 + · · ·+
an+1)

−1.
From the above analysis, we can see that, for each a ∈ RNFn, which has the neutral element

neut(a) and opposite element anti(a), from the mathematical induction method, we can obtain that
the algebra system (RNF, ∗) is a NETG.

For algebra system (RNFn+1, ∗), if a = (a0, a1 I1, a2 I2, · · · , an+1 In+1), let a′ =

(a0, a1 I1, a2 I2, · · · , an In) ∈ RNFn, if we have neut(a′) = (b0, b1 I1, b2 I2, · · · , bn In), anti(a′) =

(c0, c1 I1, c2 I2, · · · , cn In). Then, the corresponding neutral element and opposite elements of a are given
in Table 4 according to the different cases of an+1.

Table 4. The corresponding neutral element and opposite elements for (RNFn+1, ∗)

The Subset
{(a0, a1 I1, · · · , an+1 In+1)}

Neutral Element
(b0, b1 I1, · · · , bn In, bn+1 In+1)

Opposite Elements
(c0, c1 I1, · · · , cn In, cn+1 In+1)

an+1 = 0,
a0 + a1 + · · ·+ an = 0

bn+1 = 0 cn+1 ∈ F

an+1 = 0,
a0 + a1 + · · ·+ an 6= 0

bn+1 = 0 cn+1 = 0

an+1 6= 0,
a0 + a1 + · · ·+ an + an+1 = 0

bn+1 = (c0 + c1 + · · ·+ cn)an+1 cn+1 ∈ F

an+1 6= 0,
a0 + a1 + · · ·+ an + an+1 6= 0

bn+1 = an+1(1 − b0 − b1 − · · · −
bn)(a0 + a1 + a2 + · · ·+ an)−1)

cn+1 = (bn+1 − an+1(c0 + c1 + · · ·+
cn))(a0 + a1 + · · ·+ an+1)

−1

For algebra system (RNFn, ∗), according to the results in Tables 3 and 4 in [17], we can easily
obtain the neutral element and opposite elements when n = 1, 2 on general fields. In Table 1, we can get
the neutral element and opposite elements when n = 3 on general field. Thus, from Theorem 5, we can
get the neutral element and opposite elements of each element in RNFn step-by-step. The solving
method is given by Algorithm 1 and the following example is used to explain the algorithm.
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Algorithm 1 Solving the neutral element and opposite elements of each element in (RNFn, ∗).
Input: a = (a0, a1 I1, a2 I2, · · · , an In), n ≥ 3
1: i = 3;
2: For i = 3 : n
3: Ai = (a0, a1 I1, a2 I2, · · · , ai Ii);
4: If i == 3
5: Obtain neut(Ai), anti(Ai) by Table 1;
6: else
7: Obtain neut(Ai), anti(Ai) by Table 4 combining the values of neut(Ai−1) and anti(Ai−1);
8: end
9: Save neut(Ai), anti(Ai);
10: end
Output: neut(a) = neut(An), anti(a) = anti(An)

Example 3. For algebra system (RNF2, ∗), and set F = R. If a = (a0, a1 I1) = (0,−I1), from Table 3 in [17],
we can get neut(a) = (0, I1) and anti(a) = (c0, c1 I1), where c0 + c1 = −1.

In the following, we use two methods to solve the the neutral element and opposite elements of b =

(a0, a1 I1, a− 2I2) = (0,−I1, I2) ∈ RNF3 and we get the same results.

1. Algorithm 1: From Table 2, being a3 6= 0 and a0 + a1 + a2 = 0, thus b2 = (c0 + c1) · 1 = −1,
that is neut(b) = (0, I1,−I2) and anti(a) = (c0, c1 I1, c2 I2), where c0 + c1 = −1 and c2 can be chosen
arbitrarily in R.

2. Rsults from Table 4 in [17]: Being a2 6= 0 and a0 + a1 + a2 = 0, thus neut(b) = (0, I1,−I2) and
anti(a) = (c0, c1 I1, c2 I2), where c0 + c1 = −1 and c2 can be chosen arbitrarily in R.

Example 4. For algebra system (RNF3, ∗), and set F = R. If a = (a0, a1 I1, a2 I2) = (1,−I1, I2) ∈ RNF3,
from Table 4 in [17], we can get neut(a) = (1,−I1, I2) and anti(a) = (1, c1 I1, c2 I2), where c1 + c2 = 0.

In the same way, we use two methods to solve the the neutral element and opposite elements of b =

(a0, a1 I1, a2 I2, a3 I3) = (1,−I1, I2, I3) ∈ RNF4.

1. Algorithm 1: From Table 2, being a3 6= 0 and a0 + a1 + a2 + a3 6= 0, thus b3 = 0, that is neut(b) =
(0,−I1, I2, 0) and c3 = (0− 1 · 1 · 1

2 ) = −
1
2 , thus anti(a) = (1, c1 I1, c2 I2,− 1

2 I3), where c1 + c2 = 0.
2. Results from Table 1 in [17]: Being a0 6= 0, a2 6= 0 and a2 + a3 6= 0, thus neut(b) = (1,−I1, I2, 0) and

c0 = 1, c1 + c2 = 0, c3 = − 1
1·(1+1) = −

1
2 , thus anti(a) = (1, c1 I1, c2 I2,− 1

2 I3), where c1 + c2 = 0.

For algebra system (RNFn+1, ?), set a = (a0, a1 I1, a2 I2, · · · , an+1 In+1), being the order
I1 � I2 � · · · � In, thus we should obtain the neutral element and opposite elements
of a′ = (a0, a2 I2, · · · , an+1 In+1). Knowing that neut(a′) = (b0, b2 I2, b3 I3, · · · , bn In), anti(a′) =

(c0, c2 I2, c3 I3, · · · , cn In), then the corresponding neutral element and opposite elements of a are given
in Table 5 according to the different cases of a1.
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Table 5. The corresponding neutral element and opposite elements for (RNF, ?).

The Subset
{(a0, a1 I1, · · · , an+1 In+1)}

Neutral Element
(b0, b1 I1, · · · , bn In, bn+1 In+1)

Opposite Elements
(c0, c1 I1, · · · , cn In, cn+1 In+1)

a1 = 0,
a0 + a2 + · · ·+ an+1 = 0

b1 = 0 c1 ∈ F

a1 = 0,
a0 + a2 + · · ·+ an+1 6= 0

b1 = 0 c1 = 0

a1 6= 0,
a0 + a1 + · · ·+ an + an+1 = 0

b1 = (c0 + c2 + · · ·+ cn+1)a1 c1 ∈ F

a1 6= 0,
a0 + a1 + · · ·+ an + an+1 6= 0

b1 = a1(1 − (b0 + b2 + · · · +
bn+1))(a0 + a1 + · · ·+ an+1)

−1
c1 = (b1 − a1(c0 + c2 + · · · +
cn+1))(a0 + a1 + · · ·+ an+1)

−1

Similarly, we also can get the neutral element and opposite elements of each element in (RNFn, ?)
step-by-step. The solving method is given by Algorithm 2 and the following example is used to explain
the algorithm.

Algorithm 2 Solving the neutral element and opposite elements of each element in (RNFn, ?).
Input: a = (a0, a1 I1, a2 I2, · · · , an In), n ≥ 3
1: i = n− 2;
2: While i ≥ 1
3: Ai = (a0, ai Ii, · · · , an−1 In−1, an In);
4: If i == n− 2
5: Obtain neut(Ai), anti(Ai) by Table 3;
6: else
7: Obtain neut(Ai), anti(Ai) by Table 5 combining the values of neut(Ai+1) and anti(Ai+1);
8: end
9: Save neut(Ai), anti(Ai);
10: i = i− 1;
11: end
Output: neut(a) = neut(A1), anti(a) = anti(A1)

Example 5. For algebra system (RNF6, ?), and set F = R, a = (0, 0,−2I2,−I3, I4, 0), solve the neutral
element and opposite elements of a.

According Algorithm 2 for algebra system (RNF6, ?): Firstly, we solve the neutral element and opposite
elements of a′ = (0,−I3, I4, 0) from Table 3, and then solve the neutral element and opposite elements
of a′′ = (0,−2I2,−I3, I4, 0) from Table 5, lastly, we solve the neutral element and opposite elements of a
from Table 5.

1. From Table 3: neut(a′) = (0,−I3, I4, 0) and anti(a′) = (c0, c3 I3, c4 I4, c5 I5), where c0 + c4 + c5 = 1,
c3 ∈ R.

2. From Table 5 and combining the results of the above step: Being −2 6= 0 and 0+ (−2) + (−1) + 1+ 0 6=
0, thus neut(a′′) = (0, I2,−I3, I4, 0) and anti(a′′) = (c0, c2 I2, c3 I3, c4 I4, c5 I5), where c0 + c4 + c5 = 1,
c2 + c3 = − 3

2 .
3. From Table 5 and combining the results of the above step: Being 0 = 0 and 0 + 0 + (−2) + (−1) +

1 + 0 6= 0, thus neut(a) = (0, 0, I2,−I3, I4, 0) and anti(a) = (c0, 0, c2 I2, c3 I3, c4 I4, c5 I5), where
c0 + c4 + c5 = 1, c2 + c3 = − 3

2 .

Similarly, we explore the the algebra structure of the refined neutrosophic quadruple numbers on
general field in the following.
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Definition 14. Let F be a field; a refined neutrosophic quadruple number is a
number of the form (a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr),
where a, b1, b2, · · · , bp, c1, c2, · · · , cq, d1, d2, · · · , dr ∈ F. The set RNQFpqr defined by

RNQFpqr = {(a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr)|
a, b1, b2, · · · , bp, c1, c2, · · · , cq, d1, d2, · · · , dr ∈ F}. (18)

is called a refined neutrosophic quadruple set on field F.

Definition 15. Let x = (a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr),
y = (e, f1T1, f2T2, · · · , fpTp, g1 I1, g2 I2, · · · , gq Iq, h1F1, h2F2, · · · , hrFr) ∈ RNQFpqr, then the addition
operator is defined as follows:

x⊕ y = (a + e, (b1 + f1)T1, (b2 + f2)T2, · · · , (bp + fp)Tp, (c1 + g1)I1, (c2 + g2)I2, · · · ,
(cq + gq)Iq, (d1 + h1)F1, (d2 + h2)F2, · · · , (dr + hr)Fr).

(19)

Definition 16. Let x = (a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr),
y = (e, f1T1, f2T2, · · · , fpTp, g1 I1, g2 I2, · · · , gq Iq, h1F1, h2F2, · · · , hrFr) ∈ RNQFpqr; the neutrosophic
expert considers the prevalence order T1 ≺ T2 ≺ · · · ≺ Tp ≺ I1 ≺ I2 ≺ · · · ≺ Iq ≺ F1 ≺ F2 ≺ · · · ≺ Fr.
Then, the multiplication operation is defined as follows:

x ∗ y = (a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr)

∗(e, f1T1, f2T2, · · · , fpTp, g1 I1, g2 I2, · · · , gq Iq, h1F1, h2F2, · · · , hrFr)

= (ae, (a f1 + b1e + b1 f1)T1, (a f2 + b1 f2 + b2e + b2 f1 + b2 f2)T2,
· · · , (ahr + b1hr + b2hr + · · ·+ dr−1hr + dre + dr f1 + · · ·+ drhr)Fr).

(20)

The neutrosophic expert considers the prevalence order T1 � T2 � · · · � Tp � I1 � I2 � · · · � Iq �
F1 � F2 � · · · � Fr. Then,

x ? y = (a, b1T1, b2T2, · · · , bpTp, c1 I1, c2 I2, · · · , cq Iq, d1F1, d2F2, · · · , drFr)

?(e, f1T1, f2T2, · · · , fpTp, g1 I1, g2 I2, · · · , gq Iq, h1F1, h2F2, · · · , hrFr)

= (ae, (a f1 + b1 f1 + · · ·+ dr f1 + b1e + b1 f2 + b1 f3 + · · ·+ b1hr)T1,
· · · , (ahr−1 + dr−1e + dr−1hr−1 + dr−1hr + drhr−1)Fr−1, (ahr + dre + drhr)Fr).

(21)

Similarly, we also have the following results.

Theorem 6. (RNQFpqr,⊕) is an abelian group.

Theorem 7. For the algebra system (RNQFpqr, ∗) (or (RNQFpqr, ?)), for every element a ∈ RNQFpqr,
there exists the neutral element neut(a) and opposite element anti(a), thus the algebra system (RNQFpqr, ∗)
(or (RNQFpqr, ?)) is a NETG.

Example 6. For algebra system (RNQF213, ∗), and set F = R, a = (1, 0, 2T2,−3I1, 2F1, 0,−2F3), solve the
neutral element and opposite elements of a.

According Algorithm 1 for algebra system (RNF213, ∗), firstly, we solve the neutral element and opposite
elements of a′ = (1, 0, 2T2,−3I1) from Table 1. We then solve the neutral element and opposite elements
of a′′ = (1, 0, 2T2,−3I1, 2F1) from Table 4. Next we solve the neutral element and opposite elements of
a′′′ = (1, 0, 2T2,−3I1, 2F1, 0) from Table 4. Finally, we solve the neutral element and opposite elements of a
from Table 4.

1. From Table 1, neut(a′) = (1, 0, 0,−I1) and anti(a′) = (1, 0,− 2
3 T2, c4 I1), where c4 ∈ R.

2. From Table 4 and combining the results of the above step: Being 2 6= 0 and 1 + 0 + 2 + (−3) + 2 6= 0,
thus neut(a′′) = (1, 0, 0,−I1, F1) and anti(a′′) = (1, 0,− 2

3 T2, c4 I1, c5F1), where c4 + c5 = 1
6 .
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3. From Table 4 and combining the results of the above step: Being 0 = 0 and 1+ 0+ 2+ (−3) + 2+ 0 6= 0,
thus neut(a′′′) = (1, 0, 0,−I2, F1, 0) and anti(a′′′) = (1, 0,− 2

3 T2, c4 I1, c5F1, 0), where c4 + c5 = 1
6 .

4. From Table 4 and combining the results of the above step: Being −2 6= 0 and 1 + 0 + 2 + (−3) + 2 +

0 + (−2) = 0, thus neut(a) = (1, 0, 0,−I1, F1, 0,−F3) and anti(a) = (1, 0,− 2
3 T2, c4 I1, c5F1, 0, c7F3),

where c4 + c5 = 1
6 , c7 ∈ R.

Example 7. For algebra system (RNQF213, ∗), and set F = Z5 = {[0], [1], [2], [3], [4]}, a = ([1], [0], [2]T2,
[2]I1, [2]F1, 0, [3]F3), solve the neutral element and opposite elements of a.

Similar to Example 6, according Algorithm 1 for algebra system (RNF213, ∗), firstly, we solve the neutral
element and opposite elements of a′ = ([1], [0], [2]T2, [2]I1) from Table 1. We then solve the neutral element
and opposite elements of a′′ = ([1], [0], [2]T2, [2]I1, [2]F1) from Table 4. Next, we solve the neutral element and
opposite elements of a′′′ = ([1], [0], [2]T2, [2]I1, [2]F1, [0]) from Table 4. Finally, we solve the neutral element
and opposite elements of a from Table 4.

1. From Table 1, neut(a′) = ([1], [0], [0], [4]I1) and anti(a′) = ([1], [0], [1]T2, c4 I1), where c4 ∈ F.
2. From Table 4 and combining the results of the above step: Being [2] 6= [0] and [1] + [0] + [2] + [2] +

[2] 6= [0], thus neut(a′′) = ([1], [0], [0], [4]I1, [1]F1) and anti(a′′) = ([1], [0], [1]T2, c4 I1, c5F1), where
c4 + c5 = [1].

3. From Table 4 and combining the results of the above step: Being [0] = [0] and [1] + [0] + [2] + [2] + [2] +
[0] 6= 0, thus neut(a′′′) = ([1], [0], [0], [4]I1, [1]F1, [0]) and anti(a′′′) = ([1], [0], [1]T2, c4 I1, c5F1, [0]),
where c4 + c5 = [1].

4. From Table 4 and combining the results of the above step: Being [3] 6= [0] and [1] + [0] + [2] +
[2] + [2] + [0] + [3] = 0, thus neut(a) = ([1], [0], [0], [4]I1, [1]F1, [0], [4]F3) and anti(a) =

([1], [0], [1]T2, c4 I1, c5F1, [0], c7F3), where c4 + c5 = [1], c7 ∈ F.

5. Conclusions

In this paper, we study the algebra structure of (NQF(RNFn, RNQFn),⊕), (NQF(RNFn, RNQFn), ∗)
and (NQF(RNFn, RNQFn), ?), and we prove that (NQF(RNFn, RNQFn), ∗) (or (NQF(RNFn,
RNQFn), ?)) is a neutrosophic extended triplet group, and provide new examples of neutrosophic
extended triplet group and the neutral element and opposite elements of each refined n-ary
neutrosophic number (refined neutrosophic quadruple number) can be obtained by given
algorithms. In the following, we can explore the algebra structure of (NQF(RNFn, RNQFn),⊕, ∗) or
(NQF(RNFn, RNQFn),⊕, ?). We can also explore the relation of neutrosophic quadruple numbers
and other algebra systems in papers [21–23]. Moreover, on the one hand, we will discuss the
neutrosophic quadruple numbers based on some particular ring which can form a neutrosophic
extended triplet group, while, on the other hand, we will introduce a new operation ◦ in order to
guarantee (NQF(RNFn, RNQFn), ∗, ◦) is a neutrosophic triplet ring.
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