The Polar form of a Neutrosophic Complex Number

Riad K. Al-Hamido¹, Mayas Ismail²*, Florentin Smarandache³

¹ Department of Mathematics, College of Science, AlFurat University, Deir-ez-Zor, Syria.
   ¹E-mail: riad-hamido1983@hotmail.com
² Department of Computer Engineering, International University for Science and Technology, Daraa, Syria.
   ²*E-mail: mayas.n.ismail@gmail.com; Tel.: (+963937082244)
³ Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA.
   ³E-mail: smarand@unm.edu

Abstract

In this paper, we will define the exponential form of a neutrosophic complex number. We have proven some characteristics and theories, including the conjugate of the exponential form of a neutrosophic complex number, division of the exponential form of a neutrosophic complex numbers, multiplication of the exponential form of a neutrosophic complex numbers. In addition, we have given the method of changing from the exponential to the algebraic form of a complex number.

Keywords: Neutrosophic numbers, neutrosophic complex number, the exponential form of a neutrosophic complex number.

1. Introduction

The American scientist and philosopher F. Smarandache came to place the neutrosophic logic in [1-5], and this logic is as a generalization of the fuzzy logic [6], conceived by L. Zadeh in 1965.

The neutrosophic logic is of great importance in many areas of them, including applications in image processing [7-8], the field of geographic information systems [9], and possible applications to database [10-11], and have applications in the medical field [12-15], and in neutrosophic bitopology in [16-18], and in neutrosophic algebra in [19-23], professor F. Smarandache presented the definition of the standard form of neutrosophic real number and conditions for the division of two neutrosophic real numbers to exist, he defined the standard form of neutrosophic complex number [24], and Y. Alhasan presented the properties of the concept of neutrosophic complex numbers including the conjugate of neutrosophic complex number, division of neutrosophic complex numbers, the inverted neutrosophic complex number and the absolute value of a neutrosophic complex number and theories related to the conjugate of neutrosophic complex numbers, and that the product of a neutrosophic complex number by its conjugate equals the absolute value of number [25].
This paper aims to study and define the exponential form of a neutrosophic complex number by defining the conjugate of the exponential form of a neutrosophic complex number, division of the exponential form of the neutrosophic complex numbers, and multiplication of the exponential form of a neutrosophic complex numbers.

2. Preliminaries

In this section, we present the basic definitions that are useful in this research.

Definition 2.1 [24]

A neutrosophic number has the standard form:

\[ a + bI \]

where \(a, b\) are real or complex coefficients, and \(I = \text{indeterminacy, such } 0.I = 0\)

\(I^n = I\) for all positive integer \(n\).

If the coefficients \(a\) and \(b\) are real, and then \(a + bI\) is called neutrosophic real number.

For example: \(5 + 7I\)

Definition 2.2 [25]

\(z\) is a neutrosophic complex number, if it takes the following standard form:

\[ z = a + bI + ci + di \]

Where \(a, b, c, d\) are real coefficients, and \(I = \text{indeterminacy, and } I^2 = -1\).

Division of Neutrosophic Real Numbers [24]

\[(a_1 + b_1I) \div (a_2 + b_2I) = ?\]

We denote the result by:

\[
\frac{a_1 + b_1I}{a_2 + b_2I} = x + yI
\]

\[x = \frac{a_1}{a_2} \]

and

\[y = \frac{a_2b_1 - a_1b_2}{a_2(a_2 + b_2)}\]
Suppose that \( z = a + bI + ci + di \) is a neutrosophic complex number, then the absolute value of a neutrosophic complex number defined by the following form:

\[
|z| = \sqrt{(a + bI)^2 + (c + dI)^2}
\]

3. The Polar form of a Neutrosophic Complex Number

In this section, we present and study the exponential form of a neutrosophic complex number.

**Definition 3.1**

We define the Exponential Form of a Neutrosophic Complex Number as follows:

\[
z = re^{i(\theta + I)}
\]

where \( r \) the Absolute Value of the neutrosophic complex number.

**Remark 3.1.1:**

From the general form:

\[
z = a + bI + ci + di
\]

\[
z = r \left( \frac{a}{r} + i \frac{c}{r} + i \frac{b}{r} + \frac{d}{r} \right)
\]

\[
z = r \left( \frac{a + bI}{r} + i \cdot \frac{c + dI}{r} \right)
\]

**Remark 3.1.2:**

\[
r = |z| = \sqrt{(a + bI)^2 + (c + dI)^2}
\]
The formula neutrosophically works in the following way:

\[ x = a + bI \] is a neutrosophic number whose determinate part is "a" and indeterminate part is "bI", where \( I \) = indeterminacy;

similarly \( y = c + dI \) is a neutrosophic number whose determinate part is "c" and indeterminate part is "dI";

\[ \Theta = \theta + I \] is a neutroosophic angle, whose determinate part is \( \Theta \) ("theta") and indeterminate part is "I".

It is a big "Theta" \( \Theta \) (inside the geometrical figure) and small "theta" \( \theta \) in the formulas.

That means that we work with two lengths \( x \) and \( y \) that are not well-known (they were approximated), and an angle \( \Theta \) (Theta) that is not well known either (it was approximated by \( \theta \) plus some indeterminacy \( I \)).

\[
\cos(\theta + I) = \frac{x}{r} = \frac{a + bI}{r}, \quad \sin(\theta + I) = \frac{y}{r} = \frac{c + dI}{r}
\]

\[ z = r(\cos(\theta + I) + i \cdot \sin(\theta + I)) \]

Exponential Form:

\[ z = re^{i(\theta + I)} \]

**Definition 3.2**

Trigonometric formula

\[ z = r(\cos(\theta + I) + i \sin(\theta + I)) \]
4. Properties

In this section, we present some important properties of the exponential form.

**Multiplying the exponential forms of the neutrosophic complex numbers**

Suppose that $z_1$, $z_2$ are two neutrosophic complex numbers, where

$$z_1 = r_1e^{i(\theta_1 + l_1)} \quad \text{and} \quad z_2 = r_2e^{i(\theta_2 + l_2)}$$

If $l_1 + l_2 = l$

**Definition 4.1**

$$z_1 \cdot z_2 = r_1r_2e^{i(\theta_1 + \theta_2 + l)}$$

**Remark 4.1.1:**

$$z_1 \cdot z_2 = r_1e^{i(\theta_1 + l_1)} \cdot r_2e^{i(\theta_2 + l_2)}$$

$$z_1 \cdot z_2 = r_1r_2(e^{i(\theta_1 + l_1) \cdot e^{i(\theta_2 + l_2)}})$$

$$z_1 \cdot z_2 = r_1r_2e^{i(\theta_1 + \theta_2 + l_1 + l_2)}$$

If $l_1 + l_2 = l$

Then

$$z_1 \cdot z_2 = r_1r_2e^{i(\theta_1 + \theta_2 + l)}$$

**Example 4.1.2**

If $z_1 = r_1e^{i(\frac{\pi}{4} + l)}$ and $z_2 = r_2e^{i(\frac{3\pi}{4} + l)}$

$$z_1 \cdot z_2 = r_1r_2e^{i\left(\frac{\pi}{4} + \frac{3\pi}{4} + l\right)} = r_1r_2 e^{i(l + \pi)}$$

**Division of the exponential forms of neutrosophic complex numbers**

Suppose that $z_1$, $z_2$ are two neutrosophic complex numbers, where

$$z_1 = r_1e^{i(\theta_1 + l_1)} \quad \text{and} \quad z_2 = r_2e^{i(\theta_2 + l_2)}$$

If $l_1 - l_2 = l$

then

**Definition 4.2**
\[
\frac{Z_1}{Z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2 + i)}
\]

**Remark 4.2.1:**

Depending on [25]

\[z \cdot \bar{z} = |z|^2 = r^2\]

When \( r = 1 \) we get \( => \)

\[\bar{z} = \frac{1}{z} = \frac{e^0}{e^{i(\theta_1 + i)}} = e^{-i(\theta + i)}\]

Then

\[
\frac{Z_1}{Z_2} = \frac{r_1 e^{i(\theta_1 + i)}}{r_2 e^{i(\theta_2 + i)}}
\]

\[
\frac{Z_1}{Z_2} = \frac{r_1}{r_2} \left( \frac{e^{i(\theta_1 + i)}}{e^{i(\theta_2 + i)}} \right)
\]

\[
\frac{Z_1}{Z_2} = \frac{r_1}{r_2} \left( e^{i(\theta_1 + i)}, \frac{1}{e^{i(\theta_2 + i)}} \right)
\]

\[
\frac{Z_1}{Z_2} = \frac{r_1}{r_2} \left( e^{i(\theta_1 + i)} \cdot e^{-i(\theta_2 + i)} \right)
\]

\[I_1 - I_2 = I\]

Then

\[
\frac{Z_1}{Z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2 + i)}
\]

**Example 4.2.2**

If \(z_1 = r_1 e^{i(\frac{\pi}{4} + i)}\) and \(z_2 = r_2 e^{i(\frac{3\pi}{4} + i)}\)

\[
\frac{Z_1}{Z_2} = \frac{r_1}{r_2} e^{i \left( \frac{\pi}{4} - \frac{3\pi}{4} + i \right)} = \frac{r_1}{r_2} e^{-i \left( \frac{\pi}{2} + i \right)}
\]

The conjugate of the exponential form of a neutrosophic complex numbers 4.3

Suppose that \(z\) is a neutrosophic complex number, where
\[ z = re^{i(\theta + \phi)} \]

We denote the conjugate of a neutrosophic complex number by \( \bar{z} \) and define it by the following form:

\[ \bar{z} = re^{-i(\theta + \phi)} \]

**Example 4.3.1**

\[ z = re^{i\left(\frac{\pi}{2} + \phi\right)} \]

\[ \bar{z} = r e^{-i\left(\frac{\pi}{2} + \phi\right)} \]

**Remark 4.4**

If \( I = 0 \) we will return to the basic formula for the complex number.

\[ z = re^{i(\theta + 0)} \]

\[ z = re^{i(\theta)} \]

**Conclusion**

In this paper, we defined the exponential form of a neutrosophic complex number and demonstrated this with appropriate proof, and many examples were presented to illustrate the concepts introduced in this paper.

**Future Research Directions**

As a future work, some special cases related to exponential form can be discussed and benefit from this article in many engineering sciences, including theories of control and signal processing.

**References**


DOI: 10.5281/zenodo.4001132

