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Abstract: In this paper, we introduce the new notion of interval-valued neutrosophic crisp sets
providing a tool for approximating undefinable or complex concepts in real world. First, we deal
with some of its algebraic structures. We also define an interval-valued neutrosophic crisp (vanishing)
point and obtain some of its properties. Next, we define an interval-valued neutrosophic crisp
topology, base (subbase), neighborhood, and interior (closure), respectively and investigate some
of each property, and give some examples. Finally, we define an interval-valued neutrosophic crisp
continuity and quotient topology and study some of each property.
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1. Introduction

Numerous mathematicians have been trying to find a mathematical expression of the
complexation and uncertainty in real world for a long time. For example, Zadeh [1] defined a fuzzy set
as a generalization of a classical set in 1965. Zadeh [2] (1975), Pawlak [3] (1982), Atanassov [4] (1983),
Atanassov and Gargov [5] (1989), Gau and Buchrer [6] (1993), Smarandache [7] (1998), Molodtsov [8]
(1999), Lee [9], Torra [10], Jun et al. [11] (2012), and Lee et al. [12] (2020) introduced the concept of
interval-valued fuzzy sets, rough sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets,
vague sets, neutrosophic sets, soft sets, bipolar fuzzy sets, hessitant fuzzy sets, cubic sets combined
by interval-valued fuzzy sets and fuzzy sets, and octahedron sets combined by interval-valued
fuzzy sets, intuitionistic fuzzy sets, and fuzzy sets, in turn, in order to solve various complex and
uncertain problems.

In 1996, cCoker [13] proposed the concept of an intuitionistic set as the generalization of a classical
set and the special case of an intuionistic fuzzy set and he studied topological structures based on
intuitionistic sets in [14]. Kim et al. [15] dealt with categorical structures based on intuitionistic sets.
They also obtained further properties of intuionistic topology in [16]. In 2014, Salama et al. [17] defined
neutrosophic crisp sets as the generalization of classical sets and the special case of neutrosophic
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sets proposed by Smarandache [7,18,19], and studied some of its properties. Moreover, they dealt
with topological structures based on the neutrosophic crisp sets in [17]. Hur et al. [20] investigated
categorical structures via neutrosophic crisp sets. Many researchers [21–29] have discussed topological
structures via neutrosophic crisp sets. Recently, Kim et al. [30] introduced the concept of an
interval-valued set as the generalization of a classical set and the specialization of an interval-valued
fuzzy set, and applied it to topological structures.

This paper considers two perspectives. First, we define the interval-valued neutrosophic
crisp set, a new concept that combines the interval-valued set and neutrosophic crisp set. As an
example, suppose a country conducts a poll during an election that determines the highest head
of administration. At this time, the preference for Candidate A is divided into three groups: Favor,
neutral, and rejection among its citizens from the viewpoint of neutrosophic crisp set, but the minimum
and maximum for each of a favor, neutral, and rejection from the viewpoint of interval-valued
neutrosophic crisp set. The group is considered. Then, it is believed that the results of the poll
by the new concept are more accurate than those by the neutrosophic crisp set. Thus, this new
concept is needed. Second, since the topology can be applied to high dimensional data sets, big data,
and computational evaluations (see [31–33], respectively), we study topological structures based on
interval-valued neutrosophic crisp sets. In order to accomplish such research, first, we recall some
definitions related to intuitionistic sets, interval-valued sets, and neutrosophic crisp sets. Secondly,
we introduce the new concept of interval-valued neutrosophic crisp set and obtain some of its
algebraic structures, and give some examples. We also define interval-valued neutrosophic crisp
points of two types and discuss the characterizations of the inclusion, equality, intersection, and union
of interval-valued neutrosophic crisp sets. Thirdly, we define an interval-valued neutrosophic crisp
topology, an interval-valued neutrosophic crisp base and subbase, and study some of their properties.
Fourthly, we introduce the concepts of interval-valued neutrosophic crisp neighborhoods of two
types and find some of their properties. In particular, we prove that there is an IVNCT under the
hypothesis satisfying some properties of interval-valued neutrosophic crisp neighborhoods. Moreover,
we define an interval-valued neutrosophic crisp interior and closure and deal with some of their
properties. In particular, we show that there is a unique IVNCT for interval-valued neutrosophic crisp
interior [resp. closure] operators. Finally, we introduce the concepts of interval-valued neutrosophic
crisp continuous [resp. open and closed] mappings and quotient topologies and obtain some of
their properties.

Throughout this paper, we assume that X, Y are non-empty sets, unless otherwise stated.

2. Preliminaries

In this section, we recall the concept of an intuitionistic set proposed in [13]. We also recall some
concepts and results introduced and studied in [30,34,35], respectively.

Definition 1 ([13]). The form A = (A∈, A 6∈) such that A∈, A 6∈ ⊂ X, and A∈ ∩ A 6∈ = ∅ is called
an intuitionistic set (briefly, IS) of X, where A∈ [resp. A 6∈] represents the set of memberships [resp.
non-memberships] of elements of X to A. In fact, A∈ [resp. A 6∈] is a subset of X agreeing or approving
[resp. refusing or opposing] for a certain opinion, suggestion, or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by ∅̄ [resp. X̄], is defined
by ∅̄ = (∅, X) [resp. X̄ = (X, ∅)]. The set of all ISs of X will be denoted by IS(X). It is also clear that for
each A ∈ IS(X), χA = (χA∈ , χA 6∈) is an intuitionistic fuzzy set in X proposed by Atanassov [4]. Thus we can
consider the intuitionistic set A in X as an intuitionistic fuzzy set in X.

Furthermore, we can easily check that for each A ∈ IS(X), A∈ ∪ A 6∈ 6= X (in fact, A∈c ∩ A 6∈c 6= ∅)
in general (see Example 1) but if A∈ ∪ A 6∈ = X, then A∈c ∩ A 6∈c

= ∅. We denote the family {A ∈ IS(X) :
A∈ ∪ A 6∈ = X} as IS∗(X).
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Example 1. Let X = {a, b, c, d, e} be a set and consider the IS A in X given by:

A = ({a, b, c}, {d}).

Then clearly, A∈ ∪ A 6∈ 6= X. In fact, A∈c ∩ A 6∈c 6= ∅.

For the inclusion, equality, union, and intersection of intuitionistic sets, and the complement of an
intuitionistic set, the operations [ ] and <> on IS(X), refer to [13].

Definition 2 ([34,36]). The form A =
〈

AT , AI , AF〉 such that AT , AI , AF ⊂ X is called a neutrosophic
crisp set (briefly, NCS) in X, where AT , AI , and AF represent the set of memberships, indeterminacies,
and non-memberships respectively of elements of X to A.

We consider neutrosophic crisp empty [resp. whole] sets of two types in X, denoted by ∅1,N , ∅2,N
[resp. X1,N , X2,N] and defined by (see Remark 1.1.1 in [34]):

∅1,N = 〈∅, ∅, X〉 , ∅2,N = 〈∅, X, X〉 [resp.X1,N = 〈X, X, ∅〉 , X2,N = 〈X, ∅, ∅〉].

We will denote the set of all NCSs in X denoted by NC(X).

It is obvious that A = 〈A, ∅, Ac〉 ∈ NC(X) for each ordinary subset A of X. Then we can consider
an NCS in X as the generalization of an ordinary subset of X. It is also clear that A =

〈
A∈, ∅, A 6∈

〉
is

an NCS in X for each A ∈ IS(X). Thus an NCS in X can be considered as the generalization of an
intuitionistic set in X. Furthermore, we can easily see that for each A ∈ N(X),

χA = 〈χAT , χAI , χAF 〉

is a neutrosophic set in X introduced by Salama and Smarandache [7,18,19]. So an NCS is a special
case of a neutrosophic set.

Definition 3 ([34]). Let A ∈ NC(X). Then the complement of A, denoted by Ai,c (i = 1, 2) and defined by:

A1,c =
〈

AF, AI c
, AT

〉
, A2,c =

〈
AF, AI , AT

〉
.

Definition 4 ([34]). Let A, B ∈ NC(X). Then A is said to be:

(i) A 1-type subset of B, denoted by A ⊂1 B, if it satisfies the following conditions:

AT ⊂ BT , AI ⊂ BI , AF ⊃ BF,

(ii) A 2-type subset of B, denoted by A ⊂2 B, if it satisfies the following conditions:

AT ⊂ BT , AI ⊃ BI , AF ⊃ BF.

Definition 5 ([34]). Let A, B ∈ NC(X).

(i) The i-intersection of A and B, denoted by A ∩i B (i = 1, 2) and defined by:

A ∩1 B =
〈

AT ∩ BT , AI ∩ BI , AF ∪ BF
〉

, A ∩2 B =
〈

AT ∩ BT , AI ∪ BI , AF ∪ BF
〉

.

(ii) The i-union of A and B, denoted by A ∪i B (i = 1, 2) and defined by:

A ∪1 B =
〈

AT ∪ BT , AI ∪ BI , AF ∩ BF
〉

, A ∪2 B =
〈

AT ∪ BT , AI ∩ BI , AF ∩ BF
〉

.
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(iii) [ ]A =
〈

AT , AI , ATc
〉

, 〈 〉 A =
〈

AFc, AI , AF
〉

.

The followings are immediate results of Definitions 3, 4, and 5.

Proposition 1 (See Proposition 3.3 in [20] and also compare it with Proposition 3.5 in [15]). Let A, B, C ∈
NC(X) and let i = 1, 2. Then we have:

(1) (See Proposition 1.1.1 in [34]) ∅i,N ⊂i A ⊂i Xi,N ,
(2) If A ⊂i B and B ⊂i C, then A ⊂i C,
(3) A ∩i B ⊂i A and A ∩i B ⊂i B,
(4) A ⊂i A ∪i B and B ⊂i A ∪i B,
(5) A ⊂i B if and only if A ∩i B = A,
(6) A ⊂i B if and only if A ∪i B = B.

Proposition 2 (See Proposition 3.4 in [20] and also compare it with Proposition 3.6 in [15]). Let A, B, C ∈
NC(X) and let i = 1, 2. Then we have:

(1) (Idempotent laws): A ∪i A = A, A ∩i A = A,
(2) (Commutative laws): A ∪i B = B ∪i A, A ∩i B = B ∩i A,
(3) (Associative laws): A ∪i (B ∪i C) = (A ∪i B) ∪i C, A ∩i (B ∩i C) = (A ∩i B) ∩i C,
(4) (Distributive laws): A ∪i (B ∩i C) = (A ∪i B) ∩i (A ∪i C),

A ∩i (B ∪i C) = (A ∩i B) ∪i (A ∩i C),
(5) (Absorption laws): A ∪i (A ∩i B) = A, A ∩i (A ∪i B) = A,
(6) (DeMorgan’s laws): (A ∪1 B)1,c = A1,c ∩1 B1,c, (A ∪1 B)2,c = A2,c ∩2 B2,c,

(A ∪2 B)1,c = A1,c ∩2 B1,c, (A ∪2 B)2,c = A2,c ∩1 B2,c,

(A ∩1 B)1,c = A1,c ∪1 B1,c, (A ∩1 B)2,c = A2,c ∪2 B2,c,

(A ∩2 B)1,c = A1,c ∪2 B1,c, (A ∩2 B)2,c = A2,c ∪1 B2,c,
(7) (Ai,c)i,c = A,
(8) (8a) A ∪i ∅i,N = A, A ∩i ∅i,N = ∅i,N ,

(8b) A ∪i Xi,N = Xi,N , A ∩i Xi,N = A,
(8c) Xi,N

i,c = ∅i,N , ∅i,N
i,c = Xi,N ,

(8d) A ∪i Ai,c 6= Xi,N
i,c, A ∩i Ai,c 6= ∅i,N , in general.

Definition 6 (See [34,37]). Let a ∈ X. Then the form aN = 〈{a}, ∅, {a}c〉 [resp. aNV = 〈∅, {a}, {a}c〉] is
called a neutrisophic crisp [resp. vanishing] point in X.

We denote the set of all neutrisophic crisp points and all neutrisophic crisp vanishing points in X by NP(X).

Definition 7 (See [34,37]). Let a ∈ X and let A ∈ NC(X). Then,

(i) aN said to belong to A, denoted by aN ∈ A, if a ∈ AT ,
(ii) aNV said to belong to A, denoted by aNV ∈ A, if a 6∈ AF.

Result 1 ([34], Proposition 1.2.6). Let A ∈ NC(X). Then,

A = AN ∪1 ANV ,

where AN =
⋃1

aN∈A aN , ANV =
⋃1

aNV∈A aNV . In fact, AN =
〈

AT , ∅, ATc
〉

and ANV =
〈
∅, AI , AF〉.

Definition 8 ([30,35]). The form [A−, A+] = {B ⊂ X : A− ⊂ B ⊂ A+} such that A−, A+ ⊂ X is called
an interval-valued sets (briefly, IVS) in X, where A− [resp. A+] represents the set of minimum [resp. maximum]
memberships of elements of X to A. In fact, A− [resp. A+] is a minimum [resp. maximum] subset of X agreeing
or approving for a certain opinion, suggestion, or policy.

[∅, ∅] [resp. [X, X]] is called the interval-valued empty [resp. whole] set in X and denoted by ∅̃ [resp. X̃].
The set of all IVSs in X will be denoted by IVS(X).
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For any classical subset A of X, [A, A] ∈ IVS(X) is obvious. Then we can consider an IVS in X as
the generalization of a classical subset of X. Also, if A = [A−, A+] ∈ IVS(X), then χA = [χ

A− , χ
A+ ] is

an interval-valued fuzzy set in X introduced by Zadeh [2]. Thus an interval-valued fuzzy set can be
considered as the generalization of an IVS.

Furthermore, we can easily check that for each A ∈ IVS(X), A− 6= A+ (in fact, A+ ∩ A−c 6= ∅)
in general (see Example 2) but if A− = A+, then A+ ∩ A−c

= ∅. We denote the family {A ∈ IVS(X) :
A− = A+} as IVS∗(X).

Example 2. Let X = {a, b, c, d, e} and consider the IVS A in X given by:

A = [{a, b}, {a, , b, c}].

Then we can easily calculate that A− 6= A+ and A+ ∩ A−c 6= ∅.

For the inclusion, equality, union, and intersection of intuionistic sets, and the complement of an
intuitionistic set refer to [30,35].

3. Interval-Valued Neutrosophic Crisp Sets

In this section, we introduce the concept of an interval-valued neutrosophic crisp set combined by
a neutrosophic crisp set and an interval-valued set, and obtain some of its properties.

Definition 9. The form
〈
[AT,−, AT,+], [AI,−, AI,+], [AF,−, AF,+]

〉
is called an interval-valued neutrosophic

crisp set (briefly, IVNCS) in X, where [AT,−, AT,+], [AI,−, AI,+], [AF,−, AF,+] ∈ IVS(X).
In this case, [AT,−, AT,+], [AI,−, AI,+], and [AF,−, AF,+] represent the IVS of memberships,

indeterminacies, and non-memberships respectively of elements of X to A.
In particular, an IVNCS is defined as three types below.
An IVNCS A =

〈
[AT,−, AT,+], [AI,−, AI,+], [AF,−, AF,+]

〉
in X is said to be of:

(i) Type 1, if it satisfies the following conditions:

[AT,−, AT,+] ∩ [AI,−, AI,+] = ∅̃, [AT,−, AT,+] ∩ [AF,−, AF,+] = ∅̃,

[AI,−, AI,+] ∩ [AF,−, AF,+] = ∅̃,

equivalently, AT,+ ∩ AI,+ = ∅, AT,+ ∩ AF,+ = ∅, AI,+ ∩ AF,+ = ∅,
(ii) Type 2, if it satisfies the following conditions:

[AT,−, AT,+] ∩ [AI,−, AI,+] = ∅̃, [AT,−, AT,+] ∩ [AF,−, AF,+] = ∅̃,

[AI,−, AI,+] ∩ [AF,−, AF,+] = ∅̃, [AT,−, AT,+] ∪ [AI,−, AI,+] ∪ [AF,−, AF,+] = X̃,

equivalently, AT,+ ∩ AI,+ = ∅, AT,+ ∩ AF,+ = ∅, AI,+ ∩ AF,+ = ∅,

AT,− ∪ AI,− ∪ AF,− = X,
(iii) Type 3, if it satisfies the following conditions:

[AT,−, AT,+] ∩ [AI,−, AI,+] ∩ [AF,−, AF,+] = ∅̃,

[AT,−, AT,+] ∪ [AI,−, AI,+] ∪ [AF,−, AF,+] = X̃,

equivalently, AT,+ ∩ AI,+ ∩ AF,+ = ∅, AT,− ∪ AI,−AF,− = X.

The set of all IVNCSs of Type 1 [resp. Type 2 and Type 3] in X is denoted by IVN1(X) [resp. IVN2(X)

and IVN3(X)], and IVNCS(X) = IVN1(X) ∪ IVN2(X) ∪ IVN3(X), where IVNCS(X) is the set of all
IVNCSs in X.
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For any classical subset A of X,
〈
[A, A], ∅̃, [Ac, Ac]

〉
∈ IVNCS(X) is clear. Then we can consider

an INCS in X can be considered as the generalization of a classical subset of X. Moreover, if A =〈
[AT,−, AT,+], [AI,−, AI,+], [AF,−, AF,+]

〉
∈ IVNCS(X), then:

χA = ([χ
AT,− , χ

AT,+ ], [χAI,− , χ
AI,+ ], [χAF,− , χ

AF,+ ])

is an interval neutrosophic set in X proposed by Ye [38]. Thus we can consider an IVS as the
generalization of an IVNCS.

Remark 1.

(1) IVN2(X) ⊂ IVN1(X), IVN2(X) ⊂ IVN3(X),
(2) IVN1(X) 6⊂ IVN2(X), IVN1(X) 6⊂ IVN3(X) in general,
(3) IVN3(X) 6⊂ IVN1(X), IVN3(X) 6⊂ IVN2(X) in general.

Example 3. Let X = {a, b, c, d, e, f , g, h, i}. Consider two IVNCSs in X given by:

A = 〈[{a, b, c}, {a, b, c, d}], [{e}, {e, f }], [{g, h}, {g, h, i}]〉 ,

B = 〈[{a, b, c}, {a, b, c}], [{a, e, f }, {a, e, f }], [{g, h, i}, {g, h, i}]〉 .

(i) [AT,−, AT,+] ∩ [AI,−, AI,+] = ∅̃, [AT,−, AT,+] ∩ [AF,−, AF,+] = ∅̃,

[AI,−, AI,+] ∩ [AF,−, AF,+] = ∅̃. But

[AT,−, AT,+]∪ [AI,−, AI,+]∪ [AF,−, AF,+] = [{a, b, c, d, e, f , g, h}, X}] 6= X̃. Then A ∈ IVN1(X) but
A 6∈ IVN2(X). Moreover, we have:

[AT,−, AT,+] ∩ [AI,−, AI,+] ∩ [AF,−, AF,+] = ∅̃.

Thus A 6∈ IVN3(X). So we can confirm that Remark 1 (2) holds.
(ii) [BT,−, BT,+] ∩ [BI,−, BI,+] ∩ [BF,−, BF,+] = ∅̃,

[BT,−, BT,+] ∪ BCI,−, BI,+] ∪ [BF,−, BF,+] = X̃. But

[BT,−, BT,+] ∩ [BI,−, BI,+] = [{a}, {a}] 6= ∅̃.
Then B ∈ IVN3(X) but B 6∈ IVN1(X), B 6∈ IVN2(X). Thus we can confirm that Remark 1 (3) holds.

Definition 10. We may define the interval-valued neutrosophic crisp empty sets and the interval-valued
neutrosophic crisp whole sets, denoted by ∅i,IVN and Xi,IVN (i = 1, 2, 3, 4), respectively as follows:

(i) ∅1,IVN =
〈

∅̃, ∅̃, X̃
〉

, ∅2,IVN =
〈

∅̃, X̃, X̃
〉

,

∅3,IVN =
〈

∅̃, X̃, ∅̃
〉

, ∅4,IVN =
〈

∅̃, ∅̃, ∅̃
〉

,

(ii) X1,IVN =
〈

X̃, X̃, ∅̃
〉

, X2,IVN =
〈

X̃, ∅̃, ∅̃
〉

,

X3,IVN =
〈

X̃, ∅̃, X̃
〉

, X4,IVN =
〈

X̃, X̃, X̃
〉

.

Definition 11. Let A ∈ IVNCS(X). Then the complements of A, denoted by Ai,c (i = 1, 2, 3), is an IVNCS
in X, respectively as follows:

A1,c =
〈
[AT,−, AT,+]

c
, [AI,−, AI,+]

c
, [AF,−, AF,+]

c〉
,

A2,c =
〈
[AF,−, AF,+], [AI,−, AI,+], [AT,−, AT,+]

〉
,

A3,c =
〈
[AF,−, AF,+], [AI,−, AI,+]

c
, [AT,−, AT,+]

〉
.
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Example 4. Let A = 〈[{a, b, c}, {a, b, c, d}], [{e}, {e, f }], [{g, h}, {g, h, i}]〉 be the IVNCS in X given in
Example 3. Then we can easily check that:

A1,c =< [{e, f , g, h, i}, {d, e, f , g, h, i}], [{a, b, c, d, g, h, i}, {a, b, c, d, f , g, h, i}],
[{a, b, c, d, e, f }, {a, b, c, d, e, f , i}] >,

A2,c = 〈[{g, h}, {g, h, i}], [{e}, {e, f }], [{a, b, c}, {a, b, c, d}]〉 ,
A3,c =< [{g, h}, {g, h, i}], [{a, b, c, d, g, h, i}, {a, b, c, d, f , g, h, i}],

[{a, b, c}, {a, b, c, d}] > .

Definition 12. Let A, B ∈ IVNCS(X). Then we may define the inclusions between A and B, denoted by
A ⊂i B (i = 1, 2), as follows:

A ⊂1 B iff [AT,−, AT,+] ⊂ [BT,−, BT,+], [AI,−, AI,+] ⊂ [BI,−, BI,+],
[AF,−, AF,+] ⊃ [BF,−, BF,+],

A ⊂2 B iff [AT,−, AT,+] ⊂ [BT,−, BT,+], [AI,−, AI,+] ⊃ [BI,−, BI,+],
[AF,−, AF,+] ⊃ [BF,−, BF,+].

Proposition 3. For any A ∈ IVNCS(X), the followings hold:

(1) ∅1,IVN ⊂1 A ⊂1 X1,IVN , ∅2,IVN ⊂2 A ⊂2 X2,IVN ,
(2) ∅i,IVN ⊂j ∅i,IVN , Xi,IVN ⊂j Xi,IVN , (i = 1, 2, 3, 4, j = 1, 2).

Proof. Straightforward.

Definition 13. Let A, B ∈ IVNCS(X), (Aj)j∈J ⊂ IVNCS(X).

(i) The intersection of A and B, denoted by A ∩i B (i = 1, 2), is an IVNCS in X defined by:

A ∩1 B =< [AT,−, AT,+] ∩ [BT,−, BT,+], [AI,−, AI,+] ∩ [BI,−, BI,+],

[AF,−, AF,+] ∪ [BF,−, BF,+] >,

A ∩2 B =< [AT,−, AT,+] ∩ [BT,−, BT,+], [AI,−, AI,+] ∪ [BI,−, BI,+],

[AF,−, AF,+] ∪ [BF,−, BF,+] > .
(i′) The intersection of (Aj)j∈J , denoted by

⋂i
j∈J Aj (i = 1, 2), is an IVNCS in X defined by:

1⋂
j∈J

Aj =

〈⋂
j∈J

[AT,−
j , AT,+

j ],
⋂
j∈J

[AI,−
j , AI,+

j ],
⋃
j∈J

[AF,−
j , AF,+

j ]

〉
,

2⋂
j∈J

Aj =

〈⋂
j∈J

[AT,−
j , AT,+

j ],
⋃
j∈J

[AI,−
j , AI,+

j ],
⋃
j∈J

[AF,−
j , AF,+

j ]

〉
.

(ii) The union of A and B, denoted by A ∪i B (i = 1, 2), is an IVNCS in X defined by:

A ∪1 B =< [AT,−, AT,+] ∪ [BT,−, BT,+], [AI,−, AI,+] ∪ [BI,−, BI,+],

[AF,−, AF,+] ∩ [BF,−, BF,+] >,

A ∪2 B =< [AT,−, AT,+] ∪ [BT,−, BT,+], [AI,−, AI,+] ∩ [BI,−, BI,+],

[AF,−, AF,+] ∩ [BF,−, BF,+] > .
(ii′) The union of (Aj)j∈J , denoted by

⋃i
j∈J Aj (i = 1, 2), is an IVNCS in X defined by:

1⋃
j∈J

Aj =

〈⋃
j∈J

[AT,−
j , AT,+

j ],
⋃
j∈J

[AI,−
j , AI,+

j ],
⋂
j∈J

[AF,−
j , AF,+

j ]

〉
,

2⋃
j∈J

Aj =

〈⋃
j∈J

[AT,−
j , AT,+

j ],
⋂
j∈J

[AI,−
j , AI,+

j ],
⋂
j∈J

[AF,−
j , AF,+

j ]

〉
.
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(iii) [ ]A =
〈
[AT,−, AT,+], [AI,−, AI,+], [AT,−, AT,+]c

〉
.

(iv) < > A =
〈
[AF,−, AF,+]c, [AI,−, AI,+], [AF,−, AF,+]

〉
.

From Definitions 10–13, we get similar results from Propositions 3.5 and 3.6 in [30].

Proposition 4. Let A, B, C ∈ IVNCS(X), i = 1, 2. Then,

(1) If A ⊂i B and B ⊂i C, then A ⊂i C,
(2) A ⊂i A ∪i B and B ⊂i A ∪i B,
(3) A ∩i B ⊂i A and A ∩i B ⊂i B,
(4) A ⊂i B if and only if A ∩i B = A,
(5) A ⊂i B if and only if A ∪i B = B.

Proposition 5. Let X A, B, C ∈ IVNCS(X), (Aj)j∈J ⊂ IVNCS(X), and let i = 1, 2; k = 1, 2, 3. Then

(1) (Idempotent laws) A ∪i A = A, A ∩i A = A,
(2) (Commutative laws) A ∪i B = B ∪i A, A ∩i B = B ∩i A,
(3) (Associative laws) A ∪i (B ∪i C) = (A ∪i B) ∪i C, A ∩i (B ∩i C) = (A ∩i B) ∩i C,
(4) (Distributive laws) A ∪i (B ∩i C) = (A ∪i B) ∩i (A ∪i C),

A ∩i (B ∪i C) = (A ∩i B) ∪i (A ∩i C),
(4′) (Generalized distributive laws) (

⋂i
j∈J Aj) ∪i A =

⋂i
j∈J(Aj ∪i A),

(
⋃i

j∈J Aj) ∩i A =
⋃i

j∈J(Aj ∩i A),
(5) (Absorption laws) A ∪i (A ∩i B) = A, A ∩i (A ∪i B) = A,
(6) (DeMorgan’s laws) (A ∪i B)k,c = Ak,c ∩i Bk,c, (A ∩i B)k,c = Ak,c ∪i Bk,c,
(6′) (Generalized DeMorgan’s laws) (

⋃i
j∈J Aj)

k,c =
⋂i

j∈J Ak,c
j ,

(7) (Ak,c)k,c = A,
(8) (8a) A ∪i ∅i,IVN = A, A ∩i ∅i,IVN = ∅i,IVN ,

(8b) A ∪i Xi,IVN = Xi,IVN , A ∩i Xi,IVN = A,
(8c) X1,IVN

1,c = ∅1,IVN , X1,IVN
2,c = ∅2,IVN , X1,IVN

3,c = ∅1,IVN ,

X2,IVN
1,c = ∅2,IVN , X2,IVN

2,c = ∅1,IVN , X2,IVN
3,c = ∅2,IVN ,

X3,IVN
1,c = ∅3,IVN , X3,IVN

2,c = X3,IVN , X3,IVN
3,c = X4,IVN ,

X4,IVN
1,c = ∅4,IVN , X4,IVN

2,c = X4,IVN , X4,IVN
3,c = X3,IVN ,

∅1,IVN
1,c = X1,IVN , ∅1,IVN

2,c = X2,IVN , ∅1,IVN
3,c = X1,IVN ,

∅2,IVN
1,c = X2,IVN , ∅2,IVN

2,c = X1,IVN , ∅2,IVN
3,c = X2,IVN ,

∅3,IVN
1,c = X3,IVN , ∅3,IVN

2,c = ∅3,IVN , ∅3,IVN
3,c = ∅4,IVN ,

∅4,IVN
1,c = X4,IVN , ∅4,IVN

2,c = ∅4,IVN , ∅4,IVN
3,c = ∅3,IVN ,

(8d) A ∪i Ak,c 6= Xj,IVN , A ∩i Ak,c 6= ∅j,IVN in general (see Example 5),
where j = 1, 2, 3, 4.

Example 5. Consider the IVNCS A in X given in Example 4. Then,
A ∩1 A1,c

= 〈[{a, b, c}, {a, b, c, d}], [{e}, {e, f }], [{g, h}, {g, h, i}]〉
∩1 < [{e, f , g, h, i}, {d, e, f , g, h, i}], [{a, b, c, d, g, h, i}, {a, b, c, d, f , g, h, i}],

[{a, b, c, d, e, f }, {a, b, c, d, e, f , i}] >
= 〈[∅, {d}], [∅, { f }], [{a, b, c, d, e, f , g, h}, X}]〉
6= ∅j,IVN .

Similarly, we can check that:

A ∪1 A1,c 6= Xj,IVN , A ∩1 A2,c 6= ∅j,IVN , A ∪1 A2,c 6= Xj,IVN .

Additionally, we can easily check the remainders.
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A neighborhood system of a point is very important in a classical topology. Then we propose an
interval-valued neutrosophic crisp point to define the concept of an interval-valued neutrosophic crisp
neighborhood. Moreover, when we deal with separation axioms in an interval-valued neutrosophic
crisp topology, the notion of interval-valued neutrosophic crisp points is used. Then we define it below.

Definition 14. Let a ∈ X, A ∈ IVNCS(X). Then the form
〈
[{a}, {a}], ∅̃, [{a}c, {a}c]

〉
[resp.〈

∅̃, [{a}, {a}], [{a}c, {a}c]
〉

] is called an interval-valued neutrosophic [resp. vanishing] point in X and
denoted by aIVN [resp. aIVNV ]. We will denote the set of all interval-valued neutrosophic points in X as
IVNP(X).

(i) We say that aIVN belongs to A, denoted by aIVN ∈ A, if a ∈ AT,+.
(ii) We say that aIVNV belongs to A, denoted by aIVNV ∈ A, if a 6∈ AF,+.

Proposition 6. Let A ∈ IVNCS(X). Then A = AIVN ∪1 AIVNV ,
where AIVN =

⋃1
aIVN∈A aIVN , AIVNV =

⋃1
aIVNV∈A aIVNV .

In fact,
AIVN =

〈
[AT,−, AT,+], ∅̃, [AT,−, AT,+]

c〉
and

AIVNV =
〈

∅̃, [AI,−, AI,+], [AF,−, AF,+]
〉

.

Proof. AIVN =
⋃1

aIVN∈A aIVN =
⋃1

aIVN∈A

〈
[{a}, {a}], ∅̃, [{a}c, {a}c]

〉
=
〈⋃

aIVN∈A[{a}, {a}],
⋃

aIVN∈A ∅̃,
⋂

aIVN∈A[{a}
c, {a}c]

〉
=
〈
[
⋃

a∈AT,−{a},
⋃

a∈AT,+{a}], ∅̃, [
⋂

a∈AT,+ {a}c,
⋂

a∈AT,− {a}c]
〉

=
〈
[AT,−, AT,+], ∅̃, [AT,+c, AT,−c

]
〉

=
〈
[AT,−, AT,+], ∅̃, [AT,−, AT,+]c

〉
,

AIVNV =
⋃1

aIVNN∈A aIVNV =
⋃1

aIVNV∈A

〈
∅̃, [{a}, {a}], [{a}c, {a}c]

〉
=
〈⋃

aIVNV∈A ∅̃,
⋃

aIVNV∈A[{a}, {a}],
⋂

aIVNV∈A[{a}
c, {a}c]

〉
=
〈

∅̃, [
⋃

a∈AI,−{a},
⋃

a∈AI,+{a}, [
⋂

a 6∈AF,+ {a}c,
⋂

a∈AF,− {a}c]
〉

=
〈

∅̃, [AI,−, AI,+], [AF,−, AF,+]
〉

.
Then we have,

AIVN ∪1 AIVNV =
〈
[AT,−, AT,+], ∅̃, [AT,−, AT,+]c

〉
∪1
〈

∅̃, [AI,−, AI,+], [AF,−, AF,+]
〉

=
〈
[AT,−, AT,+] ∪ ∅̃, ∅̃ ∪ [AI,−, AI,+], [AT,−, AT,+]c ∩ [AF,−, AF,+]

〉
=
〈
[AT,−, AT,+], [AI,−, AI,+], [AT,+c ∩ AF,−, AT,−c ∩ AF,+

〉
=
〈
[AT,−, AT,+], [AI,−, AI,+], [AF,−, AF,+〉

= A.
This completes the proof.

Example 6. Let X = {a, b, c, d, e, f , g, h, i} and consider the IVNCS in X given by:

A = 〈[{a, b}, {a, b, c}], [{d}, {d, e}], [{ f , g}, { f , g, h}]〉 .

Then clearly, we have:
AIVN
=
⋃1

aIVI∈A

〈
[{a}, {a}], ∅̃, [{a}c, {a}c]

〉
=
〈
[{a, b}, {a, b, c}], ∅̃, [{a}c ∩ {b}c ∩ {c}c, {a}c ∩ {b}c]

〉
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=
〈
[{a, b}, {a, b, c}], ∅̃, [{d, e, f , g, h, i}, {c, d, e, f , g, h, i}]

〉
=
〈
[AT,−, AT,+], ∅̃, [AT,−, AT,+]

c
〉

,

AIVNV
=
⋃1

aIVNV∈A

〈
∅̃, [{a}, {a}], [{a}c, {a}c]

〉
=< ∅̃, [{d}, {d, e}], [{a}c ∩ {b}c ∩ {c}c ∩ {d}c ∩ {e}c ∩ {h}c ∩ {i}c,
{a}c ∩ {b}c ∩ {c}c ∩ {d}c ∩ {e}c ∩ {i}c] >

=
〈

∅̃, [{d}, {d, e}], [{ f , g}, { f , g, h}]
〉

=
〈

∅̃, [AI,−, AI,+], [AF,−, AF,+]
〉

.

Thus AIVN ∪1 AIVNV = 〈[{a, b}, {a, b, c}], [{d}, {d, e}], [{ f , g}, { f , g, h}]〉 = A. So we can confirm that
Proposition 6 holds.

Proposition 7. Let (Aj)j∈J ⊂ IVNCS(X) and let a ∈ X.
(1) aIVN ∈

⋂1
j∈J Aj [resp. aIVNV ∈

⋂1
j∈J Aj]⇔ aIVN ∈ Aj [resp. aIVNV ∈ Aj] for each j ∈ J.

(2) aIVN ∈
⋃1

j∈J Aj [resp. aIVNV ∈
⋃1

j∈J Aj]⇔ there exists j ∈ J such that aIVN ∈ Aj [resp. aIVNV ∈ Aj.

Proof. (1) Suppose aIVN ∈
⋂1

j∈J Aj and let A =
⋂1

j∈J Aj. Since AT,+ =
⋂

j∈J AT,+
j , a ∈ ⋂

j∈J AT,+
j .

Then a ∈ AT,+
j for each j ∈ J. Thus aIVN ∈ Aj for each j ∈ J. The converse is proved similarly.

The proof of the second part is omitted.
(2) Suppose aIVNV ∈

⋃1
j∈J Aj and let A =

⋃1
j∈J Aj. Since AF,+ =

⋂
j∈J AT,+

j , a 6∈ ⋂
j∈J AT,+

j .

Then a 6∈ AT,+
j for some j ∈ J. Thus aIVNV ∈ Aj for some j ∈ J. The converse is shown similarly.

The proof of the first part is omitted.

Proposition 8. Let A, B ∈ IVNCS(X). Then,

(1) A ⊂1 B if and only if aIVN ∈ A⇒ aIVN ∈ B [resp. aIVNV ∈ A⇒ aIVNV ∈ B] for each a ∈ X.
(2) A = B if and only if aIVN ∈ A⇔ aIVN ∈ B [resp. aIVNV ∈ A⇔ aIVNV ∈ B] for each a ∈ X.

Proof. Straightforward.

When we discuss with continuities in a classical topology, the concepts of the preimage and image
of a classical subset under a mapping are used. Then we define ones of an IVNCS under a mapping
as follows.

Definition 15. Let f : X → Y be a mapping, A ∈ IVNCS(X), B ∈ IVNCS(Y).

(i) The image of A under f , denoted by f (A), is an IVNCS in Y defined as:

f (A) =
〈
[ f (AT,−), f (AT,+)], [ f (AI,−), f (AI,+)], [ f (AF,−), f (AF,+)]

〉
.

(ii) The preimage of B under f , denoted by f−1(B), is an interval set in X defined as:

f−1(B) =
〈
[ f−1(BT,−), f−1(BT,+)], [ f−1(BI,−), f−1(BI,+)], [ f−1(BF,−), f−1(BF,+)]

〉
.

It is clear that f (aIVN ) = f (a)IVN and f (aIVNV ) = f (a)IVNV for each a ∈ X.

From the above definition, we have similar results of the image and the preimage of classical
subsets under a mapping.
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Proposition 9. Let f : X → Y be a mapping, A, A1, A2 ∈ IVNCS(X), (Aj)j∈J ⊂ IVNCS(X) and let
B, B1, B2 ∈ IVNCS(Y), (Aj)j∈J ⊂ IVNCS(Y). Let i = 1, 2; k = 1, 2, 3; l = 1, 2, 3, 4. Then,

(1) If A1 ⊂i A2, then f (A1) ⊂i f (A2),
(2) If B1 ⊂i B2, then f−1(B1) ⊂i f−1(B1),
(3) A ⊂i f−1( f (A)) and if f is injective, then A = f−1( f (A)),
(4) f ( f−1(B)) ⊂i B and if f is surjective, f ( f−1(B)) = B,
(5) f−1(

⋃i
j∈J Bj) =

⋃i
j∈J f−1(Bj),

(6) f−1(
⋂i

j∈J Bj) =
⋂i

j∈J f−1(Bj),
(7) f (

⋃i
j∈J Aj)i ⊂i

⋃i
j∈J f (Aj) and if f is surjective, then f (

⋃i
j∈J Aj)i =

⋃i
j∈J f (Aj),

(8) f (
⋂i

j∈J Aj) ⊂i
⋂i

j∈J f (Aj) and if f is injective, then f (
⋂i

j∈J Aj) =
⋂i

j∈J f (Aj),
(9) If f is surjective, then f (A)k,c ⊂i f (Ak,c),
(10) f−1(Bk,c) = f−1(B)k,c,
(11) f−1(∅l,IVN) = ∅l,IVN , f−1(Xl,IVN) = Xl,IVN ,
(12) f (∅l,IVN) = ∅l,IVN and if f is surjective, then f (Xl,IVN) = Xl,IVN ,
(13) If g : Y → Z is a mapping, then (g ◦ f )−1(C) = f−1(g−1(C)), for each C ∈ [Z].

Proof. The proofs are straightforward.

4. Interval-Valued Topological Spaces

In this section, we define an interval-valued neutrosophic crisp topology on X and study some
of its properties, and give some examples. We also introduce the concepts of an interval-valued
neutrosophic crisp base and subbase, and a family of IVNCSs gets the necessary and sufficient
conditions to become IVNCB and gives some examples.

From this section to the rest sections, ⊂1, ∪1, ∩1, 3,c, ∅1,IVN , and X1,IVN are denoted by ⊂, ∩, ∪, c,
∅IVN , and XIVN , respectively.

Definition 16. Let ∅ 6= τ ⊂ IVNCS(X). Then τ is called an interval-valued neutrosophic crisp topology
(briefly, IVNCT) on X, if it satisfies the following axioms:

(IVNCO1) ∅IVN , XIVN ∈ τ,
(IVNCO2) A ∩ B ∈ τ for any A, B ∈ τ,
(IVNCO3)

⋃
j∈J Aj ∈ τ for any family (Aj)j∈J of members of τ.

In this case, the pair (X, τ) is called an interval-valued neutrosophic crisp topological space (briefly,
IVNCTS) and each member of τ is called an interval-valued neutrosophic crisp open set (briefly, IVNCOS) in X.
An IVNCS A is called an interval-valued neutrosophic crisp closed set (briefly, IVNCCS) in X, if Ac ∈ τ.

It is obvious that {∅IVN , XIVN} [resp. IVNC(X)] is an IVNCT on X, and called the interval-valued
neutrosophic crisp indiscrete topology (briefly, IVNCIT) [resp. the interval-valued neutrosophic crisp discrete
topology (briefly, IVNCDT)] on X. The pair (X, τIVN,0) [resp. (X, τIVN,1)] is called an interval-valued
neutrosophic crisp indiscrete [resp. discrete] space (briefly, IVNCITS) [resp. (briefly, IVNCDTS)].

IVNCT(X) represents the set of all IVNCTs on X. For an IVNCTS X, the set of all IVNCOs [resp.
IVNCCSs] in X is denoted by IVNCO(X) [resp. IVNCC(X)].

Remark 2. (1) For each τ ∈ IVNCT(X), consider three families of IVSs in X:

τT = {[AT,−, AT,+] ∈ IVS(X) : A ∈ τ}, τ I = {[AI,−, AI,+] ∈ IVS(X) : A ∈ τ},

τF = {[AF,+c
, AF,−c

] ∈ IVS(X) : A ∈ τ}.

Then we can easily check that τT , τ I and τF are IVTs on X.
In this case, τT [resp. τ I and τF] is called the membership [resp. indeterminacy and non-membership]

topology of τ and we write τ =
〈
τT , τ I , τF〉. In fact, we can consider (X, τT , τ I , τF) as an interval-valued

tri-topological space on X (see the concept of bitopology introduced by Kelly [39]).
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Furthermore, we can consider three intuitionistic topology on X proposed by cCoker [14]:

τT = {(AT,−, AT,+c
) ∈ IS(X) : A ∈ τ}, τI = {(AI,−, AI,+c

] ∈ IS(X) : A ∈ τ},

τF = {AF,+c
, AF,−) ∈ IS(X) : A ∈ τ}.

Let us also consider six families of ordinary subsets of X:

τT,− = {AT,− ⊂ X : A ∈ τ}, τT,+ = {AT,+ ⊂ X : A ∈ τ},

τ I,− = {AI,− ⊂ X : A ∈ τ}, τ I,+ = {AI,+ ⊂ X : A ∈ τ},

τF,− = {AT,+c ⊂ X : A ∈ τ}, τF,+ = {AI,−c ⊂ X : A ∈ τ}.

Then clearly, τT,−, τT,+, τ I,+, τ I,−, τF,−, τF,+ are ordinary topologies on X.
(2) Let (X, τo) be an ordinary topological space. Then there are four IVNCTs on X given by:

τ1 =

{
{
〈
[G, G], ∅̃, [Gc, Gc]

〉
∈ IVNC(X) : G ∈ τo} if G 6= X

{∅IVN , XIVN} if G = X,

τ2 =

{
{
〈
[G, G], X̃, [Gc, Gc]

〉
∈ IVNC(X) : G ∈ τo} if G 6= X

{∅IVN , XIVN} if G = X,

τ3 =

{
{
〈
[∅, G], ∅̃, [∅, Gc]

〉
∈ IVNC(X) : G ∈ τo} if G 6= ∅

{∅IVN , XIVN} if G = ∅,

τ4 =

{
{
〈
[∅, G], X̃, [∅, Gc]

〉
∈ IVNC(X) : G ∈ τo} if G 6= ∅

{∅IVN , XIVN} if G = ∅.

(3) Let (X, τIV ) be an IVTS introduced by Kim et al. [30]. Then clearly,

τ = {
〈
[A−, A+], ∅̃, [A+c, A−c

]
〉
∈ IVNC(X) : A ∈ τIV} ∈ IVNCT(X).

(4) Let (X, τI ) be an ITS introduced by cCoker [14]. Then clearly,

τ = {
〈
[A∈, A 6∈

c
], ∅̃, [A 6∈, A∈c

]
〉
∈ IVNC(X) : A ∈ τI} ∈ IVNCT(X).

(5) Let (X, τNC ) be a neutrosophic crisp topological space introduced by Salama and Smarandache [34].
Then clearly,

τ = {
〈
[AT , AT ], [AI , AI ], [AF, AF]

〉
∈ IVN∗(X)) : A ∈ τNC} ∈ IVNCT(X).

From Remark 2, we can easily see that an IVNCT is a generalization of a classical topology, an
IVT, an IT, and neutrosophic crisp topology. Then we have the following Figure 1:
Example 7. (1) Let X = {a, b}. Then we can easily check that:

τIVN,1 = {∅IVN , aIVN , bIVN , aIVNV , bIVNV ,
〈

∅̃, ∅̃, [{b}, {b}]
〉

,

〈[{a}, {a}], [{a}, {a}], [{b}, {b}]〉 , XIVN}.
(2) Let A ∈ IVNCS(X). Then A is said to be finite, if AT,+, AI,+, and AF,+ are finite. Consider the family

τ = {U ∈ IVNCS(X) : U = ∅IVN or Uc is finite}.

Then we can easily prove that τ ∈ IVNCT(X).
In this case, τ is called an interval-valued neutrosiophic crisp cofinite topology (briefly, IVNCCFT) on X.
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(3) Let A ∈ IVNCS(X). Then A is said to be countable, if AT,+, AI,+, and AF,+ are countable.
Consider the family:

τ = {U ∈ IVNCS(X) : U = ∅IVN or Uc is countable}.

Then we can easily show that τ ∈ IVNCT(X).
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Figure 1. The relationships among five topologies.

In this case, τ is called an interval-valued neutrosiophic crisp cocountable topology (briefly, IVNCCCT)
on X.

(4) Let X = {a, b, c, d, e, f , g, h, i} and the family τ of IVNCSs on X given by:

τ = {∅IVN , A1, A2, A3, A4, XIVN},

where A1 = 〈[{a, b}, {a, b, c}], [{e}, {e, f }], [{g}, {g, i}]〉 ,
A2 = 〈[{a, d}, {a, c, d}], [{e}, {e}], [{g, h}, {g, h, i}]〉 ,
A3 = 〈[{a}, {a, c}], [{e}, {e}], [{g, h}, {g, h, i}]〉 ,
A4 = 〈[{a, b, d}, {a, b, c, d}], [{e}, {e, f }], [{g}, {g, i}]〉 .

Then we can easily check that τ ∈ IVNCT(X).
(5) Let X = {0, 1}. Consider the family τ of IVNCSs on X given by:

τ = {∅IVN ,
〈
[{0}, {0}], ∅̃, [{1}, {1}]

〉
, XIVN}.

Then we can easily prove that τ ∈ IVNCT(X). In this case, (X, τ) is called the interval-valued neutrosophic
crisp Sierpin

′
ski space.

From Definition 16, we have the following.

Proposition 10. Let X be an IVNCTS. Then:

(1) ∅IVN , XIVN ∈ IVNCC(X),
(2) A ∪ B ∈ IVNCC(X) for any A, B ∈ IVNCC(X),
(3)

⋂
j∈J Aj ∈ IVNCC(X) for any (Aj)j∈J ⊂ IVNCC(X).

To discuss IVNCT(X) with a view-point of lattice theory, we define an order between two IVCTs.

Definition 17. Let τ1, τ2 ∈ IVNCT(X). Then we say that τ1 is contained in τ2 or τ1 is coarser than τ2 or τ2

is finer than τ1, if τ1 ⊂ τ2, i.e., A ∈ τ2 for each A ∈ τ1.
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For each τ ∈ IVNCT(X), τIVN,0 ⊂ τ ⊂ τIVN,1 is clear.

From Definitions 14 and 16, we get the following.

Proposition 11. Let (τj)j∈J ⊂ IVNCT(X). Then
⋂

j∈J τj ∈ IVNCT(X).
In fact,

⋂
j∈J τj is the coarsest IVNCT on X containing each τj.

Proposition 12. Let τ, γ ∈ IVNCT(X). We define τ ∧ γ and τ ∨ γ as follows:

τ ∧ γ = {W : W ∈ τ, W ∈ γ},

τ ∨ γ = {W : W = U ∪V, U ∈ τ, V ∈ γ}.

Then we have:

(1) τ ∧ γ is an IVNCT on X which is the finest IVNCT coarser than both τ and γ,
(2) τ ∨ γ is an IVNCT on X which is the coarsest IVNCT finer than both τ and γ,

Proof. (1) Clearly, τ ∧ γ ∈ IVNCT(X). Let η be any IVNCT on X which is coarser than both τ and γ,
and let W ∈ η. Then W ∈ τ and W ∈ γ. Thus W ∈ τ ∧ γ. So η is coarser than τ ∧ γ.

(2) The proof is similar to (1).

From Definition 17, Propositions 11 and 12, we can easily see that (IVNCT(X),⊂) forms a
complete lattice with the least element τIVN,0 and the greatest element τIVN,1 .

A topology on a set can be a complicated collection of subsets of subsets of a set, and it can be
difficult to describe the entire collection. In most cases, one describes a subcollection (called a base and
a subbase) that “generates” the topology. Then we define a base and a subbase in an IVNCT. Moreover,
we introduce the various intervals via IVNCSs in real line R.

Definition 18. Let (X, τ) be an IVNCTS.
(i) A subfamily β of τ is called an interval-valued neutrosophic crisp base (briefly, IVNCB) for τ, if for each

A ∈ τ, A = ∅IVN or there is β
′ ⊂ β such that A =

⋃
β
′
.

(ii) A subfamily σ of τ is called an interval-valued neutrosophic crisp subbase (briefly, IVNCSB) for τ, if
the family β = {⋂ σ

′
: σ
′

is a finite subset of σ} is an IVNCB for τ.

Remark 3. (1) Let β be an IVNCB for an IVNCT τ on a non-empty set X and consider three families of IVSs
in X:

βT = {[AT,−, AT,+] ∈ IVS(X) : A ∈ β}, βI = {[AI,−, AI,−] ∈ IVS(X) : A ∈ β},

βF = {[AF,+c
, AF,−c

] ∈ IVS(X) : A ∈ β}.

Then we can easily see that βT , βI , and βF are an interval-valued base (see [30]) for τT , τ I , and τF, respectively.
Furthermore, we can consider three intuitionistic base on X defined by cCoker [14]:

βT = {(AT,−, AT,+c
) ∈ IS(X) : A ∈ β}, β I = {(AI,−, AI,+c

] ∈ IS(X) : A ∈ β},

βF = {AF,+c
, AF,−) ∈ IS(X) : A ∈ β}.

Let also us consider six families of ordinary subsets of X:

βT,− = {AT,− ⊂ X : A ∈ β}, βT,+ = {AT,+ ⊂ X : A ∈ β},

βI,− = {AI,− ⊂ X : A ∈ β}, βI,+ = {AI,+ ⊂ X : A ∈ β},

βF,− = {AT,+c ⊂ X : A ∈ β}, βF,+ = {AI,−c ⊂ X : A ∈ β}.
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Then clearly, βT,−, βT,+, βI,+, βI,−, βF,−, βF,+ are ordinary bases for ordinary topologies
τT,−, τT,+, τ I,+, τ I,−, τF,−, τF,+ on X, respectively.

(2) Let σ be an IVNCSB for an IVNCT τ on a non-empty set X and consider three families of IVSs in X:

σT = {[AT,−, AT,+] ∈ IVS(X) : A ∈ σ}, σI = {[AI,+, AI,−] ∈ IVS(X) : A ∈ σ},

σF = {[AF,+c
, AF,−c

] ∈ IVS(X) : A ∈ σ}.

Then we can easily see that σT , σI , and σF are an interval-valued subbases (see [30]) for τT , τ I , and τF,
respectively.

Furthermore, we can consider three intuitionistic base on X defined by cCoker [14]:

σT = {(AT,−, AT,+c
) ∈ IS(X) : A ∈ σ}, σI = {(AI,−, AI,+c

] ∈ IS(X) : A ∈ σ},

σF = {AF,+c
, AF,−) ∈ IS(X) : A ∈ σ}.

Let also us consider six families of ordinary subsets of X:

σT,− = {AT,− ⊂ X : A ∈ σ}, σT,+ = {AT,+ ⊂ X : A ∈ σ},

σI,− = {AI,− ⊂ X : A ∈ σ}, σI,+ = {AI,+ ⊂ X : A ∈ σ},

σF,− = {AT,+c ⊂ X : A ∈ σ}, σF,+ = {AF,−c ⊂ X : A ∈ σ}.

Then clearly, σT,−, σT,+, σI,+, σI,−, σF,−, σF,+ are ordinary subbases for ordinary topologies
τT,−, τT,+, τ I,+, τ I,−, τF,−, τF,+ on X, respectively.

Example 8. (1) Let σ = {〈[(a, b), (a, ∞)], [∅, ∅], [∅, (−∞, a]]〉 : a, b ∈ R} be the family of IVNCs in R.
Then σ generates an IVNCT τ on R which is called the “usual left interval-valued neutrosophic crisp topology
(briefly, ULIVNCT)” on R. In fact, the IVNCB β for τ can be written in the form:

β = {RIVN} ∪ {∩γ∈ΓSγ : Sγ ∈ σ, Γ is finite}

and τ consists of the following IVNCSs in R:

τ = {∅IVN ,RIVN} ∪ {
〈
[∪(aj, bj), (c, ∞)], ∅̃, ∅̃

〉
}

or
τ = {∅IVN ,RIVN} ∪ {

〈
[∪(ak, bk),R], ∅̃, ∅̃

〉
},

where aj, bj, c ∈ R, {aj : j ∈ J} is bounded from below, c < in f {aj : j ∈ J} and ak, bk ∈ R, {ak : k ∈ K} is
not bounded from below.

Similarly, one can define the “usual right interval-valued neutrosophic crisp topology (briefly, URIVNCT)”
on R using an analogue construction.

(2) Consider the family σ of IVNCSs in R:
σ = {

〈
[(a, b), (a1, ∞) ∩ (−∞, b1)], ∅̃, [∅, (−∞, a1] ∪ [b1, ∞]

〉
: a, b, a1, b1 ∈ R, a1 ≤ a, b1 ≥ b}.

Then σ generates an IVNCT τ on R which is called the “usual interval-valued neutrosophic crisp topology
(briefly, UIVNCT)” on R. In fact, the IVNCB β for τ can be written in the form:

β = {RIVN} ∪ {∩γ∈ΓSγ : Sγ ∈ σ, Γ is finite}

and the elements of τ can be easily written down as in (1).
(3) Consider the family σ[0,1] of IVNCSs in R:
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σ[0,1] = {
〈
[[a, b], [a, ∞) ∩ (−∞, b]], ∅̃, [∅, (−∞, a] ∪ [b, ∞]

〉
: a, b ∈ R and 0 ≤ a ≤ b ≤ 1}.

Then σ[0,1] generates an IVNCT τ[0,1] on R which is called the “usual unit closed interval interval-valued
neutrosophic crisp topology” on R. In fact, the IVNCB β[0,1] for τ[0,1] can be written in the form:

β[0,1] = {RIVN} ∪ {∩γ∈ΓSγ : Sγ ∈ σ[0,1], Γ is finite}

and the elements of τ can be easily written down as in (1).
In this case, ([0, 1], τ[0,1]) is called the “interval-valued neutrosophic crisp nusual unit closed interval” and

denoted by [0, 1]IVNCI . In fact,

[0, 1]IVNCI =
〈
[[0, 1], [0, ∞) ∪ (−∞, 1]], ∅̃, ∅̃

〉
.

(4) Let β = {aIVN : a ∈ X} ∪ {aIVNV : a ∈ X}. Then β is an IVNCB for the interval-valued neutrosophic
crisp discrete topology τ1 on X.

(5) Let X = {a, b, c, d, e, f , g, h, i} and consider the family β of IVNCSs in X given by:

β = {A, B, XIVN},

where A = 〈[{a, b}, {a, b, c}], [{e}, {e, f }], [{g}, {g, i}]〉 ,
B = 〈[{a, d}, {a, c, d}], [{e}, {e}], [{g, h}, {g, h, i}]〉 .

Assume that β is an IVNCB for an IVNCT τ on X. Then by the definition of base, β ⊂ τ. Thus A, B ∈ τ. So
A ∩ B = 〈[{a}, {a, c}], [{e}, {e}], [{g, h}, {g, h, i}]〉 ∈ τ. However for any β

′ ⊂ β, A ∩ B 6= ⋃
β
′
. Hence β

is not an IVNCB for an IVNCT on X.

From (1), (2), and (3) in Example 8, we can define interval-valued neutrosophic crisp intervals
as following.

Definition 19. Let a, b ∈ R such that a ≤ b. Then:

(i) (The closed interval) [a, b]IVNCI =
〈
[[a, b], [a,−∞) ∩ (−∞, b]], ∅̃, ∅̃

〉
,

(ii) (The open interval) (a, b)IVNCI =
〈
[(a, b), (a,−∞) ∩ (−∞, b)], ∅̃, ∅̃

〉
,

(iii) (The half open interval or the half closed interval)

(a, b]IVNCI =
〈
[(a, b], (a,−∞) ∩ (−∞, b]], ∅̃, ∅̃

〉
,

[a, b)IVI =
〈
[[a, b), [a,−∞) ∩ (−∞, b)], ∅̃, ∅̃

〉
,

(iv) (The half interval-valued real line)

(−∞, a]IVNCI =
〈
[(−∞, a], (−∞, a]], ∅̃, ∅̃

〉
,

(−∞, a)IVNCI =
〈
[(−∞, a), (−∞, a)], ∅̃, ∅̃

〉
,

[a, ∞)IVNCI =
〈
[[a, ∞), [a, ∞)], ∅̃, ∅̃

〉
,

(a, ∞)IVNCI =
〈
[(a, ∞), (a, ∞)], ∅̃, ∅̃

〉
,

(v) (The interval-valued real line)

(−∞, ∞)IVMCI =
〈
[(−∞, ∞), (−∞, ∞)], ∅̃, ∅̃

〉
= RIVN .
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The following provide a necessary and sufficient condition which a collection of IVNCSs in a set
X is an IVNCB for some IVNCT on X.

Theorem 1. Let β ⊂ IVNCS(X). Then β is an IVNCB for an IVNCT τ on X if and only if it satisfies the
following properties:

(1) XIVN =
⋃

β,
(2) If B1, B2 ∈ β and aIVN ∈ B1 ∩ B2 [resp. aIVNV ∈ B1 ∩ B2], then there exists B ∈ β such that aIVN ∈ B ⊂

B1 ∩ B2 [resp. aIVNV ∈ B ⊂ B1 ∩ B2].

Proof. The proof is the same as one in classical topological spaces.

Example 9. Let X = {a, b, c} and consider the family of IVNCSs in X given by:

β = {A1, A2, A3, A3},

where A1 = 〈[{b}, {a, b}], [{b}, {b}], [{c}, {c}]〉 ,
A2 =

〈
[{b, c}, {b, c}], [{a}, {a}], ∅̃

〉
,

A3 = 〈[{a}, {a}], [{c}, {c}], [{b}, {b}]〉 ,
A4 =

〈
[{b}, ∅̃, [{c}, {c}]

〉
,

Then clearly, β satisfies two conditions of Theorem 1. Thus β is an IVNCB for an IVNCT τ on X. In fact,
we have:

τ = {∅IVN , A1, A2, A3, A4, A5, A6, A7, XIVN},

where A5 =
〈
[{b, c}, X], [{a, b}, {a, b}], ∅̃

〉
,

A6 =
〈
[{a, b}, {a, b}], [{b, c}, {b, c}], ∅̃

〉
,

A7 =
〈

X̃, [{a, c}, {a, c}], ∅̃
〉

.

The following provide a sufficient condition which a collection of IVNCSs in a set X is an IVNCB
for some IVNCT on X.

Proposition 13. Let σ ⊂ IVNCS(X) such that XIVN =
⋃

σ. Then there exists a unique IVNCT τ on X
such that σ is an IVNCSB for τ.

Proof. Let β = {B ∈ IVNCS(X) : B =
⋂n

i=1 Si and Si ∈ σ}. Let τ = {U ∈ IVNCS(X) : U =

∅̃ or there is a subcollection β
′

of β such that U =
⋃

β
′}. Then we can show that τ is the unique

IVNCT on X such that σ is an IVNCSB for τ.

In Proposition 13, τ is called the IVNCT on X generated by σ.

Example 10. Let X = {a, b, c, d, e} and consider the family σ of IVNCSs in X given by:

σ = {A1, A2, A3, A4},

where A1 = 〈[{a}, {a}], [{b}, {b}], [{c, d}, {c, d}]〉 ,
A2 = 〈[{a, b, c}, {a, b, c}], [{b, d}, {b, d}], [{e}, {e}]〉 ,
A3 = 〈[{b, c, e}, {b, c, e}], [{c, e}, {c, d, e}], [{d}, {d}]〉 ,
A4 = 〈[{c, d}, {c, d}], [{a, c}, {a, c}], [{a, b}, {a, b}]〉 .

Then clearly,
⋃

σ = XIVN . Let β be the collection of all finite intersections of members of σ. Then we have:

β = {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12},
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where A5 = 〈[{a}, {a}], [{b}, {b}], [{c, d, e}, {c, d, e}]〉 ,
A6 =

〈
∅̃, [{b}, {b}], [{c, d}, {c, d}]

〉
,

A7 =
〈

∅̃, ∅̃, [{a, b, c, d}, {a, b, c, d}]
〉

,
A8 = 〈[{b, c}, {b, c}], [∅, {d}], [{d, e}, {d, e}]〉 ,
A9 =

〈
[{c}, {c}], ∅̃, [{a, b, e}, {a, b, e}]

〉
,

A10 = 〈[{c}, {c}], [{c}, {c}], [{a, b, d}, {a, b, d}]〉 ,
A11 =

〈
∅̃, ∅̃, [{c, d, e}, {c, d, e}]

〉
,

A12 =
〈
[{c}, {c}], ∅̃, [{a, b, d, e}, {a, b, d, e}]

〉
.

Thus we have the generated IVNCT τ by σ:
τ = {∅IVN , A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, XIVN},

where A13 =
〈
[{a, b, c}, {a, b, c}], [{b, d}, {b, d}], ∅̃

〉
,

A14 = 〈[{a, b, c, e}, {a, b, c, e}], [{b, c, e}, {b, c, d, e}], [{d}, {d}]〉 ,
A15 =

〈
[{a, c, d}, {a, c, d}], [{a, b, c}, {a, b, c}], ∅̃

〉
,

A16 =
〈
[{a, b, c, e}, {a, b, c, e}], [{b, c, d, e}, {b, c, d, e}], ∅̃

〉
,

A17 =
〈
[{a, b, c, d}, {a, b, c, d}], [{a, b, c, d}, {a, b, c, d}], ∅̃

〉
,

A18 =
〈

X̃, [{a, c, e}, {a, c, e}], ∅̃
〉

.

Remark 4. By using “⊂2, ∪2, ∩2, i,c(i = 1, 2, 3), ∅2,IN , X2,IN , and INC(X), we can have the definitions
corresponding to Definitions 16 and 18, respectively.

5. Interval-Valued Neutrosophic Crisp Neighborhoods

In this section, we introduce the concept of interval-valued neutrosophic crisp neighborhoods of
IVNPs of two types, and find their various properties and give some examples.

Definition 20. Let X be an IVNCTS, a ∈ X, N ∈ IVNCS(X). Then:
(i) N is called an interval-valued neutrosophic crisp neighborhood (briefly, IVNCN) of aIVN , if there exists

a U ∈ IVNCO(X) such that:

aIVN ∈ U ⊂ N, i.e., a ∈ UT,− ⊂ NT,−,

(ii) N is called an interval-valued neutrosophic crisp vanishing neighborhood (briefly, IVNCVN) of aIVNV ,
if there exists a U ∈ IVNCO(X) such that:

aIVNV ∈ U ⊂ N, i.e., a 6∈ NF,+ ⊂ UF,+.

The set of all IVNCNs [resp. IVNCVNs] of aIVN [resp. aIVNV ] is denoted by N(aIVN ) [resp. N(IVNV )] and
will be called an IVNC neighborhood system of aIVN [resp. aIVNV ].

Example 11. Let X = {a, b, c, d, e, f , g, h, i} and let τ be the IVNCT on X given in Example 7 (4). Consider
the IVNCS N = 〈[{a, b, d}, {a, b, c, d}], [{e}, {e}], [{g}, {g}]〉 in X. Then we can easily check that:

N ∈ N(aIVN ) ∩ N(aIVNV ), N ∈ N(bIVN ) ∩ N(bIVNV ),
N ∈ N(dIVN ) ∩ N(dIVNV ), N ∈ N(cIVNV ).

An IVNC neighborhood system of aIVN has a similar property for a neighborhood system of a
point in a classical topological space.

Proposition 14. Let X be an IVNCTS, a ∈ X.
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[IVNCN1] If N ∈ N(aIVN ), then aIVN ∈ N.
[IVNCN2] If N ∈ N(aIVN ) and N ⊂ M, then M ∈ N(aIVN ).
[IVNCN3] If N, M ∈ N(aIVN ), then N ∩M ∈ N(aIVN ).
[IVNCN4] If N ∈ N(aIVN ), then there exists M ∈ N(aIVN ) such that N ∈ N(bIVN) for each bIVN ∈ M.

Proof. The proofs of [IVNCN1], [IVNCN2], and [IVNCN4] are easy.
[IVNCN3] Suppose N, M ∈ N(aIVN ). Then there are U, V ∈ IVNCO(X) such that aIVN ∈ U ⊂

N and aIVN ∈ V ⊂ M. Let W = U ∩V. Then clearly, W ∈ IVNCO(X) and aIVN ∈ W ⊂ N ∩M. Thus
N ∩M ∈ N(aIVN ).

In addition, an IVNC neighborhood system of aIVNV has the similar property.

Proposition 15. Let X be an IVNCTS, a ∈ X.

[IVNCVN1] If N ∈ N(aIVNV ), then aIVNV ∈ N.
[IVNCVN2] If N ∈ N(aIVNV ) and N ⊂ M, then M ∈ N(aIVNV ).
[IVNCVN3] If N, M ∈ N(aIVNV ), then N ∩M ∈ N(aIVNV ).
[IVNCVN4] If N ∈ N(aIVNV ), then there exists M ∈ N(aIVNV ) such that N ∈ N(bIVNV ) for each

bIVNV ∈ M.

Proof. The proof is similar to one of Proposition 15.

From Definition 20, we have two IVNCTs containing a given IVNCT.

Proposition 16. Let (X, τ) be an IVNCTS and let us define two families:

τIVN = {U ∈ IVNCS(X) : U ∈ N(aIVN ) for each aIVN ∈ U}

and
τIVNV = {U ∈ IVNCS(X) : U ∈ N(aIVNV ) for each aIVNV ∈ U}.

Then we have:
(1) τIVN , τIVNV ∈ IVNCT(X),
(2) τ ⊂ τIVN and τ ⊂ τIVNV .

Proof. (1) We only prove that τIVNV ∈ IVNCT(X).
(IVNCO1) From the definition of τIVNV , we have ∅IVN , XIVN ∈ τIVNV .
(IVNCO2) Let U, V ∈ IVN∗(X) such that U , V ∈ τIVNV and let aIVNV ∈ U ∩ V. Then clearly,

U, V ∈ N(aIVNV ). Thus by [IVNCVN3], U ∩V ∈ N(aIVNV ). So U ∩V ∈ τIVNV .
(IVNCO3) Let (Uj)j∈J be any family of IVNCSs in τIVNV , let U =

⋃
j∈J Uj and let aIVNV ∈ U.

Then by Proposition 7 (2), there is j0 ∈ J such that aIVNV ∈ Uj0 . Since Uj0 ∈ τIVNV , Uj0 ∈ N(aIVNV ) by
the definition of τIVNV . Since Uj0 ⊂ U, U ∈ N(aIVNV ) by [IVNCVN2]. So by the definition of τIVNV ,
U ∈ τIVNV .

(2) Let U ∈ τ. Then clearly, U ∈ N(aIVN ) and U ∈ N(aIVNV ) for each aIVN ∈ G and aIVNV ∈ G,
respectively. Thus U ∈ τIVN and U ∈ τIVNV . So the results hold.

Remark 5. (1) From the definitions of τIVN and τIVNV , we can easily have:

τIVN = τ ∪ {U ∈ IVNCS(X) : VT,− ⊂ UT,−, V ∈ τ}

and
τIVNV = τ ∪ {U ∈ IVNCS(X) : UF,+ ⊂ VF,+, V ∈ τ}.
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(2) For any IVNCT τ on a set X, we can have six IVTs on X given by:

τT
IVN

= {[UT,−, UT,+] ∈ IVS(X) : U ∈ τIVN},

τ I
IVN

= {[U I,−, U I,+] ∈ IVS(X) : U ∈ τIVN

τF
IVN

= {[UF,+c
, UF,−c

] ∈ IVS(X) : U ∈ τIVN},

τT
IVNV

= {[UT,−, UT,−] ∈ IVS(X) : U ∈ τIVNV},

τ I
IVNV

= {[U I,−, U I,+] ∈ IVS(X) : U ∈ τIVNV},

τF
IVNV

= {[UF,+c
, UF,+] ∈ IVS(X) : U ∈ τIVNV}.

Furthermore, we have 12 ordinary topologies on X:

τT,−
IVN

= {UT,− ⊂ X : U ∈ τIVN}, τT,+
IVN

= {UT,+] ⊂ X : U ∈ τIVN},

τ I,−
IVN

= {U I,− ⊂ X : U ∈ τIVN}, τ I,+
IVN

= {U I,+] ⊂ X : U ∈ τIVN},

τF,−
IVN

= {UF,+c ⊂ X : U ∈ τIVN}, τF,+
IVN

= {UF,−c ⊂ X : U ∈ τIVN},

τT,−
IVNV

= {UT,− ⊂ X : U ∈ τIVNV}, τT,+
IVNV

= {UT,− ⊂ X : U ∈ τIVNV},

τ I,−
IVNV

= {U I,− ⊂ X : U ∈ τIVNV}, τ I,+
IVNV

= {U I,+ ⊂ X : U ∈ τIVNV},

τF,−
IVNV

= {UF,+c ⊂ X : U ∈ τIVNV}, τF,+
IVNV

= {UF,+ ⊂ X : U ∈ τIVNV}.

Example 12. Let X = {a, b, c, d, e, f , g, h, i} and consider IVNCT τ on X given in Example 7 (4). Then from
Remark 5 ((1), we have:

τIVN = τ ∪ {A5, A6, A7},

where A5 = 〈[{a, b, c}, {a, b, c}], [{e}, {e, f }], [{g}, {g, i}]〉 ,
A6 = 〈[{a, c, d}, {a, c, d}], [{e}, {e}], [{g, h}, {g, h, i}]〉 ,
A7 = 〈[{a, b, c, d}, {a, b, c, d}], [{e}, {e, f }], [{g}, {g, i}]〉 .

Additionally, we have:
τIVNV = τ ∪ {A8, A9, A10, A11},

where A8 = 〈[{a, b}, {a, b, c}], [{e}, {e, f }], [{g}, {g}]〉 ,
A9 = 〈[{a, d}, {a, c, d}], [{e}, {e}], [{g, h}, {g, h}]〉 ,
A10 = 〈[{a}, {a, c}], [{e}, {e}], [{g}, {g, h}]〉 ,
A11 = 〈[{a, b, d}, {a, b, c, d}], [{e}, {e, f }], [{g}, {g}]〉 .

So we can confirm that Proposition 16 holds.
Furthermore, we can obtain six IVTs on X for τ:

τT
IVN

, τ I
IVN

, τF
IVN

, τT
IVNV

, τ I
IVNV

, τF
IVNV

.

Additionally, we have 12 ordinary topologies on X:

τT,−
IVN

, τT,+
IVN

, τ I,−
IVN

, τ I,+
IVN

, τF,−
IVN

, τF,+
IVN

,

τT,−
IVNV

, τT,+
IVNV

, τ I,−
IVNV

, τ I,+
IVNV

, τF,−
IVNV

, τF,+
IVNV

.

The following is the immediate result of Proposition 16 (2).



Symmetry 2020, 12, 2050 21 of 29

Corollary 1. Let (X, τ) be an IVNCTS and let IVNCCτ [resp. IVNCCτIVN
and IVNCCτIVNV

] be the set of
all IVNCCSs w.r.t. τ [resp. τIVN and τIVNV ]. Then,

IVNCCτ ⊂ IVNCCτIVN
, and IVNCCτ ⊂ IVNCCτIVNV

.

Example 13. Let (X, τ) be the IVNCTS given in Example 12. Then we have:
IVNCCτ = {∅IVN , XIVN , Ac

1, Ac
2, Ac

3, Ac
4},

IVNCCτIVN
= IVNCCτ ∪ {Ac

5, Ac
6, Ac

7},
IVCτIVNV

= IVCτ ∪ {Ac
8, Ac

9, Ac
10, Ac

11},
where Ac

1 = 〈[{g}, {g, i}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b}, {a, b, c}]〉 ,
Ac

2 = 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, d}, {a, c, d}]〉 ,
Ac

3 = 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a}, {a, c}]〉 ,
Ac

4 = 〈[{g}, {g, i}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b, d}, {a, b, c, d}]〉 ,
Ac

5 = 〈[{g}, {g, i}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b, c}, {a, b, c}]〉 ,
Ac

6 = 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, c, d}, {a, c, d}]〉 ,
Ac

7 = 〈[{g}, {g, i}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b, c, d}, {a, b, c, d}]〉 ,
Ac

8 = 〈[{g}, {g}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b}, {a, b, c}]〉 ,
Ac

9 = 〈[{g, h}, {g, h}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, d}, {a, c, d}]〉 ,
Ac

10 = 〈[{g}, {g, h}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a}, {a, c}]〉 ,
Ac

11 = 〈[{g}, {g}], [{a, b, c, d, h}, {a, b, c, d, f , h}], [{a, b, d}, {a, b, c, d}]〉 .
Thus we can confirm that Corollary 1 holds.

Now let us consider the converses of Propositions 14 and 15.

Proposition 17. Suppose to each a ∈ X, there corresponds a set N∗(aIVNV ) of IVNCSs in X satisfying the
conditions [IVNCVN1], [IVNCVN2], [IVNCVN3], and [IVNCVN4] in Proposition 15. Then there is an
IVNCT on X such that N∗(aIVNV ) is the set of all IVNCVNs of aIVNV in this IVNCT for each a ∈ X.

Proof. Let,
τIVNV = {U ∈ IVNCS(X) : U ∈ N(aIVNV ) for each aIVNV ∈ U},

where N(aIVNV ) denotes the set of all IVNCVNs in τ.
Then clearly, τIVNV ∈ IVNCT(X) by Proposition 16. We will prove that N∗(aIVNV ) is the set of all
IVNCVNs of aIVNV)

in τIVNV for each a ∈ X.
Let V ∈ IVN∗(X) such that V ∈ N∗(aIVNV ) and let U be the union of all the IVNCVPs bIVNV in X

such that U ∈ N∗(aIVNV ). If we can prove that:

aIVNV ∈ U ⊂ V and U ∈ τIVNV ,

then the proof will be complete.
Since V ∈ N∗(aIVNV ), aIVNV ∈ U by the definition of U. Moreover, U ⊂ V. Suppose bIVNV ∈ U.

Then by [IVNCVN4], there is an IVNCS W ∈ N∗(bIVNV ) such that V ∈ N∗(cIVNV)
) for each cIVNV ∈W.

Thus cIVNV ∈ U. By Proposition 9, W ⊂ U. So by [IVNCVN2], U ∈ N∗(bIVNV ) for each bIVNV ∈ U.
Hence by the definition of τIVNV , U ∈ τIVNV . This completes the proof.

Proposition 18. Suppose to each a ∈ X, there corresponds a set N∗(aIVN ) of IVNCSs in X satisfying the
conditions [IVNCN1], [IVNCN2], [IVNCN3], and [IVNCN4] in Proposition 14. Then there is an IVNCT on
X such that N∗(aIVN ) is the set of all IVNCNs of aIVN)

in this IVNCT for each a ∈ X.

Proof. The proof is similar to Proposition 17.
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The following provide a necessary and sufficient condition which an IVNCSs is an IVNCOS in
an IVNCTS.

Theorem 2. Let (X, τ) be an IVNCTS, A ∈ IVNCS(X). Then A ∈ τ if and only if A ∈ N(aIVN ) and
A ∈ N(aIVNV ) for each aIVN , aIVNV ∈ A.

Proof. Suppose A ∈ N(aIVN ) and A ∈ N(aIVNV ) for each aIVN , aIVNV ∈ A. Then there are
UaIVN

, VaIVNV
∈ τ such that aIVN ∈ UaIVN

⊂ A and aIVNV ∈ VaIVNV
⊂ A. Thus,

A = (
⋃

aIVN∈A
aIVN ) ∪ (

⋃
aIVNV∈A

aIVNV ) ⊂ (
⋃

aIVN∈A
UaIVN

) ∪ (
⋃

aIVNV∈A
VaIVNV

) ⊂ A.

So A = (
⋃

aIVN∈A UaIVN
) ∪ (

⋃
aIVNV∈A VaIVNV

). Since UaIVN
, VaIVNV

∈ τ, A ∈ τ.
The proof of the necessary condition is easy.

Now we will give the relation among three IVNCTs, τ, τIVN and τIVNV .

Proposition 19. τ = τIVN ∩ τIVNV .

Proof. From Proposition 16 (2), it is clear that τ ⊂ τIVN ∩ τIVNV .
Conversely, let U ∈ τIVN ∩ τIVNV . Then clearly, U ∈ τIVN and U ∈ τIVNV . Thus U is an IVNCN of

each of its IVNCPs aIVN and an IVNCVN of each of its IVNCVPs aIVNV . Thus, there are UaIVN
, UaIVNV

∈
τ such that aIVN ∈ UaIVN

⊂ U and aIVNV ∈ UaIVNV
⊂ U. So we have:

UIVN =
⋃

aIVN∈U
aIVN ⊂

⋃
aIVN∈U

UaIVN
⊂ U

and
UIVNV =

⋃
aIVNV∈U

aIVNV ⊂
⋃

aIVNV∈U
UaIVNV

⊂ U.

By Proposition 5, we get:

U = UIVN ∪UIVNV ⊂ (
⋃

aIVN∈U
UaIVN

) ∪ (
⋃

aIVNV∈U
UaIVNV

) ⊂ U, i.e.,

U = (
⋃

aIVN∈U
UaIVN

) ∪ (
⋃

aIVNV∈U
UaIVNV

).

It is obvious that (
⋃

aIVN∈U UaIVN
) ∪ (

⋃
aIVNV∈U UaIVNV

) ∈ τ. Hence U ∈ τ. Therefore τIVN ∩ τIVNV ⊂ τ.
This completes the proof.

From Proposition 19, we get the following.

Corollary 2. Let (X, τ) be an IVNCTS. Then,

IVNCCτ = IVNCCτIVN
∩ IVNCCτIVNV

.

Example 14. In Example 12, we can easily check that Corollary 2 holds.

6. Interiors and Closures of IVNCSs

In this section, we define interval-valued neutrosophic crisp interiors and closures, and
investigate some of their properties and give some examples. In particular, we will show that there is
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a unique IVNCT on a set X from the interval-valued neutrosophic crisp closure [resp. interior] operator.

In an IVNCTS, we can define a closure and an interior as well as two other types of closures and
interiors by Proposition 16.

Definition 21. Let (X, τ) be an IVNCTS, A ∈ IVNCS(X).

(i) The interval-valued neutrosophic crisp closure of A w.r.t. τ, denoted by IVNcl(A), is an IVNCS in X
defined as:

IVNcl(A) =
⋂
{K : Kc ∈ τ and A ⊂ K}.

(ii) The interval-valued neutrosophic crisp interior of A w.r.t. τ, denoted by IVNint(A), is an IVS in X
defined as:

IVNint(A) =
⋃
{G : G ∈ τ and G ⊂ A}.

(iii) The interval-valued neutrosophic crisp closure of A w.r.t. τIVN , denoted by clIVN (A), is an IVNCS in X
defined as:

clIVN (A) =
⋂
{K : Kc ∈ τIVN and A ⊂ K}.

(iv) The interval-valued neutrosophic crisp interior of A w.r.t. τIVN , denoted by intIVN (A), is an IVS in X
defined as:

intIVN (A) =
⋃
{G : G ∈ τIVN and G ⊂ A}.

(v) The interval-valued neutrosophic crisp closure of A w.r.t. τIVNV , denoted by clIVNV (A), is an IVNCS in X
defined as:

clIVNV (A) =
⋂
{K : Kc ∈ τIVNV and A ⊂ K}.

(vi) The interval-valued neutrosophic crisp interior of A w.r.t. τIVNV , denoted by intIVNV (A), is an IVNCS in
X defined as:

intIVNV (A =
⋃
{G : G ∈ τIVNV and G ⊂ A}.

Remark 6. From the above definition, it is obvious that the followings hold:

IVNint(A) ⊂ intIVN (A), IVNint(A) ⊂ intIVNV (A)

and
clIVN (A) ⊂ IVNcl(A), clIVNV (A) ⊂ IVNcl(A).

Example 15. Let (X, τ) be the IVNCTS given in Examples 12 and 13. Consider two IVNCSs in X:

A = 〈[{a, b, c}, {a, b, c, d}], [{a, e}, {a, e, f }], [{g}, {g}]〉 ,

B = 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, e, f }], [{a}, {a, c}]〉 .

Then,
IVNint(A) =

⋃{G ∈ τ : G ⊂ A} = A1 ∪ A3 = 〈[{a, b}, {a, b, c}], [{e}, {e, f }], [{g}, {g, i}]〉 ,
intIVN (A) =

⋃{G ∈ τIVN : G ⊂ A} = A1 ∪ A3 ∪ A5

= 〈[{a, b, c}, {a, b, c}], [{e}, {e, f }], [{g}, {g, i}]〉 ,
intIVNV (A) =

⋃{G ∈ τIVNV : G ⊂ A} = A1 ∪ A3 ∪ A8 ∪ A10

= 〈[{a, b}, {a, b, c}], [{e}, {e, f }], [{g}, {g}]〉
and

IVNcl(B) =
⋂{F : Fc ∈ τ, B ⊂ F} = Ac

2 ∩ Ac
3

= 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, d}, {a, c, d}]〉 ,
clIVN (B) =

⋂{F : Fc ∈ τIVN , B ⊂ F} = Ac
2 ∩ Ac

3 ∩ Ac
6 ∩ Ac

10
= 〈[{g, h}, {g, h, i}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, c, d}, {a, c, d}]〉 ,
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clIVNV(B) =
⋂{F : Fc ∈ τIVNV , B ⊂ F} = Ac

2 ∩ Ac
3 ∩ Ac

9 ∩ Ac
10

= 〈[{g}, {g, h}], [{a, b, c, d, f }, {a, b, c, d, f }], [{a, d}, {a, c, d}]〉 .
Thus we can confirm that Remark 6 holds.

Proposition 20. Let (X, τ) be an IVNCTS, A ∈ IVNCS(X). Then,

IVNint(Ac) = (IVNcl(A))c and IVNcl(Ac) = (IVNint(A))c.

Proof. IVNint(Ac) =
⋃{U ∈ τ : U ⊂ Ac} = ⋃{U ∈ τ : U ⊂

〈
AF, AI c, AT

〉
}

=
⋃{U ∈ τ : UT ⊂ AF, U I ⊂ AI c, UF ⊃ AT}

=
⋃{U ∈ τ : UT ⊂ AF, U I c ⊂ AI , UF ⊃ AT}

= (
⋂{Uc : U ∈ τ, A ⊂ Uc})c

= (IVNcl(A))c.
Similarly, we can show that IVNcl(Ac) = (IVNint(A))c.

Proposition 21. Let (X, τ) be an IVNCTS, A ∈ IVNCS(X). Then,

IVNint(A) = intIVN (A) ∩ intIVNV (A).

Proof. The proof is straightforward from Proposition 19 and Definition 21.

The following is the immediate result of Definition 21, and Propositions 20 and 21.

Corollary 3. Let (X, τ) be an IVNCTS and let A ∈ IVNCS(X). Then,

IVNcl(A) = clIVN (A) ∪ clIVNV (A).

Example 16. Let A and B be two IVNCSs in X given in Example 15. Then we can easily check that:

intIVN(A) ∩ intIVNV(A) = IVNint(A), clIVN(B) ∪ clIVNV(B) = IVNcl(B).

Theorem 3. Let X be an IVNCTS, A ∈ IVNCS(X). Then:

(1) A ∈ IVNCC(X)⇔ if A = IVNcl(A),
(2) A ∈ IVNCO(X)⇔ A = IVNint(A).

Proof. Straightforward.

Proposition 22 (Kuratowski Closure Axioms). Let X be an IVNCTS, A, B ∈ IVNCS(X). Then,

[IVNCK0] If A ⊂ B, then IVNcl(A) ⊂ IVNcl(B),
[IVNCK1] IVNcl(∅IVN) = ∅IVN ,
[IVNCK2] A ⊂ IVNcl(A),
[IVNCK3] IVNcl(IVNcl(A)) = IVNcl(A),
[IVNCK4] IVcl(A ∪ B) = IVNcl(A) ∪ IVNcl(A).

Proof. Straightforward.

Let IVNcl∗ : IVNCS(X) → IVNCS(X) be the mapping satisfying the properties [IVNCK1],
[IVNCK2], [IVNCK3], and [IVNCK4]. Then the mapping IVcl∗ is called the interval-valued
neutrosophic crisp closure operator (briefly, IVNCCO) on X.



Symmetry 2020, 12, 2050 25 of 29

Proposition 23. Let IVNcl∗ be the IVNCCO on X. Then there exists a unique IVNCT τ on X such
that IVNcl∗(A) = IVNcl(A), for each A ∈ IVNCS(X), where IVNcl(A) denotes the interval-valued
neutrosophic crisp closure of A in the IVNCTS (X, τ). In fact,

τ = {Ac ∈ IVNCS(X) : IVNcl∗(A) = A}.

Proof. The proof is almost similar to the case of classical topological spaces.

Proposition 24. ⇔Let X be an IVNCTS, A, B ∈ IVNCS(X). Then,

[IVNCI0] If A ⊂ B, then IVNint(A) ⊂ IVNint(B),
[IVNCI1] IVNint(XIVN) = XIVN ,
[IVNCI2] IVNint(A) ⊂ A,
[IVNCI3] IVNint(IVNint(A)) = IVNint(A),
[IVNCI4] IVNint(A ∩ B) = IVNint(A) ∩ IVNint(A).

Proof. Straightforward.

Let IVNint∗ : IVNCS(X) → IVNCS(X) be the mapping satisfying the properties [IVNCI1],
[IVNCI2], [IVNCI3], and [IVNCI4]. Then the mapping IVNint∗ is called the interval-valued
neutrosophic crisp interior operator (briefly, IVNCIO) on X.

Proposition 25. Let IVNint∗ be the IVNCIO on X. Then there exists a unique IVNCT τ on X such that
IVNint∗(A) = IVNint(A) for each A ∈ IVNCS(X), where IVNint(A) denotes the interval-valued
neutrosophic crisp interior of A in the IVNCTS (X, τ). In fact,

τ = {A ∈ IVNCS(X) : IVNint∗(A) = A}.

Proof. The proof is similar to one of Proposition 23.

7. Interval-Valued Neutrosophic Crisp Continuous Mappings

In this section, we define an interval-valued neutrosophic crisp continuity and quotient topology,
and study some of their properties.

Definition 22. Let X, τ), (Y, δ) be two IVTSs proposed in [30]. Then a mapping f : X → Y is said to be
interval-valued continuous, if f−1(V) ∈ τ for each V ∈ δ.

Definition 23. Let X, τ), (Y, δ) be two IVNCTSs. Then a mapping f : X → Y is said to be interval-valued
neutrosophic crisp continuous, if f−1(V) ∈ τ for each V ∈ δ.

From Remark 2 (1), and Definitions 22 and 23, we can easily have the following.

Theorem 4. Let (X, τ), (Y, δ) be two IVNCTSs and let f : X → Y be a mapping. Then f is interval-valued
neutrosophic crisp continuous if and only if f : (X, τT)→ (Y, δT), f : (X, τ I)→ (Y, δI), and f : (X, τF)→
(Y, δF) are interval-valued continuous, respectively.

The followings are immediate results of Proposition 9 (13) and Definition 23.

Proposition 26. Let X, Y, Z be IVNCTSs.

(1) The identity mapping id : X → X is continuous.
(2) If f : X → Y and g : Y → Z are continuous, then g ◦ f : X → Z is continuous.
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Remark 7. From Proposition 26, we can easily see that the class of all IVNCTSs and continuous mappings,
denoted by IVNCTop, forms a concrete category.

The followings are immediate results of Definition 23.

Proposition 27. Let X, Y be INCTSs.

(1) If X is an IVNCDTS, the f : X → Y is continuous,
(2) If Y is an IVNCITS, then f : X → Y is continuous.

Theorem 5. Let X, Y be IVNCTSs and let f : X → Y be a mapping. Then the followings are equivalent:

(1) f is continuous,
(2) f−1(C) ∈ IVNCC(X) for each C ∈ IVNCC(Y),
(3) f−1(S) ∈ IVNCO(X) for each member S of the subbase for the IVNCT on Y,
(4) IVNcl( f−1(B)) ⊂ f−1(IVNcl(B)) for each B ∈ IVNC(Y),
(5) f (IVNcl(A)) ⊂ IVNcl( f (A)) for each A ∈ IVNC(X).

Proof. The proofs of (1)⇒(2)⇒(3)⇒(1) are obvious.
(2)⇒(4): Suppose the condition (2) holds and let B ∈ INC(Y). By Proposition 22 [IVNCK2],

B ⊂ IVNcl(B). Then by Proposition 9 (2), f−1(B) ⊂ f−1(IVNcl(B)). Thus by Proposition 22 [INCK0],

IVNcl( f−1(B)) ⊂ IVNcl( f−1(IVNcl(B))).

Since IVNcl(B) ∈ IVNCC(Y), f−1(IVNcl(B)) ∈ IVNCC(X) by the condition (2). So by Theorem 3
(1), IVNcl( f−1(IVNcl(B))) = f−1(IVNcl(B)). Hence IVNcl( f−1(B)) ⊂ f−1(IVNcl(B)).

(4)⇒(5): Suppose the condition (4) holds and let B = f (A) for each A ∈ IVNC(X). Then we have
IVNcl( f−1( f (A))) ⊂ f−1(IVNcl( f (A))). Thus by Proposition 9 (3), IVNcl(A) ⊂ f−1(IVNcl( f (A))).
So by Proposition 9 (1) and (4), f (IVNcl(A)) ⊂ IVNcl( f (A)).

(5)⇒(4): The proof is similar to (4)⇒(5).

Theorem 6. Let X, Y be IVNCTSs and let f : X → Y be a mapping. Then f is continuous if and only if
f−1(IVNint(B)) ⊂ IVNint( f−1(B)) for each B ∈ INC(Y).

Proof. The proof is straightforward.

Definition 24. Let (X, τ), (Y, δ) be two IVNCTSs. Then a mapping f : X → Y is said to be:

(i) Interval-valued neutrosophic crisp open, if f (U) ∈ δ for each U ∈ τ,
(ii) Interval-valued neutrosophic crisp closed, if f (C) ∈ IVNCC(Y) for each C ∈ IVNCC(X).

Proposition 28. Let X, Y, Z be IVNCTSs, let f : X → Y and g : Y → Z be mappings. If f , g are open [resp.
closed], then g ◦ g is open [resp. closed].

Proof. The proof is straightforward.

Theorem 7. Let X, Y be IVNCTSs and let f : X → Y be a mapping. Then f is open if and only if
IVNint( f (A)) ⊂ f (IVNint(A)) for each A ∈ IVNC(X).

Proof. The proof is straightforward.

Proposition 29. Let X, Y be IVNCTSs and let f : X → Y be injective. If f is continuous, then
f (IVNint(A)) ⊂ IVNint( f (A)) for each A ∈ IVNC(X).
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Proof. The proof is straightforward.

The following is the immediate result of Theorem 7 and Proposition 29.

Corollary 4. Let X, Y be IVNCTSs and let f : X → Y be continuous, open, and injective. Then
f (IVNint(A)) = IVNint( f (A)) for each A ∈ IVNC(X).

Theorem 8. Let X, Y be IVNCTSs and let f : X → Y be a mapping. Then f is close if and only if
IVNcl( f (A)) ⊂ f (IVNcl(A)) for each A ∈ IVNC(X).

Proof. The proof is straightforward.

The following is the immediate result of Theorems 5 and 8.

Corollary 5. Let X, Y be IVNCTSs and let f : X → Y be a mapping. Then f is continuous and closed if and
only if f (VINcl(A)) = IVNcl( f (A)) for each A ∈ IVNC(X).

Definition 25. Let (X, τ), (Y, δ) be two IVNCTSs. Then a mapping f : X → Y is called an interval-valued
neutrosophic crisp homeomorphism, if f is bijective, continuous, and open.

Theorem 9. Let X, Y be IVNCDTSs and let f : X → Y be a mapping. Then f is a homeomorphism if and
only if f is bijective.

Proof. The proof is straightforward.

Definition 26. Let (X, τ) be an IVNCTS, let Y be a set and let f : X → Y be a surjective mapping. Let δ be
the family of IVNCSs in Y given by:

δ = {B ∈ IVNC(Y) : f−1(B) ∈ τ}.

Then δ is called the interval-valued neutrosophic crisp quotient topology (briefly, IVNCQT) on Y.
It can easily be seen that δ ∈ IVNCT(Y). It is also obvious that for each B ∈ IVNC(Y), B is closed in δ

if and only if f−1(B) is closed in X.

Proposition 30. Let (X, τ), (Y, δ) be two IVNCTSs, where δ is the IVNCQT on Y. Then a surjection
f : X → Y is continuous and open. Moreover, δ is the finest topology on Y which f is continuous.

Proof. The proof is similar to the classical case.

The following is the immediate result of Proposition 30.

Corollary 6. Let (X, τ), (Y, δ) be two IVNCTSs. If a mapping f : X → Y is continuous, open, and sujective,
then δ is the IVNCQT on Y. But the converse does not hold in general (See Example 17).

Example 17. Let ([0, 1], τ) be an IVNCTS and let A = [
1
2

, 1]. Consider the characteristic function χA :

[0, 1] → {0, 1}, where {0, 1} is the interval-valued neutrosophic crisp Sierpin
′
ski space (see Example 7 (5)).

Then we can easily see that the topology on {0, 1} is the IVNCQT. On the other hand, (
1
2

, 1)IVNCI ∈ τ but

χA((
1
2

, 1)IVNCI) is not open in {0, 1}. Thus χA is not an open mapping.

Theorem 10. Let (X, τ), (Y, δ), (Z, σ) be IVNCTSs, where δ is the IVNCQT on Y. Let f : X → Y and
g : Y → Z be mappings. Then g is continuous if and only if g ◦ f is continuous.
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Proof. The proof is similar to the classical case.

8. Conclusions

We obtained various properties of IVNCSs and discussed with IVNCTSs which can be considered
as an interval-valued tri-opological space. Moreover, we defined an interval-valued neutrosophic
crisp base and subbase and proved the characterization of an interval-valued neutrosophic crisp
base. Next, we introduced the concept of interval-valued neutrosophic crisp neighborhoods and
obtained some similar properties to classical neighborhoods. Furthermore, we defined interval-valued
neutrosophic crisp closures and interiors, and found some properties. We also introduced the concept
of interval-valued neutrosophic crisp continuities and obtained its various properties.

In future, we expect that one can apply the concept of IVNCSs to group and ring theory,
BCK-algebra, and category theory, etc. We also expect that one can define the notions of interval-valued
soft sets and interval-valued neutrosophic crisp soft sets. Besides, the theorems developed in this
manuscript will promote future studies on the geometry calibration for multi-cameras.
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