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a b s t r a c t

Cloud services consumers face a critical challenge in selecting trustworthy services from abundant
candidates, and facilitating these choices has become a critical issue in the uncertain cloud industry. This
paper employs the time series analysis to address challenges resulting from fluctuating quality of service,
flexible service pricing and complicated potential risks in order to propose a time-aware trustworthy
service selection approach with tradeoffs between performance–costs and potential risks. The original
evaluation data about the services is preprocessed using a cloudmodel, and interval neutrosophic set (INS)
theory is utilized to describe and measure the performance–costs and potential risks of services. In order
to calculate and compare the candidate services while supporting tradeoffs between performance–costs
and potential risks in different time periods, we established a cloud service interval neutrosophic set
(CINS) and designed its operators and calculation rules, with theoretical proofs provided. The problem
of time-aware trustworthy service selection is formulated as a multi-criterion decision-making (MCDM)
problemof creating a ranked services list using CINS, and it is solved by developing a CINS rankingmethod.
Finally, experiments based on a real-world dataset illustrate the practicality and effectiveness of the
proposed approach.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

Recently, cloud computing has been gaining enormousmomen-
tum. Cloud service providers around the world have publicized
many services [7]. Increasing numbers of cloud service consumers
find the convenience and affordability of cloud services alluring;
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however, the rapid proliferation of cloud services draws consumers
into the dilemma of service selection, especially when multiple
services provide similar functionalities. This dilemma has created
a critical issue in cloud computing field, that of facilitating cloud
service consumers to select trustworthy services with tradeoffs
between performance–costs and potential risks [29] among abun-
dant candidates. This task includes the following challenges:
(1) The quality of service (QoS) of cloud services generally

fluctuates within a certain range due to the dynamic cloud
environment. The quality of experience [27] for consumers
is often different from the QoS claimed by service providers.
According to the evaluation reports [80] of cloud hosts in
China, the performance of services varies widely. In some key
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indicators, such as network throughput and memory speed,
the maximum measured value is ten times more than the
minimum. The real QoS experienced by consumers can be
influenced by factors such as client device type, network
location and context [54,83,77]. In previous experiments [40]
based on real-world WS-DREAM dataset #2 [88], we analyzed
the response time for 5,825 services collected from 339 users,
and found that the coefficients of variation for most of services
exceed 1.0. As these data illustrate, how to accurately measure
the uncertainty of QoS combining the feedback data [40] from
consumers, continuous monitoring data [15] or auditing data
[36] from service providers, and continuous evaluation data
from third parties [80,12,10], has become a key problem in the
cloud environment.

(2) Although the load-balancing strategies have been imple-
mented in cloud platforms [34], the load conditions for cloud
services may be quite different from one another based on dif-
ferent networks or geographical locations. Within a specified
time period, some services are possible under a heavy load,
while others might only be possibly under a light load, giv-
ing consumers different quality of experience. In order to bal-
ance loads, improve energy efficiency and maximize profits,
service providers are likely to adopt flexible pricing over time
for cloud services [78,48,53]. For example, a servicemight offer
a considerable discount during its light load time period to at-
tract more consumers, or charge additional fees during a time
period that is highly volatile in user interaction.Moreover, con-
sumers might in practice attach particular importance to spe-
cific time periods according to their application requirements,
or purchase a service despite its poor performance during time
periods that are less important to them. Therefore, identifying
the different performance and cost of service in time periods is
of great significance for consumers distinguishing among can-
didates.

(3) Over the past few years, security problems have increasingly
emerged in cloud services, such as Salesforce services, EC2
services, BPOS services, SONY Playstation services and iCloud
services. These events have proven that cloud computing is
fraught with potential risks that must be carefully evaluated
prior to engagement [19]. Recently the risk assessment in
cloud services has attracted concern from some organizations,
including Cloud Security Alliance (CSA) [13], China Cloud
Computing Promotion and Policy Forum (3CPP) [10], and
researchers [81,22]. Some primary potential risks to cloud
services have been identified and analyzed [17,32]. Especially,
recognized as the important risks inherent to the cloud, the
availability [6,56] of cloud services and the disruption or failure
of cloud computing network [49] are vulnerable to the heavy
load and networks’ susceptibility in specified time periods.
In contrast to performance and costs of cloud services, these
potential risks inherent to the cloud are more uncertain. The
assessment of potential risks over multiple time periods adds
extra complexity to trustworthy service selection problem.

In real-world applications, both the performance–costs and
some potential risks of cloud services are dynamic and uncertain
during different time periods. Naturally, consumers hope to select
the most trustworthy cloud service among abundant candidates
by considering the tradeoffs between performance–costs and
potential risks over multiple time periods. Consumers may
pay less attention to potential risks when performance–cost
is more important to them, and may pay less attention to
performance–cost during times of sensitivity to potential risks.
In order to achieve higher performance–costs in cloud services,
consumers can change the time periods of their usage, or theymay
paymore to enjoy better performance during specific time periods.
This paper targets the research tasks of (1) accurately describing
and measuring the performance–costs and potential risks of
cloud services as a whole, with consideration of uncertainty, and
(2) calculating and comparing candidate services with tradeoffs
between performance–costs and potential risks, according to the
requirements of different application scenarios during different
time periods.

1.2. Our contributions

In this paper, to measure the uncertainty of cloud environment,
we have adopted a new theory known as interval neutrosophic set
(INS) [67,84], which is a generalization of classical, three-valued
and fuzzy logic. The assessment data of cloud services and the
user’s application requirements are integrated and transformed
into INS. Every service is measured from three aspects, namely
performance–costs, potential risks and their uncertainty, which
are equivalent to the truth-membership, falsity-membership and
indeterminacy-membership, respectively, in INS. The services
with high performance–costs, low risks and uncertainty may
become the trustworthy candidates. Our strategy for selecting
trustworthy services from an abundant field of candidates involves
formulating the problem of time-aware service selection with
tradeoffs between performance–costs and potential risk as amulti-
criterion decision-making (MCDM) problem that creates a ranked
services list using INS theory.

The main contributions of this paper are as follows:

(1) In order to measure the uncertainty of cloud services
and compare candidate services with tradeoffs between
performance–costs and potential risks, we propose the cloud
service interval neutrosophic set (CINS), based on INS and
combining the time period features of cloud services with
the tradeoff coefficients from consumers. The aggregation
operators and the entropy weight measure method for CINS
are designed based on theoretical proofs.

(2) We describe and assess the performance–costs and potential
risks of cloud services by utilizing the cloud model and INS
theory from the new perspective of time series analysis.
Based on this assessment, we formulate the time-aware
trustworthy cloud service selection problem with tradeoffs
between performance–costs and potential risks over multiple
time periods as a MCDM problem employing CINS theory. We
then develop a CINS ranking approach to solve the MCDM
problem.

(3) We examine the proposed approach through experiments
on a real-world dataset and an appropriate baseline for our
comparative analysis. Results demonstrate that our approach
can work effectively in the risk-sensitive service selection
mode and the performance-cost-sensitive service selection
mode, and also prevent malignant price competition launched
by some low-quality services. This paper can provide decision
support approach for time-aware trustworthy service selection
problem.

The rest of this paper is organized as follows. Section 2 briefly
introduces the related work. Section 3 defines neutrosophic set
(NS), INS and CINS. Section 4 defines the problem. Section 5
presents the aggregation operators and the entropy weight
measure method for CINS. Section 6 puts forward the time-aware
trustworthy service selection approach. Section 7 analyzes the
experiments and results. Finally, Section 8 presents conclusions.

2. Related works

2.1. Trustworthy cloud services selection

Facilitating users’ selection of trustworthy candidates from a
set of functionally equivalent cloud services represents an exciting
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area of expansion for cloud computing research. Some approaches
canprovide effective decision supports for this problemas follows:

(1) Approaches based on MCDM methods. MCDM is concerned
with structuring and solving decision problems involving
multiple criteria. Typically, there is not a unique optimal
solution for them and it is necessary to use decision-
maker’s preferences to differentiate between solutions. MCDM
methods can be used to solve the service selection problem,
provided that the trustworthiness attributes and service
candidates are finite. Techniques such as the analytic hierarchy
process (AHP), analytic network process (ANP), fuzzy analytic
hierarchy process (FAHP), ELECTRE and TOPSIS fall into this
category. Godse et al. [20] presented anAHP-based SaaS service
selection approach to score and rank services objectively;
the incorporation of AHP can ameliorate judgmental product
prioritization, making the process more rational than strictly
subjective ratings. Garg et al. [18] employed an AHPmethod to
measure attributes of QoS and rank cloud services. Similarly,
Menzel et al. [43] introduced an ANP method for selecting
IaaS services. Ma et al. [40] proposed a trustworthy cloud
service selection approach that employs the FAHP method to
calculate theweights of user features. Silas et al. [61] developed
a cloud service selection middleware based on the ELECTRE
method. Sun et al. [63] presented a multi-criteria decision-
making technique based on fuzzy TOPSISmethod to rank cloud
services.

(2) Approaches based on prediction. These approaches focus on
how to predict the QoS of service accurately and select trust-
worthy service for users. Techniques such as the probability
theory, fuzzy theory, evidence theory, social network analy-
sis (SNA), etc., fall into this category. Mehdi et al. [42] pre-
sented a QoS-aware approach based on probabilistic models to
assist the service selection, which allows consumers to main-
tain a trust model of each service provider they have inter-
acted with for the prediction of the most trustworthy service.
Qu et al. [51] proposed a system that evaluates trustworthiness
of cloud services according to users’ fuzzy QoS requirements
and services’ dynamic performances to facilitate service selec-
tion. Huo et al. [26] presented a fuzzy trustworthiness eval-
uation method combining Dempster–Shafer theory to solve
the synthesis of evaluation information for cloud services. Mo
et al. [44] put forward a cloud-based mobile multimedia rec-
ommendation system by collecting the user contexts, user re-
lationships, and user profiles from video-sharing websites for
generating recommendation rules. Targeting the objective and
subjective characteristics of trustworthiness evaluations, Ding
et al. [16] presented a trustworthiness evaluation framework
of cloud services to predict QoS and customer satisfaction for
selecting trustworthy services.

(3) Approaches based on recommendation system technologies.
These approaches exploit user preferences from history data
and achieve personalized service recommendation. By inte-
grating recommendation system technologies such as the col-
laborative filtering algorithm (CFA), service recommendations
based on user feedback have become the dominant trend in
trustworthy service selection. Ma et al. [38] presented a user
preferences-aware recommendation approach for trustworthy
cloud services, in which user preferences are identified by us-
age preference, trust preference and cost preference. Rosaci
et al. [54] proposed an agent-based architecture to recom-
mend multimedia services by integrating the content-based
recommendation method and CFA. Wang et al. [66] presented
a cloud service selection model employing service brokers to
perform dynamic service selection based on an adaptive learn-
ing mechanism. Ma et al. [39] proposed a trustworthy service
recommendation approach based on interval numbers of four
parameters by employing the similarity of client-side feature
between potential user and consumers. In order to improve
the prediction accuracy of CFA, Hu et al. [25] accounted for
the factor of time by proposing a time-aware CFA to predict
missing QoS values; this approach collects users’ historic data
about service at different time intervals and uses it to com-
pute thedegree of similarity between services andusers. Zhong
et al. [89] also proposed a time-aware service recommenda-
tion approach by extracting the time sequence of topic activi-
ties and the service-topic correlationmatrix from service usage
history, and forecasting topic evolution and service activity in
the near future.

(4) Approaches based on reputation mechanism. The trustworthi-
ness of cloud services can affect the reputation of the service
provider; in turn, a reputable service provider is more likely to
produce highly trustworthy services. Therefore, evaluating and
measuring the reputations of cloud service providers can aid in
selecting trustworthy cloud services based on history, exper-
tise and third-party data relevant to cloud service providers.
Ramaswamy et al. [52] discussed an approach that utilizes the
penalties, prize points and monitoring mechanism of mobile
agents to ensure trustworthiness among the cloud broker, cus-
tomer and service provider. Mouratidis et al. [45] presented a
framework incorporating a modeling language that supports
the elicitation of security and privacy requirements for select-
ing suitable service providers. Ayday et al. [5] incorporated be-
lief propagation algorithm to evaluate reputationmanagement
systems, and employed factor graph to describe the interac-
tive behavior between consumers and service providers. Pawar
et al. [46] proposed an uncertainty model that employs sub-
jective logic operators to calculate the reputations of service
providers. Shen et al. [59] proposed a collaborative cloud com-
puting platform, which incorporates multi-faceted reputation
management, resource selection, and price-assisted reputation
control.

2.2. Neutrosophic set theory

Since Zadeh proposed fuzzy set (FS) theory in 1965, many
novel extensions have been proposed to settle issues surrounding
imprecise, incomplete and uncertain information. These include
the interval-valued fuzzy set (IVFS) [65], intuitionistic fuzzy sets
(IFS) [3], interval-valued intuitionistic fuzzy sets (IVIFS) [4] and
hesitant fuzzy sets (HFS) [64]. In classical set theory, an entity may
have a certain degree of membership belonging to a set. As an
extension, fuzzy set theory permits the gradual assessment of the
membership of elements in a set; this is described with the aid
of a membership function valued in the real unit interval [0, 1]. It
also has a certain degree of non-membership, which is taken into
consideration in IFS. In addition, HFS was introduced in order to
copewith the situations that people are hesitant in expressing their
preference over objects in a decision making process. Moreover,
the applications of the extensions of FS in various fields have
attracted considerable researchers’ attention [28,60,47,69,68].

Based on the fact that IFSs cannot handle indeterminate in-
formation — that is, the zone of ignorance for a proposition’s
value between truth and falsity [74] — Smarandache [62] proposed
neutrosophic logic and the neutrosophic set (NS). As the truth-
membership, indeterminacy-membership, and false-membership
in NS are independent, it is a set in which each element of the uni-
verse possesses degrees of truth, indeterminacy and falsity, whose
values lie in the non-standard unit interval ]0−, 1+

[, which is an
extension to IFS’s standard interval [0, 1]. The uncertainty involved
here, that is, the indeterminacy factor, is independent of truth and
falsity values. NS has been used in a variety of fields, including
intrusion detection systems [31], image segmentation [58,23,21,
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85], artificial intelligence [2], growth and decline analysis of new
economies [1] and financial dataset detection [33].

For the convenience of application of NS in practical application,
Wang et al. [67] proposed an instance of NS called a single-
valued neutrosophic set (SVNS). In turn, Ye [75] put forward a
simplified neutrosophic set (SNS), which can be described by
three real numbers in the real unit interval [0, 1]. Sometimes the
degrees of truth, falsity and indeterminacy in a certain statement
cannot be precisely defined in real situations, but they can be
denoted by several possible interval values, requiring the interval
neutrosophic set (INS). Wang et al. [67] proposed the concept of
INS and provided its set-theoretic operators.

NS has also been applied to MCDM problems. Ye [74] de-
veloped a MCDM approach using a SVNS correlation coefficient
measurement. Zhang et al. [82] presented a new correlation coef-
ficient measure of INS and a MCDM method is developed, which
takes into account the influence of the evaluations’ uncertainty
and both the objective and subjective weights. In another study,
Liu et al. [37] presented several novel SVNS aggregation opera-
tors based on Hamacher operations and developed a multi-criteria
group decision-making approach. To address the situations that
the criteria are not independent and subject to compensation,
Zhang et al. [84] presented a outranking approach based on INS
and ELECTRE IV for MCDM problems. Şahin et al. [55] proposed a
MCDMmethod based on inclusion measure for INS.

To the best of our knowledge, no similar research has investi-
gated cloud service interval neutrosophic set (CINS) theory and the
MCDM method of modeling a trustworthy cloud service selection
problem with tradeoffs between performance–costs and potential
risks from the perspective of time series analysis.

3. Preliminary concepts

3.1. IN, NS, INS and their operators

This section introduces some basic concepts and definition
utilized in the rest of the paper.

Definition 1 ([57,8,72]). Let ã = [aL, aU ] = {aL ≤ x ≤ aU }; then ã
is termed as an interval number (IN). If 0 ≤ aL ≤ x ≤ aU , then ã is
a positive interval number.

Definition 2 ([71]). Let ã = [aL, aU ], b̃ = [bL, bU ], lã = aU −aL and
lb̃ = bU − bL; then the degree of possibility of ã ≥ b̃ is formulated
by Eq. (1):

P(a ≥b) = min{|lã + lb̃|,max(aU − bL, 0)}/(lã + lb̃). (1)

Suppose that there are n interval numbers ãi = [aLi , a
U
i ] (i =

1, 2, . . . , n), and each interval number ãi is compared with all
interval numbers ãj (j = 1, 2, . . . , n) using Eq. (1). Then a
complementarymatrix, P = {pij}, can be constructed. pij ≥ 0, pij +
pji = 1, pii = 0.5. On the basis of P , the sort value of each interval
number ãi can be calculated by Eq. (2):

oi =


n

j=1

Pij +
n
2

− 1


(n(n − 1)) , i = 1, 2, . . . , n. (2)

Definition 3 ([62]). Let X be a space of points or objects, with a
generic element in X denoted by x. A NS A in X is described using a
truth-membership function TA(x), an indeterminacy-membership
function IA(x) and a falsity-membership function FA(x). TA(x), IA(x)
and FA(x) are real standard or nonstandard subsets of ]0−, 1+

[; that
is, TA(x) : X →]0−, 1+

[, IA(x) : X →]0−, 1+
[ and FA(x) : X →

]0−, 1+
[. There is no restriction on the sumof TA(x), IA(x) and FA(x),

so 0−
≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.
Definition 4 ([75]). Let X be a space of points or objects, with a
generic element in X denoted by x. A NS A in X is characterized by
TA(x), IA(x) and FA(x), which are singleton subintervals or subsets
in the real standard [0, 1]; that is TA(x) : X → [0, 1], IA(x) : X →

[0, 1] and FA(x) : X → [0, 1]. Then, a simplification of NS A is
denoted by

A = {⟨x, TA(x), IA(x), FA(x)⟩|x ∈ X},

which is a subclass of NS called a SNS.

Definition 5 ([67]). An INS A in X is characterized by a truth-
membership function TA(x), an indeterminacy-membership func-
tion IA(x) and a falsity-membership function FA(x). For each point
x in X , it is true that

TA(x) = [inf TA(x), sup TA(x)] , IA(x) = [inf IA(x), sup IA(x)] ,
FA(x) = [inf FA(x), sup FA(x)] ∈ [0, 1]

and 0 ≤ sup TA + sup IA + sup FA ≤ 3, x ∈ X . Only the subunitary
interval of [0, 1] is considered, and it is a subclass of NS. Therefore,
all INSs are clearly NSs.

Definition 6. Let two INSs A = ⟨[inf TA, sup TA] , [inf IA, sup IA] ,
[inf FA, sup FA]⟩ and A = ⟨[inf TB, sup TB] , [inf IB, sup IB] , [inf FB,
sup FB]⟩, and λ > 0. The INS operations are defined below [67].

(1) A ⊕ B = ⟨[inf TA + inf TB − inf TA · inf TB, sup TA
+ sup TB − sup TA · sup TB],
[inf IA · inf IB, sup IA · sup IB],
[inf FA · inf FB, sup FA · sup FB]⟩;

(2) A ⊗ B = ⟨[inf TA · inf TB, sup TA · sup TB],
[inf IA + inf IB − inf TA · inf IB, sup IA
+ sup IB − sup IA · sup IB],
[inf FA + inf FB − inf FA · inf FB, sup FA
+ sup FB − sup FA · sup FB]⟩;

(3) λ · A = ⟨[1 − (1 − inf TA)λ, 1 − (1 − sup TA)λ],

[(inf IA)λ, (sup IA)λ], [(inf FA)λ, (sup FA)λ]⟩;

(4) Aλ
= ⟨[(inf TA)λ, (sup TA)λ], [(inf IA)λ, (sup IA)λ],

[(inf FA)λ, (sup FA)λ]⟩.

3.2. CINS and its operators

CINS is described in this section in order to measure the
uncertainty of cloud services and compare candidate services with
tradeoffs between performance–costs and potential risks.

Definition 7. The comprehensive evaluation of a cloud service is
characterized by CINS A = ⟨αAOA, βAUA, γARA⟩. PA = [infOA,
supOA], which represents the evaluation interval value of the per-
formance–cost ratio, equivalent to the truth-membership function
of INS. RA = [inf RA, sup RA] represents the evaluation interval
value of the potential risks, equivalent to the falsity-membership
function of INS. UA = [infUA, supUA] represents the evaluation
interval value of the uncertainty of PA and RA, equivalent to the
indeterminacy-membership function of INS. A larger PA with a
smaller UA and RA yields a better evaluation. OA, RA,UA ∈ [0, 1],
and 0 ≤ supOA + supUA + sup RA ≤ 3. α, β and γ are the trade-
off coefficients representing the importance degrees of the per-
formance–cost ratio, uncertainty and potential risks, respectively,
which should reflect the user’s application requirements in differ-
ent time periods. α, β, γ ∈ [0, 1]. Obviously, CINS is also an INS.



H. Ma et al. / J. Parallel Distrib. Comput. 96 (2016) 75–94 79
Fig. 1. Problem modeling.
Theorem 1. Let three CINSs A = ⟨αA[infOA, supOA], βA[infUA,
supUA], γA[inf RA, sup RA]⟩, B = ⟨αB[infOB, sup PB], βB[infUB,
supUB], γA[inf RB, sup RB]⟩ and C = ⟨αC [infOC , sup PC ], βC [infUC ,
supUC ], γC [inf RC , sup RC ]⟩, then the following equations are true.

(1) A ⊕ B = B ⊕ A;

(2) A ⊗ B = B ⊗ A;

(3) λ · (A ⊕ B) = λ · A ⊕ λ · B, λ > 0;
(4) (A ⊗ B)λ = Aλ

⊗ Bλ, λ > 0;
(5) λ1 · A ⊕ λ2 · A = (λ1 + λ2) ⊗ A, λ1 > 0, λ2 > 0;
(6) Aλ1 ⊗ Aλ2 = A(λ1+λ2), λ1 > 0, λ2 > 0;
(7) (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C);

(8) (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).

Proof. Obviously, the proof of the above equations can be done
according to Definition 6.

4. Modeling problem

4.1. Problem definition

For a list of m candidate cloud services in the set {S1, S2, . . . ,
Sm−1, Sm} and a time series consisting of p timeslots {t1, t2, . . . ,
tp−1, tp}, assume that sufficient evaluation data exists about
performance, cost and potential risk for every service in every
timeslot. Full consideration of the geographic location feature
of the current user allows these timeslots to be divided exactly
into time periods in accordance with the time zone in which
the current user lives. Based on an analysis of the application
scenario requirements of current user, we can identify the
importance degree of every time period, the sensitive degree of
performance–cost ratio and the potential cloud service risks for
the current user in every time period. Finally, the current user
will receive a ranked list of recommended services Sr1 ≻ Sr2 ≻

· · · ≻ Srm−1 ≻ Srm. The highest-ranked service in this list should
demonstrate optimal performance–costs and potential risks in the
specified time periods, and it should have a higher probability than
lower-ranked services of being adopted by the current user.

In this problem, every time period becomes a decision criterion
for evaluating the performance–costs and potential risks of cloud
services. Thus, the time-aware trustworthy cloud service selection
with tradeoffs betweenperformance–costs andpotential risks over
multiple time periods can be formulated as a MCDM problem of
creating a ranked services list, as shown in Fig. 1.

In Fig. 1, the sources of original evaluation data about cloud ser-
vices mainly includes: (1) the performance data from continuous
monitoring or continuous auditing, provided by service providers;
(2) the continual evaluation data about performance, cost and po-
tential risks, provided by correlative organizations, such as CSA,
3CPP or yunzhiliang.net; (3) the feedback data about performance,
cost and potential risks, provided by service consumers. By prepro-
cessing these original data, the performance–cost evaluation and
risks assessment of candidate services in every time period can be
obtained. In time period Ti, the service with the optimal perfor-
mance–cost and the minimal risk is the local optimum solution in
the ith criterion. The challenging task is to find the global optimum
solution in all of time periods.

To address this MCDM problem, all original evaluation data
about performance, cost and potential risks must first be prepro-
cessed into the CINS matrix by integrating user’s time zone in-
formation and tradeoff coefficients. After that, the CINS numbers
for multiple time periods can be aggregated to compare the dif-
ferences between candidate services in order to calculate the sort
value of every service in ranked list of recommended services.

4.2. Preprocessing of data for CINS

The preprocessing of data for CINS consists of the following nine
steps.
Step 1: Identifying the nearest neighbors for the current user.
Based on the history performance evaluation data about cloud



80 H. Ma et al. / J. Parallel Distrib. Comput. 96 (2016) 75–94
services, employ Pearson correlation coefficient to calculate the
total similarity between the current user and other user by Eq. (3):

sim(uc, u◦) =
1

|S◦|


si∈S◦

simi(uc, u◦), (3)

where uc represents the current user; u◦ represents other userwho
maybe a consumer, a service provider or a correlative organization;
S◦ is a union set of evaluated services by uc and u◦; simi(uc, u◦) is
the similarity between uc and u◦ obtained based on service si as
reference, which is calculated by Eq. (4):

simi(uc, u◦) =


t∈T

(rct − rc)(r◦
t − r◦)

t∈T
(rct − rc)2


t∈T

(r◦
t − r◦)2

. (4)

Then, the set of nearest neighbors of uc , noted as NN, can be
selected by Eq. (5):

NN = {ui
|ui

∈ SC, sim(uc, ui) ≥ simth
} (5)

where SC represents the set of other consumers; simth is the
threshold of user similarity.
Step 2: Collecting the evaluation data about performance, cost
and potential risks of candidate services from nearest neighbors.
Multiple evaluation indicators of performance and potential risks
may exist for different types of cloud services. For example, the
performance indicators for storage services include response time,
accessing rate for storage interface, efficiency of data compression,
whereas the performance indicators for computational intensive
services include the number of concurrent users and the efficiency
of instruction execution. Taking the performance evaluation as an
example, the original evaluation matrix for a cloud storage service
s can be represented as follows:

O(s)

=


(o111, o

2
11, . . . , o

r
11) (o112, o

2
12, . . . , o

r
12) · · · (o11p, o

2
1p, . . . , o

r
1p)

(o121, o
2
21, . . . , o

r
21) (o122, o

2
22, . . . , o

r
22) · · · (o12p, o

2
2p, . . . , o

r
2p)

.

.

.
.
.
. · · ·

.

.

.

(o1q1, o
2
q1, . . . , o

r
q1) (o1q2, o

2
q2, . . . , o

r
q2) · · · (o1qp, o

2
qp, . . . , o

r
qp)

 ,

(6)

where okij represents the evaluation value of the kth performance
indicator provided by the ith user in timeslot tj; p is the total
number of timeslots; q is the total number of users who have
evaluated this service; r is the total number of performance
indicators. The potential risks of cloud services may associate
multiple evaluation indicators. The multiple attributes evaluation
matrix for potential risks can also be defined similarly by Eq. (6).
Step 3: Aggregating the multi-dimensional performance evalua-
tions and risk evaluations into comprehensive evaluations with
weighted arithmetic averaging operators. Because of the difference
between gain-type indicators and loss-type indicators, the multi-
dimensional evaluation data need to be normalized prior to aggre-
gation operations. Gain-type indicators, such as accessing rate of
storage interface and efficiency of data compression, can be nor-
malized by Eq. (7):

okij = (okij −
q

min
i=1

okij)/(
q

max
i=1

okij −
q

min
i=1

okij). (7)

Loss-type indicators, such as response time and availability risk,
are normalized by Eq. (8):

okij = (
q

max
i=1

okij − okij)/(
q

max
i=1

okij −
q

min
i=1

okij). (8)

The measurement unit of cost is usually inconsistent for
different services; therefore, it should also be normalized with
the same standard. In order to aggregate the multi-attributes
evaluation data, let theweightsmatrix beω = {ω1, ω2, . . . , ωr}.ωi
represents theweight the current user assigned to the ith attribute.
The comprehensive performance evaluation of service s provided
by the ith user in timeslot tj can be determined by Eq. (9):

epij(s) = oij · ωT
=

o1ij o

2
ij · · · orij


[ω1 ω2 . . . ωr ]T . (9)

The comprehensive evaluation of potential risks can also be
defined similarly by Eq. (9).
Step 4: Calculating the performance–cost ratio of every service in
every timeslot. Let ePij and eCij be the comprehensive performance
evaluation and normalized cost, respectively, in timeslot tj from
the ith user. Then, the performance–cost ratio is defined as eOij =

ePij/e
C
ij .

Step 5: Dividing timeslots into time periods on the basis of
analyzing the user’s time zone and application requirements. Let
d be the density coefficient of time period Ti, which represents
the size of timeslots in Ti. Then the time period matrix is noted as
follows:

T =


T1
T2
...
Tn

 =


t11 t11 · · · t1d
t21 t22 · · · t2d
...

...
...

...
tn1 tn2 · · · tnd

 , (10)

where n is the number of time periods and p = n × d. In practice,
the density coefficient dmay be a variable, because the size of time
period could be different.
Step 6: Transforming the single-value evaluation data with differ-
ent timeslots into interval numbers in every time period by uti-
lizing cloud model theory. The cloud model [35,73] is a cognitive
model realizing the bidirectional transformation between qualita-
tive concept and quantitative data based on probability statistics
and fuzzy set theory. It can effectively represent fuzziness, ran-
domness and uncertain concepts, and it has been applied in many
fields [79,70,9]. In this paper, we establish cloud models for per-
formance–costs and potential risks based on evaluation data in
order to identify their interval numbers in every time period. Let
EO
j,k(s) = {eOj,d×(k−1)+1, e

O
j,d×(k−1)+2, . . . ., e

O
j,d×k} be the single-value

evaluation for performance–cost ratio of service s provided by the
jth user in Tk. This data is viewed as cloud drops and sent into the
reverse cloud generator (RCG). Then, the cloud model of perfor-
mance–cost in Ti can be obtained according to Eq. (11):

ExOi =
1
d

×

q
j=1

d
k=1

eOj,d∗(k−1)+k

EnO
i =


π

2
×

1
q × d

q
j=1

d
k=1

eOj,d∗(k−1)+k − ExOi


HEO
i =

 1
q × d − 1

q
j=1

d
k=1

(eOj,d∗(k−1)+k − ExOi )2 − (EnO
i )

2

,
(11)

where q is the number of nearest neighbors and d is the time
period’s density coefficient. The service’s performance–cost ratio
in Ti is defined as oi, described with an interval number as oi =

[oLi , o
U
i ]. oLi and oUi are calculated with Eq. (12):

oUi = ExOi + EnO
i + HEO

i × γ

oLi = ExOi − EnO
i − HEO

i × γ ,
(12)

where γ is the influence coefficient of HE, suggested to remain in
the interval range [0.1, 0.2] [39]. The cloud model for potential
risks is established similarly, and the potential risks interval
number for the service in Ti defined as ri = [rLi , r

U
i ] is obtained
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Table 1
Some typical values for tradeoff coefficients.

Importance degree of current time period Sensitive degree α for performance–cost β for uncertainty γ for potential risks

Very important Sensitive to performance–cost 1 0.8 0.8
Very important Quite sensitive to performance–cost 1 0.6 0.6
Important Sensitive to performance–cost 0.8 0.6 0.6
Important Quite sensitive to performance–cost 0.8 0.4 0.4
Very important Sensitive to potential risks 0.8 1 1
Very important Quite sensitive to potential risks 0.6 1 1
Important Sensitive to potential risks 0.6 0.8 0.8
Important Quite sensitive to potential risks 0.4 0.8 0.8
Not important No preferences 0.5 0.5 0.5
Pay no attention No preferences 0 0 0
with Eq. (13):
rLi = ExRi − EnR

i − HER
i × γ

rUi = ExRi + EnR
i + HER

i × γ .
(13)

Step 7: Calculating the uncertainty interval of performance–cost

ratio and potential risks in Ti. Let λO
i =


(EnO

i )
2 + (HEO

i )2 and

λR
i =


(EnR

i )
2 + (HER

i )
2 be the uncertainty of performance–cost

ratio and the uncertainty of potential risks, respectively, in Ti. Then,
the comprehensive uncertainty interval of Ti is defined as Eq. (14):

Ui = [uL
i , u

L
i ] = [min{λO

i , λ
R
i },max{λO

i , λ
R
i }]. (14)

Then, the original evaluation data is notedwith CINS as follows:

E =


E1
E2
...
Em

 =


e11 e12 · · · e1n
e21 e22 · · · e2n
...

...
...

...
em1 em2 · · · emn



=

 ⟨O11,U11, R11⟩ · · · ⟨O1n,U1n, R1n⟩

...
. . .

...
⟨Om1,Um1, Rm1⟩ · · · ⟨Omn,Umn, Rmn⟩

 .

Step 8: Analyzing the user’s application scenario requirements
and identifying the tradeoff coefficients α, β and γ for perfor-
mance–cost, uncertainty and potential risks, respectively, in ev-
ery time period. These coefficients should reflect the importance
degree of every time period and the sensitive degrees of perfor-
mance–cost ratio and potential risks for the cloud service. The time
periods’ tradeoff coefficient is defined as

F =


F1
F2
...
Fn

 =


α1, β1, γ1
α2, β2, γ2
...

...
...

αn, βn, γn

 , (15)

where Fi represents the tradeoff coefficient of Ti assigned by
the current user. Table 1 shows some typical values for tradeoff
coefficients.

In Table 1, α, β, γ ∈ [0, 1], the current user can determine
their values according to the importance of every time period
and tradeoffs between performance–cost and potential risks. The
fundamental principles of determining the tradeoff coefficients
mainly include: (1) if the current time period is very important or
has a greater importance than other time periods, 0.6 ≤ α, β, γ ≤

1; (2) if the current time period is important, 0.5 ≤ α, β, γ ≤ 0.8;
(3) if the current time period is not important, 0.1 ≤ α, β, γ ≤

0.5; (4) if user pays no attention to the current time period, α =

0, β = 0, γ = 0; (5) if user is sensitive to performance–cost,
(α − β) ≥ 0.2 and (α − γ ) ≥ 0.2; (6) if user is quite sensitive
to performance–cost, (α −β) ≥ 0.4 and (α − γ ) ≥ 0.4; (7) if user
is sensitive to potential risks, (β − α) ≥ 0.2 and (γ − α) ≥ 0.2;
(8) if user is quite sensitive to potential risks, (β − α) ≥ 0.4 and
(γ − α) ≥ 0.4.
Step 9: Assembling preprocessed evaluation data for candidate
services in all time periods using CINS theory. According to the
tradeoff coefficient F , a matrix is defined as follows:

Y =


F1 0 · · · · · · · · · 0
0 F2 0 · · · · · · 0
0 0 F3 0 · · · 0
0 · · · · · · · · · · · · 0
0 · · · · · · · · · · · · Fn



=


(α1, β1, γ1) 0 · · · · · · · · · 0

0 (α2, β2, γ2) 0 · · · · · · 0
0 0 (α3, β3, γ3) 0 · · · 0
0 · · · · · · · · · · · · 0
0 · · · · · · · · · · · · (αn, βn, γn)

 .

Then, the comprehensive evaluation decision matrix of candi-
date services is given as in Box I, where vij is a CINS representing
the total evaluation of the ith service in Ti.

The most trustworthy service should have the optimal evalua-
tion inV . In order to pick out the optimal candidate fromm services
in n time periods, the aggregation operators and entropy weight
measure method for CINS will be designed and proved theoreti-
cally.

5. Proposed CINS aggregation methodology

5.1. Aggregation operators for CINS

Definition 8. Let Ai = ⟨αAiOAi , βAiUAi , γAiRAi⟩ (i = 1, 2, . . . , n) be
a collection of CINSs. The CINSs’ aggregation operators are defined
as CINSWA : CINSn → CINS,

CINSWAw(A1, A2, . . . , An)

= w1 · A1 ⊕ w2 · A2 ⊕ · · · ⊕ wn · An =

n
i=1

wiAi, (17)

where W = (w1, w2, . . . , wn) is weight vector of Ai (i = 1, 2,
. . . , n), wi ≥ 0 (i = 1, 2, . . . , n) and

n
i=1 wi = 1. CINSWA

represents the CINS weighted averaging operator for the n dimen-
sion.

Theorem 2. Let Ai = ⟨αAiOAi , βAiUAi , γAiRAi⟩ (i = 1, 2, . . . , n) be
a collection of CINSs, and let W = (w1, w2, . . . , wn) be the weight
vector of Ai (i = 1, 2, . . . , n) with wi ≥ 0 (i = 1, 2, . . . , n) andn

i=1 wi = 1. Then, their aggregated result using CINSWA operator is
also a CINS, and

CINSWAw(A1, A2, . . . , An)

=


1 −

n
i=1

(1 − αAi infOAi)
wi , 1 −

n
i=1

(1 − αAi supOAi)
wi


,
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6)
V =

V1
...
Vm

 =

v11 · · · v1n
...

. . .
...

vm1 · · · vmn


= E ⊗ Y =

 ⟨α1O11, β1U11, γ1R11⟩ · · · ⟨αnO1n, βnU1n, γnR1n⟩

...
. . .

...
⟨α1Om1, β1Um1, γ1, Rm1⟩ . . . ⟨αnOmn, βnUmn, γnRmn⟩



=

 ⟨α1[oL11, oU11], β1 [uL
11, uU

11], γ1[rL11, rU11]⟩ · · · ⟨αn[oL1n, oU1n], βn[uL
1n, uU

1n], γn[rL1n, rU1n]⟩
...

. . .
...

⟨α1[oLm1, oUm1], β1[uL
m1, uU

m1], γ1[rLm1, rUm1]⟩ · · · ⟨αn[oLmn, oUmn], βn [uL
mn, uU

mn], γn[rLmn, rUmn]⟩

 , (1

Box I.

n

i=1

(βAi infUAi)
wi ,

n
i=1

(βAi supUAi)
wi


,


n

i=1

(γAi inf RAi)
wi ,

n
i=1

(γAi sup RAi)
wi


, (18)

where wi ∈ [0, 1] and
n

i=1 wi = 1.

Proof. Eq. (18) can be proven bymeans ofmathematical induction.
When n = 2, then CINSWAw(A1, A2) = w1 · A1 ⊕ w2 · A2. Ac-

cording to Definition 6,w1 ·A1 = ⟨[1−(1−αA1 infOA1)
w1 , 1−(1−

αA1 supOA1)
w1 ], [(βA1 infUA1)

w1 , (βA1 supUA1)
w1 ],

[(γA1 inf RA1)
w1 , (γA1 sup RA1)

w1 ]⟩ and w2 · A2 = ⟨[1 − (1 −

αA2 infOA2)
w2 , 1 − (1 − αA2 supOA2)

w2 ], [(βA2 infUA2)
w2 ,

(βA2 supUA2)
w2 ], [(γA2 inf RA2)

w2 , (γA2 sup RA2)
w2 ]⟩. Then,

w1 · A1 ⊕ w2 · A2

= ⟨[(1 − (1 − αA1 infOA1)
w1) + (1 − (1 − αA2 infOA2)

w2)

− (1 − (1 − αA1 infOA1)
w1) × (1 − (1 − αA2 infOA2)

w2),

(1 − (1 − αA1 supOA1)
w1) + (1 − (1 − αA2 supOA2)

w2)

− (1 − (1 − αA1 supOA1)
w1) × (1 − (1 − αA2 supOA2)

w2)],

[(βA1 supUA1)
w1 · ×(βA2 infUA2)

w2 , (βA1 supUA1)
w1

× (βA2 supUA2)
w2 ],

[(γA1 inf RA1)
w1 × (γA2 inf RA2)

w2 , (γA1 sup RA1)
w1

× (γA2 sup RA2)
w2 ]⟩

=


1 −

2
i=1

(1 − αAi infOAi)
wi , 1 −

2
i=1

(1 − αAi supOAi)
wi


,

2
i=1

(βAi infUAi)
wi ,

2
i=1

(βAi supUAi)
wi


,

2
i=1

(γAi inf RAi)
wi ,

2
i=1

(γAi sup RAi)
wi


.

Thus, the equation holds.
Assume that the equation holds when n = k. Then when n =

k + 1,

CSINNWAw(A1, A2, . . . , Ak, Ak+1)

= (w1 · A1 ⊕ w2 · A2 ⊕ · · · ⊕ wk · Ak) ⊕ wk+1 · Ak+1

=


1 −

k
i=1

(1 − αAi infOAi)
wi , 1 −

k
i=1

(1 − αAi supOAi)
wi


,

×


k

i=1

(βAi infUAi)
wi ,

k
i=1

(βAi supUAi)
wi


,

×


k

i=1

(γAi inf RAi)
wi ,

k
i=1

(γAi sup RAi)
wi


⊕wk+1Ak+1

and

wk+1 · Ak+1 = ⟨[1 − (1 − αAk+1 infOAk+1)
wk+1 ,

1 − (1 − αAk+1 supOAk+1)
wk+1 ],

[(βAk+1 infUAk+1)
wk+1 , (βAk+1 supUAk+1)

wk+1 ],

[(γAk+1 inf RAk+1)
wk+1 , (γAk+1 sup RAk+1)

wk+1 ]⟩.

Then, according to Definition 6,

CSINNWAw(A1, A2, . . . , Ak, Ak+1)

=


1 −

k
i=1

(1 − αAi infOAi)
wi


+ (1 − (1 − αAk+1 infOAk+1)

wk+1)

−


1 −

k
i=1

(1 − αAi infOAi)
wi


× (1 − (1 − αAk+1 infOAk+1)

wk+1),
1 −

k
i=1

(1 − αAi supOAi)
wi


× (1 − (1 − αAk+1 supOAk+1)

wk+1)

−


1 −

k
i=1

(1 − αAi supOAi)
wi


× (1 − (1 − αAk+1 supOAk+1)

wk+1)

,

k
i=1

(βAi infUAi)
wi × ((βAk+1 infUAk+1)

wk+1),

k
i=1

(βAi supUAi)
wi × ((βAk+1 supUAk+1)

wk+1)


,

k
i=1

(γAi inf RAi)
wi × ((γAk+1 inf RAk+1)

wk+1),

k
i=1

(γAi sup RAi)
wi × ((γAk+1 sup RAk+1)

wk+1)



=


1 −

k+1
i=1

(1 − αAi infOAi)
wi , 1 −

k+1
i=1

(1 − αAi supOAi)
wi


,

k+1
i=1

(βAi infUAi)
wi ,

k+1
i=1

(βAi supUAi)
wi


,
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k+1
i=1

(γAi inf RAi)
wi ,

k+1
i=1

(γAi sup RAi)
wi


.

Considering the above results, Eq. (18) holds for any n. This
completes the proof.

The CINSWA operator has the following properties:

(1) Idempotency: Let Ai (i = 1, 2, . . . , n) be a collection of CINSs.
If all Ai (i = 1, 2, . . . , n) are equal, that is, Ai = A, for all
i ∈ {1, 2, . . . , n}, then CINSWAw (A1, A2, . . . , An) = A.

(2) Boundedness: Assume Ai (i = 1, 2, . . . , n) is a collection of
CINSs, and AU and AL are defined as follows:

AU
=


n

max
i=1

{αAiOAi(x)},
n

min
i=1

{βAiUAi(x)},
n

min
i=1

{γAiRAi(x)}


=

 n
max
i=1

{αAi [infOAi(x), supOAi(x)]},
n

min
i=1

{βAi [infUAi(x), supUAi(x)]},
n

min
i=1

{γAi [inf RAi(x), sup RAi(x)]}


,

AL
=


n

min
i=1

{αAiOAi(x)},
n

max
i=1

{βAiUAi(x)},
n

max
i=1

{γAiRAi(x)}


=

 n
min
i=1

{αAi [infOAi(x), supOAi(x)]},
n

max
i=1

{βAi [infUAi(x), supUAi(x)]},
n

max
i=1

{γAi [inf RAi(x), sup RAi(x)]}


.

The comparison operation between interval numbers can be
executed using Eq. (1). Based on the possibility degree matrix,
the sort value of each interval number can be calculated by
Eq. (2). For all i ∈ {1, 2, . . . , n}, AL

∈ CINSWAw(A1, A2, . . . , An)

∈ AU .
(3) Monotonicity: Assuming Ai (i = 1, 2, . . . , n) is a collection

of CINSs, if Ai ⊆ A∗

i and i ∈ {1, 2, . . . , n}, then
CINSWAw(A1, A2, . . . , An) ∈ CINSWAw(A∗

1, A
∗

2, . . . , A
∗
n).

5.2. Entropy weight measure for CINS

In information theory, entropy is a measure for calculating
the uncertainty associated with a random variable. Therefore, it
is reasonable to utilize entropy as a vehicle to obtain objective
weight [74]. According to entropy theory, if a decision criterion in
a MCDM problem provides more uncertainty than others, it may
be paid more attention. The entropy weight measure for CINSs is
defined based on the axiomatic definition of the entropy measure
for single-valued neutrosophic sets [41], in order to calculate the
weights of time periods.

Definition 9. The entropy on CINS(X) is a real function E : CINS(X)

→ [0, 1] if E satisfies the following properties:

(P1) E(A) = 0 if the cloud service associated with A is totally
trustworthy;

(P2) E(A) = 1 if the cloud service associated with A is totally
untrusted.

Definition 10. Let A be a CINS in the universal discourse X =

{x1, x2, . . . , xn}. E(A) is a measure such that

E(A) = 1 − d(A, A+), (19)
where d(A, A+) refers to the distancemeasure between CINS A and
positive ideal CINSA+.A+

= ⟨[inf PA+ , sup PA+ ], [infUA+ , supUA+ ],
[inf RA+ , sup RA+ ]⟩ = ⟨[1, 1], [0, 0], [0, 0]⟩.

Definition 11 ([76]). Let A and B be two CINSs in the universal
discourse X = {x1, x2, . . . , xm}. Then, the Euclidean distance
between them is calculated with Eq. (20):

d(A, A+)

=
1
6


(αA infOA(xi) − infOA+)2 + (αA supOA(xi) − supOA+)2

+ (βA infUA(xi) − infUA+)2 + (βA supUA(xi) − supUA+)2

+ (γA inf RA(xi) − inf RA+)2 + (γA sup RA(xi) − sup RA+)2
1/2

.

(20)

Theorem 3. The proposedmeasure E(A) satisfies all the axioms given
in Definition 9.

Proof. Let A = ⟨αA [infOA, supOA] , βA [infUA, supUA] , γA[inf RA,
sup RA]⟩be aCINS, andA+

= ⟨[inf PA+ , sup PA+ ], [infUA+ , supUA+ ],
[inf RA+ , sup RA+ ]⟩ = ⟨[1, 1], [0, 0], [0, 0]⟩.

(P1) If the cloud service associated with A is totally trustworthy,
αA infOA = αA supOA = 1, βA infUA = βA supUA = 0,
γA inf RA = γA sup RA = 0. Then, A is a positive ideal CINS,
A = ⟨[1, 1], [0, 0], [0, 0]⟩. Therefore, E(A) = 0, and (P1) in
Definition 9 holds.

(P2) If the cloud service associated with A is totally untrusted,
αA infOA = αA supOA = 0, βA infUA = βA supUA = 1,
γA inf RA = γA sup RA = 1. Then, A is a negative ideal CINS,
A = ⟨[0, 0], [1, 1], [1, 1]⟩. Therefore, E(A) = 1, and (P2) in
Definition 9 holds.

Definition 12. Let CINS vij be the comprehensive evaluation of the
ith service in the jth time period in V defined by Eq. (16). The
entropy of the jth time period is obtained by the average entropy
distance between any two vij in this time period, which is noted as
follows:

E

Tj


= 1 −
2

m(m − 1)

m
i=1

m
k=i+1

|E(vij) − E(vkj)|, (21)

where E(vij) is calculated by Eq. (19).

According to these theories, an entropy weight measure is
established to determine the weight of every time period under
the CINS environment:

W (Ti) = (1 − E (Ti))


n −

n
i=1

E (Ti)


. (22)

Property 1. The proposed weight measure satisfies the following
properties:

(P1) W (Ti) ∈ [0, 1];
(P2)

n
i=1 W (Ti) = 1.

Proof. (P1) Let W = (W (T1),W (T2), . . . ,W (Tn)) be an entropy
weight vector calculated according to Eq. (22). According to
Theorem 3, the entropy value of CINS lies between 0 and 1,
that is, E(vij) ∈ [0, 1]; therefore, |E(vij) − E(vkj)| ∈ [0, 1], the
average entropy distance between any two vij, namely,

2
m(m − 1)

m
i=1

m
k=i+1

|E(vij) − E(vkj)| ∈ [0, 1],
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and 1 − E(Ti) ∈ [0, 1]. Additionally,

(1 − E (Ti)) +


n − 1 +

n
i=1,i≠j

E (Ti)


= n −

n
i=1

E (Ti) ≥ 0

and
n − 1 +

n
i=1,i≠j

E (Ti)


≥ 0

hold, which means that

n −

n
i=1

E (Ti) ≥ (1 − E (Ti))

is true. Based on these conclusions, it is possible to obtain

W (Ti) =
1 − E (Ti)

n −

n
i=1

E (Ti)
∈ [0, 1].

(P2) It is obvious that
n

i=1

W (Ti) =

n
i=1

1 − E (Ti)

n −

n
j=1

E

Tj


=

n
i=1

(1 − E (Ti))

n −

n
j=1

E

Tj
 =

n −

n
i=1

E (Ti)

n −

n
j=1

E

Tj
 = 1.

Therefore, Property 1 holds.
In particular, Table 1 states that if the current users pay no

attention to the ith time period, then αi = βi = γi = 0. In this
case, every vij in the ith time period will be substituted with the
negative ideal CINS, which will ensure W (Ti) = 0 in the entropy
weight measure.

6. MCDM procedure for time-aware trustworthy service selec-
tion

Assume there are m cloud services S = {S1, S2, . . . , Sm} and n
time periods T = {T1, T2, . . . , Tn}. Let V = (vij)m×n be the compre-
hensive evaluation decision matrix, where vij = ⟨αjOij, βjUij, γjRij⟩

is an evaluation value denoted by CINS. The following para-
graphs propose theMCDMprocedure that considers the integrated
weights in order to rank and select themost trustworthy cloud ser-
vice.
Step 1. Calculating the entropy value of the set V = {vij}. Using
Eq. (19), the entropy value matrix of V can be calculated as
follows:

E(V ) =


E(v11) E(v12) · · · E(v1n)

E(v21) E(v22) · · · E(v2n)

...
...

. . .
...

E(vm1) E(vm2) · · · E(vmn)



=


1 − d(v11, A+) 1 − d(v12, A+) · · · 1 − d(v1n, A+)

1 − d(v21, A+) 1 − d(v22, A+) · · · 1 − d(v2n, A+)

...
...

. . .
...

1 − d(vm1, A+) 1 − d(vm2, A+) · · · 1 − d(vmn, A+)

 .

Step 2. Calculating the objective weightmatrix of the time periods.
The entropy of the time periods must first be calculated as
follows:
E(T ) =


E(T1)
E(T2)

...
E(Tn)



=



1 −
2

m(m − 1)

m
i=1

m
k=i+1

|E(vi1) − E(vk1)|

1 −
2

m(m − 1)

m
i=1

m
k=i+1

|E(vi2) − E(vk2)|

...

1 −
2

m(m − 1)

m
i=1

m
k=i+1

|E(vin) − E(vkn)|


.

Eq. (22) can easily calculate the objective weight matrix of the
time periods:

W (T ) =


W (T1)
W (T2)

...
W (Tn)

 =



(1 − E (T1))


n −

n
i=1

E (Ti)



(1 − E (T2))


n −

n
i=1

E (Ti)


...

(1 − E (Tn))


n −

n
i=1

E (Ti)




.

Step 3. Using CINSWA operator to obtain CINS yi for service Si as
follows:

yi = CINSWAw(vi1, vi2, . . . , vin). (23)

Step 4. Calculating the sort value of every candidate service.
Inspired by the TOPSIS method [30], define a positive ideal CINS
A+ and a negative ideal CINS A− as follows:

A+
= ⟨OA+ ,UA+ , RA+⟩

= ⟨
n

max
i=1

{αyiOyi},
n

min
i=1

{βyiUyi},
n

min
i=1

{γyiRyi}⟩;

A−
= ⟨OA− ,UA− , RA−⟩

= ⟨
n

min
i=1

{αyiOyi},
n

max
i=1

{βyiUyi},
n

max
i=1

{γyiRyi}⟩.

Then, the Hamming distances between service Si and ideal
CINSs A+ and A− can be obtained using Eqs. (24) and (25):

d+(yi, A+)

= 1 −


1
6
(|αyi infOyi − infOA+ | + |αyi supOyi − supOA+ |)

+ |βyi infUyi − infUA+ | + |βyi supUyi − supUA+ |

+ |γyi inf Ryi − inf RA+ | + |γyi sup Ryi − sup RA+ |


, (24)

d−(yi, A−)

= 1 −


1
6
(|αyi infOyi − infOA− | + |αyi supOyi − supOA− |)

+ |βyi infUyi − infUA− | + |βyi supUyi − supUA− |

+ |γyi inf Ryi − inf RA− | + |γyi sup Ryi − sup RA− |


. (25)

Calculate the sort value of every candidate service according to
Eq. (26):

f ∗

i = d−(yi, A−)/

d+(yi, A+) + d−(yi, A−)


. (26)
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Fig. 2. Time period feature of response time. (a) service #741; (b) service #745.
Step 5. Obtaining the priority of service Si in accordance with f ∗

i
and rank the candidate services. Then, the ranked list of services
Sr1 ≻ Sr2 ≻ · · · ≻ Srm−1 ≻ Srm will be recommended to the
current user. The highest-ranked service in this list will have the
optimal performance–costs and potential risks in n time periods,
and it will have a higher probability than lower-ranked services of
being adopted by the current user.

7. Experiments

In order to demonstrate our approach in experiments, we
used WS-DREAM dataset #3 [11,86], which collected real-world
QoS evaluations from PlanetLab [50], including response time
and throughput, from 142 users on 4,532 services in 64 different
timeslots. WS-DREAM datasets have been applied in much
research concerned with cloud computing [88,16,87]. The analysis
of response times, shown in Fig. 2, illustrates the fact that the
services perform differently in six time periods. According to Fig. 2,
user #9 experienced a different QoS for service #741 with service
#745. Service #741provided goodperformance in six timeperiods,
whereas the performance of service #745 was unsatisfactory in
time periods T1 and T2.

Moreover, the coefficients of variation for response times of
3,873 services are larger than 1.0, as shown in Fig. 3. The main
reasons behind this finding are significant differences of client
features among users, unpredictable network congestion and
unexpected exceptions.

In the following experiments, let us consider a list of m = 8
candidate services S1, S2, . . . , S8 with time periods n = 6. Taking
services #741 through #748 as an example, we employ the original
evaluation data for response time in three numerical examples to
demonstrate the proposed approach. The original data used in the
experiments is provided online [24].

In order to measure the accuracy of our approach, the real
response time experienced by current user is employed as an
appropriate baseline for comparative analysis. The baseline sort
Fig. 3. Distribution of coefficients of variation for response times.

value of service Si (i = 1, 2, . . . ,m), noted as f bi , can be obtained
by Eq. (27):

f bi =
|riskbi − riskb−|

|perf bi − perf b+| + |riskbi − riskb−|
, (27)

where f bi is the baseline sort value of Si; perf bi =
n

j=1(αi ×j×d
k=(j−1)×d+1 perfk)/

n
j=1 αi and riskbi =

n
j=1(γi ×

j×d
k=(j−1)×d+1

riskk)/
n

j=1 γi represent the total response time and the total risk
value of Si aggregated with weights in all of time periods, respec-
tively; αi and γi are the tradeoff coefficients for performance–cost
and risks respectively in Ti; perfk and riskk represent the actual re-
sponse time and risk value experienced by the current user in the
kth timeslot; riskb− = maxni=1{risk

b
i }, perf

b+
= maxni=1{perf

b
i }. The

order of Si in baseline ranking can be obtained in accordance with
Table 2
Parameters of time periods in WS-DREAM.

Time periods T1 T2 T3 T4 T5 T6

Range of timeslots [0, 10] [11, 20] [21, 30] [31, 40] [41, 51] [52, 63]
Line number ranges [1, 1139] [1140, 2146] [2147, 3135] [3136, 4105] [4106, 5159] [5160, 6294]
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f bi . The difference degree, noted as D, is defined to compare our
ranked service list and the baseline list as follows:

D =

m
i=1

|di| =

m
i=1

|Ri − Bi|

Bi
, (28)

where Ri represents the ranking order of Si obtained by our
approach; Bi represents the order of Si in baseline ranking; di
represents the relative difference of Si. Obviously, smaller Dmeans
better accuracy.

7.1. Preprocessing evaluation data

The original data is divided into six time periods. Table 2 shows
the range of timeslots and the line number ranges in datasets for
every time period.

Targeting response time, we evaluate the potential risks of ser-
vices with Eq. (29):

vt
i =

0, rti < ζ
(δ × (rti − ζ )) /ζ , ζ ≤ rti ≤ (ζ (1 + δ)) /δ
1, (ζ (1 + δ)) /δ < rti,

(29)

where ζ is the user’s expectation of response time and rti repre-
sents the response time experienced by user i. If rti ≤ ζ , the ith
user considers this service to be risk-free. δ is an adjustment factor
that determines the tolerable range for response time. According
to the ‘‘2–5–10’’ principle [14] of response time in software testing
analysis,we can set ζ = 2s and δ = 0.25. In addition, γ is set as 0.1.

In experiments, user #9 is viewed as the current user. Assume
service #740 is in S◦ and the nearest neighbors of user #9 are
identified with simth

= 0.2. Then, on the basis of evaluation
data from nearest neighbors, the cloudmodels of performance and
potential risks of candidate services can be obtained according to
Eqs. (11)–(13), shown in Tables 3 and 4. The original evaluation
data can be transformed into CINS, as shown in Table 5.

Because no cost data exists for services in the dataset, assume
that the costs of all services are identical. Considering that in the
MCDM procedure, the cost of services plays a part with the per-
formance of services together, namely performance–cost. Table 3
demonstrates that there is enough diversity in the performance
data of real services, which can ensure the effectiveness of our out-
come. In addition, we assume that service #1 attempts to improve
its performance–cost ratio by offering price discounts. Table 6 dis-
plays the preprocessed evaluation data for service #1 with differ-
ent discounts expressed by CINS.

7.2. Experiment in risk-sensitive service selection mode

Example 1. Assume that a large-scale security company is ready to
purchase a cloud service to store massive amounts of stock trading
data; the service should have fairly high trustworthiness with a
high performance–cost ratio and low potential risks. Considering
that the peak stock trading time is from 9:30 to 11:30 and from
13:00 to 15:00 every working day, the trustworthiness evaluation
of the cloud service is more important during these two time
periods than in other time periods. Based on this analysis of the
user’s requirements, we can define tradeoff coefficients for the
time periods, as shown in Table 7.

According to the approach proposed in Section 6, the entropy
value of the set V = {vij} can be obtained using data from Table 5,
yielding the results shown in Table 8.

Table 9 presents the entropies and weights of the time periods.
Table 10 shows the aggregation values of candidate services in

the six target time periods.
Table 7
Tradeoff coefficients for time periods in Example 1.

F F1 F2 F3 F4 F5 F6

α 0 0.6 0.6 0.6 0.6 0
β 0 0.8 1 1 0.8 0
γ 0 0.8 1 1 0.8 0

Table 8
Entropy values for set V in Example 1.

E(V ) T1 T2 T3 T4 T5 T6

E(V1) 0.5918 0.8295 0.7747 0.7690 0.7606 0.5918
E(V2) 0.5918 0.9230 0.9213 0.8518 0.8099 0.5918
E(V3) 0.5918 0.8991 0.9180 0.9051 0.8974 0.5918
E(V4) 0.5918 0.6960 0.7967 0.7803 0.7606 0.5918
E(V5) 0.5918 0.8276 0.7629 0.7594 0.7575 0.5918
E(V6) 0.5918 0.8306 0.7874 0.7925 0.7618 0.5918
E(V7) 0.5918 0.9100 0.9042 0.8205 0.7997 0.5918
E(V8) 0.5918 0.9133 0.8997 0.8801 0.8670 0.5918

Table 9
Entropies and the weights of time periods in Example 1.

Time periods T1 T2 T3 T4 T5 T6

E(Ti) 1.0000 0.8503 0.8800 0.9247 0.9427 1.0000
W (Ti) 0.0000 0.3721 0.2983 0.1873 0.1423 0.0000

Table 10
Aggregation values of candidate services in Example 1.

Y Aggregation values

y1 ⟨[0.2678, 1.0000], [0.1460, 0.8916], [0.0000, 0.1283]⟩
y2 ⟨[0.4733, 1.0000], [0.0138, 0.4884], [0.0000, 0.0085]⟩
y3 ⟨[0.5017, 1.0000], [0.0187, 0.4634], [0.0000, 0.0109]⟩
y4 ⟨[0.0825, 1.0000], [0.2304, 0.8916], [0.0000, 0.2479]⟩
y5 ⟨[0.2312, 1.0000], [0.1486, 0.8916], [0.0000, 0.1265]⟩
y6 ⟨[0.3091, 1.0000], [0.1281, 0.8916], [0.0000, 0.0979]⟩
y7 ⟨[0.4562, 1.0000], [0.0401, 0.5767], [0.0000, 0.0229]⟩
y8 ⟨[0.4962, 1.0000], [0.0314, 0.5154], [0.0000, 0.0179]⟩

The sort values of candidate services can be calculated using
Eqs. (24)–(26), with the results shown in Table 11.

By comparing the sort values, the ranked list of services is finally
obtained: S3 ≻ S2 ≻ S8 ≻ S7 ≻ S6 ≻ S1 ≻ S5 ≻ S4. In other words,
service #3 is the optimal candidate and will be recommended to
the large-scale security company. The difference degree between
our approach and the baseline is calculated according to Eqs. (28)
and (27)shown in Table 12.

The result demonstrates that the difference degree is much
less than 1.0. What is more important, the top four services in
our services list are identical to the baseline list. In addition, the
difference degree can be further decreased if there is enough
training data used in searching the nearest neighbors of current
user.

7.3. Experiment in performance-cost-sensitive service selection mode

Example 2. Assume that a small- and medium-sized logistics
company is preparing to purchase a cloud service host to deploy
their express delivery query application. The budget is very limited,
and no highly confidential data is involved; therefore, the company
desires the performance–cost ratio of the cloud host service to
be as high as possible, on the premise that the potential risks
are sufficiently low. The anticipated peak visiting time for this
application is from 9:00 to 17:00 every working day. Based on
this analysis of the user’s requirements, we can define tradeoff
coefficients for time periods as shown in Table 13.

The entropy value V can be obtained according to Table 5 and
is shown in Table 14.
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Table 11
Sort values of candidate services in Example 1.

Candidate services S1 S2 S3 S4 S5 S6 S7 S8

d−(yi, A−) 0.1515 0.0097 0.0004 0.2164 0.1578 0.1366 0.0324 0.0133
d+(yi, A+) 0.0450 0.1884 0.1961 0.0199 0.0387 0.0599 0.1641 0.1832
Sort value 0.2288 0.9509 0.9980 0.0843 0.1971 0.3048 0.8351 0.9324
Ranking order 6 2 1 8 7 5 4 3
Table 12
Comparative analysis based on baseline in Example 1.

Candidate services S1 S2 S3 S4 S5 S6 S7 S8

Baseline sort value 0.2159 0.9577 1.0000 0.0000 0.1180 0.0507 0.4391 0.5005
Baseline ranking order 5 2 1 8 6 7 4 3
di 0.2000 0.0000 0.0000 0.0000 0.1667 0.2857 0.0000 0.0000
D 0.6524
Table 13
Tradeoff coefficients for time periods in Example 2.

F F1 F2 F3 F4 F5 F6

α 0.8 0.8 1 1 1 0.8
β 0.6 0.6 0.6 0.6 0.6 0.6
γ 0.6 0.6 0.6 0.6 0.6 0.6

Table 14
Entropy values of set V in Example 2.

E(V ) T1 T2 T3 T4 T5 T6

E(V1) 0.8303 0.8295 0.7747 0.769 0.7606 0.7608
E(V2) 0.9501 0.923 0.9213 0.8518 0.8099 0.9168
E(V3) 0.8601 0.8991 0.918 0.9051 0.8974 0.8153
E(V4) 0.6883 0.696 0.7967 0.7803 0.7606 0.7722
E(V5) 0.8299 0.8276 0.7629 0.7594 0.7575 0.8554
E(V6) 0.8298 0.8306 0.7874 0.7925 0.7618 0.759
E(V7) 0.8324 0.91 0.9042 0.8205 0.7997 0.8162
E(V8) 0.8318 0.9133 0.8997 0.8801 0.867 0.867

Table 15
Entropies and weights of time periods in Example 2.

Time periods T1 T2 T3 T4 T5 T6

E(Ti) 0.8576 0.8503 0.8800 0.9247 0.9427 0.9532
W (Ti) 0.2407 0.2531 0.2029 0.1274 0.0968 0.0792

Table 16
Aggregation values of candidate services in Example 2.

Y Aggregation values

y1 ⟨[0.4821, 1.0000], [0.0957, 0.6000], [0.0000, 0.0819]⟩
y2 ⟨[0.7264, 1.0000], [0.0000, 0.2797], [0.0000, 0.0000]⟩
y3 ⟨[0.7436, 1.0000], [0.0190, 0.3681], [0.0000, 0.0112]⟩
y4 ⟨[0.1063, 1.0000], [0.1948, 0.6000], [0.0000, 0.2219]⟩
y5 ⟨[0.4655, 1.0000], [0.0833, 0.5865], [0.0000, 0.0694]⟩
y6 ⟨[0.5109, 1.0000], [0.0872, 0.6000], [0.0000, 0.0692]⟩
y7 ⟨[0.6912, 1.0000], [0.0331, 0.4461], [0.0000, 0.0181]⟩
y8 ⟨[0.7368, 1.0000], [0.0278, 0.4036], [0.0000, 0.0159]⟩

Table 15 presents the entropies andweights of the time periods.
Table 16 shows the aggregation values of the candidate services

in the six time periods.
Table 17 shows the sort values of the candidate services.
The ranked list of services is obtained by comparing the sort val-

ues: S2 ≻ S3 ≻ S8 ≻ S7 ≻ S6 ≻ S1 ≻ S5 ≻ S4. In other words, ser-
vice #2 is the optimal candidate and will be recommended to the
logistics company. The difference degree between our approach
and the baseline is shown in Table 18. According to Table 18, the
sort order of six services in our ranked list is identical to the base-
line list, including the top four services.
7.4. Experiment in low price competition mode

Example 3. Assume that service #1 adopts a low price strategy
to improve its performance–cost ratio. When service #1 offers
different discounts from 10% to 50%, its performance–cost ratio
will change as shown in Table 6. In this case, we can again utilize
our approach to help the security company in Example 1 and the
logistics company in Example 2 to make their decisions. Table 19
displays the sort values of the candidate services in low price
competitionmode for comparative analysis between our approach
and the baseline.

Table 19 shows that service #1 fails to increase its probability
to be an optimal service or to obtain a distinct advantage,
although it achieves an attractive performance–cost ratio. The
service selection approach based on CINS consistently maintains
the absolute dominance of service #3 for security company and the
advantage of service #2 for logistics company.

7.5. Analysis and discussion

These experiments illustrate the following merits of the
proposed approach:

(1) Support for user preferences regarding time periods improves
consumer satisfaction. Table 5 indicates that the evaluation
data of service #3 in Example 1 is far from outstanding in time
periods T1 and T6 in comparison with the other services, but
service #3 becomes the optimal candidate by relying on its
advantages in time periods T3 and T4. The security company
does not care at all about time periods T1 and T6, while time
periods T3 and T4cover the period of stock exchange.Moreover,
the tradeoff coefficients are set as α < β and α < γ
in time periods T2 ∼ T5 because the security company is
more sensitive to potential risks than to performance–costs.
An accurate analysis of time periods can help the security
company find the most trustworthy candidate service.

(2) Different service selection modes can produce ideal recom-
mendation results. In Example 1’s risk-sensitive service se-
lection mode, the assessment of potential risks plays a more
important role than performance–cost ratio in evaluating can-
didate services, which leads to service #3 being judged as
themost trustworthy candidate service. However, Example 2’s
performance-cost-sensitive service selection mode shows an
entirely different recommendation result, in which the service
#2 is the most trustworthy candidate.

(3) Prevent low-quality services with high performance–cost
ratios from achieving an absolute advantage in competition
with other services. In practice, some service providers adopt
this low-price strategy to improve their performance–cost
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Table 17
Sort values of candidate services in Example 2.

Candidate services S1 S2 S3 S4 S5 S6 S7 S8

d−(yi, A−) 0.1266 0.0029 0.0198 0.2290 0.1229 0.1182 0.0450 0.0291
d+(yi, A−) 0.0791 0.2029 0.1860 0.0233 0.0828 0.0875 0.1607 0.1767
Sort value 0.3847 0.9861 0.9039 0.0924 0.4024 0.4252 0.7812 0.8588
Ranking order 7 1 2 8 6 5 4 3
Table 18
Comparative analysis based on baseline in Example 2.

Candidate services S1 S2 S3 S4 S5 S6 S7 S8

Baseline sort value 0.4931 1.0000 0.9265 0.0000 0.2861 0.2646 0.7250 0.7549
Baseline ranking order 5 1 2 8 6 7 4 3
di 0.4000 0.0000 0.0000 0.0000 0.0000 0.2857 0.0000 0.0000
D 0.6857
Table 19
Comparative analysis in low price competition mode.

Discounts Application
scenarios

Candidate services Ranking order
of S1

Ranking order
in baseline

S1 S2 S3 S4 S5 S6 S7 S8

Security
company

10% 0.2610 0.9509 0.9980 0.0843 0.1972 0.3048 0.8351 0.9324 6 5
20% 0.2716 0.9510 0.9980 0.0844 0.1975 0.3051 0.8352 0.9325 6 5
30% 0.2756 0.9510 0.9980 0.0846 0.1979 0.3055 0.8353 0.9326 6 5
40% 0.2809 0.9510 0.9980 0.0848 0.1984 0.3059 0.8355 0.9327 6 5
50% 0.2883 0.9511 0.9980 0.0850 0.1990 0.3065 0.8357 0.9329 6 5

Logistics
company

10% 0.4461 0.9861 0.9039 0.0925 0.4025 0.4253 0.7812 0.8587 5 5
20% 0.4564 0.9861 0.9038 0.0925 0.4028 0.4255 0.7812 0.8587 5 5
30% 0.4594 0.9861 0.9037 0.0926 0.4032 0.4258 0.7812 0.8587 5 5
40% 0.4634 0.9862 0.9036 0.0928 0.4037 0.4261 0.7812 0.8586 5 5
50% 0.4690 0.9862 0.9034 0.0930 0.4043 0.4266 0.7812 0.8586 5 5
ratio for low-quality services. In our approach, the low-price
strategy can increase the popularity of low-quality services to
some extent, but it does not help these services to dominate
their competition based solely on a malignant price war,
as shown in Table 19. The poor experience quality of a
cloud service in indicators such as efficiency, availability
or information security necessarily gives it high marks in
the assessment of potential risks, which greatly reduces
its probability of being a most trustworthy candidate. For
example, according to Table 19, cloud service #1 has a
fairly high performance–cost ratio; however, its assessment of
potential risks shows very poor results. As a result, service #1
does not earn ideal sort values in Example 3.

(4) The entropy weight measure method for CINS proposed in
this paper can effectively manifest the differences between
candidate services. The larger the entropy of a time period
is, the smaller its weight should be. Although time period
T4 is very important to the security company in Example 1,
the weights assigned to it by our method are much lower
than the weight of time period T2, as shown in Table 9. The
evaluation data of the candidate services in time period T4 are
very similar, such that assigning more weight to it does not
help to identify the differences between candidates and find
the most trustworthy service.

8. Conclusion

In the uncertain cloud computing environment, fluctuating
QoS, flexible service pricing and complicated potential risks have
always presented challenges to trustworthy service selection.
Massive amounts of evaluation data regarding QoS, service cost
and potential risks have created a critical issue in facilitating
users to select trustworthy cloud services with tradeoffs between
performance–costs and potential risks from abundant candidates.
Experiments based on real-world datasets demonstrate that the
time period feature of cloud services can provide a newperspective
to help solve this problemby accurately assessing the performance,
cost and potential risks for cloud services.

This paper proposes a time series analysis approach to select
trustworthy cloud service combined with INS theory, in which
the original evaluation data about the performance–costs and
potential risks of cloud services are preprocessed via cloud
model method and measured with INS. In order to calculate and
compare candidate services while supporting tradeoffs between
performance–costs and potential risks during different time
periods, we propose the CINS theory. We design its calculation
rules and operators, and provide theoretical proofs in support.
To address the problem of selecting trustworthy services with
tradeoffs between performance–costs and potential risks in
multiple time periods, we formulate the question as a MCDM
problem of creating a ranked services list, and we develop a CINS
ranking method to solve the problem. Experiments consisting of
three numerical examples based on an appropriate baseline for
comparative analysis demonstrate that the proposed approach can
work effectively in both the risk-sensitive service selection mode
and the performance-cost-sensitive service selection mode, and it
can also prevent malignant price competition launched by low-
quality services. This paper can provide a strong decision support
approach for time-aware trustworthy service selection problem in
cloud environment.
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