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ABSTRACT 
 
Determining the proper knowledge management strategies is important to 

make sure that the alignment of organizational Procedures and the knowledge 
management-related Information produces effective creation, sharing and utilization 
of knowledge. Data sets in the form of neutrosophic fuzzy values sometimes make 
the decision process very complicated and unstructured. Besides the theory from 
fuzzy sets, vague sets and intuitionistic fuzzysets, neutrosophic fuzzy set is one of the 
methods used to deal with uncertain information and it can provide more information 
than fuzzy sets. The purpose of this research is determining the knowledge 
management strategy of transforming neutrosophic fuzzy values into fuzzy values 
using impreciaion method and techniques in defuzzyfication proposed in the literature 
and to propose a new method to calculate the correlation coefficient between 
neutrosophic fuzzy sets. Numerical illustration is given to support the proposed theory. 
 

Keywords: Vague set, Intuitionistic fuzzy set, Correlation coefficient of neutrosophic 
fuzzy sets. 

 
INTRODUCTION  

 
Fuzzy set theory has long been introduced to handle inexact and imprecise data, since 

in the real world there is vague information about different applications, we can formalize the 
measurements from different sensors to a vague set. In fuzzy set theory, each object u ∈ U is 
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assigned a single real value, called the grade of membership, between zero and one. (Here U 
is a classical set of objects, called the universe of discourse). Gau & Buehrer [1994] point out 
that the drawback of using the single membership value in fuzzy set theory is that the evidence 
for u ∈ U and the evidence against u ∈ U are in fact mixed together. In order to tackle this 
problem, they proposed the notion of Vague Sets (VSs), which allow using interval-based 
membership instead of using point-based membership as in FSs. The interval-based 
membership generalization in VSs is more expressive in capturing vagueness of data. 
However, VSs are shown to be equivalent to that of Intuitionistic Fuzzy Sets (IFSs). For this 
reason, the interesting features for handling vague data that are unique to VSs are largely 
ignored. In this paper, we attempt to make a more detailed comparison between VSs and IFSs 
from various perspectives of algebraic properties, graphical representations and practical 
applications. We find that there are many interesting features of VSs from a data modelling 
point of view. Essentially, due to the fact that a VS corresponds to a more intuitive graphical 
view of data sets, it is much easier to define and visualize the relationship of vague data objects. 
The classical nulls representing incompleteness can be viewed as a special case of a vague set 
and then generalized to vague data. In addition, we show that the notions of crisp and 
imprecision in vague data can be captured by interval relationships. 

Since fuzzy set (FSs) theory was introduced, several new concepts of higher-order FSs 
have been proposed. Among them, intuitionistic fuzzy sets (IFSs), proposed by Atanassov 
(1989), provide a flexible mathematical framework to cope, besides the presence of vagueness, 
with the hesitancy originating from imperfect or imprecise information. IFSs use two 
characteristic functions to express the degree of membership (belongingness) and the degree 
of non-membership (non-belongingness) of elements of the universe to the IFSs. Therefore, 
the idea of using positive and (independently) negative information becomes the core of IFSs. 
This idea is natural in real life human discourse and action, and as an obvious consequence, is 
well-known and widely studied in psychology and other social sciences. In fact, IFSs, interval-
valued fuzzy sets (IVFSs) and vague sets can be viewed as three equivalent generalizations of 
fuzzy sets. However, they are different as IFSs force a user to explicitly consider positive and 
negative information independently. On the other hand, while employing IVFSs, the user’s 
attention is forced on positive information (in an interval) only. So the two concepts, IFSs and 
IVFSs, are different in application.  

 

In the real world there are vaguely specified data values in many applications, such as 
sensor information. Fuzzy set theory has been proposed to handle such vagueness by 
generalizing the notion of membership in a set. Essentially, in a Fuzzy Set (FS) each element 
is associated with a point-value selected from the unit interval [0,1], which is termed the grade 
of membership in the set. A Vague Set (VS), as well as an Intuitionistic Fuzzy Set (IFS), is a 
further generalization of an FS. Instead of using point-based membership as in FSs, interval-
based membership is used in a VS. The interval-based membership in VSs is more expressive 
in capturing vagueness of data. In the literature, the notions of IFSs and VSs are regarded as 
equivalent, in the sense that an IFS is isomorphic to a VS. Furthermore, due to such 
equivalence and IFSs being earlier known as a tradition, the interesting features for handling 
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vague data that are unique to VSs are largely ignored. In this paper, we attempt to make a 
comparison between VSs and IFSs from various perspectives of algebraic properties, graphical 
representations and practical applications. 

Gau & Buehrer (1994) pointed out that this single value combines the evidence for ui 
in U and the evidence against ui in U, without indicating how much there is of each. They also 
pointed out that the single number tells us nothing about its accuracy. Thus they presented the 
concepts of vague sets. They used a truth-membership function tA and false-membership 
function fA to characterize the lower bound on μA. These lower bounds are used to create a 
subinterval on [0, 1], namely [tA(ui), 1−fA(ui)], to generalize the μA (ui) of fuzzy sets, where 
tA(ui) ≤  μA (ui) ≤ 1−fA(ui). For example, let A be a vague set with truth-membership function 
tA and false-membership function fA, respectively. If [tA(ui), 1−fA(ui)] = [0.5, 0.8], then we can 
see that  tA(ui)=0.5; 1 − fA(ui)=0.8; fA(ui)=0.2. It can be interpreted as ,the vote for resolution 
is 5 in favor, 2 against, and 3 abstentions. 

The contributions in VSs and IFSs, which has so far been done in the literature only 
by few authors (Gau & Buehrer, 1994), which leads to the undermining of the development of 
VSs. Second, the discussion of similarity measures for vague sets. Third, transformation of 
vague sets into Fuzzy sets using diverse techniques (Liu et al., 2008). Fourth, numerical 
illustration for transforming vague sets into fuzzy sets and fifth, proposing a new method for 
correlation coefficient for vague sets. They (2008) proposed different methods for 
transforming vague sets into fuzzy sets. Some of them are given below: 
Chiang & Lin, (1999), Kao & Liu, (2002), Park et al., (2009), Robinson & Amirtharaj, (2011, 
2012, 2012), and Power (2013) proposed correlation coefficients for different applications of 
decision making problems. In the following we present a new approach of correlation 
coefficient for vague sets. 
 Chiang & Lin (1999), Kao & Liu, (2002), Park et al., (2009), Robinson & Amirtharaj, 
and (2011, 2012, 2013) proposed correlation coefficients for different applications of decision 
making problems. In the following we present a new approach of correlation coefficient for 
vague sets. 
 

SECTION 2 – DEFINITIONS AND PRELIMINARIES  
 

Definition 2.1: (Fuzzy Set): A fuzzy set  T on a set U is {(u, T(u): u in U} where T: U[0, 1].  
 

Definition 2.2: (Vague Set) {VS} ((Lu & Ng, 2005;2009): A vague set V in a set U is {u, 
T(u), F(u): u in U} where U is characterized by a true membership function T, and a false 
membership function F such that T: U  [0, 1] and F: U  [0, 1] with 0  T(u) + F(u)  1. 
Here  T(u) is a  lower bound on the grade of membership of u derived from the evidence for 
u, and F(u) is a lower bound on the grade of membership of the negation of u derived from the 
evidence against u. 
 

Definition 2.3: (Intuitionistic fuzzy set) {IFS}: A intuitionistic fuzzy set S in a set U is {u, 
T(u), F(u): u in U} where U is characterized by a membership function T, and a non-
membership function F such that T: U  [0, 1] and F: U  [0, 1] with 0  T(u) + F(u)  1.  
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Definition 2.4: A neutrosophic fuzzy set A on the universe of discourse X characterized by a 
truth membership function TA(x), an indeterminacy function IA(x) and a falsity membership 
function FA(x) is defined as A = { < x, TA(x), IA(x), FA(x) > : x  X }, where TA , IA ,FA : X  
[0. 1] and  0  TA(x)  1; 0  IA(x)  1;  0  FA(x)  1, for all x  X.  
 

Operations in neutrosophic fuzzy sets 
 

Definition 2.5:  Let A = (TA, IA, FA) and B = (TB, IB, FB) be two neutrosophic fuzzy sets on an 
universe set X. The following definitions are defined.  
(a). A  B = {<x,  TA(x)  TB(x), IA(x)  IB(x), FA(x)  FB(x) > : x  X }; 
(b). A  B = {<x,  TA(x)  TB(x), IA(x)  IB(x), FA(x)  FB(x) > : x  X }; 
(c). A(x) = {<x,  1 - TA(x)  1- IA(x), 1 - FA(x) > : x  X }; 
(d). (A /B) (x) =  {<x,  TA(x)  TB(x), IA(x) . IB(x), FA(x)  FB(x) > : x  X } 
(e). A  B  if   TA(x)  TB(x),  IA(x)  IB(x),  and   FA(x)  FB(x) 
(f). 0N =  { (x, 0, 0, 1): x in X};   1N =  { (x, 1, 0, 0): x in X};    
 

Results 2.6: The following properties are hold: 
(i). 0N  A  1A.  C(0N) = 1A; C(1N) = 0A; (ii).    A  B  iff  C(B)  C(A); (iii).  C C(A) = A; 
(iv). C ( A  B) = C (A)   C(B); (v). C ( A  B) = C (A)   C(B) 
(vi). A  B and E  D  iff  A  E   B  D;  (vii). A  B and E  D  iff  A  E   B  D; 
(viii). A  B and A  E  iff  A   B  E,  and  A   B  E;  
(ix). A  E and B  E  iff  A  B  E,  and  A    B  E; (x). A  B and B  D  implies  A   D,   
 

Properties 2.7:  For A, B  NFS(X), (i). 0  (1/3n) C (A, B)  1; (ii). C(A, B) = C(B, A);                                      
(iii). C(A, B) =1 if A = B.  
 
SECTION 3- TRANSFORMING NEUTROSOPHIC FUZZY VALUES INTO FUZZY 
VALUES 
 

There are two methods for transforming neutrosophic fuzzy values (sets) into fuzzy 
values (sets). 
 

Method I (Imprecision membership): Any neutrosophic fuzzy set A = (TA, IA, FA)  
containing neutrosophic fuzzy values are converted into intuitionistic fuzzy values or vague 
values as (A) = (TA, fA) where fA  is calculated the formula mentioned below which is called 
as Impression membership method.  
 

          DA = FA + [1-FA – IA] [ 1- IA] / FA + IA}    if FA = 0; 
           =  FA + [1-FA – IA] [FA] / [FA + IA]    if 0 < FA   0.5; 
           =  FA + [1-FA – IA] [0.5 + (FA-0.5) / (FA + IA) ]     if 0.5 < FA   1. 
 

Method II (Defuzzyfication): After Method 1 (Median membership),  intuitionistic (vague) 
fuzzy values of the form (A) = (TA, fA) are converted into fuzzy set containing fuzzy values 
as   < D(A)> = < TA / (TA + fA) >. There are some unreasonable problems for some cases when 
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we use method two to transform vague sets into fuzzy sets. For example vague value [0, 0.2] 
in this voting model, there are 0 votes in favor, 8 against. The abstention persons voting attitude 
tends to vote against instead of in favor, since there are more negative voter than affirmative 
votes. However, the abstention person in favor voting attitude in this model is 0. It means that 
an abstentions person voting attitude is absolutely against obviously, it is unreasonable. For 
this reason, we go to new transforming method namely method three. 
 
SECTION 4 - PROPOSED MODEL FOR CORRELATION COEFFICIENT BETWEEN 
NEUTROSOPHIC FUZZY SETS  
 
Algorithm 4.1:  The required is obtained through the following algorithm having 8 steps  
Step 1: Finite Neutrosophic fuzzy values are formed into a neutrosophic fuzzy decision s x t-
matrix R having s rows and t columns, such that s neutrosophic fuzzy attributes (each row) 
corresponding to t neutrosophic fuzzy alternatives (each column). There are n number of such 
fuzzy decision matrices (Ai) [ i = 1 to n] are assumed.  
Step 2; The above fuzzy matrix Ai is changed into a single fuzzy matric (Ai) having two 
membership functions in which TAi is unchanged , and fAi is found from IAi, and FAi using 
impression membership (Method 3). 
Step 3: After step 2, and for each i = 1 to n, the single fuzzy decision matrix (Ai) is defuzzyfied 
as a single fuzzy decision matrix D(Ai) having only on membership by the method 2.  
Step 4:  For every Ai ( i = 1 to n), the energy of Ai is found from the formula  
ENFS (Ai) =   [ ∑ ஺೔ܦ

ଶ(ݔ)	௡
௜ୀଵ . 

Step 5: The covariance CNFS (Ai, Aj) is derived  [ ∑ ௡	(ݔ)஺ೕܦ(ݔ)஺೔ܦ	]
௜ୀଵ . 

Step 6:     The correlation coefficient RNFS is calculated by equation RNFS (Ai, Aj) = 
େಿಷೄ	(஺೔,஺ೕ)

ට୉ಿಷೄ	((஺೔)		.୉ಿಷೄ	൫஺ೕ൯
	. 

Step 7: Ranking the correlation coefficients. 
Step 8: Select the best pair. 
Example 4.2: The above algorithm is investigated in the explanations stated below:  
Let us take the initial assumption as given below: 
Step 1: Five  Neutrosophic fuzzy values (rij) are formed into a neutrosophic fuzzy decision 4 
x 4-matrix R having 4 rows and 4 columns, such that 4 neutrosophic fuzzy attributes (each 
row) corresponding to 4 neutrosophic fuzzy alternatives (each column).  They are as follows: 

R1   = ൦

< 0.25,0.54,0.8 > < 0.3,0.4,0.9 >
< 0.6,0.5,0.5 > < 0.6,0.2,0.3 >				

< 0.7,0.35,0.5 > < 0.9,0.2,0.8 >
< 0.2,0.4,0.9 > < 0.6,0.23,0.7 >

< 0.3,0.45,0.9 > < 0.7,0.1,0.4 >
< 0.45,0.38,0.27 > < 0.37,0.68,0.16 >				

< 0.6,0.5,0.5 > < 0.4,0.2,0.9 >
< 0.6,0.25,0.3 > < 0.1,0.4,0.8 >

൪ 

R2   = ൦

< 0.1,0.3,0.7 > < 0.6,0.6,0.5 >
< 0.3,0.55,0.37 > < 0.75,0.42,0.1 >				

< 0.4,0.2,0.1 > < 0.3,0.7,0.6 >
< 0.32,0.67,0.56 > < 0.35,0.56,0.72 >

< 0.5,0.4,0.32 > < 0.65,0.25,0.32 >
< 0.27,0.9,0.81 > < 0.31,0.4,0.6 > 				 < 0.6,0.3,0.1 > < 0.75,0.25,0.55 >

< 0.75,0.65,0.55 > < 0.3,0.7,0.9 >

൪ 
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R3   = ൦

< 0.32,0.47,0.6 > < 0.9,0.1,0.3 >
< 0.12,0.32,0.52 > < 0.17,0.81,0.9 >				

< 0.6,0.4,0.5 > < 0.3,0.5,0.7 >
< 0.5,0.3,0.1 > < 0.45,0.65,0.27 >

< 0.50,0.6,0.23 > < 0.56,0.52,0.23 >
< 0.54,0.83,0.72 > < 0.73,0.86,0.61 >				

< 0.3,0.6,0.1 > < 0.57,0.52,0.55 >
< 0.5,0.52,0.4 > < 0.6,0.4,0.2 >

൪ 

R4   = ൦

< 0.7,0.3,0.1 > < 0.5,0.4,0.4 >
< 0.3,0.56,0.73 > < 0.57,0.24,0.1 >				

< 0.2,0.1,0.6 > < 0.7,0.9,0.6 >
< 0.23,0.76,0.65 > < 0.53,0.65,0.27 >

< 0.32,0.32,0.6 > < 0.56,0.52,0.32 >
< 0.72,0.5,0.18 > < 0.13,0.6,0.4 > 				 < 0.1,0.3,0.9 > < 0.57,0.52,0.55 >

< 0.55,0.56,0.78 > < 0.7,0.1,0.6 >

൪ 

R5   = ൦

< 0.52,0.45,0.1 > < 0.57,0.37,0.1 >
< 0.3,0.6,0.7 > < 0.7,0.4,0.1 > 				< 0.76,0.65,0.23 > < 0.57,0.52,0.55 >

< 0.3,0.7,0.6 > < 0.5,0.4,0.6 >
< 0.2,0.3,0.2 > < 0.6,0.2,0.5 >

< 0.27,0.5,0.81 > < 0.75,0.25,0.32 >				
< 0.1,0.6,0.65 > < 0.3,0.9,0.7 >

< 0.32,0.67,0.56 > < 0.35,0.56,0.72 >

൪ 

 
Step 2: Using Method 1, the neutrosophic fuzzy values are converted into intuitionistic or 
vague fuzzy values as follows:  

R1 = ൦

< 0.25,0.554 > < 0.3,0.658 >
< 0.6,0.5 > < 0.6,0.6 > 				< 0.7,0.588 > < 0.9,0.8 >

< 0.2,0.658 > < 0.6,0.750 >
< 0.3,0.621 > < 0.7,0.8 >

< 0.45,0.415 > < 0.37,0.191 >				
< 0.6,0.5 > < 0.4,0.814 >

< 0.6,0.545 > < 0.1,0.65 >

൪ 

R2   = ൦

< 0.1,0.7 > < 0.6,0.455 >
< 0.3,0.402 > < 0.75,0.192 >				

< 0.4,0.333 > < 0.3,0.427 >
< 0.32,0.434 > < 0.35,0.532 >

< 0.5,0.444 > < 0.65,0.561 >
< 0.27,0.316 > < 0.31,0.6 > 				 < 0.6,0.25 > < 0.75,0.663 >

< 0.75,0.442 > < 0.3,0.45 >

൪ 

R3  = ൦

< 0.32,0.559 > < 0.9,0.75 >
< 0.12,0.604 > < 0.17,0.379 >				

< 0.6,0.555 > < 0.3,0.567 >
< 0.5,025 > < 0.45,0.293 >

< 0.50,0.277 > < 0.56,0.271 >
< 0.54,0.370 > < 0.73,0.40 > 				< 0.3,0.143 > < 0.57,0.512 >

< 0.5,0.435 > < 0.6,0.333 >

൪ 

R4   = ൦

< 0.7,0.25 > < 0.5,0.5 >
< 0.3,0.471 > < 0.57,0.294 >				

< 0.2,0.793 > < 0.7,0.317 >
< 0.23,0.390 > < 0.53,0.293 >

< 0.32,0.649 > < 0.56,0.381 >
< 0.72,0.265 > < 0.13,0.4 > 				 < 0.1,0.733 > < 0.57,0.512 >

< 0.55,0.474 > < 0.7,0.793 >

൪ 

R5 = ൦

< 0.52,0.182 > < 0.57,0.213 >
< 0.3,0.504 > < 0.7,0.2 > 				< 0.76,0.261 > < 0.57,0.512 >

< 0.3,0.430 > < 0.5,0.6 >
< 0.2,0.4 > < 0.6,0.714 >

< 0.27,0.582 > < 0.75,0.561 >				
< 0.1,0.495 > < 0.3,0.325 >

< 0.32,0.415 > < 0.35,0.532 >

൪ 

 
Step 3: Using Model II, the following are defuzzyfied from the given NFSs. 

R1 = ൦
< 0.311 > < 0.313 >
< 0.545 > < 0.5 > 				< 0.544 > < 0.529 >

< 0.233 > < 0.444 >
< 0.326 > < 0.467 >
< 0.520 > < 0.660 >				

< 0.545 > < 0.330 >
< 0.524 > < 0.133 >

൪ 

R2   = ൦
< 0.125 > < 0.513 >
< 0.427 > < 0.796 >				

< 0.382 > < 0.413 >
< 0.424 > < 0.467 >

< 0.53 > < 0.537 >
< 0.461 > < 0.341 >				

< 0.706 > < 0.524 >
< 0.657 > < 0.4 >

൪ 
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R3  = ൦
< 0.364 > < 0.545 >
< 0.165 > < 0.31 > 				< 0.519 > < 0.346 >

< 0.667 > < 0.606 >
< 0.644 > < 0.675 >
< 0.593 > < 0.646 >				

< 0.677 > < 0.529 >
< 0.529 > < 0.643 >

൪ 

R4   = ൦
< 0.737 > < 0.5 >
< 0.389 > < 0.658 >				

< 0.201 > < 0.688 >
< 0.371 > < 0.644 >

< 0.330 > < 0.595 >
< 0.731 > < 0.302 >				

< 0.120 > < 0.527 >
< 0.537 > < 0.469 >

൪ 

R5 = ൦
< 0.741 > < 0.728 >
< 0.373 > < 0.778 >				

< 0.744 > < 0.527 >
< 0.411 > < 0.455 >

< 0.333 > < 0.457 >
< 0.316 > < 0.551 >				

< 0.168 > < 0.48 >
< 0.435 > < 0.397 >

൪ 

Step 4: Energy for fuzzy set is found.  
Energy (R1) = 3.297472; Energy (R2) = 4.071829; Energy (R3) = 4.790154 
Energy (R4) = 4.233525; Energy (R5) = 4.359342. 
 

Step 5: Covariance for fuzzy sets are calculated.  
Cov (R1, R2) = 3.406081;  Cov (R1, R3) = 3.582698 
Cov (R1, R4) = 3.278317;  Cov (R1, R4) = 3.408115. 
 

Step 6: Now the correlation coefficients between NFSs are derived. 
Correlation coefficient (R1, R2) = 3.406081 / ඥ(3.297472)(4.071829) =  0.929543349. 
Correlation coefficient (R1, R3) = 3.582698 / ඥ(3.297472)(4.790154) =  0.90145677 
Correlation coefficient (R1, R4) = 3.278317 / ඥ(3.297472)(4.233525) =  0.877423623 
Correlation coefficient (R1, R5) = 3.408115 / ඥ(3.297472)(4.359342) = 0. 89890379. 
 

Step 7: R1 and R2 are highly correlated. 
 
CONCLUSION  
 

The general models for transforming neutrosophic fuzzy sets into fuzzy sets are also 
discussed and the validity of the transformation models is analysed. In this paper an approach 
to find correlation coefficient in the situations where the attribute values are characterized by 
neutrosophic fuzzy values is presented.. From this study, it can be seen that correlation 
coefficient for neutrosophic fuzzy sets needs to be exclusively defined using its special 
properties, even though in the literature it is believed that NFSs are indeed VSs / IFSs. It is 
also seen that correlation coefficient of NFSs shows a greater variation from the correlation 
coefficient of the FSs derived from the same NFSs, thereby giving more credits for the 
correlation of NFSs defined exclusively. In future, the relationship between correlation 
coefficient of neutrosophic fuzzy sets can be studied more exclusively.  This proposed 
approach provides us an effective and practical way to deal when the information about 
attribute weights is partially known (vague values) and has greater applications in decision 
making problems. 
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