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Abstract: In this paper, to combine single valued neutrosophic sets (SVNSs) with covering-based
rough sets, we propose two types of single valued neutrosophic (SVN) covering rough set models.
Furthermore, a corresponding application to the problem of decision making is presented. Firstly,
the notion of SVN β-covering approximation space is proposed, and some concepts and properties
in it are investigated. Secondly, based on SVN β-covering approximation spaces, two types of SVN
covering rough set models are proposed. Then, some properties and the matrix representations of the
newly defined SVN covering approximation operators are investigated. Finally, we propose a novel
method to decision making (DM) problems based on one of the SVN covering rough set models.
Moreover, the proposed DM method is compared with other methods in an example.
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1. Introduction

Rough set theory, as a a tool to deal with various types of data in data mining, was proposed
by Pawlak [1,2] in 1982. Since then, rough set theory has been extended to generalized rough sets
based on other notions such as binary relations, neighborhood systems and coverings.

Covering-based rough sets [3–5] were proposed to deal with the type of covering data.
In application, they have been applied to knowledge reduction [6,7], decision rule synthesis [8,9],
and other fields [10–12]. In theory, covering-based rough set theory has been connected with matroid
theory [13–16], lattice theory [17,18] and fuzzy set theory [19–22].

Zadeh’s fuzzy set theory [23] addresses the problem of how to understand and manipulate
imperfect knowledge. It has been used in various applications [24–27]. Recent investigations have
attracted more attention on combining covering-based rough set and fuzzy set theories. There are
many fuzzy covering rough set models proposed by researchers, such as Ma [28] and Yang et al. [20].

Wang et al. [29] presented single valued neutrosophic sets (SVNSs) which can be regarded as
an extension of IFSs [30]. Neutrosophic sets and rough sets both can deal with partial and uncertain
information. Therefore, it is necessary to combine them. Recently, Mondal and Pramanik [31] presented
the concept of rough neutrosophic set. Yang et al. [32] presented a SVN rough set model based on
SVN relations. However, SVNSs and covering-based rough sets have not been combined up to now.
In this paper, we present two types of SVN covering rough set models. This new combination is a
bridge, linking SVNSs and covering-based rough sets.

As we know, the multiple criteria decision making (MCDM) is an important tool to deal with more
complicated problems in our real world [33,34]. There are many MCDM methods presented based on
different problems or theories. For example, Liu et al. [35] dealt with the challenges of many criteria in
the MCDM problem and decision makers with heterogeneous risk preferences. Watróbski et al. [36]
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proposed a framework for selecting suitable MCDA methods for a particular decision situation.
Faizi et al. [37,38] presented an extension of the MCDM method based on hesitant fuzzy theory.
Recently, many researchers have studied decision making (DM) problems by rough set models [39–42].
For example, Zhan et al. [39] applied a type of soft rough model to DM problems. Yang et al. [32]
presented a method for DM problems under a type of SVN rough set model. By investigation,
we have observed that no one has applied SVN covering rough set models to DM problems. Therefore,
we construct the covering SVN decision information systems according to the characterizations of
DM problems. Then, we present a novel method to DM problems under one of the SVN covering
rough set models. Moreover, the proposed decision making method is compared with other methods,
which were presented by Yang et al. [32], Liu [43] and Ye [44].

The rest of this paper is organized as follows. Section 2 reviews some fundamental definitions
about covering-based rough sets and SVNSs. In Section 3, some notions and properties in SVN
β-covering approximation space are studied. In Section 4, we present two types of SVN covering rough
set models, based on the SVN β-neighborhoods and the β-neighborhoods. In Section 5, some new
matrices and matrix operations are presented. Based on this, the matrix representations of the SVN
approximation operators are shown. In Section 6, a novel method to decision making (DM) problems
under one of the SVN covering rough set models is proposed. Moreover, the proposed DM method is
compared with other methods. This paper is concluded and further work is indicated in Section 7.

2. Basic Definitions

Suppose U is a nonempty and finite set called universe.

Definition 1 (Covering [45,46]). Let U be a universe and C a family of subsets of U. If none of subsets in C is
empty and

⋃
C = U, then C is called a covering of U.

The pair (U, C) is called a covering approximation space.

Definition 2 (Single valued neutrosophic set [29]). Let U be a nonempty fixed set. A single valued
neutrosophic set (SVNS) A in U is defined as an object of the following form:

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ U},

where TA(x) : U → [0, 1] is a truth-membership function, IA(x) : U → [0, 1] is an indeterminacy-membership
function and FA(x) : U → [0, 1] is a falsity-membership function for any x ∈ U. They satisfy 0 ≤ TA(x) +
IA(x) + FA(x) ≤ 3 for all x ∈ U. The family of all single valued neutrosophic sets in U is denoted by SVN(U).
For convenience, a SVN number is represented by α = 〈a, b, c〉, where a, b, c ∈ [0, 1] and a + b + c ≤ 3.

Specially, for two SVN numbers α = 〈a, b, c〉 and β = 〈d, e, f 〉, α ≤ β ⇔ a ≤ d, b ≥ e and c ≥ f .
Some operations on SVN(U) are listed as follows [29,32]: for any A, B ∈ SVN(U),

(1) A ⊆ B iff TA(x) ≤ TB(x), IB(x) ≤ IA(x) and FB(x) ≤ FA(x) for all x ∈ U.
(2) A = B iff A ⊆ B and B ⊆ A.
(3) A ∩ B = {〈x, TA(x) ∧ TB(x), IA(x) ∨ IB(x), FA(x) ∨ FB(x)〉 : x ∈ U}.
(4) A ∪ B = {〈x, TA(x) ∨ TB(x), IA(x) ∧ IB(x), FA(x) ∧ FB(x)〉 : x ∈ U}.
(5) A′ = {〈x, FA(x), 1− IA(x), TA(x)〉 : x ∈ U}.
(6) A⊕ B = {〈x, TA(x) + TB(x)− TA(x) · TB(x), IA(x) · IB(x), FA(x) · FB(x)〉 : x ∈ U}.

3. Single Valued Neutrosophic β-Covering Approximation Space

In this section, we present the notion of SVN β-covering approximation space. There are two
basic concepts in this new approximation space: SVN β-covering and SVN β-neighborhood. Then,
some of their properties are studied.
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Definition 3. Let U be a universe and SVN(U) be the SVN power set of U. For a SVN number β = 〈a, b, c〉,
we call Ĉ = {C1, C2, · · · , Cm}, with Ci ∈ SVN(U)(i = 1, 2, ..., m), a SVN β-covering of U, if for all x ∈ U,
Ci ∈ Ĉ exists such that Ci(x) ≥ β. We also call (U, Ĉ) a SVN β-covering approximation space.

Definition 4. Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cm}. For any x ∈ U, the SVN
β-neighborhood Ñβ

x of x induced by Ĉ can be defined as:

Ñβ
x = ∩{Ci ∈ Ĉ : Ci(x) ≥ β}. (1)

Note that Ci(x) is a SVN number 〈TCi (x), ICi (x), FCi (x)〉 in Definitions 3 and 4. Hence, Ci(x) ≥ β

means TCi (x) ≥ a, ICi (x) ≤ b and FCi (x) ≤ c where SVN number β = 〈a, b, c〉.

Remark 1. Let Ĉ be a SVN β-covering of U, β = 〈a, b, c〉 and Ĉ = {C1, C2, . . . , Cm}. For any x ∈ U,

Ñβ
x = ∩{Ci ∈ Ĉ : TCi (x) ≥ a, ICi (x) ≤ b, FCi (x) ≤ c}. (2)

Example 1. Let U = {x1, x2, x3, x4, x5}, Ĉ = {C1, C2, C3, C4} and β = 〈0.5, 0.3, 0.8〉. We can see that Ĉ is
a SVN β-covering of U in Table 1.

Table 1. The tabular representation of single valued neutrosophic (SVN) β-covering Ĉ.

U C1 C2 C3 C4

x1 〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
x2 〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
x3 〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
x4 〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
x5 〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉

Then,

Ñβ
x1 = C1 ∩ C2, Ñβ

x2 = C1 ∩ C2 ∩ C4, Ñβ
x3 = C3 ∩ C4, Ñβ

x4 = C1 ∩ C4, Ñβ
x5 = C2 ∩ C3 ∩ C4.

Hence, all SVN β-neighborhoods are shown in Table 2.

Table 2. The tabular representation of Ñβ
xk (k = 1, 2, 3, 4, 5).

Ñβ
xk x1 x2 x3 x4 x5

Ñβ
x1 〈0.6, 0.2, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉

Ñβ
x2 〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉

Ñβ
x3 〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.5, 0.3, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉

Ñβ
x4 〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.7〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.3, 0.7〉 〈0.3, 0.2, 0.6〉

Ñβ
x5 〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.3, 0.6, 0.7〉 〈0.6, 0.3, 0.5〉

In a SVN β-covering approximation space (U, Ĉ), we present the following properties of the SVN
β-neighborhood.

Theorem 1. Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then, the following statements hold:

(1) Ñβ
x(x) ≥ β for each x ∈ U.

(2) ∀x, y, z ∈ U, if Ñβ
x(y) ≥ β, Ñβ

y (z) ≥ β, then Ñβ
x(z) ≥ β.

(3) For two SVN numbers β1, β2, if β1 ≤ β2 ≤ β, then Ñβ1
x ⊆ Ñβ2

x for all x ∈ U.
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Proof.

(1) For any x ∈ U, Ñβ
x(x) = (

⋂
Ci(x)≥β

Ci)(x) =
∧

Ci(x)≥β

Ci(x) ≥ β.

(2) Let I = {1, 2, · · · , m}. Since Ñβ
x(y) ≥ β, for any i ∈ I, if Ci(x) ≥ β, then Ci(y) ≥ β. Since Ñβ

y (z) ≥ β,
for any i ∈ I, Ci(z) ≥ β when Ci(y) ≥ β. Then, for any i ∈ I, Ci(x) ≥ β implies Ci(z) ≥ β.
Therefore, Ñβ

x(z) ≥ β.
(3) For all x ∈ U, since β1 ≤ β2 ≤ β, {Ci ∈ Ĉ : Ci(x) ≥ β1} ⊇ {Ci ∈ Ĉ : Ci(x) ≥ β2}. Hence,

Ñβ1
x = ∩{Ci ∈ Ĉ : Ci(x) ≥ β1} ⊆ ∩{Ci ∈ Ĉ : Ci(x) ≥ β2} = Ñβ2

x for all x ∈ U.

Proposition 1. Let Ĉ be a SVN β-covering of U. For any x, y ∈ U, Ñβ
x(y) ≥ β if and only if Ñβ

y ⊆ Ñβ
x .

Proof. Suppose the SVN number β = 〈a, b, c〉.
(⇒): Since Ñβ

x(y) ≥ β,

TÑβ
x
(y) = T ⋂

TCi
(x)≥a

ICi
(x)≤b

FCi
(x)≤c

Ci (y) =
∧

TCi
(x)≥a

ICi
(x)≤b

FCi
(x)≤c

TCi (y) ≥ a, IÑβ
x
(y) = I ⋂

TCi
(x)≥a

ICi
(x)≤c

FCi
(x)≤b

Ci (y) =
∨

TCi
(x)≥a

ICi
(x)≤b

FCi
(x)≤c

ICi (y) ≤ b,

and

FÑβ
x
(y) = F ⋂

TCi
(x)≥a

ICi
(x)≤c

FCi
(x)≤b

Ci (y) =
∨

TCi
(x)≥a

ICi
(x)≤b

FCi
(x)≤c

FCi (y) ≤ c.

Then,

{Ci ∈ Ĉ : TCi (x) ≥ a, ICi (x) ≤ b, FCi (x) ≤ c} ⊆ {Ci ∈ Ĉ : TCi (y) ≥ a, ICi (y) ≤ b, FCi (y) ≤ c}.

Therefore, for each z ∈ U,

TÑβ
x
(z) =

∧
TCi

(x)≥a

ICi
(x)≤b

FCi
(x)≤c

TCi (z) ≥
∧

TCi
(y)≥a

ICi
(y)≤b

FCi
(y)≤c

TCi (z) = TÑβ
y
(z),

IÑβ
x
(z) =

∨
TCi

(x)≥a

ICi
(x)≤b

FCi
(x)≤c

ICi (z) ≤
∨

TCi
(y)≥a

ICi
(y)≤b

FCi
(y)≤c

ICi (z) = IÑβ
y
(z),

FÑβ
x
(z) =

∨
TCi

(x)≥a

ICi
(x)≤b

FCi
(x)≤c

FCi (z) ≤
∨

TCi
(y)≥a

ICi
(y)≤b

FCi
(y)≤c

FCi (z) = FÑβ
y
(z).

Hence, Ñβ
y ⊆ Ñβ

x .

(⇐): For any x, y ∈ U, since Ñβ
y ⊆ Ñβ

x ,

TÑβ
x
(y) ≥ TÑβ

y
(y) ≥ a, IÑβ

x
(y) ≤ IÑβ

y
(y) ≤ b and FÑβ

x
(y) ≤ F

Ñβ
y
(y) ≤ c.

Therefore, Ñβ
x(y) ≥ β.

The notion of SVN β-neighborhood in the SVN β-covering approximation space in the
following definition.
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Definition 5. Let (U, Ĉ) be a SVN β-covering approximation space and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U,

we define the β-neighborhood Nβ
x of x as:

Nβ
x = {y ∈ U : Ñβ

x(y) ≥ β}. (3)

Note that Ñβ
x(y) is a SVN number 〈TÑβ

x
(y), IÑβ

x
(y), FÑβ

x
(y)〉 in Definition 5.

Remark 2. Let Ĉ be a SVN β-covering of U, β = 〈a, b, c〉 and Ĉ = {C1, C2, . . . , Cm}. For each x ∈ U,

Nβ
x = {y ∈ U : TÑβ

x
(y) ≥ a, IÑβ

x
(y) ≤ b, FÑβ

x
(y) ≤ c}. (4)

Example 2 (Continued from Example 1). Let β = 〈0.5, 0.3, 0.8〉, then we have

Nβ
x1

= {x1, x2}, N
β
x2

= {x2}, N
β
x3

= {x3, x5},N
β
x4

= {x2, x4}, N
β
x5

= {x5}.

Some properties of the β-neighborhood in a SVN β-covering of U are presented in Theorem 2 and
Proposition 2.

Theorem 2. Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then, the following statements hold:

(1) x ∈ Nβ
x for each x ∈ U.

(2) ∀x, y, z ∈ U, if x ∈ Nβ
y , y ∈ Nβ

z , then x ∈ Nβ
z .

Proof.

(1) According to Theorem 1 and Definition 5, it is straightforward.

(2) For any x, y, z ∈ U, x ∈ Nβ
y ⇔ Ñβ

y (x) ≥ β ⇔ Ñβ
x ⊆ Ñβ

y , and y ∈ Nβ
z ⇔ Ñβ

z (y) ≥ β ⇔ Ñβ
y ⊆ Ñβ

z .

Hence, Ñβ
x ⊆ Ñβ

z . By Proposition 1, we have Ñβ
z (x) ≥ β, i.e., x ∈ Nβ

z .

Proposition 2. Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cm}. Then, for all x ∈ U, x ∈ Nβ
y

if and only if Nβ
x ⊆ Nβ

y .

Proof. (⇒): For any z ∈ Nβ
x , we know Ñβ

x(z) ≥ β. Since x ∈ Nβ
y , Ñβ

y (x) ≥ β. According to (2) in

Theorem 1, we have Ñβ
y (z) ≥ β. Hence, z ∈ Nβ

y . Therefore, Nβ
x ⊆ Nβ

y .

(⇐): According to (1) in Theorem 2, x ∈ Nβ
x for all x ∈ U. Since Nβ

x ⊆ Nβ
y , x ∈ Nβ

y .

The relationship between SVN β-neighborhoods and β-neighborhoods is presented in the
following proposition.

Proposition 3. Let Ĉ be a SVN β-covering of U. For any x, y ∈ U, Ñβ
x ⊆ Ñβ

y if and only if Nβ
x ⊆ Nβ

y .

Proof. According to Propositions 1 and 2, it is straightforward.

4. Two Types of Single Valued Neutrosophic Covering Rough Set Models

In this section, we propose two types of SVN covering rough set models on basis of the SVN
β-neighborhoods and the β-neighborhoods, respectively. Then, we investigate the properties of the
defined lower and upper approximation operators.
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Definition 6. Let (U, Ĉ) be a SVN β-covering approximation space. For each A ∈ SVN(U) where
A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ U}, we define the single valued neutrosophic (SVN) covering upper
approximation C̃(A) and lower approximation C

∼
(A) of A as:

C̃(A) = {〈x,∨y∈U [TÑβ
x
(y) ∧ TA(y)],∨y∈U [IÑβ

x
(y) ∧ IA(y)],∧y∈U [FÑβ

x
(y) ∨ FA(y)]〉 : x ∈ U},

C
∼
(A) = {〈x,∧y∈U [FÑβ

x
(y) ∨ TA(y)],∧y∈U [(1− IÑβ

x
(y)) ∨ IA(y)],∨y∈U [TÑβ

x
(y) ∧ FA(y)]〉 : x ∈ U}. (5)

If C̃(A) 6= C
∼
(A), then A is called the first type of SVN covering rough set.

Example 3 (Continued from Example 1). Let β = 〈0.5, 0.3, 0.8〉, A = (0.6,0.3,0.5)
x1

+ (0.4,0.5,0.1)
x2

+
(0.3,0.2,0.6)

x3
+ (0.5,0.3,0.4)

x4
+ (0.7,0.2,0.3)

x5
. Then,

C̃(A) = {〈x1, 0.6, 0.3, 0.5〉, 〈x2, 0.4, 0.3, 0.6〉, 〈x3, 0.6, 0.5, 0.5〉, 〈x4, 0.5, 0.3, 0.6〉, 〈x5, 0.6, 0.5, 0.5〉},

C
∼
(A) = {〈x1, 0.6, 0.5, 0.5〉, 〈x2, 0.6, 0.5, 0.4〉, 〈x3, 0.4, 0.4, 0.5〉, 〈x4, 0.4, 0.5, 0.4〉, 〈x5, 0.6, 0.4, 0.3〉}.

Some basic properties of the SVN covering upper and lower approximation operators are
proposed in the following proposition.

Proposition 4. Let Ĉ be a SVN β-covering of U. Then, the SVN covering upper and lower approximation
operators in Definition 6 satisfy the following properties: for all A, B ∈ SVN(U),

(1) C̃(A′) = (C
∼
(A))′, C

∼
(A′) = (C̃(A))′.

(2) If A ⊆ B, then C
∼
(A) ⊆ C

∼
(B), C̃(A) ⊆ C̃(B).

(3) C
∼
(A

⋂
B) = C

∼
(A)

⋂
C
∼
(B), C̃(A

⋃
B) = C̃(A)

⋃
C̃(B).

(4) C
∼
(A

⋃
B) ⊇ C

∼
(A)

⋃
C
∼
(B), C̃(A

⋂
B) ⊆ C̃(A)

⋂
C̃(B).

Proof.
(1)

C̃(A′) = {〈x,∨y∈U [TÑβ
x
(y) ∧ TA′ (y)],∨y∈U [IÑβ

x
(y) ∧ IA′ (y)],∧y∈U [FÑβ

x
(y) ∨ FA′ (y)]〉 : x ∈ U}

= {〈x,∨y∈U [TÑβ
x
(y) ∧ FA(y)],∨y∈U [IÑβ

x
(y) ∧ (1− IA(y))],∧y∈U [FÑβ

x
(y) ∨ TA(y)]〉 : x ∈ U}

= (C
∼
(A))′.

If we replace A by A′ in this proof, we can also prove C
∼
(A′) = (C̃(A))′.

(2) Since A ⊆ B, so TA(x) ≤ TB(x), IB(x) ≤ IA(x) and FB(x) ≤ FA(x) for all x ∈ U. Therefore,

TC
∼
(A)(x) = ∧y∈U [FÑβ

x
(y) ∨ TA(y)] ≤ ∧y∈U [FÑβ

x
(y) ∨ TB(y)] = TC

∼
(B)(x),

IC
∼
(A)(x) = ∧y∈U [(1− IÑβ

x
(y)) ∨ IA(y)] ≥ ∧y∈U [(1− IÑβ

x
(y)) ∨ IB(y)] = IC

∼
(B)(x),

FC
∼
(A)(x) = ∨y∈U [TÑβ

x
(y) ∧ FA(y)] ≥ ∨y∈U [TÑβ

x
(y) ∧ FB(y)] = FC

∼
(B)(x).
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Hence, C
∼
(A) ⊆ C

∼
(B). In the same way, there is C̃(A) ⊆ C̃(B).

(3)

C
∼
(A

⋂
B)

= {〈x,∧y∈U [FÑβ
x
(y) ∨ TA

⋂
B(y)],∧y∈U [(1− IÑβ

x
(y)) ∨ IA

⋂
B(y)],∨y∈U [TÑβ

x
(y) ∧ FA

⋂
B(y)]〉 : x ∈ U}

= {〈x,∧y∈U [FÑβ
x
(y) ∨ (TA(y) ∧ TB(y))],∧y∈U [(1− IÑβ

x
(y)) ∨ (IA(y) ∨ IB(y))],∨y∈U [TÑβ

x
(y) ∧ (FA(y)

∨FB(y))]〉 : x ∈ U}
= {〈x,∧y∈U [(FÑβ

x
(y) ∨ TA(y)) ∧ (FÑβ

x
(y) ∨ TB(y))],∧y∈U [((1− IÑβ

x
(y)) ∨ IA(y)) ∨ (1− IÑβ

x
(y))∨

IB(y))],∨y∈U [(TÑβ
x
(y) ∧ FA(y)) ∨ (TÑβ

x
(y) ∧ FB(y))]〉 : x ∈ U}

= C
∼
(A)

⋂
C
∼
(B).

Similarly, we can obtain C̃(A
⋃

B) = C̃(A)
⋃
C̃(B).

(4) Since A ⊆ A ∪ B, B ⊆ A ∪ B, A ∩ B ⊆ A and A ∩ B ⊆ B,

C
∼
(A) ⊆ C

∼
(A ∪ B), C

∼
(B) ⊆ C

∼
(A ∪ B), C̃(A ∩ B) ⊆ C̃(A) and C̃(A ∩ B) ⊆ C̃(B).

Hence, C
∼
(A

⋃
B) ⊇ C

∼
(A)

⋃
C
∼
(B), C̃(A

⋂
B) ⊆ C̃(A)

⋂
C̃(B).

We propose the other SVN covering rough set model, which concerns the crisp lower and upper
approximations of each crisp set in the SVN environment.

Definition 7. Let (U, Ĉ) be a SVN β-covering approximation space. For each crisp subset X ∈ P(U) (P(U) is
the power set of U), we define the SVN covering upper approximation C(X) and lower approximation C(X) of
X as:

C(X) = {x ∈ U : Nβ
x ∩ X 6= ∅},

C(X) = {x ∈ U : Nβ
x ⊆ X}.

(6)

If C(X) 6= C(X), then X is called the second type of SVN covering rough set.

Example 4 (Continued from Example 2). Let β = 〈0.5, 0.3, 0.8〉, X = {x1, x2}, Y = {x2, x4, x5}. Then,

C(X) = {x1, x2, x4},C(X) = {x1, x2},

C(Y) = {x1, x2, x3, x4, x5},C(Y) = {x2, x4, x5},

C(U) = U,C(U) = U,C(∅) = ∅,C(∅) = ∅.

Proposition 5. Let Ĉ be a SVN β-covering of U. Then, the SVN covering upper and lower approximation
operators in Definition 7 satisfy the following properties: for all X, Y ∈ P(U),

(1) C(∅) = ∅, C(U) = U.
(2) C(U) = U, C(∅) = ∅.
(3) C(X′) = (C(X))′, C(X′) = (C(X))′.
(4) If X ⊆ Y, then C(X) ⊆ C(Y), C(X) ⊆ C(Y).
(5) C(X

⋂
Y) = C(X)

⋂
C(Y), C(X

⋃
Y) = C(X)

⋃
C(Y).

(6) C(X
⋃

Y) ⊇ C(X)
⋃
C(Y), C(X

⋂
Y) ⊆ C(X)

⋂
C(Y).

(7) C(C(X)) ⊆ C(X),C(C(X)) ⊇ C(X).
(8) C(X) ⊆ X ⊆ C(X).
(9) X ⊆ Y or Y ⊆ X ⇔ C(X ∩Y) = C(X) ∩C(Y),C(X ∪Y) = C(X) ∪C(Y).

Proof. It can be directly followed from Definitions 5 and 7.
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5. Matrix Representations of These Single Valued Neutrosophic Covering Rough Set Models

In this section, matrix representations of the proposed SVN covering rough set models are
investigated. Firstly, some new matrices and matrix operations are presented. Then, we show
the matrix representations of these SVN approximation operators defined in Definitions 6 and 7.
The order of elements in U is given.

Definition 8. Let Ĉ be a SVN β-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}.
Then, MĈ = (Cj(xi))n×m is named a matrix representation of Ĉ, and Mβ

Ĉ
= (sij)n×m is called a β-matrix

representation of Ĉ, where

sij =

{
1, Cj(xi) ≥ β;
0, otherwise.

Example 5 (Continued from Example 1). Let β = 〈0.5, 0.3, 0.8〉.

MĈ =


〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉

, Mβ

Ĉ
=


1 1 0 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 1 1

.

Definition 9. Let A = (aik)n×m and B = (〈b+kj , bkj, b−kj〉)1≤k≤m,1≤j≤l be two matrices. We define
D = A ∗ B = (〈d+ij , dij, d−ij 〉)1≤i≤n,1≤j≤l , where

〈d+ij , dij, d−ij 〉 = 〈∧
m
k=1[(1− aik) ∨ b+kj ], 1−∧m

k=1[(1− aik) ∨ (1− bkj)], 1−∧m
k=1[(1− aik) ∨ (1− b−kj)]〉. (7)

Based on Definitions 8 and 9, all Ñβ
x for any x ∈ U can be obtained by matrix operations.

Proposition 6. Let Ĉ be a SVN β-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. Then

Mβ

Ĉ
∗MT

Ĉ
= (Ñβ

xi (xj))1≤i≤n,1≤j≤n, (8)

where MT
Ĉ

is the transpose of MĈ.

Proof. Suppose MT
Ĉ

= (Ck(xj))m×n, Mβ

Ĉ
= (sik)n×m and Mβ

Ĉ
∗ MT

Ĉ
= (〈d+ij , dij, d−ij 〉)1≤i≤n,1≤j≤n.

Since Ĉ is a SVN β-covering of U, for each i (1 ≤ i ≤ n), there exists k (1 ≤ k ≤ m) such that
sik = 1. Then,

〈d+ij , dij, d−ij 〉

= 〈∧m
k=1[(1− sik) ∨ TCk (xj)], 1−∧m

k=1[(1− sik) ∨ (1− ICk (xj))], 1−∧m
k=1[(1− sik) ∨ (1− FCk (xj))]〉

= 〈∧sik=1[(1− sik) ∨ TCk (xj)], 1−∧sik=1[(1− sik) ∨ (1− ICk (xj))], 1−∧sik=1[(1− sik) ∨ (1− FCk (xj))]〉

= 〈∧sik=1TCk (xj), 1−∧sik=1(1− ICk (xj)), 1−∧sik=1(1− FCk (xj))〉

= 〈∧Ck(xi)≥βTCk (xj), 1−∧Ck(xi)≥β(1− ICk (xj)), 1−∧Ck(xi)≥β(1− FCk (xj))〉

= (
⋂

Ck(xi)≥β Ck)(xj)

= Ñβ
xi (xj), 1 ≤ i, j ≤ n.

Hence, Mβ

Ĉ
∗MT

Ĉ
= (Ñβ

xi (xj))1≤i≤n,1≤j≤n.
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Example 6 (Continued from Example 1).

Mβ

Ĉ
∗MT

Ĉ

=


1 1 0 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 1 1

 ∗

〈0.7, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.1, 0.5〉 〈0.1, 0.5, 0.6〉
〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.1, 0.7〉
〈0.4, 0.5, 0.2〉 〈0.2, 0.3, 0.6〉 〈0.5, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉
〈0.6, 0.1, 0.7〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.3, 0.2〉
〈0.3, 0.2, 0.6〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.1, 0.2〉



T

=


1 1 0 0
1 1 0 1
0 0 1 1
1 0 0 1
0 1 1 1

 ∗

〈0.7, 0.2, 0.5〉 〈0.5, 0.3, 0.2〉 〈0.4, 0.5, 0.2〉 〈0.6, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.6, 0.2, 0.4〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.7, 0.3, 0.5〉
〈0.4, 0.1, 0.5〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉
〈0.1, 0.5, 0.6〉 〈0.6, 0.1, 0.7〉 〈0.6, 0.3, 0.4〉 〈0.5, 0.3, 0.2〉 〈0.8, 0.1, 0.2〉



=


〈0.6, 0.2, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.5, 0.3, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.7〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.3, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.3, 0.6, 0.7〉 〈0.6, 0.3, 0.5〉


= (Nβ

xi (xj))1≤i≤5,1≤j≤5.

Definition 10. Let A = (〈c+ij , cij, c−ij 〉)m×n and B = (〈d+j , dj, d−j 〉)n×1 be two matrices. We define
C = A ◦ B = (〈e+i , ei, e−i 〉)m×1 and D = A � B = (〈 f+i , fi, f−i 〉)m×1, where

〈e+i , ei, e−i 〉 = 〈∨
n
j=1(c

+
ij ∧ d+j ),∨

n
j=1(cij ∧ dj),∧n

j=1(c
−
ij ∨ d−j )〉,

〈 f+i , fi, f−i 〉 = 〈∧
n
j=1(c

−
ij ∨ d+j ),∧

n
j=1[(1− cij) ∨ dj],∨n

j=1(c
+
ij ∧ d−j )〉.

(9)

According to Proposition 6 and Definition 10, the set representations of C̃(A) and C
∼
(A)

(for any A ∈ SVN(U)) can be converted to matrix representations.

Theorem 3. Let Ĉ be a SVN β-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. Then,
for any A ∈ SVN(U),

C̃(A) = (Mβ

Ĉ
∗MT

Ĉ
) ◦ A,

C
∼
(A) = (Mβ

Ĉ
∗MT

Ĉ
) � A,

(10)

where A = (ai)n×1 with ai = 〈TA(xi), IA(xi), FA(xi)〉 is the vector representation of the SVNS A. C̃(A) and
C
∼
(A) are also vector representations.

Proof. According to Proposition 6 and Definitions 6 and 10, for any xi (i = 1, 2, · · · , n),

((Mβ

Ĉ
∗MT

Ĉ
) ◦ A)(xi) = 〈∨n

j=1(TÑβ
xi
(xj) ∧ TA(xj)),∨n

j=1(IÑβ
xi
(xj) ∧ IA(xj)),∧n

j=1(FÑβ
xi
(xj) ∨ FA(xj))〉

= (C̃(A))(xi),

and

((Mβ

Ĉ
∗MT

Ĉ
) � A)(xi) = 〈∧n

j=1(FÑβ
xi
(xj) ∨ TA(xj)),∧n

j=1[(1− IÑβ
xi
(xj)) ∨ IA(xj)],∨n

j=1(TÑβ
xi
(xj) ∧ FA(xj))〉

= (C
∼
(A))(xi).

Hence, C̃(A) = (Mβ

Ĉ
∗MT

Ĉ
) ◦ A,C

∼
(A) = (Mβ

Ĉ
∗MT

Ĉ
) � A.
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Example 7 (Continued from Example 3). Let β = 〈0.5, 0.3, 0.8〉, A = (0.6,0.3,0.5)
x1

+ (0.4,0.5,0.1)
x2

+
(0.3,0.2,0.6)

x3
+ (0.5,0.3,0.4)

x4
+ (0.7,0.2,0.3)

x5
. Then,

C̃(A)

= (Mβ

Ĉ
∗MT

Ĉ
) ◦ A

=


〈0.6, 0.2, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.5, 0.3, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.7〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.3, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.3, 0.6, 0.7〉 〈0.6, 0.3, 0.5〉

 ◦

〈0.6, 0.3, 0.5〉
〈0.4, 0.5, 0.1〉
〈0.3, 0.2, 0.6〉
〈0.5, 0.3, 0.4〉
〈0.7, 0.2, 0.3〉



=


〈0.6, 0.3, 0.5〉
〈0.4, 0.3, 0.6〉
〈0.6, 0.5, 0.5〉
〈0.5, 0.3, 0.6〉
〈0.6, 0.5, 0.5〉

 ,

and

C
∼
(A)

= (Mβ

Ĉ
∗MT

Ĉ
) � A

=


〈0.6, 0.2, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.8〉 〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.3, 0.3, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.5, 0.3, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉
〈0.1, 0.5, 0.6〉 〈0.5, 0.3, 0.7〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.3, 0.7〉 〈0.3, 0.2, 0.6〉
〈0.1, 0.5, 0.6〉 〈0.4, 0.5, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.3, 0.6, 0.7〉 〈0.6, 0.3, 0.5〉

 �

〈0.6, 0.3, 0.5〉
〈0.4, 0.5, 0.1〉
〈0.3, 0.2, 0.6〉
〈0.5, 0.3, 0.4〉
〈0.7, 0.2, 0.3〉



=


〈0.6, 0.5, 0.5〉
〈0.6, 0.5, 0.4〉
〈0.4, 0.4, 0.5〉
〈0.4, 0.5, 0.6〉
〈0.6, 0.4, 0.3〉

 .

Two operations of matrices are defined in [28]. We can use them to study the matrix
representations of C(X) and C(X) of every crisp subset X ∈ P(U).

Definition 11 ([28]). Let A = (aik)n×m and B = (bkj)m×l be two matrices. We define C = A · B = (cij)n×l
and D = A� B = (dij)n×l as follows:

cij = ∨m
k=1(aik ∧ bkj),

dij = ∧m
k=1[(1− aik) ∨ bkj], for any i = 1, 2, · · · , n, and j = 1, 2, · · · , l.

(11)

Let U = {x1, · · · , xn} and X ∈ P(U). Then, the characteristic function of the crisp subset X is
defined as χX , where

χX(xi) =

{
1, xi ∈ X;
0, otherwise.

Proposition 7. Let Ĉ be a SVN β-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. Then,

Mβ

Ĉ
� (Mβ

Ĉ
)T = (χ

Nβ
xi

(xj))1≤i≤n,1≤j≤n, (12)
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Proof. Suppose Mβ

Ĉ
= (sik)n×m and Mβ

Ĉ
� (Mβ

Ĉ
)T = (tij)n×n. Since Ĉ is a SVN β-covering of U,

for each i (1 ≤ i ≤ n) there exists k (1 ≤ k ≤ m) such that sik = 1. If tij = 1, then ∧m
k=1[(1− sik)∨ sjk] = 1.

It implies that if sik = 1, then sjk = 1. Hence, Ck(xi) ≥ β implies Ck(xj) ≥ β. Therefore, xj ∈ Nβ
xi

,
i.e., χ

Nβ
xi

(xj) = 1 = tij.

If tij = 0, then ∧m
k=1[(1− sik)∨ sjk] = 0. This implies that if sik = 1, then sjk = 0. Hence, Ck(xi) ≥ β

implies Ck(xj) < β. Thus, we have xj /∈ Nβ
xi

, i.e., χ
Nβ

xi

(xj) = 1 = tij.

Example 8 (Continued from Example 2). According to Mβ

Ĉ
in Example 5, we have the following result.

Mβ

Ĉ
� (Mβ

Ĉ
)T =


1 1 0 0 0
0 1 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 0 0 1

 = (χ
Nβ

xi

(xj))1≤i≤5,1≤j≤5.

For any X ∈ P(U), we also denote χX = (ai)n×1 with ai = 1 iff xi ∈ X; otherwise, ai = 0.
Then, the set representations of C(X) and C(X) (for any X ∈ P(U)) can be converted to matrix

representations.

Theorem 4. Let Ĉ be a SVN β-covering of U with U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. Then,
for any X ∈ P(U),

χC(X) = (Mβ

Ĉ
� (Mβ

Ĉ
)T) · χX ,

χC(X) = (Mβ

Ĉ
� (Mβ

Ĉ
)T)� χX .

(13)

Proof. Suppose (Mβ

Ĉ
� (Mβ

Ĉ
)T) · χX = (ai)n×1 and (Mβ

Ĉ
� (Mβ

Ĉ
)T)� χX = (bi)n×1. For any xi ∈ U

(i = 1, 2, · · · , n),

xi ∈ C(X) ⇔ χC(X)(xi) = 1

⇔ ai = 1

⇔ ∨n
k=1[χNβ

xi

(xk) ∧ χX(xk)] = 1

⇔ ∃k ∈ {1, 2, · · · , n}, s.t., χ
Nβ

xi

(xk) = χX(xk) = 1

⇔ ∃k ∈ {1, 2, · · · , n}, s.t., xk ∈ Nβ
xi
∩ X

⇔ Nβ
xi
∩ X 6= ∅,

and
xi ∈ C(X) ⇔ χC(X)(xi) = 1

⇔ bi = 1

⇔ ∧n
k=1[(1− χ

Nβ
xi

(xk)) ∨ χX(xk)] = 1

⇔ χ
Nβ

xi

(xk) = 1→ χX(xk) = 1, k = 1, 2, · · · , n

⇔ xk ∈ Nβ
xi
→ xk ∈ X, k = 1, 2, · · · , n

⇔ Nβ
xi
⊆ X.
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Example 9 (Continued from Example 4). Let X = {x1, x2}. By Mβ

Ĉ
� (Mβ

Ĉ
)T in Example 8, we have

(Mβ

Ĉ
� (Mβ

Ĉ
)T) · χX =


1 1 0 0 0
0 1 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 0 0 1

 ·


1
1
0
0
0

 =


1
1
0
1
0

 = χC(X),

(Mβ

Ĉ
� (Mβ

Ĉ
)T)� χX =


1 1 0 0 0
0 1 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 0 0 1

�


1
1
0
0
0

 =


1
1
0
0
0

 = χC(X).

6. An Application to Decision Making Problems

In this section, we present a novel approach to DM problems based on the SVN covering rough
set model. Then, a comparative study with other methods is shown.

6.1. The Problem of Decision Making

Let U = {xk : k = 1, 2, · · · , l} be the set of patients and V = {yi|i = 1, 2, · · · , m} be the m main
symptoms (for example, cough, fever, and so on) for a Disease B. Assume that Doctor R evaluates
every Patient xk (k = 1, 2, · · · , l).

Assume that Doctor R believes each Patient xk ∈ U (k = 1, 2, · · · , l) has a symptom value Ci
(i = 1, 2, · · · , m), denoted by Ci(xk) = 〈TCi (xk), ICi (xk, FCi (xk)〉, where TCi (xk) ∈ [0, 1] is the degree
that Doctor R confirms Patient xk has symptom yi, ICi (xk) ∈ [0, 1] is the degree that Doctor R is not
sure Patient xk has symptom yi, FCi (xk) ∈ [0, 1] is the degree that Doctor R confirms Patient xk does not
have symptom yi, and TCi (xk) + ICi (xk) + FCi (xk) ≤ 3.

Let β = 〈a, b, c〉 be the critical value. If any Patient xk ∈ U, there is at least one symptom yi ∈ V
such that the symptom value Ci for Patient xk is not less than β, respectively, then Ĉ = {C1, C2, · · · , Cm}
is a SVN β-covering of U for some SVN number β.

If d is a possible degree, e is an indeterminacy degree and f is an impossible degree of Disease B of
every Patient xk ∈ U that is diagnosed by Doctor R, denoted by A(xk) = 〈d, e, f 〉, then the decision
maker (Doctor R) for the decision making problem needs to know how to evaluate whether Patients
xk ∈ U have Disease B.

6.2. The Decision Making Algorithm

In this subsection, we give an approach for the problem of DM with the above characterizations
by means of the first type of SVN covering rough set model. According to the characterizations of
the DM problem in Section 6.1, we construct the SVN decision information system and present the
Algorithm 1 of DM under the framework of the first type of SVN covering rough set model.
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Algorithm 1 The decision making algorithm based on the SVN covering rough set model.

Input: SVN decision information system (U, Ĉ, β, A).
Output: The score ordering for all alternatives.

1: Compute the SVN β-neighborhood Ñβ
x of x induced by Ĉ, for all x ∈ U according to Definition 4;

2: Compute the SVN covering upper approximation C̃(A) and lower approximation C
∼
(A) of A,

according to Definition 6;
3: Compute R̃A = C̃(A)⊕C

∼
(A) according to (6) in the basic operations on SVN(U);

4: Compute

s(x) =
TR̃A

(x)√
(TR̃A

(x))2+(IR̃A
(x))2+(FR̃A

(x))2
;

5: Rank all the alternatives s(x) by using the principle of numerical size and select the most
possible patient.

According to the above process, we can get the decision making according to the ranking. In Step 4,
S(x) is the cosine similarity measure between R̃A(x) and the ideal solution (1, 0, 0), which was
proposed by Ye [44].

6.3. An Applied Example

Example 10. Assume that U = {x1, x2, x3, x4, x5} is a set of patients. According to the patients’ symptoms,
we write V = {y1, y2, y3, y4} to be four main symptoms (cough, fever, sore and headache) for Disease B.
Assume that Doctor R evaluates every Patient xk (k = 1, 2, · · · , 5) as shown in Table 1.

Let β = 〈0.5, 0.3, 0.8〉 be the critical value. Then, Ĉ = {C1, C2, C3, C4} is a SVN β-coverings of U.
Ñβ

xk (k = 1, 2, 3, 4, 5) are shown in Table 2.
Assume that Doctor R diagnoses the value A = (0.6,0.3,0.5)

x1
+ (0.4,0.5,0.1)

x2
+ (0.3,0.2,0.6)

x3
+ (0.5,0.3,0.4)

x4
+ (0.7,0.2,0.3)

x5
of

Disease B of every patient. Then,

C̃(A) = {〈x1, 0.6, 0.3, 0.5〉, 〈x2, 0.4, 0.3, 0.6〉, 〈x3, 0.6, 0.5, 0.5〉, 〈x4, 0.5, 0.3, 0.6〉, 〈x5, 0.6, 0.5, 0.5〉},

C
∼
(A) = {〈x1, 0.6, 0.5, 0.5〉, 〈x2, 0.6, 0.5, 0.4〉, 〈x3, 0.4, 0.4, 0.5〉, 〈x4, 0.4, 0.5, 0.4〉, 〈x5, 0.6, 0.4, 0.3〉}.

Then,

R̃A

= C̃(A)⊕C
∼
(A)

= {〈x1, 0.84, 0.15, 0.25〉, 〈x2, 0.76, 0.15, 0.24〉, 〈x3, 0.76, 0.2, 0.25〉, 〈x4, 0.7, 0.15, 0.24〉, 〈x5, 0.84, 0.2, 0.15〉}.

Hence, we can obtain s(xk) (k = 1, 2, · · · , 5) in Table 3.

Table 3. s(xk) (k = 1, 2, · · · , 5).

U x1 x2 x3 x4 x5

s(xk ) 0.945 0.937 0.922 0.909 0.958

According to the principle of numerical size, we have:

s(x4) < s(x3) < s(x2) < s(x1) < s(x5).

Therefore, Doctor R diagnoses Patient x5 as more likely to be sick with Disease B.
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6.4. A Comparison Analysis

To validate the feasibility of the proposed decision making method, a comparative study was
conducted with other methods. These methods, which were introduced by Liu [43], Yang et al. [32]
and Ye [44], are compared with the proposed approach using SVN information system.

6.4.1. The Results of Liu’s Method

Liu’s method is shown in Algorithm 2.

Algorithm 2 The decision making algorithm [43].
Input: A SVN decision matrix D, a weight vector w and γ.
Output: The score ordering for all alternatives.

1: Compute
nk = 〈Tnk , Ink , Fnk 〉

= HSVNNWA(nk1, nk2, · · · , nkm)

= 〈

m
∏

i=1
(1+(γ−1)Tki)

wi−
m
∏

i=1
(1−Tki)

wi

m
∏

i=1
(1+(γ−1)Tki)

wi+(γ−1)
m
∏

i=1
(1−Tki)

wi
,

γ
m
∏

i=1
I

wi
ki

m
∏

i=1
(1+(γ−1)(1−Iki))

wi+(γ−1)
m
∏

i=1
I

wi
ki

,

γ
m
∏

i=1
F

wi
ki

m
∏

i=1
(1+(γ−1)(1−Fki))

wi+(γ−1)
m
∏

i=1
F

wi
ki

〉 (k = 1, 2, · · · , l);

2: Calculate s(nk) =
Tnk√

T2
nk
+I2

nk
+F2

nk

;

3: Obtain the ranking for all s(nk) by using the principle of numerical size and select the most
possible patient.

Then, Algorithm 2 can be used for Example 10. Let nki = 〈Tki, Iki, Fki〉 be the evaluation
information of xk on Ci in Table 1. That is to say, Table 1 is the SVN decision matrix D. We suppose the
weight vector of the criteria is w = (0.35, 0, 25, 0.3, 0.1) and γ = 1.

Step 1: Based on HSVNNWA operator, we get

n1 = 〈0.557, 0.178, 0.482〉, n2 = 〈0.484, 0.283, 0.395〉,

n3 = 〈0.414, 0.318, 0.347〉, n4 = 〈0.465, 0.286, 0.558〉,

n5 = 〈0.578, 0.233, 0.486〉.

Step 2: We get

s(n1) = 0.735, s(n2) = 0.706, s(n3) = 0.660, s(n4) = 0.596, s(n5) = 0.734.

Step 3: According to the cosine similarity degrees s(nk) (k = 1, 2, · · · , 5), we obtain x4 < x3 <

x2 < x5 < x1.
Therefore, Patient x1 is more likely to be sick with Disease B.

6.4.2. The Results of Yang’s Method

Yang’s method is shown in Algorithm 3.
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Algorithm 3 The decision making algorithm [32].

Input: A generalized SVN approximation space (U, V, R̃), B ∈ SVN(V).
Output: The score ordering for all alternatives.

1: Calculate the lower and upper approximations R̃(B) and R̃(B);

2: Compute nxk = (R̃(B)
⊕

R̃(B))(xk) (k = 1, 2, · · · , l);
3: Compute

s(nxk , n∗) =
Tnxk
·Tn∗+Inxk

·In∗+Fnxk
·Fn∗√

T2
nxk

+I2
nxk

+F2
nxk
·
√

(Tn∗ )2+(In∗ )2+(Fn∗ )2
(k = 1, 2, · · · , l),

where n∗ = 〈Tn∗ , In∗ , Fn∗〉 = 〈1, 0, 0〉;
4: Obtain the ranking for all s(nxk , n∗) by using the principle of numerical size and select the most

possible patient.

For Example 10, we suppose Disease B ∈ SVN(V) and B = (0.3,0.6,0.5)
y1

+ (0.7,0.2,0.1)
y2

+ (0.6,0.4,0.3)
y3

+ (0.8,0.4,0.5)
y4

.

According to Table 1, the generalized SVN approximation space (U, V, R̃) can be obtained in Table 4,
where U = {x1, x2, x3, x4, x5} and V = {y1, y2, y3, y4}.

Table 4. The generalized SVN approximation space (U, V, R̃).

R̃ x1 x2 x3 x4 x5

y1 〈0.7, 0.2, 0.5〉 〈0.5, 0.3, 0.2〉 〈0.4, 0.5, 0.2〉 〈0.6, 0.1, 0.7〉 〈0.3, 0.2, 0.6〉
y2 〈0.6, 0.2, 0.4〉 〈0.5, 0.2, 0.8〉 〈0.2, 0.3, 0.6〉 〈0.4, 0.5, 0.7〉 〈0.7, 0.3, 0.5〉
y3 〈0.4, 0.1, 0.5〉 〈0.4, 0.5, 0.4〉 〈0.5, 0.2, 0.4〉 〈0.3, 0.6, 0.5〉 〈0.6, 0.3, 0.5〉
y4 〈0.1, 0.5, 0.6〉 〈0.6, 0.1, 0.7〉 〈0.6, 0.3, 0.4〉 〈0.5, 0.3, 0.2〉 〈0.8, 0.1, 0.2〉

Step 1: We get

R̃(B) = {〈x1, 0.6, 0.2, 0.4〉, 〈x2, 0.6, 0.2, 0.4〉, 〈x3, 0.6, 0.3, 0.4〉, 〈x4, 0.5, 0.4, 0.5〉, 〈x5, 0.8, 0.3, 0.5〉},

R̃(B) = {〈x1, 0.5, 0.6, 0.5〉, 〈x2, 0.3, 0.6, 0.5〉, 〈x3, 0.3, 0.5, 0.5〉, 〈x4, 0.6, 0.6, 0.5〉, 〈x5, 0.6, 0.6, 0.5〉}.

Step 2:

R̃(B)
⊕

R̃(B) = {〈x1, 0.80, 0.12, 0.20〉, 〈x2, 0.72, 0.12, 0.20〉, 〈x3, 0.72, 0.15, 0.20〉, 〈x4, 0.80, 0.24, 0.25〉,

〈x5, 0.92, 0.18, 0.25〉}.

Step 3: Let n∗ = 〈1, 0, 0〉. Then,

s(nx1 , n∗) = 0.960, s(nx2 , n∗) = 0.951, s(nx3 , n∗) = 0.945, s(nx4 , n∗) = 0.918, s(nx5 , n∗) = 0.948.

Step 4:

s(nx4 , n∗) < s(nx3 , n∗) < s(nx5 , n∗) < s(nx2 , n∗) < s(nx1 , n∗).

Therefore, Patient x1 is more likely to be sick with Disease B.

6.4.3. The Results of Ye’s Methods

Ye presented two methods [44]. Thus, Algorithms 4 and 5 are presented for Example 10.
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Algorithm 4 The decision making algorithm [44].
Input: A SVN decision matrix D and a weight vector w.
Output: The score ordering for all alternatives.

1: Compute

Wk(xk, A∗) = ∑m
i=1 wi [aki ·a∗i +bki ·b∗i +cki ·c∗i ]√

∑m
i=1 wi [a2

ki+b2
ki+c2

ki ]·
√

∑m
i=1 wi [(a∗i )

2+(b∗i )
2+(c∗i )

2]
(k = 1, 2, · · · , l),

where α∗i = 〈a∗i , b∗i , c∗i 〉 = 〈1, 0, 0〉 (i = 1, 2, · · · , m);
2: Obtain the ranking for all Wk(xk, A∗) by using the principle of numerical size and select the most

possible patient.

For Example 10, Table 1 is the SVN decision matrix D. We suppose the weight vector of the
criteria is w = (0.35, 0, 25, 0.3, 0.1).

Step 1:

W1(x1, A∗) = 0.677, W2(x2, A∗) = 0.608, W3(x3, A∗) = 0.580, W4(x4, A∗) = 0.511, W5(x5, A∗) = 0.666.

Step 2: The ranking order of {x1, x2, · · · , x5} is x4 < x3 < x2 < x5 < x1. Therefore, Patient x1 is
more likely to be sick with Disease B.

Algorithm 5 The other decision making algorithm [44].
Input: A SVN decision matrix D and a weight vector w.
Output: The score ordering for all alternatives.

1: Compute

Mk(xk, A∗) = ∑m
i=1 wi

aki ·a∗i +bki ·b∗i +cki ·c∗i√
a2

ki+b2
ki+c2

ki ·
√

(a∗i )
2+(b∗i )

2+(c∗i )
2
(k = 1, 2, · · · , l),

where α∗i = 〈a∗i , b∗i , c∗i 〉 = 〈1, 0, 0〉 (i = 1, 2, · · · , m);
2: Obtain the ranking for all Mk(xk, A∗) by using the principle of numerical size and select the most

possible patient.

By Algorithms 5, we have:
Step 1:

M1(x1, A∗) = 0.676, M2(x2, A∗) = 0.637, M3(x3, A∗) = 0.581,
M4(x4, A∗) = 0.521, M5(x5, A∗) = 0.654.

Step 2: The ranking order of {x1, x2, · · · , x5} is x4 < x3 < x2 < x5 < x1. Therefore, Patient x1 is
more likely to be sick with Disease B.

All results are shown in Table 5, Figures 1 and 2.

Table 5. The results utilizing the different methods of Example 10.

Methods The Final Ranking The Patient Is Most Sick With the Disease B

Algorithm 2 in Liu [43] x4, x3, x2, x5, x1 x1
Algorithm 3 in Yang et al. [32] x4, x3, x5, x2, x1 x1
Algorithm 4 in Ye [44] x4, x3, x2, x5, x1 x1
Algorithm 5 in Ye [44] x4, x3, x2, x5, x1 x1
Algorithm 1 in this paper x4, x3, x2, x1, x5 x5
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Figure 1. The first chat of different values of patient in utilizing different methods in Example 10.

Figure 2. The second chat of different values of patient in utilizing different methods in Example 10.

Liu [43] and Ye [44] presented the methods by SVN theory. In their methods, the ranking order
would be changed by different w and γ. We as well as Yang et al. [32] used different rough set models to
make the decision. Yang et al. present a SVN rough set model based on SVN relations, while we
present a new SVN rough set model based on coverings. The results are different by Yang’s and our
methods, although the methods are both based on an operator presented by Ye [44].

In any method, if there are more than one most possible patient, then each patient will be the
optimal decision. In this case, we need other methods to make a further decision. By means of different
methods, the obtained results may be different. To achieve the most accurate results, further diagnosis
is necessary in combination with other hybrid methods.

7. Conclusions

This paper is a bridge, linking SVNSs and covering-based rough sets. By introducing some
definitions and properties in SVN β-covering approximation spaces, we present two types of SVN
covering rough set models. Then, their characterizations and matrix representations are investigated.
Moreover, an application to the problem of DM is proposed. The main conclusions in this paper and
the further work to do are listed as follows.

1. Two types of SVN covering rough set models are first presented, which combine SVNSs with
covering-based rough sets. Some definitions and properties in covering-based rough set model,
such as coverings and neighborhoods, are generalized to SVN covering rough set models.
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Neutrosophic sets and related algebraic structures [47–49] will be connected with the research
content of this paper in further research.

2. It would be tedious and complicated to use set representations to calculate SVN covering
approximation operators. Therefore, the matrix representations of these SVN covering
approximation operators make it possible to calculate them through the new matrices and
matrix operations. By these matrix representations, calculations will become algorithmic and
can be easily implemented by computers.

3. We propose a method to DM problems under one of the SVN covering rough set models. It is
a novel method based on approximation operators specific to SVN covering rough sets firstly.
The comparison analysis is very interesting to show the difference between the proposed method
and other methods.
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rough sets and SVNSs, and wrote the paper.

Funding: This work was supported by the National Natural Science Foundation of China under Grant Nos.
61573240 and 61473239.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356.
2. Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data; Kluwer Academic Publishers: Boston, MA,

USA, 1991.
3. Bartol, W.; Miro, J.; Pioro, K.; Rossello, F. On the coverings by tolerance classes. Inf. Sci. 2004, 166, 193–211.
4. Bianucci, D.; Cattaneo, G.; Ciucci, D. Entropies and co-entropies of coverings with application to incomplete

information systems. Fundam. Inform. 2007, 75, 77–105.
5. Zhu, W. Relationship among basic concepts in covering-based rough sets. Inf. Sci. 2009, 179, 2478–2486.
6. Yao, Y.; Zhao, Y. Attribute reduction in decision-theoretic rough set models. Inf. Sci. 2008, 178, 3356–3373.
7. Wang, J.; Zhang, X. Matrix approaches for some issues about minimal and maximal descriptions in

covering-based rough sets. Int. J. Approx. Reason. 2019, 104, 126–143.
8. Li, F.; Yin, Y. Approaches to knowledge reduction of covering decision systems based on information theory.

Inf. Sci. 2009, 179, 1694–1704.
9. Wu, W. Attribute reduction based on evidence theory in incomplete decision systems. Inf. Sci. 2008, 178,

1355–1371.
10. Wang, J.; Zhu, W. Applications of bipartite graphs and their adjacency matrices to covering-based rough sets.

Fundam. Inform. 2017, 156, 237–254.
11. Dai, J.; Wang, W.; Xu, Q.; Tian, H. Uncertainty measurement for interval-valued decision systems based on

extended conditional entropy. Knowl.-Based Syst. 2012, 27, 443–450.
12. Wang, C.; Chen, D.; Wu, C.; Hu, Q. Data compression with homomorphism in covering information systems.

Int. J. Approx. Reason. 2011, 52, 519–525.
13. Li, X.; Yi, H.; Liu, S. Rough sets and matroids from a lattice-theoretic viewpoint. Inf. Sci. 2016, 342, 37–52.
14. Wang, J.; Zhang, X. Four operators of rough sets generalized to matroids and a matroidal method for attribute

reduction. Symmetry 2018, 10, 418.
15. Wang, J.; Zhu, W. Applications of matrices to a matroidal structure of rough sets. J. Appl. Math. 2013,

2013, 493201.
16. Wang, J.; Zhu, W.; Wang, F.; Liu, G. Conditions for coverings to induce matroids. Int. J. Mach. Learn. Cybern.

2014, 5, 947–954.
17. Chen, J.; Li, J.; Lin, Y.; Lin, G.; Ma, Z. Relations of reduction between covering generalized rough sets and

concept lattices. Inf. Sci. 2015, 304, 16–27.
18. Zhang, X.; Dai, J.; Yu, Y. On the union and intersection operations of rough sets based on various

approximation spaces. Inf. Sci. 2015, 292, 214–229.



Symmetry 2018, 10, 710 19 of 20

19. D’eer, L.; Cornelis, C.; Godo, L. Fuzzy neighborhood operators based on fuzzy coverings. Fuzzy Sets Syst.
2017, 312, 17–35.

20. Yang, B.; Hu, B. On some types of fuzzy covering-based rough sets. Fuzzy Sets Syst. 2017, 312, 36–65.
21. Zhang, X.; Miao, D.; Liu, C.; Le, M. Constructive methods of rough approximation operators and

multigranulation rough sets. Knowl.-Based Syst. 2016, 91, 114–125.
22. Wang, J.; Zhang, X. Two types of intuitionistic fuzzy covering rough sets and an application to multiple

criteria group decision making. Symmetry 2018, 10, 462.
23. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353.
24. Medina, J.; Ojeda-Aciego, M. Multi-adjoint t-concept lattices. Inf. Sci. 2010, 180, 712–725.
25. Pozna, C.; Minculete, N.; Precup, R.E.; Kóczy, L.T.; Ballagi, Á. Signatures: Definitions, operators and

applications to fuzzy modeling. Fuzzy Sets Syst. 2012, 201, 86–104.
26. Jankowski, J.; Kazienko, P.; Watróbski, J.; Lewandowska, A.; Ziemba, P.; Zioło, M. Fuzzy multi-objective

modeling of effectiveness and user experience in online advertising. Expert Syst. Appl. 2016, 65, 315–331.
27. Vrkalovic, S.; Lunca, E.C.; Borlea, I.D. Model-free sliding mode and fuzzy controllers for reverse osmosis

desalination plants. Int. J. Artif. Intell. 2018, 16, 208–222.
28. Ma, L. Two fuzzy covering rough set models and their generalizations over fuzzy lattices. Fuzzy Sets Syst.

2016, 294, 1–17.
29. Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct.

2010, 4, 410–413.
30. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96.
31. Mondal, K.; Pramanik, S. Rough neutrosophic multi-attribute decision-making based on grey relational

analysis. Neutrosophic Sets Syst. 2015, 7, 8–17.
32. Yang, H.; Zhang, C.; Guo, Z.; Liu, Y.; Liao, X. A hybrid model of single valued neutrosophic sets and rough

sets: Single valued neutrosophic rough set model. Soft Comput. 2017, 21, 6253–6267.
33. Zhang, X.; Xu, Z. The extended TOPSIS method for multi-criteria decision making based on hesitant

heterogeneous information. In Proceedings of the 2014 2nd International Conference on Software Engineering,
Knowledge Engineering and Information Engineering (SEKEIE 2014), Singapore, 5–6 August 2014.

34. Cheng, J.; Zhang, Y.; Feng, Y.; Liu, Z.; Tan, J. Structural optimization of a high-speed press considering
multi-source uncertainties based on a new heterogeneous TOPSIS. Appl. Sci. 2018, 8, 126.

35. Liu, J.; Zhao, H.; Li, J.; Liu, S. Decision process in MCDM with large number of criteria and heterogeneous
risk preferences. Oper. Res. Perspect. 2017, 4, 106–112.

36. Watróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria
method selection. Omega 2018. [CrossRef]

37. Faizi, S.; Sałabun, W.; Rashid, T.; Wa̧tróbski, J.; Zafar, S. Group decision-making for hesitant fuzzy sets based
on characteristic objects method. Symmetry 2017, 9, 136.

38. Faizi, S.; Rashid, T.; Sałabun, W.; Zafar, S.; Wa̧tróbski, J. Decision making with uncertainty using hesitant
fuzzy sets. Int. J. Fuzzy Syst. 2018, 20, 93–103.

39. Zhan, J.; Ali, M.I.; Mehmood, N. On a novel uncertain soft set model: Z-soft fuzzy rough set model and
corresponding decision making methods. Appl. Soft Comput. 2017, 56, 446–457.

40. Zhan, J.; Alcantud, J.C.R. A novel type of soft rough covering and its application to multicriteria group
decision making. Artif. Intell. Rev. 2018, 4, 1–30.

41. Zhang, Z. An approach to decision making based on intuitionistic fuzzy rough sets over two universes.
J. Oper. Res. Soc. 2013, 64, 1079–1089.

42. Akram, M.; Ali, G.; Alshehri, N.O. A new multi-attribute decision-making method based on m-polar fuzzy
soft rough sets. Symmetry 2017, 9, 271.

43. Liu, P. The aggregation operators based on archimedean t-conorm and t-norm for single-valued neutrosophic
numbers and their application to decision making. Int. J. Fuzzy Syst. 2016, 18, 849–863.

44. Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic
environment. Int. J. Gen. Syst. 2013, 42, 386–394.

45. Bonikowski, Z.; Bryniarski, E.; Wybraniec-Skardowska, U. Extensions and intentions in the rough set theory.
Inf. Sci. 1998, 107, 149–167.

46. Pomykala, J.A. Approximation operations in approximation space. Bull. Pol. Acad. Sci. 1987, 35, 653–662.

http://dx.doi.org/10.1016/j.omega.2018.07.004


Symmetry 2018, 10, 710 20 of 20

47. Zhang, X.; Bo, C.; Smarandache, F.; Dai, J. New inclusion relation of neutrosophic sets with applications and
related lattice structure. Int. J. Mach. Learn. Cybern. 2018, 9, 1753–1763.

48. Zhang, X. Fuzzy anti-grouped filters and fuzzy normal filters in pseudo-BCI algebras. J. Intell. Fuzzy Syst.
2017, 33, 1767–1774.

49. Zhang, X.; Park, C.; Wu, S. Soft set theoretical approach to pseudo-BCI algebras. J. Intell. Fuzzy Syst. 2018, 34,
559–568.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Definitions
	Single Valued Neutrosophic -Covering Approximation Space
	Two Types of Single Valued Neutrosophic Covering Rough Set Models
	Matrix Representations of These Single Valued Neutrosophic Covering Rough Set Models
	An Application to Decision Making Problems
	The Problem of Decision Making
	The Decision Making Algorithm
	An Applied Example
	A Comparison Analysis
	The Results of Liu's Method
	The Results of Yang's Method
	The Results of Ye's Methods


	Conclusions
	References

