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Abstract: In this paper, we will extend the VIKOR (VIsekriterijumska optimizacija i KOmpromisno
Resenje) method to multiple attribute group decision-making (MAGDM) with interval neutrosophic
numbers (INNs). Firstly, the basic concepts of INNs are briefly presented. The method first
aggregates all individual decision-makers’ assessment information based on an interval neutrosophic
weighted averaging (INWA) operator, and then employs the extended classical VIKOR method
to solve MAGDM problems with INNs. The validity and stability of this method are verified by
example analysis and sensitivity analysis, and its superiority is illustrated by a comparison with the
existing methods.
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1. Introduction

Multiple attribute group decision-making (MAGDM), which has been increasingly investigated
and considered by all kinds of researchers and scholars, is one of the most influential parts of decision
theory. It aims to provide a comprehensive solution by evaluating and ranking alternatives based
on conflicting attributes with respect to decision-makers’ (DMs) preferences, and has widely been
utilized in engineering, economics, and management. Several traditional MAGDM methods have been
developed by scholars in literature, such as the TOPSIS (Technique for Order Preference by Similarity
to an Ideal Solution) method [1,2], the VIKOR (VIsekriterijumska optimizacija i KOmpromisno
Resenje) method [3–5], the PROMETHEE (Preference Ranking Organization Method for Enrichment
Evaluations) method [6], the ELECTRE (ELimination Et Choix Traduisant la Realité) method [7], the
GRA (Grey Relational Analysis) method [8–10], and the MULTIMOORA (Multiobjective Optimization
by Ratio Analysis plus Full Multiplicative Form) method [11,12].

Due to the fuzziness and uncertainty of the alternatives in different attributes, attribute values in
MAGDM are not always represented as real numbers, and they can be described as fuzzy numbers
in more suitable occasions [13–15]. Since fuzzy set (FS) was first defined by Zadeh [16], is has been
used as a better tool to solve MAGDM [17,18]. Smarandache [19,20] proposed a neutrosophic set (NS).
Furthermore, the concepts of single-valued neutrosophic sets (SVNSs) [21] and interval neutrosophic
sets(INSs) [22] were presented for actual applications. Ye [23] proposed a simplified neutrosophic
set (SNS). Broumi and Smarandache [24] defined the correlation coefficient of INS. Zhang et al. [25]
gave the correlation coefficient of interval neutrosophic numbers (INNs) in MAGDM. Zhang et al. [26]
gave an outranking approach for INN MAGDM. Tian et al. [27] defined a cross-entropy in INN
MAGDM. Zhang et al. [28] proposed some INN aggregating. Some other INN operators are proposed
in References [29–32]. Ye [33] proposed two similarity measures between INNs. The SVNS and INS
have received more and more attention since their appearance [34–42].
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Opricovic [3] proposed the VIKOR method for a MAGDM problem with conflicting
attributes [43–45]. Some scholars proposed fuzzy VIKOR models [46], intuitionistic fuzzy VIKOR
models [47–49], the linguistic VIKOR method [50], the interval type-2 fuzzy VIKOR model [51], the
hesitant fuzzy linguistic VIKOR method [52], the dual hesitant fuzzy VIKOR method [53], the linguistic
intuitionistic fuzzy [54], and the single-valued neutrosophic number (SVNN) VIKOR method [38].
However, there has not yet been an academic investigation of the VIKOR method for MAGDM
problems with INNs. Therefore, it is necessary to pay great attention to this novel and worthy research
issue. The purpose of our paper is to use the VIKOR idea to solve MAGDM with INNs, to fill this
vacancy of knowledge. In Section 2, we give the definition of INNs. We propose the VIKOR method
for INN MAGDM. In Section 3, an example is provided, and the comparative analysis is proposed in
Section 4. We finish with our conclusions in Section 5.

2. Preliminaries

The concepts of SVNSs and INSs are introduced.

SVNSs and INSs

NSs [19,20] are not easy to apply to real applications. Wang et al. [21] developed SNSs.
Furthermore, Wang et al. [22] defined INSs.

Definition 1 [21]. Let X be a space of points (objects), a SVNSs A in X is characterized as following:

A = {(x, ξA(x), ψA(x), ζA(x))|x ∈ X } (1)

where the truth-membership function ξA(x), indeterminacy-membership ψA(x) and falsity-membership function
ζA(x), ξA(x)→ [0, 1], ψA(x)→ [0, 1] and ζA(x)→ [0, 1] , with the condition 0 ≤ ξA(x) + ψA(x) +
ζA(x) ≤ 3.

Definition 2 [22]. Let X be a space of points (objects) with a generic element in fixed set X, denoted by x, where
an INS Ã in X is characterized as follows:

Ã =
{(

x, ξ Ã(x), ψÃ(x), ζ Ã(x)
)
|x ∈ X

}
(2)

where truth-membership function ξ Ã(x), indeterminacy-membership ψÃ(x), and falsity-membership function
ζ Ã(x) are interval values, ξ Ã(x) ⊆ [0, 1], ψÃ(x) ⊆ [0, 1] and ζ Ã(x) ⊆ [0, 1], and 0 ≤ sup

(
ξ Ã(x)

)
+

sup
(
ψÃ(x)

)
+ sup

(
ζ Ã(x)

)
≤ 3.

An INN can be expressed as Ã =
(
ξ Ã, ψÃ, ζ Ã

)
=
([

ξL
Ã

, ξR
Ã

]
,
[
ψL

Ã
, ψR

Ã

]
,
[
ζL

Ã
, ζR

Ã

])
, where

[
ξL

Ã
, ξR

Ã

]
⊆

[0, 1],
[
ψL

Ã
, ψR

Ã

]
⊆ [0, 1],

[
ζL

Ã
, ζR

Ã

]
⊆ [0, 1], and 0 ≤ ξR

Ã
+ ψR

Ã
+ ζR

Ã
≤ 3.

Definition 3 [45]. Let Ã =
([

ξL
Ã

, ξR
Ã

]
,
[
ψL

Ã
, ψR

Ã

]
,
[
ζL

Ã
, ζR

Ã

])
be an INN, then a score function, SF, is:

SF
(

Ã
)
=

(
2 + ξL

Ã
− ψL

Ã
− ζL

Ã

)
+
(

2 + ξR
Ã
− ψR

Ã
− ζR

Ã

)
6

, SF
(

Ã
)
∈ [0, 1] (3)

Definition 4 [45]. Let Ã =
([

ξL
Ã

, ξR
Ã

]
,
[
ψL

Ã
, ψR

Ã

]
,
[
ζL

Ã
, ζR

Ã

])
be an INN, then an accuracy function, AF

(
Ã
)

,
is defined as:

AF
(

Ã
)
=

(
ξL

Ã
+ ξR

Ã

)
−
(

ζL
Ã
+ ζR

Ã

)
2

, AF
(

Ã
)
∈ [−1, 1] (4)
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Definition 5 [45]. Let Ã =
([

ξL
Ã

, ξR
Ã

]
,
[
ψL

Ã
, ψR

Ã

]
,
[
ζL

Ã
, ζR

Ã

])
and B̃ =

([
ξL

B̃
, ξR

B̃

]
,
[
ψL

B̃
, ψR

B̃

]
,
[
ζL

B̃
, ζR

B̃

])
be two INNs, SF

(
Ã
)
=

(
2+ξL

Ã
−ψL

Ã
−ζL

Ã

)
+
(

2+ξR
Ã
−ψR

Ã
−ζR

Ã

)
6 and SF

(
B̃
)
=

(
2+ξL

B̃
−ψL

B̃
−ζL

B̃

)
+
(

2+ξR
B̃
−ψR

B̃
−ζR

B̃

)
6 be

the score functions, and AF
(

Ã
)
=

(
ξL

Ã
+ξR

Ã

)
−
(

ζL
Ã
+ζR

Ã

)
2 and AF

(
B̃
)
=

(
ξL

B̃
+ξR

B̃

)
−
(

ζL
B̃
+ζR

B̃

)
2 be the accuracy

functions, then if SF
(

Ã
)
< SF

(
B̃
)

, then Ã < B̃; if SF
(

Ã
)
= SF

(
B̃
)

, then (1) if AF
(

Ã
)
= AF

(
B̃
)

, then

Ã = B̃; (2) if AF
(

Ã
)
< AF

(
B̃
)

, then Ã < B̃.

Definition 6 [22,33]. Let Ã =
([

ξL
Ã

, ξR
Ã

]
,
[
ψL

Ã
, ψR

Ã

]
,
[
ζL

Ã
, ζR

Ã

])
and B̃ =

([
ξL

B̃
, ξR

B̃

]
,
[
ψL

B̃
, ψR

B̃

]
,
[
ζL

B̃
, ζR

B̃

])
be two INNs, then:

(1) Ã⊕ B̃ =
([

ξL
A + ξL

B − ξL
AξL

B, ξR
A + ξR

B − ξR
AξR

B
]
,
[
ψL

AψL
B, ψR

AψR
B
]
,
[
ζL

AζL
B, ζR

AζR
B
])

;

(2) Ã⊗ B̃ =

( [
ξL

AξL
B, ξR

AξR
B
]
,
[
ψL

A + ψL
B − ψL

AψL
B, ψR

A + ψR
B − ψR

AψR
B
]
,[

ζL
A + ζL

B − ζL
AζL

B, ζR
A + ζR

B − ζR
AζR

B
] )

;

(3) λÃ =
([

1−
(
1− ξL

A
)λ, 1−

(
1− ξR

A
)λ
]
,
[(

ψL
A
)λ,
(
ψR

A
)λ
]
,
[(

ζL
A
)λ,
(
ζR

A
)λ
])

, λ > 0;

(4)
(

Ã
)λ

=
([(

ξL
A
)λ,
(
ξR

A
)λ
]
,
[(

ψL
A
)λ,
(
ψR

A
)λ
]
,
[
1−

(
1− ζL

A
)λ, 1−

(
1− ζR

A
)λ
])

, λ > 0.

Definition 7 [45]. Let Ã and B̃ be two INNs, then the normalized Hamming distance between Ã and B̃ is
defined as follows:

d
(

Ã, B̃
)
=

1
6

( ∣∣ξL
A − ξL

B
∣∣+ ∣∣ξR

A − ξR
B
∣∣+ ∣∣ψL

A − IL
B
∣∣

+
∣∣ψR

A − ψR
B
∣∣+ ∣∣ζL

A − ζL
B
∣∣+ ∣∣ζR

A − ζR
B
∣∣
)

(5)

3. VIKOR Method for INN MAGDM Problems

Let φ = {φ1, φ2, · · · , φm} be alternatives and ϕ = {ϕ1, ϕ2, · · · , ϕn} be attributes. Let τ =

(τ1, τ2, · · · , τn) be the weight of ϕj, 0 ≤ τj ≤ 1,
n
∑

j=1
τj = 1. Let D = {D1, D2, · · · , Dt} be the set

of DMs, σ = (σ1, σ2, · · · , σt) be the weighting of DMs, with 0 ≤ σk ≤ 1,
t

∑
k=1

σk = 1. Suppose

that R̃k =
(

r̃(k)ij

)
m×n

=
([

ξ
L(k)
ij , ξ

R(k)
ij

]
,
[
ψ

L(k)
ij , ψ

R(k)
ij

]
,
[
ζ

L(k)
ij , ζ

R(k)
ij

])
m×n

is the INN decision matrix[
ξ

L(k)
ij , ξ

R(k)
ij

]
⊆ [0, 1],

[
ψ

L(k)
ij , ψ

R(k)
ij

]
⊆ [0, 1],

[
ζ

L(k)
ij , ζ

R(k)
ij

]
⊆ [0, 1], 0 ≤ ξ

R(k)
ij + ψ

R(k)
ij + ζ

R(k)
ij ≤ 3,

i = 1, 2, · · · , m, j = 1, 2, · · · , n, k = 1, 2, · · · , t.
To cope with the MAGDM with INNs, we develop the INN VIKOR model.

Step 1. Utilize the R̃k and the interval neutrosophic number weighted averaging
(INNWA) operator

r̃ij =
([

ξL
ij, ξR

ij

]
,
[
ψL

ij, ψR
ij

]
,
[
ζL

ij, ζR
ij

])
= INNWAσ

(
r̃(1)ij , r̃(2)ij , · · · , r̃(t)ij

)
i = 1, 2, · · · , m, j = 1, 2, · · · , n

(6)

to get R̃ =
(
r̃ij
)

m×n.

Step 2. Define the positive ideal solutions R̃+ and negative ideal solutions R̃−.

R̃+ =
([

ξL+
j , ξR+

j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
(7)

R̃− =
([

ξL−
j , ξR−

j

]
,
[
ψL−

j , ψR−
j

]
,
[
ζL−

j , ζR−
j

])
(8)
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For the benefit attribute:([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
=

([
max

i
ξL

ij, max
i

ξR
ij

]
,
[

min
i

ψL
ij, min

i
ψR

ij

]
,
[

min
i

ζL
ij, min

i
ζR

ij

]) (9)

([
ξL−

j , ξR−
j

]
,
[
ψL−

j , ψR−
j

]
,
[
ζL−

j , ζR−
j

])
=

([
min

i
ξL

ij, min
i

ξR
ij

]
,
[

max
i

ψL
ij, max

i
ψR

ij

]
,
[

max
i

ζL
ij, max

i
ζR

ij

]) (10)

For the cost attribute:([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
=

([
min

i
ξL

ij, min
i

ξR
ij

]
,
[

max
i

ψL
ij, max

i
ψR

ij

]
,
[

max
i

ζL
ij, max

i
ζR

ij

]) (11)

([
ξL−

j , ξR−
j

]
,
[
ψL−

j , ψR−
j

]
,
[
ζL−

j , ζR−
j

])
=

([
max

i
ξL

ij, max
i

ξR
ij

]
,
[

min
i

ψL
ij, min

i
ψR

ij

]
,
[

min
i

ζL
ij, min

i
ζR

ij

]) (12)

Step 3. Compute the Γi and Zi.

Γi =
n

∑
j=1

τj × d

 ([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
,([

ξL
ij, ξR

ij

]
,
[
ψL

ij, ψR
ij

]
,
[
ζL

ij, ζR
ij

]) 
d

 ([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
,([

ξL−
j , ξR−

j

]
,
[
ψL−

j , ψR−
j

]
,
[
ζL−

j , ζR−
j

])  (13)

Zi = max
j


τj × d

 ([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
,([

ξL
ij, ξR

ij

]
,
[
ψL

ij, ψR
ij

]
,
[
ζL

ij, ζR
ij

]) 
d

 ([
ξL+

j , ξR+
j

]
,
[
ψL+

j , ψR+
j

]
,
[
ζL+

j , ζR+
j

])
,([

ξL−
j , ξR−

j

]
,
[
ψL−

j , ψR−
j

]
,
[
ζL−

j , ζR−
j

]) 


(14)

where τj is weight of ϕj.
Step 4. Compute the Θi by the following formula:

Θi = θ
(Γi − Γ∗i )(
Γ−i − Γ∗i

) + (1− θ)
(Zi − Z∗i )(
Z−i − Z∗i

) (15)

where
Γ∗i = min

i
Γi, Γ−i = max

i
Γi (16)

Z∗i = min
i

Zi, Z−i = max
i

Γi (17)

where θ depicts the decision-making mechanism coefficient. If θ > 0.5, it is for “the maximum group
utility”; If θ < 0.5, it is “the minimum regret”; and it is both if θ = 0.5.

Step 5. Rank the alternatives by Θi, Γi and Zi according to the selection rule of the traditional
VIKOR method.
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4. Numerical Example

4.1. Numerical Example

In this section, a numerical example is given with INNs. Five possible emerging technology
enterprises (ETEs) φi(i = 1, 2, 3, 4, 5) are selected. Four attributes are selected to evaluate the five
possible ETEs: 1© ϕ1 is the employment creation; 2© ϕ2 is the development of science and technology;

3© ϕ3 is the technical advancement; 4© ϕ4 is the industrialization infrastructure. The five ETEs are to be
evaluated by using INNs under the attributes (τ = (0.2, 0.1, 0.3, 0.4)T) by the DMs (σ = (0.2, 0.5, 0.3)T),
as listed in Tables 1–3.

Table 1. The decision matrix R̃1.

ϕ1 ϕ2

φ1 ([0.3, 0.4], [0.6, 0.7], [0.3, 0.5]) ([0.4, 0.5], [0.2, 0.3], [0.1, 0.2])
φ2 ([0.5, 0.7], [0.6, 0.8], [0.2, 0.4]) ([0.5, 0.6], [0.3, 0.5], [0.2, 0.3])
φ3 ([0.4, 0.5], [0.5, 0.6], [0.2, 0.3]) ([0.3, 0.4], [0.5, 0.6], [0.1, 0.2])
φ4 ([0.6, 0.7], [0.2, 0.3], [0.1, 0.2]) ([0.4, 0.5], [0.1, 0.2], [0.2, 0.3])
φ5 ([0.4, 0.5], [0.2, 0.3], [0.2, 0.3]) ([0.2, 0.3], [0.6, 0.7], [0.2, 0.3])

ϕ3 ϕ4

φ1 ([0.1, 0.2], [0.4, 0.5], [0.1, 0.2]) ([0.3, 0.4], [0.5, 0.6], [0.2, 0.3])
φ2 ([0.5, 0.7], [0.4, 0.6], [0.2, 0.3]) ([0.6, 0.7], [0.3, 0.4], [0.2, 0.3])
φ3 ([0.3, 0.4], [0.1, 0.2], [0.2, 0.3]) ([0.4, 0.5], [0.1, 0.2], [0.3, 0.4])
φ4 ([0.4, 0.5], [0.2, 0.3], [0.1, 0.2]) ([0.3, 0.4], [0.4, 0.5], [0.2, 0.3])
φ5 ([0.5, 0.6], [0.4, 0.5], [0.2, 0.3]) ([0.3, 0.4], [0.6, 0.7], [0.3, 0.4])

Table 2. The decision matrix R̃2.

ϕ1 ϕ2

φ1 ([0.4, 0.6], [0.5, 0.7], [0.3, 0.4]) ([0.6, 0.7], [0.5, 0.6], [0.5, 0.6])
φ2 ([0.6, 0.9], [0.4, 0.5], [0.3, 0.4]) ([0.7, 0.8], [0.6, 0.7], [0.4, 0.5])
φ3 ([0.8, 0.9], [0.8, 0.9], [0.4, 0.5]) ([0.7, 0.8], [0.5, 0.6], [0.5, 0.6])
φ4 ([0.6, 0.7], [0.3, 0.4], [0.5, 0.6]) ([0.8, 0.9], [0.5, 0.6], [0.6, 0.7])
φ5 ([0.4, 0.5], [0.6, 0.7], [0.6, 0.7]) ([0.6, 0.7], [0.3, 0.4], [0.3, 0.4])

ϕ3 ϕ4

φ1 ([0.5, 0.6], [0.4, 0.5], [0.3, 0.4]) ([0.6, 0.7], [0.4, 0.5], [0.3, 0.4])
φ2 ([0.7, 0.8], [0.3, 0.4], [0.3, 0.4]) ([0.8, 0.9], [0.4, 0.5], [0.3, 0.4])
φ3 ([0.7, 0.8], [0.1, 0.2], [0.3, 0.4]) ([0.8, 0.9], [0.5, 0.6], [0.2, 0.3])
φ4 ([0.5, 0.6], [0.2, 0.3], [0.4, 0.5]) ([0.5, 0.6], [0.7, 0.9], [0.3, 0.4])
φ5 ([0.9, 1.0], [0.4, 0.5], [0.3, 0.4]) ([0.7, 0.8], [0.8, 0.9], [0.1, 0.2])

Table 3. The decision matrix R̃3.

ϕ1 ϕ2

φ1 ([0.7, 0.8], [0.4, 0.5], [0.4, 0.5]) ([0.7, 0.8], [0.3, 0.4], [0.6, 0.7])
φ2 ([0.6, 0.7], [0.5, 0.6], [0.4, 0.5]) ([0.7, 0.8], [0.6, 0.7], [0.5, 0.6])
φ3 ([0.7, 0.8], [0.3, 0.4], [0.5, 0.6]) ([0.8, 0.9], [0.2, 0.4], [0.6, 0.7])
φ4 ([0.7, 0.8], [0.4, 0.5], [0.6, 0.7]) ([0.6, 0.9], [0.1, 0.2], [0.7, 0.8])
φ5 ([0.6, 0.7], [0.7, 0.8], [0.2, 0.3]) ([0.7, 0.8], [0.3, 0.5], [0.4, 0.5])

ϕ3 ϕ4

φ1 ([0.6, 0.7], [0.3, 0.4], [0.4, 0.5]) ([0.5, 0.6], [0.4, 0.5], [0.4, 0.5])
φ2 ([0.8, 0.9], [0.2, 0.3], [0.7, 0.8]) ([0.6, 0.7], [0.3, 0.4], [0.4, 0.6])
φ3 ([0.8, 0.9], [0.2, 0.4], [0.4, 0.5]) ([0.9, 1.0], [0.1, 0.2], [0.5, 0.6])
φ4 ([0.6, 0.7], [0.1, 0.2], [0.5, 0.6]) ([0.6, 0.7], [0.3, 0.4], [0.4, 0.5])
φ5 ([0.7, 0.9], [0.3, 0.4], [0.4 0.5]) ([0.8, 0.9], [0.5, 0.6], [0.5, 0.6])
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Then, we use the proposed model to select the best ETE.

Step 1. Utilize R̃k(k = 1, 2, 3) and the INNWA operator, in order to obtain matrix R̃ =
(
r̃ij
)

5×4 by
Equation (6) which is listed in Table 4.

Table 4. The decision matrix R̃.

ϕ1 ϕ2

φ1 ([0.4974, 0.6477], [0.4850, 0.6328], [0.3270, 0.4472]) ([0.6021, 0.7058], [0.3571, 0.4625], [0.3828, 0.5044])
φ2 ([0.5817, 0.8268], [0.4638, 0.5802], [0.3016, 0.4277]) ([0.6677, 0.7703], [0.5223, 0.6544], [0.3723, 0.4768])
φ3 ([0.7186, 0.8301], [0.5426, 0.6507], [0.3723, 0.4768]) ([0.6853, 0.7976], [0.3798, 0.5313], [0.3828, 0.5044])
φ4 ([0.6331, 0.7344], [0.3016, 0.4038], [0.3828, 0.5044]) ([0.6933, 0.8620], [0.2236, 0.3464], [0.5044, 0.6150])
φ5 ([0.4687, 0.5710], [0.5044, 0.6150], [0.3464, 0.4583]) ([0.5785, 0.6853], [0.3446, 0.4783], [0.3016, 0.4083])

ϕ3 ϕ4

φ1 ([0.4740, 0.5785], [0.3669, 0.4676], [0.2625, 0.3723]) ([0.5127, 0.6243], [0.4183, 0.5186], [0.3016, 0.4038])
φ2 ([0.7058, 0.8238], [0.2814, 0.3979], [0.3567, 0.4649]) ([0.7172, 0.8268], [0.3464, 0.4472], [0.3016, 0.4265])
φ3 ([0.6853, 0.7976], [0.1231, 0.2462], [0.3016, 0.4038]) ([0.7976, 1.0000], [0.2236, 0.3464], [0.2855, 0.3912])
φ4 ([0.5150, 0.6163], [0.1625, 0.2656], [0.3241, 0.4397]) ([0.4998, 0.6021], [0.4854, 0.6274], [0.3016, 0.4038])
φ5 ([0.8082, 1.0000], [0.3669, 0.4676], [0.3016, 0.4038]) ([0.6853, 0.7976], [0.6559, 0.7579], [0.2019, 0.3194])

Step 2. Define the R̃+ and R̃− by Equations (7) and (8).

R̃+ =


([0.7186, 0.8301], [0.3016, 0.4038], [0.3016, 0.4277]),
([0.6933, 0.8620], [0.2236, 0.3464], [0.3016, 0.4038]),
([0.8082, 1.0000], [0.1231, 0.2462], [0.2625, 0.3723]),
([0.7976, 1.1000], [0.2236, 0.3464], [0.2019, 0.3194])


R̃− =


([0.4687, 0.5710], [0.5426, 0.6507], [0.3828, 0.5044]),
([0.5785, 0.6853], [0.5223, 0.6544], [0.5044, 0.6150]),
([0.4740, 0.5785], [0.3669, 0.4676], [0.3567, 0.4649]),
([0.4998, 0.6021], [0.6559, 0.7579], [0.3016, 0.4265])


Step 3. Compute the Γi and Zi by Equation (14).

Γ1 = 0.6507, Γ2 = 0.4182, Γ3 = 0.2416, Γ4 = 0.5261, Γ5 = 0.5195
Z1 = 0.2386, Z2 = 0.1515, Z3 = 0.0921, Z4 = 0.2765, Z5 = 0.2252

Step 4. Compute the Θi (let θ = 0.5) by Equation (15).

Θ1 = 0.8974, Θ2 = 0.3772, Θ3 = 0.0000, Θ4 = 0.8477, Θ5 = 0.7006

Step 5. The order of ETEs is determined by Θi (i = 1, 2, 3, 4, 5): φ3 � φ2 � φ5 � φ4 � φ1, and
thus the most desirable ETE is φ3.

4.2. Comparative Analysis

In what follows, we compare with the interval neutrosophic number weighted averaging
(INNWA) operator and interval neutrosophic number weighted geometric (INNWG) operator [28],
INN similarity [33], and INN VIKOR [55]. The results are shown in Table 5.

From the above analysis, it can be seen that the five methods have the same best emerging
technology enterprise φ3, and the ranking results of Method 1 and Method 2 are slightly different. The
proposed INN VIKOR method can reasonably focus a MAGDM problem with INNs. At the same time,
compared with Method 5 based on the INN VIKOR method in Reference [55], our proposed method
avoids the interval numbers’ comparison.
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Table 5. The orders by utilizing five methods.

Methods Ranking Orders Best Alternatives

Method 1 with INNWA operator in [28] φ3 � φ5 � φ2 � φ4 � φ1 φ3
Method 2 with INNWG operator in [28] φ3 � φ2 � φ5 � φ4 � φ1 φ3

Method 3 based on similarity in [33] φ3 � φ2 � φ5 � φ4 � φ1 φ3
Method 4 based on similarity in [33] φ3 � φ2 � φ5 � φ4 � φ1 φ3

Method 5 based on INN VIKOR in [55] φ3 � φ2 � φ5 � φ4 � φ1 φ3
The proposed method φ3 � φ2 � φ5 � φ4 � φ1 φ3

5. Conclusions

The VIKOR method for a MAGDM presents some conflicting attributes. We extended the VIKOR
method to MAGDM with INNs. Firstly, the basic concepts of INNs were briefly presented. The method
first aggregates all individual decision-makers’ assessment information based on an INNWA operator,
and then employs the extended classical VIKOR method for MAGDM problems with INNs. The
validity and stability of this method were verified by example analysis and comparative analysis, and
its superiority was illustrated by a comparison with the existing methods. In the future, many other
methods of INSs need to be explored in for MAGDM, risk analysis, and many other uncertain and
fuzzy environments [56–78].
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