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Abstract 

Uncertainty and indeterminacy are two major problems in data 
analysis these days. Neutrosophy is a generalization of the fuzzy 
theory. Neutrosophic system is based on indeterminism and falsity 
of concepts in addition to truth degrees. Any neutrosophy variable 
or concept is defined by membership, indeterminacy and non-
membership functions. Finding efficient and accurate definition for 
neutrosophic variables is a challenging process. This chapter 
presents a framework of Ant Colony Optimization and entropy 
theory to define a neutrosophic variable from concrete data. Ant 
Colony Optimization is an efficient search algorithm presented to 
define parameters of membership, indeterminacy and non-
membership functions. The integrated framework of information 
theory measures and Ant Colony Optimization is proposed. 
Experimental results contain graphical representation of the 
membership, indeterminacy and non-membership functions for the 
temperature variable of the forest fires data set. The graphs 
demonstrate the effectiveness of the proposed framework. 
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1 Introduction 

These days, Indeterminacy is the key idea of the information in reality 
issues. This term eludes to the obscure some portion of the information 
representation. The fuzzy logic [1], [2], [3], serves the piece of information 
participation degree. Thus, the indeterminacy and non-participation ideas of the 
information ought to be fittingly characterized and served. The neutrosophic [4], 
[16] theory characterizes the informational index in mix with their membership, 
indeterminacy and non-membership degrees. Thus, the decisions could be 
practically figured out from this well-defined information. 

Smarandache in [5], [13], [14], and Salama et al. in [4], [7],  [8],  [9], [10] 
[11], [12], [16] present the mathematical base of neutrosophic system and 
principles of neutrosophic data. Neutrosophy creates the main basics for a new 
mathematics field through adding indeterminacy concept to traditional and fuzzy 
theories[1], [2], [3], [15].  

Handling neutrosophic system is a new, moving and appealing field for 
scientists. In literature, neutrosophic toolbox implementation using object 
oriented programming operations and formulation is introduced in [18]. 
Moreover, a data warehouse utilizing neutrosophic methodologies and sets is 
applied in [17]. Also, the problem of optimizing membership functions using 
Particle Swarm Optimization was introduced in [24]. This same mechanism could 
be generalized to model neutrosophic variable. 

The neutrosophic framework depends actually on the factors or variables 
as basics. The neutrosophic variable definition is without a doubt the base in 
building a precise and productive framework. The neutrosophic variable is made 
out of a tuple of value, membership, indeterminacy and non-membership. 
Pronouncing the elements of participation, indeterminacy and non-enrolment and 
map those to the variable values would be an attainable arrangement or solution 
for neutrosophic variable formulation. 

Finding the subsets boundary points of membership and non-membership 
functions within a variable data would be an interesting optimization problem. 
Ant Colony Optimization (ACO) [19], [20] is a meta-heuristic optimization and 
search procedure [22] inspired by ants lifestyle in searching for food. ACO 
initializes a population of ants in the search space traversing for their food 
according to some probabilistic transition rule. Ants follow each other basing on 
rode pheromone level and ant desirability to go through a specific path. The main 
issue is finding suitable heuristic desirability which should be based on the 
information conveyed from the variable itself. Information theory measures [6],  
[20], [21], [23] collect information from concrete data. The entropy definition is 
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the measure of information conveyed in a variable. Whereas, the mutual 
information is the measure of data inside a crossing point between two nearby 
subsets of a variable. These definitions may help in finding limits of a 
membership function of neutrosophic variable subsets depending on the 
probability distribution of the data as the heuristic desirability of ants. 

In a similar philosophy, the non- membership of a neutrosophic variable 
might be characterized utilizing the entropy and mutual information basing on the 
data probability distribution complement. Taking the upsides of the neutrosophic 
set definition; the indeterminacy capacity could be characterized from the 
membership and non-membership capacities. 

This chapter exhibits an incorporated hybrid search model amongst ACO 
and information theory measures to demonstrate a neutrosophic variable. The rest 
of this chapter is organized as follows. Section 2 shows the hypotheses and 
algorithms. Section 3 announces the proposed integrated framework. Section 4 
talks about the exploratory outcomes of applying the framework on a general 
variable and demonstrating the membership, indeterminacy and non-membership 
capacities. Conclusion and future work is displayed in section 5. 

2 Theory Overview 

2.1 Parameters of a neutrosophic variable 

In the neutrosophy theory[5][13][14], every concept is determined by rates 
of truth   𝜇𝐴(𝑥) , indeterminacy 𝜎𝐴(𝑥), and negation 𝜈𝐴(𝑥) in various partitions. 
Neutrosophy is a generalization of the fuzzy hypothesis [1], [2], [3] and an 
extension of the regular set. Neutrosophic is connected to concepts identified with 
indeterminacy. Neutrosophic data is defined by three main concepts to manage 
uncertainty. These concepts are joined together in the triple: 

𝐴 = 〈𝜇𝐴(𝑥), 𝜎𝐴(𝑥), 𝜈𝐴(𝑥)〉     (1) 

where 

 𝜇𝐴(𝑥)  is the membership degree, 

𝜎𝐴(𝑥) is the indeterminacy degree, 

 𝜈𝐴(𝑥) is the falsity degree. 

These three terms form the fundamental concepts and they are independent 
and explicitly quantified. In neutrosophic set, each value  𝑥 ∈ 𝑋 in set A defined 
by Eq. 1 is constrained by the following conditions: 

0− ≤ 𝜇𝐴(𝑥), 𝜎𝐴(𝑥), 𝜈𝐴(𝑥) ≤  1
+      (2) 
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0− ≤ 𝜇𝐴(𝑥) + 𝜎𝐴(𝑥)+ 𝜈𝐴(𝑥) ≤  3
+    (3) 

Whereas, Neutrosophic intuitionistic set of type is subjected to the 
following: 

0− ≤ 𝜇𝐴(𝑥), 𝜎𝐴(𝑥), 𝜈𝐴(𝑥) ≤  1
+     (4) 

𝜇𝐴(𝑥)  ∧  𝜎𝐴(𝑥) ∧  𝜈𝐴(𝑥) ≤  0.5     (5) 

0− ≤ 𝜇𝐴(𝑥) + 𝜎𝐴(𝑥)+ 𝜈𝐴(𝑥) ≤  3
+    (6) 

Neutrosophic intuitionistic set of type 2 [5]  is obliged by to the following 
conditions: 

0.5 ≤  𝜇𝐴(𝑥), 𝜎𝐴(𝑥), 𝜈𝐴(𝑥)        (7) 

𝜇𝐴(𝑥)  ∧  𝜎𝐴(𝑥) ≤  0.5 ,   𝜇𝐴(𝑥)  ∧  𝜈𝐴(𝑥) ≤  0.5, 𝜎𝐴(𝑥) ∧  𝜈𝐴(𝑥) ≤  0.5     

(8) 

0− ≤ 𝜇𝐴(𝑥) + 𝜎𝐴(𝑥)+ 𝜈𝐴(𝑥) ≤  2
+    (9) 

2.2 Ant Colony Optimization (ACO) 

The ACO [19], [20]is an efficient search algorithm used to find feasible 
solutions for complex and high dimension problems. The intelligence of the ACO 
is based on a population of ants traversing the search workspace for their food. 
Each ant follows a specific path depending on information left previously from 
other ants. This information is characterized by the probabilistic transition rule 
Eq. 10.   

𝑝𝑗
𝑚(𝑡) =

[𝜂𝑗]×[𝜏𝑖𝑗(𝑡)]

∑ [𝜂𝑖]×[𝜏𝑖𝑗(𝑡)]𝑖∈𝐼𝑚

      (10) 

where: 

𝜂𝑗  is the heuristic desirability of choosing node j and  

𝜏𝑖𝑗 is the amount of virtual pheromone on edge (i, j) 

The pheromone level guides the ant through its journey. This guide is a 

hint of the significance level of a node (exhibited by the ants went to the nodes 

some time recently). The pheromone level is updated by the algorithm using the 

fitness function. 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗(t)    (11) 
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where 0<  <1 is a decay constant used to estimate the evaporation of the 

pheromone from the edges. ∆τij(t) is the amount of pheromone deposited by the 

ant.  

The heuristic desirability ηj describes the association between a node j and 

the problem solution or the fitness function of the search. If a node has a heuristic 

value for a certain path then the ACO will use this node in the solution of the 

problem. The algorithm of ACO is illustrated in figure 1. 

𝜂𝑗 = 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛     (12) 

 

ACO  Algorithm 

Input :pd, N 

%%%% pd number of decision variables in ant, N iterations, Present position (ant) in 

the search universe  𝑋𝑖𝑑 , 𝜌 evaporation rate,  %%%%%%% 

Output: Best_Solution 

1: Initianlize_Node_Graph(); 

2: Initialize_Phermoni_Node(); 

3: While (num_of_Iterations>0) do 

4:  for each Ant 

5: 𝜂𝑗 objective function of the search space 

6: TRANSITION_RULE[j]= 𝑝𝑗
𝑚(𝑡) =

[𝜂𝑗]×[𝜏𝑖𝑗(𝑡)]

∑ [𝜂𝑖]×[𝜏𝑖𝑗(𝑡)]𝑖∈𝐼𝑚

 

7:  Select node with the highest 𝑝𝑗
𝑚(𝑡) 

8: Update Pheromone level 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗(𝑡) 

9:  num_of_Iterations--; 

10: end While 

 11:Best_sol solution with best 𝜂𝑗 

12: output(Best_sol) 

Fig. 1: Pseudo code of ant colony optimization Algorithm 
 

2.3 Entropy and Mutual Information 

Information theory measures [6], [20][23] collect information from raw 
data. The entropy of a random variable is a function which characterizes the 
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unexpected events of a random variable. Consider a random variable X 
expressing the number on a roulette wheel or the number on a fair 6-sided die. 

H(X) = ∑ −P(x) log P(x)𝒙∈𝑿      (13) 

Joint entropy is the entropy of a joint probability distribution, or a multi-
valued random variable. For example, consider the joint entropy of a distribution 
of mankind (X) defined by a characteristic (Y) like age or race or health status of 
a disease. 

I(X;  Y ) = ∑ p(x, y)log
p(x,y)

p(x)p(y)𝒙,𝒚      (14) 

3 The Proposed FrameWork  

An Integrated hybrid model of ACO and information theory measures 
(entropy and mutual information) as the objective function is presented. The 
ACO[19][20] is a heuristic searching algorithm used to locate the ideal segments 
of the membership and non-membership functions of a neutrosophic variable. 
The indeterminacy function is calculated by the membership and non-
membership functions basing on the definitions of neutrosophic set illustrated in 
section 2. The objective function is the amount of information conveyed from 
various partitions in the workspace. Therefore, the total entropy [21] is  used as 
the objective function on the variables workspace. Total entropy calculates 
amount of information of various partitions and intersections between these 
partitions.  Best points in declaring the membership function are the boundaries 
of the partitions. The ants are designed to form the membership and non-
membership partitions as illustrated in figure 2. A typical triangle membership 
function would take the shape of figure 2. 

The triangle function of a variable partition is represented by parameters 
(L, (L+U)/2, U). Finding best values of L and U for all partitions would optimize 
the membership (non-membership) function definition. Figure 3 give a view of 
the ant with n partitions for each fuzzy variable. 

 

Fig. 2: corresponding to triangle fuzzy membership and its 
boundary parameters  



Neutrosophic Operational Research 
Volume I 

181 

 

Fig. 3: Individual in ACO for Triangle function 
 

One of the main difficulties in designing optimization problem using ACO 
is finding the heuristic desirability which formulates the transition rule. The 
amount of information deposited by neutrosophic variable inspires the ACO to 
calculate the transition rule and find parameters of membership, indeterminism 
and non-membership declarations. The membership function subsets are declared 
by ant parameters in figure 2. The histogram of a variable shows the data 
distribution of the different values. Therefore, the set of parameters are mapped 
to the histogram of a given variable data (Fig. 4).  

 
Fig. 4:  Fuzzy discretizing  of the histogram into n  joint subsets 

and m-1 intersections 
 

The objective function is set as the total entropy of partitions[23]. By 
enhancing partition's parameters to optimize the total entropy of the histogram 
subsets, the optimal membership design of the variable is found.  

To model (n) membership functions, variable histogram is partitioned into 
n overlapped subsets that produce n-1 intersections. Every joint partition 
corresponds to joint entropy and each overlap is modelled by mutual information. 
Eq.15 shows the total entropy which is assigned to the heuristic desirability of 
ants. 

𝜂𝑗 = 𝐻 = ∑ 𝐻(𝑖)𝑛
𝑖=1 − ∑ 𝐼(𝑗, 𝑗 + 1)𝑛−1

𝑗=1     (15) 

where n is the number of partitions or subsets in the fuzzy variable, 

𝐻 is the total entropy, 

𝐻(𝑖) is the entropy of subset i, 

I is the mutual information between to intersecting partitions (𝑖, 𝑗). 

Individual L1 U1 L2 U2 …… Ln Un 
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Fig. 5: Algorithm for the modelling neutrosophic variable using ACO 

Input :pd, N, variable_datafile 
%%%% pd number of decision variables in particle, N ieteration, Present position in the search 
universe  𝑋𝑖𝑑 , 𝜌  is the decay rate of phermone. %%%%%%% 
Output: membership, non-membership and indeterminacy function, conversion rate. 
1: XInitianlize_Ants(); % Each ant is composed of  pd decision variables for fuzzy partitions 
2:AttRead_data(variable_datafile)  
3:Objective_mem_  Evaluate _ Objective_of_Particles (X, P(Att)); % According to entropy and 
Mutual information 
4: Objective_non_mem  Evaluate _ Objective_of_Particles (X, 1-P(Att)); % According to entropy 
and Mutual information 
 
5: While (num_of_Iterations<Max_iter)   
% membership generation 
6: for each Ant  

7: 𝜂𝑗 𝐻 =  ∑ 𝐻(𝑖)𝑛
𝑖=1 − ∑ 𝐼(𝑗, 𝑗 + 1)𝑛−1

𝑗=1  

  8: 𝑝𝑗𝑚(𝑡)  
[𝜂𝑗]×[𝜏𝑖𝑗(𝑡)]

∑ [𝜂𝑖]×[𝜏𝑖𝑗(𝑡)]𝑖∈𝐼𝑚

 

                9: 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗(𝑡) 
10:end for each 
 11: Best_sol_mem max(𝜂𝑗) % Best found value until iteration t 
% non-membership generation 
12: for each Ant  

13 𝜂𝑗 𝐻 =  ∑ 𝐻(𝑖)𝑛
𝑖=1 − ∑ 𝐼(𝑗, 𝑗 + 1)𝑛−1

𝑗=1  

  14: 𝑝𝑗𝑚(𝑡)  
[𝜂𝑗]×[𝜏𝑖𝑗(𝑡)]

∑ [𝜂𝑖]×[𝜏𝑖𝑗(𝑡)]𝑖∈𝐼𝑚

 

15: 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗(𝑡) 
16:end for each 
17: Best_sol_non-mem max(𝜂𝑗) % Best found value until iteration t 
18: End While 
18: Best _mem  Best_sol_mem  
19: Best _non-mem  Best_sol_non-mem  
20: indeterminacy calculate-ind(Best _mem, Best _non-mem); 
21: Draw(Best _mem, Best _non-mem, indeterminacy) 
22: Draw_conversions_rate() 
23: Output membership, non-membership and indeterminacy function, conversion rate. 

--------------------------------------------------------------------------------------------------------------------- 

 

Function calculate-ind(𝜇𝐴(𝑥),  𝜈𝐴(𝑥)) 
1: Input:( 𝜇𝐴(𝑥),  𝜈𝐴(𝑥))  
2: Output: indeterminacy 
3: 0− − [𝜇𝐴(𝑥) +  𝜈𝐴(𝑥)] ≤   𝜎𝐴(𝑥)    ≤  3+ − [𝜇𝐴(𝑥) +  𝜈𝐴(𝑥)] 
4: indeterminacy Normalize (𝜎𝐴(𝑥)); 
5: Return indeterminacy 

5: End Fun 
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In membership function modelling, the total entropy function Eq. 13, 14 
and 15 are calculated by the probability distribution P(x)  of the variable data 
frequency in various partitions and the intersecting between them. The 
complement of probability distribution 1 − P(x) is utilized to measure the non-
membership of variable data in different partitions. Therefore, the non-
membership objective function will compute Eq. 13, 14 and 15 with the variable 
data frequency complement in different partitions and overlapping.  

According to Eq.3 & 6, the summation of the membership, non-
membership and indeterminacy values for the same instance is in the interval 
[0−, 3+]. Hence the indeterminacy function is declared by Eq. 16. 

0− − [𝜇𝐴(𝑥) +  𝜈𝐴(𝑥)] ≤   𝜎𝐴(𝑥)    ≤  3
+ − [𝜇𝐴(𝑥) +  𝜈𝐴(𝑥)]   (16) 

Where Eq. 9 states that the summation of the membership, non-
membership and indeterminacy values for the same instance is in the interval 
[0−, 2+]. Hence, the indeterminacy function is defined as Eq. 17.  

0− − [𝜇𝐴(𝑥) +  𝜈𝐴(𝑥)] ≤     𝜎𝐴(𝑥)     ≤  2
+ − [𝜇𝐴(𝑥) +  𝜈𝐴(𝑥)]  (17) 

By finding the membership and non-membership definition of  𝑥 , the 
indeterminacy function 𝜎𝐴(𝑥) could be driven easily from Eq. 15 or 16. The value 
of the indeterminacy function should be in the interval [0− 1+] , hence the 𝜎𝐴(𝑥)  
function is normalized according to Eq. 18.  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝜎𝐴(𝑥𝑖) =
𝜎𝐴(𝑥𝑖)−𝑚𝑖𝑛(𝜎𝐴(𝑥))

𝑚𝑎𝑥(𝜎𝐴(𝑥))−𝑚𝑖𝑛(𝜎𝐴(𝑥))
   (18) 

where σA(xi) is the indeterminacy function for the value  xi . The flow chart and 
algorithm of the integrated framework is illustrated in figure 5 and 6 respectively. 

4 Experimental Results 

The present reality issues are brimming with vulnerability and 
indeterminism. The neutrosophic field is worried by picking up information with 
degrees of enrollment, indeterminacy and non-participation. Neutrosophic 
framework depends on various neutrosophic factors or variables. Unfortunately, 
the vast majority of the informational indexes accessible are normal numeric 
qualities or unmitigated characteristics. Henceforth, creating approaches for 
characterizing a neutrosophic set from the current informational indexes is 
required. 

The membership capacity function of a neutrosophy variable, similar to the 
fuzzy variable, can take a few sorts. Triangle membership is very popular due to 
its simplicity and accuracy. Triangle function is characterized by various 
overlapping partitions. These subsets are characterized by support, limit and core 
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parameters. The most applicable parameter to a specific subset is the support 
which is the space of characterizing the membership degree. Finding the start and 
closure of a support over the universe of a variable could be an intriguing search 
issue suitable for optimization. Meta-heuristic search methodologies [22] give an 
intelligent procedure for finding ideal arrangement of solutions is any universe. 
ACO is a well-defined search procedure that mimics ants in discovering their 
sustenance. Figure 3 presents the ant as an individual in a population for 
upgrading a triangle membership function through the ACO procedure. The ACO 
utilizes the initial ant population and emphasizes to achieve ideal arrangement. 

 

Table 1. Parameters of ACO 
Maximum Number of Iterations 50 

Population Size (number of ants) 10 

Decaying rate 0.1 

 

The total entropy given by Eq. 15 characterizes the heuristic desirability 
which affects the probabilistic transition rule of ants in the ACO algorithm.  The 
probability distribution 𝑃(𝑥) presented in Eq. 13, 14 and 15 is used to calculate 
the total entropy function. The ACO parameters like Maximum Number of 
Iterations, Population Size, and pheromone decaying rate are presented in table 
1.  

The non-membership function means the falsity degree in the variables 
values. Hence, the complement of a data probability distribution 1 − 𝑃(𝑥) is 
utilized to create the heuristic desirability of the ants in designing the non-
membership function Eq. 13, 14 and 15.  

The indeterminacy capacity of variable data is created by both membership 
and non-membership capacities of the same data using neutrosophic set 
declaration in section 2 and Eq. 16 or 17. Afterwards, Eq. 18 is used to normalize 
the indeterminacy capacity of the data.  Through simulation, the ACO is applied 
by MATLAB , PC with Intel(R) Core (TM) CPU and 4 GB RAM. The simulation 
are implemented on the temperature variable from the Forest Fires data set 
created by: Paulo Cortez and Anbal Morais (Univ. Minho) [25].  The histogram 
of a random collection of the temperature data is shown in figure 7. 
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Fig. 6: Temperature Variable Histogram 

Figures 7: a, b and c presents the resulting membership, non-membership 
and indeterminacy capacities produced by applying the ACO on a random 
collection of the temperature data.  

Fig. 7: a. Membership Function
b. Non-membership Function
c. Inderminacy Function

5 Conclusion 

A proposed framework utilizing the ant colony optimization and the total 
entropy measure for mechanizing the design of neutrosophic variable is 
exhibited. The membership, non-membership and indeterminacy capacities are 
utilized to represent the neutrosophy idea. The enrollment or truth of subset could 
be conjured from total entropy measure. The fundamental system aggregates the 
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total entropy to the participation or truth subsets of a neutrosophic concept. The 
ant colony optimization is a meta-heuristic procedure which seeks the universe 
related to variable X to discover ideal segments or partitions parameters. The 
heuristic desirability of ants, for membership generation, is the total entropy 
based on the probability density function of random variable X.  Thusly, the 
probability density complement is utilized to design non-membership capacity. 
The indeterminacy capacity is identified, as indicated by neutrosophic definition, 
by the membership and non-membership capacities. The results in light of ACO 
proposed system are satisfying. Therefore, the technique can be utilized as a part 
of data preprocessing stage within knowledge discovery system. Having 
sufficient data gathering, general neutrosophic variable outline for general data 
can be formulated. 
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