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a  b  s  t  r  a  c  t

Neutrosophic  sets  (NSs)  and  logic  are  one  of the  influential  mathematical  tools  to  manage  various  uncer-
tainties.  Among  diverse  models  for analyzing  neutrosophic  information,  rough  set  theory  (RST)  provides
an  effective  way  in the  field  of neutrosophic  information  analysis,  and  a multitude  of  scholars  have focused
on neutrosophic  fusion  of  RST  in  recent  years.  At present,  there  are  not  comprehensive  literature  reviews
and  statistics  of these  generalized  rough  set  theories  and  applications.  This review  study  first  explores  a
summarization  of current  neutrosophic  fusion  of RST  from  five  basic  aspects,  i.e., rough  neutrosophic  sets
(RNSs) and  neutrosophic  rough  sets (NRSs),  soft rough  neutrosophic  sets  (SRNSs)  and  neutrosophic  soft
ough set theory
ough neutrosophic sets
eutrosophic rough sets
ibliometric overview

rough sets  (NSRSs),  mathematical  foundations  of  RNSs  and  NRSs,  RNSs  and  NRSs-based  decision  mak-
ing,  RNSs  and  NRSs-based  other  applications.  Then,  on the  basis  of  the  overview  from  five  fundamental
perspectives,  a systematic  bibliometric  overview  of  current  works  with  respect  to  neutrosophic  fusion  of
RST  is  further  conducted.  Finally,  in light  of the  results  of  this  review,  different  challenging  issues related
to  the main  topics  are  listed,  which  are  beneficial  to future  studies  of  NSs  and  logic.

© 2019  Elsevier  B.V.  All  rights  reserved.
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. Introduction

First established by Smarandache in 1990s, NSs and logic [1,2]
nvolve three different membership functions (the truth one, the
ndeterminacy one, the falsity one) by virtue of non-standard sets
nd logic, in which each value of three membership functions falls
ithin]0−, 1+[. As a consequence, NSs can be regarded as several

eneralized forms [3–6]. Taking full advantages of NSs is able to
escribe lots of uncertain information from the perspective of three
ifferent membership functions, NSs play a key role in coping with

ndeterminate situations that are extensively existed in a variety of
ealistic scenarios [7–16].

Ever since the construction of NSs and logic, many scholars and
ractitioners have developed and enriched the neutrosophic set
NS) theory from different aspects such as extensions, information

easures, decision making approaches, image processing, etc., and
 great deal of meaningful academic works have been presented
uring the past two decades [17]. Among diverse soft computing
odels, RST [18,19] can be seen as a reasonable and effective one

or neutrosophic information processing, and neutrosophic fusion
f RST has become a significant research branch in NSs and logic.
ompared with other theories, the motivations of integrating NSs
ith RST are summarized as follows:

1) It is noted that NSs excel in depicting indeterminate informa-
tion, and RST provides a framework for handling insufficient
and incomplete information, they are generally accepted as
related, but distinct and complementary. Hence, how to gen-
eralize RST to NSs is important for the development of both
NSs and RST. To simultaneously exploit the superiorities of NSs
and RST, it is meaningful to construct a hybrid model of NSs and
RST.

2) Using the idea of RST, various hidden knowledge can be
unveiled from insufficient and incomplete information sys-
tems, especially for studying inconsistent data. For instance,
two patients are likely to share the identical symptoms, but
they actually have different medical diagnosis results. Owing
to the above-mentioned unique merits owned by RST, several
branches, such as cognitive science [20–22], image process-
ing [23], fault diagnosis [24,25], medical diagnosis [26,27] and
machine learning [28–30], can be extended to the context of
NSs, and this extension is conducive to the processing of neu-
trosophic information.

3) In the area of decision making and intelligent systems [31–41],
for a general information system with attribute values, some
hidden rules can be discovered by conducting attribute reduc-

tions, which may  offer the most informative data for further
analyzing. Moreover, RST provides viable schemes on how to
make decisions under specific situations and explain decisions
with respect to scenarios under which decisions have been
made. In light of the above-stated advantages, RST has proved
its excellent performances via attribute reductions and decision
explanations. Hence, the fusion of NSs and RST is favorable to
the addressing of neutrosophic decision making problems.

In classical RST, the notion of information systems is used for
describing the structure of information, which is featured by a
matrix with columns represented by attributes, rows represented
by objects, and matrix values represented by attribute values. After-
wards, the set of entire objects is denoted by the universe of
discourse, and a binary relation over the identical universe can
be obtained from certain attributes of an information system. By
means of binary relations, two definable sets, i.e., lower and upper
approximations, can be designed for constructing a classical rough
set. However, with the rapid growth of information technology,
there exists growing complex data in real-world applications, espe-
cially diverse fuzzy data. Considering classical rough sets can only
process binary information, integrating the superiorities of rough
sets with fuzzy sets is necessary for letting RST effectively handle
fuzzy information systems. Consequently, rough fuzzy sets (RFSs)
along with fuzzy rough sets (FRSs) were proposed [42,43]. In spe-
cific, RFSs utilize an indiscernibility relation to describe a fuzzy
notion, whereas FRSs are approximate estimations of a fuzzy or
crisp set within the context of a classical fuzzy approximation
space.

More recently, for the sake of broadening the application range
of RFSs and FRSs, especially for the neutrosophic background, some
researchers integrated rough sets with NSs and established many
hybrid mathematical models. Broumi et al. [44] used an indiscerni-
bility relation to approximate a neutrosophic concept and founded
the concept of RNSs. Then taking advantages of FRSs, Sweety and
Arockiarani [45] explored the approximation of a NS in terms of
a neutrosophic approximation space, and constructed the notion
of NRSs. The two  works fill the gap between NSs and rough sets,
and neutrosophic fusion of RST has turned into an interesting and
promising research direction for NSs and logic. According to the
existing works related to neutrosophic fusion of RST, we roughly
separate them into the following five classifications (see Fig. 1):

(1) Neutrosophic fusion of RST from the aspect of basic models:
the construction of approximations in terms of a corresponding
target concept is an essential prerequisite in the procedure of
RST-based data processing. It is noted that both NSs and RST
include various extended forms to overcome the limitations
of classical models. For one thing, for the sake of efficiently
applying NSs to more real-world applications, several gener-

alized NS models, such as single-valued NSs (SVNSs) [46] and
interval NSs (INSs) [47], were proposed. For another, in orig-
inal rough sets, since indiscernibility relations are too strict
to be fully exploited, numerous extended rough set notions,
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Fig. 1. Flow chart of the surv

such as dominance-based rough sets (DRSs) [48], covering-
based rough sets (CRSs) [49], probabilistic rough sets (PRSs)
[50] and multigranulation rough sets (MGRSs) [51–54], were
developed to loosen the requirements of equivalence relations.
Consequently, it is imperative to investigate basic models for
the integration of RST with NSs and logic.

2) Neutrosophic fusion of RST from the aspect of soft sets: soft sets,
due to Molodotsov [55], were proposed to handle numerous
uncertainties. With the introduction of soft sets, the limitations
of parameterization inadequacy for rough sets, fuzzy sets and
probability theory can be overcome. Thus, it is meaningful to
fuse soft sets, NSs and RST for putting forward a hybrid soft
computing model.

3) Neutrosophic fusion of RST from the aspect of mathematical
foundations: it is noted that mathematical foundations, such
as relations, lattices, topologies and graphs, have tight connec-
tions with RST, and the study of mathematical foundations has
become a significant topic within the rough set society [56].
Hence, the exploration of mathematical foundations is benefi-

cial to the RST-based uncertainty analysis and data mining.

4) Neutrosophic fusion of RST from the aspect of decision mak-
ing: compared with other classical decision support systems,
RST has proved its powerful capabilities by right of rule acqui-
 neutrosophic fusion of RST.

sitions and attribute reductions in the following two situations
[57–59]: (a) selecting the relative significant attributes for mak-
ing reasonable decisions; (b) explaining a decision by virtue
of lower and upper approximations that correspond to deter-
ministic and probabilistic decision rules. Therefore, RST-based
decision making exerts a far-reaching influence on neutro-
sophic fusion of RST.

(5) Neutrosophic fusion of RST from the aspect of other appli-
cations: during the past decades, RST has also demonstrated
its unique capabilities in numerous fields in artificial intel-
ligence, such as clustering, classification, signal processing,
image processing, and so forth [60]. Hence, the study of real-
world applications has become an important research branch
in neutrosophic fusion of RST.

For the remarkable performances in analyzing neutrosophic
information, neutrosophic fusion of RST has received special favors
of scholars from extensive areas. However, existing literature
reviews have not kept in line with the fast growth of knowledge

in this field. Thus, we  aim to provide a systematic review of recent
neutrosophic fusion of RST and illustrate future studies for bet-
ter supporting the development of NSs and logic. The framework
of the work is arranged below. Section 2 gathers several prelimi-
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ary details of NSs and rough sets. In the next section, neutrosophic
usion of RST from the aspect of basic models is revisited. In Sec-
ion 4, neutrosophic fusion of RST from the aspect of soft sets is
laborated on. Section 5 revisits neutrosophic fusion of RST from
he aspect of mathematical foundations. In Section 6, we present
eutrosophic fusion of RST from the aspect of decision making.
hen, the following section revisits neutrosophic fusion of RST from
he aspect of other applications. Section 8 discusses a bibliometric
verview of current works in terms of neutrosophic fusion of RST.
inally, several concluding remarks and future works are summed
p in the last section.

. Preliminary details

.1. NSs and logic

Smarandache [1,2] initiated the concept of neutrosophy inspired
rom the perspective of philosophical paradigms, which divides
ach notion from a certain degree of truth, indeterminacy and
alsity simultaneously. Afterwards, neutrosophy has laid solid foun-
ations for a series of new mathematical theories including NSs,
eutrosophic logic, neutrosophic statistics, neutrosophic probabil-

ty, etc. In specific, as an extended form of classical fuzzy logic that
ims to realize some basic concepts of neutrosophy, neutrosophic
ogic is defined as a logic in which each proposition is assessed to
wn the degree of truth in a subset �, the degree of indeterminacy

n a subset �, and the degree of falsity in a subset ω. Moreover,
eutrosophic logic provides the framework of neutrosophic con-
ectives such as negation, conjunction and disjunction, which plays

 significant role in neutrosophic fusion of RST. The mathematical
ormulation of neutrosophic connectives will be presented in the
ollowing part of the paper.

In light of the idea of neutrosophic logic, Smarandache [1,2]
ounded NSs by means of non-standard analysis. In non-standard
nalysis, an infinitesimal number is defined as an infinitely small
umber. Suppose � is a such infinitesimal number, and the hyper-
eal number set is a generalization of the real number set, which
ontains classes of infinite numbers and infinitesimal numbers.
hen, 1+ = 1 + � and 0− = 0 − � are two non-standard finite numbers,
here “1” and “0” are standard parts, and “�” is a non-standard part.
bviously, 1+ is greater than 1 and 0− is smaller than 0. Based on the
bove statements, we name]0−, 1+[a non-standard unit interval.

efinition 1. [1,2]

Suppose U is an arbitrary universe of discourse. For a general
omponent x in U, a NS A in U is in mathematical terms of:

 = {〈x, �A (x) , �A (x) , ωA (x)〉|x ∈ U}, (1)

here �A (x), �A (x) and ωA (x) are real standard or non-standard
ubsets of the non-standard unit interval]0−, 1+[, i.e., �, �,

 : U →]0−, 1+[represents the truth membership, the indetermi-
acy membership and the falsity membership respectively for each
omponent x ∈ U to A. Hence, it is noted that a NS is constructed
rom philosophical standpoints which make it hard to address real-

orld situations. In addition, it is worth noticing that there does not
xist a specific limitation for �A (x) + �A (x) + ωA (x). Therefore, we
ave 0− ≤ �A (x) + �A (x) + ωA (x) ≤ 3+.

In light of the structure of NSs, it is difficult to utilize NSs
irectly in practical applications due to the range of �A (x), �A (x)
nd ωA (x) is restricted in ]0−, 1+[. Instead of ]0−, 1+[, it is neces-
ary to update ]0−, 1+[ to the interval [0, 1]. Hence, the concept
f SVNSs [46] was put forward subsequently with the function

, �, ω : U → [0, 1] for each component x ∈ U to a SVNS H.  Thus,
e further have 0 ≤ �H (x) + �H (x) + ωH (x) ≤ 3. Moreover, since

nterval numbers outperform crisp numbers when dealing with
ncomplete information systems, it is natural to propose the notion
s in Industry 115 (2020) 103117

of INSs [47]. For an INS E, the function �, �, ω : U → int [0, 1]
holds for each component x ∈ U to E, where int [0, 1] represents
the set of all closed subintervals of [0, 1]. It is also noted that
0 ≤ sup �E (x) + sup �E (x) + sup ωE (x) ≤ 3 is true, where �E (x) =
[inf �E (x) , sup �E (x)], �E (x) = [inf �E (x) , sup �E (x)] and ωE (x) =
[inf ωE (x) , sup ωE (x)].

With regard to specific applications of NSs, it is significant
to present the mathematical formulation of neutrosophic con-
nectives. In what follows, we present some key neutrosophic
connectives defined on NSs.

Definition 2. [1,2]

Suppose U is an arbitrary universe of discourse, A and A′ are two
NSs, then the followings are true:

(1) complement: the complement of A is represented as Ac, where

Ac = {〈x, ωA (x) , 1 − �A (x) , �A (x)〉|x ∈ U}; (2)

(2) intersection: the intersection of A and A′ is represented as A ∩ A′,
where

A ∩ A′ = {〈x, min
(
�A (x) , �′

A (x)
)
, max

(
�A (x) , �′

A (x)
)
,

max
(
ωA (x) , ω′

A (x)
)
〉|x ∈ U};

(3)

(3) union: the union of A and A′ is represented as A ∪ A′, where

A ∪ A′ = {〈x, max
(
�A (x) , �′

A (x)
)
, min

(
�A (x) , �′

A (x)
)
,

min
(
ωA (x) , ω′

A (x)
)
〉|x ∈ U};

(4)

(4) inclusion: for every x in U, A ⊆ A′ holds such that �A (x) ≤ �′
A (x),

�A (x) ≥ �′
A (x) and ωA (x) ≥ ω′

A (x);
(5) equality: for every x in U, A = A′ holds such that �A (x) = �′

A (x),
�A (x) = �′

A (x) and ωA (x) = ω′
A (x).

2.2. Rough sets

Prior to the introduction of original rough sets, since informa-
tion systems provide a flexible framework for describing several
objects with respect to their corresponding attributes, information
systems lay a solid foundation for constructing rough sets [18,19]. In
what follows, the concept of information systems will be presented
briefly.

In a typical information system, for the representation of
objects, we  let U = {x1, x2, . . .,  xn} be an arbitrary universe of dis-
course; for the representation of attributes, we  also suppose A =
{a1, a2, . . .,  am} is an arbitrary set of attributes. Next, the pair (U, A)
is named an information system. In addition, it is noticed that
a : U → Va for all a ∈ A,  and we further represent it as a (x) ∈ Va,
where Va =

{
a (x) |x ∈ U

}
represents the domain of a.

Concerning a given information system, every attribute
subset B ⊆ A induces an indiscernibility relation RB ={
a (x) = a (y) |∀a ∈ B, (x,  y) ∈ U × U

}
, which splits U into some

equivalence classes denoted by U/RB =
{

[x]B|x ∈ U
}

, where [x]B
represents the equivalence class induced by x in terms of B,  i.e.,
[x]B =

{
(x, y) ∈ RB|y ∈ U

}
. In light of the above statements, for

all X ⊆ U and B ⊆ A,  the lower approximation of X is constructed as
RB (X) =

{
[x]B ⊆ X|x ∈ U

}
, whereas the upper approximation of

X is constructed as R̄B (X) =
{

[x]B ∩ X /= ∅|x  ∈ U
}

. Then, we name

the pair
(
RB (X) , R̄B (X)

)
a rough set of X, and it is not hard to find

RB (X) and R̄B (X) express the object set that certainly and possibly
belongs to X in terms of B respectively.
Based on RB (X) and R̄B (X), Pawlak et al. [18,19] further put
forward the notion of accuracy and roughness to manage the
uncertainty of RST. In specific, the accuracy is given by the ratio
of the cardinalities of RB (X) and R̄B (X), which is represented by
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Table 1
Distribution papers in the field of RNSs and NRSs.

Definition Reference Representation Study category
ig. 2. Flow chart of the survey on neutrosophic fusion of RST from the aspect of
asic models.

B (X) = (|RB (X) |/|R̄B (X) |), whereas the roughness is denoted by
B (X) = 1 − ˛B (X).

. Neutrosophic fusion of RST from the aspect of basic
odels

Considering there exists lots of extended forms of NSs and rough
ets due to some limitations owned by their original forms, several
odels related to RNSs and NRSs have been designed during the last

ew years. In what follows, we plan to review neutrosophic fusion
f RST from the aspect of basic models, these models are revisited

n several subsections below. Moreover, we present the flowchart
f this section in Fig. 2.

.1. RNSs and NRSs

In neutrosophic fusion of RST, RNSs [44] and NRSs [45] are two
undamental models by integrating NSs with rough sets. In what
ollows, we list specific definitions of RNSs and NRSs.

efinition 3. [44]

Suppose U is an arbitrary universe of discourse, an equivalence
elation over U is denoted by R. For a NS A, the two  approximations
f A are in mathematical terms of:

(A) = {〈x, �Q (A) (x) , �Q (A) (x) , ωQ (A) (x)〉|y ∈ [x]R, x ∈ U}; (5)

¯ (A) = {〈x, �Q̄ (A) (x) , �Q̄ (A) (x) , ωQ̄ (A) (x)〉|y ∈ [x]R, x ∈ U}, (6)

here �Q (A) (x) = ∧y ∈ [x]R�A (y), �Q (A) (x) = ∨y ∈ [x]R�A (y), ωQ (A) (x) =
y ∈ [x]RωA (y), �Q̄ (A) (x) = ∨y ∈ [x]R�A (y), �Q̄ (A) (x) = ∧y ∈ [x]R�A (y),

Q̄ (A) (x) = ∧y ∈ [x]RωA (y). It is not difficult to find Q (A) and Q̄ (A)

re both NSs on U. Then, the pair
(
Q (A) , Q̄ (A)

)
is named a RNS of

.
Different from RNSs that use an indiscernibility relation to

pproximate a neutrosophic concept, NRSs aim to design an
pproximation of a NS in terms of a neutrosophic approximation
pace. Next, we provide the mathematical formulation of NRSs
elow.

efinition 4. [45]

Suppose U is an arbitrary universe of discourse, R is a neutro-
ophic relation on U. Then for an arbitrary neutrosophic relation,
he pair (U, R) is named an approximation space related to NSs. For

 NS A, the two approximations of A in terms of (U, R) are given as
he following form:
(A) = {〈x, �R(A) (x) , �R(A) (x) , ωR(A) (x)〉|x ∈ U}; (7)

¯ (A) = {〈x, �R̄(A) (x) , �R̄(A) (x) , ωR̄(A) (x)〉|x ∈ U}, (8)
Definition 3 Broumi et al. [44] NSs RNSs
Definition 4 Sweety and Arockiarani [45] NSs NRSs

where �R(A) (x) = ∧y ∈ U [ωR (x, y) ∨ �A (y)], �R(A) (x) =
∨y ∈ U [(1 − �R (x, y)) ∧ �A (y)], ωR(A) (x) = ∨y ∈ U [�R (x, y) ∧ ωA (y)],
�R̄(A) (x) = ∨y ∈ U [�R (x, y) ∧ �A (y)], �R̄(A) (x) =
∧y ∈ U [�R (x, y) ∨ �A (y)], ωR̄(A) (x) = ∧y ∈ U [ωR (x, y) ∨ ωA (y)]. Then,

we name the pair
(
R (A) , R̄ (A)

)
a NRS of A in terms of (U, R).

In addition, the related works in terms of RNSs and NRSs are
summed up in Table 1.

According to the concept of RNSs and NRSs, it is easy to know
the most significant contributions of RNSs and NRSs lie in open-
ing a brand-new research direction for both NSs and RST. Due to
the limitations of NSs, RNSs and NRSs can be further studied from
several following theoretical aspects in the future:

(1) Study relationships between RNSs and other types of RFSs, and
relationships between NRSs and other types of FRSs.

(2) Explore axiomatic approaches to RNSs and NRSs from the aspect
of both basic definitions and corresponding properties.

(3) Develop more data-driven hybrid models by integrating NSs
with other generalized fuzzy sets.

3.2. Extensions of RNSs and NRSs from the aspect of generalized
fuzzy sets

Although classical fuzzy sets are widely adopted in plenty of
practical situations for coping with fuzziness, with the increas-
ing complexity of information contents and frameworks, classical
fuzzy sets are confronted with some limitations when describing
interval-valued, intuitionistic, bipolar, neutrosophic, hesitant and
other complicated information. Thus, many generalized fuzzy sets
have been designed one after another over the past half century
[61]. In order to expand the application scope of RNSs and NRSs, it
is necessary to study some reasonable extensions of RNSs and NRSs
from the aspect of generalized fuzzy sets. In what follows, we list
specific definitions of generalized RNSs and NRSs.

Among numerous generalized fuzzy sets, Zhang [62] con-
structed the concept of bipolar fuzzy sets (BFSs) in which
membership degrees fall within [−1, 1]. In specific, the member-
ship degree (0, 1] denotes the degree of one component satisfies one
characteristic, the membership degree 0 denotes one component
is independent of the related characteristic, and the membership
degree [− 1, 0) denotes the degree of one component satisfies the
opposite characteristic. In 2016, Pramanik and Mondal [63] com-
bined BFSs with RNSs for developing rough bipolar neutrosophic
sets (RBNSs), and then explored some of their properties. Next, the
definition of RBNSs will be discussed.

Definition 5. [63]

Suppose U is an arbitrary universe of discourse, an equivalence
relation over U is denoted by R. �+ (x), �+ (x) and ω+ (x) record
three memberships of a component x ∈ U in terms of a bipolar neu-
trosophic set (BNS) I, whereas �− (x), �− (x) and ω− (x) record the
above three memberships respectively of a component x ∈ U to the
opposite characteristic related to a BNS I. Then for a BNS I, the two
approximations of I are in mathematical terms of:
Q (I) = {〈x, �+
Q (I) (x) , �+

Q (I) (x) , ω+
Q (I) (x) ,

�−
Q (I) (x) , �−

Q (I) (x) , ω−
Q (I) (x)〉|y ∈ [x]R, x ∈ U}; (9)
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Q̄ (I) = {〈x, �+
Q̄ (I)

(x) , �+
Q̄ (I)

(x) , ω+
Q̄ (I)

(x) ,

�−
Q̄ (I)

(x) , �−
Q̄ (I)

(x) , ω−
Q̄ (I)

(x)〉|y ∈ [x]R, x ∈ U},
(10)

here �+
Q (I) (x) = ∧y ∈ [x]R�

+
I (y), �+

Q (I) (x) = ∨y ∈ [x]R�
+
I (y), ω+

Q (I) (x) =
y ∈ [x]Rω

+
I (y), �−

Q (I) (x) = ∧y ∈ [x]R�
−
I (y), �−

Q (I) (x) = ∨y ∈ [x]R�
−
I (y),

−
Q (I) (x) = ∨y ∈ [x]Rω

−
I (y), �+

Q̄ (I)
(x) = ∨y ∈ [x]R�

+
I (y), �+

Q̄ (I)
(x) =

y ∈ [x]R�
+
I (y), ω+

Q̄ (I)
(x) = ∧y ∈ [x]Rω

+
I (y), �−

Q̄ (I)
(x) = ∨y ∈ [x]R�

−
I (y),

−
Q̄ (I)

(x) = ∧y ∈ [x]R�
−
I (y), ω−

Q̄ (I)
(x) = ∧y ∈ [x]Rω

−
I (y). It is not diffi-

ult to find Q (I) and Q̄ (I) are both BNSs on U. Then, the pair
Q (I) , Q̄ (I)

)
is named a RBNS of I.

As a significant extended form of NSs, SVNSs have been received
n increasingly number of attentions from scholars and practition-
rs. Thus, it is natural to construct a brand-new hybrid model by
using SVNSs with rough sets. In 2017, Yang’s research team [64]
nvestigated the formation of single-valued neutrosophic (SVN)
ough sets (SVNRSs), along with their general propositions and
xiomatic characterizations of corresponding lower and upper
pproximations. In the following, the mathematical formulation of
VNRSs will be elaborated on.

efinition 6. [64]

Suppose U is an arbitrary universe of discourse, a SVN relation
ver U is denoted by R, where �R, �R, ωR : U × U → [0, 1]. Then for
n arbitrary SVN relation, we name the pair (U, R) a SVN approxi-
ation space. For a SVNS H, the two approximations of H related

o SVN approximation space (U, R) are in mathematical terms of:

(H) = {〈x, �R(H) (x) , �R(H) (x) , ωR(H) (x)〉|x ∈ U}; (11)

¯ (H) = {〈x, �R̄(H) (x) , �R̄(H) (x) , ωR̄(H) (x)〉|x ∈ U}, (12)

here �R(H) (x) = ∧y ∈ U [ωR (x, y) ∨ �H (y)], �R(H) (x) =
y ∈ U [(1 − �R (x, y)) ∧ �H (y)], ωR(H) (x) = ∨y ∈ U [�R (x, y) ∧ ωH (y)],

R̄(H) (x) = ∨y ∈ U [�R (x, y) ∧ �H (y)], �R̄(H) (x) =
y ∈ U [�R (x, y) ∨ �H (y)], ωR̄(H) (x) = ∧y ∈ U [ωR (x, y) ∨ ωH (y)]. Then,

he pair
(
R (H) , R̄ (H)

)
is named a SVNRS of H in terms of SVN

pproximation space (U, R).
According to the concept of SVNSs, in order to extend SVNSs to

ultiple dimensions, Ye [65,66] explored the mathematical for-
ulation of SVN multisets (SVNMSs), and it is beneficial to the

xpression of dynamic decision support systems. For instance, a
-dimension SVNMS can describe medical diagnosis data of a con-
idered patient from different time intervals, e.g., morning, noon,
fternoon and night. In accordance with Literature [67], we use
oth terms SVNMSs and SVN refined sets in this work, and it is
oted that two terms SVNMSs and SVN refined sets can be used

nterchangeably.

efinition 7. [65–67]

Suppose U is an arbitrary universe of discourse. For a general
omponent x in U, a SVN refined set B in U is in mathematical terms
f:

 = {〈x, �B (x) , �B (x) , ωB (x)〉|x ∈ U}, (13)

here �B (x), �B (x) and ωB (x) record three
emberships mentioned above. Among them,
e have �B (x) =

{
�1B (x) , �2B (x) , . . .,  �pB (x)

}
,

B (x) =
{
�1B (x) , �2B (x) , . . .,  �pB (x)

}
and ωB (x) =

ω1B (x) , ω2B (x) , . . .,  ωpB (x)
}

, p is a positive integer and repre-
ents the dimension of B. Moreover, for i = 1, 2, . . .,  p, the functions

atisfy �, �, ω : U → [0, 1] and 0 ≤ �iB (x) + �iB (x) + ωiB (x) ≤ 3.

In light of various merits owned by SVN refined sets, Bao and
ang [68] explored SVN refined rough sets (SVNRRSs) and studied
heir related propositions and axiomatic characterizations.
s in Industry 115 (2020) 103117

Definition 8. [68]

Suppose U is an arbitrary universe of discourse. For a general
element x in U, a SVN refined relation is denoted as the following
form:

R  = {〈(x, y) , �R (x, y) ,  �R (x, y) , ωR (x, y)〉| (x, y) ∈ U × U}, (14)

where �R (x, y) =
{
�1R (x, y) , �2R (x, y) , . . ., �pR (x, y)

}
,

�R (x, y) =
{
�1R (x, y) , �2R (x, y) , . . .,  �pR (x, y)

}
and ωR (x, y) ={

ω1R (x, y) , ω2R (x, y) , . . .,  ωpR (x, y)
}

, p is a positive integer and
represents the dimension of R. Then for an arbitrary SVN refined
relation, the pair (U, R) is named a SVN refined approximation
space. For a SVN refined set B, the two approximations of B in terms
of SVN refined approximation space (U, R) are in mathematical
terms of:

R (B) = {〈x, �R(B) (x) , �R(B) (x) , ωR(B) (x)〉|x ∈ U}; (15)

R̄ (B) = {〈x, �
R̄(B) (x) , �

R̄(B) (x) , ω
R̄(B) (x)〉|x ∈ U}, (16)

where �R(B) (x) = ∧y ∈ U [ωR (x, y) ∨ �B (y)],  �R(B) (x) =
∨y ∈ U [(1 − �R (x, y)) ∧ �B (y)], ωR(B) (x) = ∨y ∈ U [�R (x, y) ∧ ωB (y)],
�
R̄(B) (x) = ∨y ∈ U [�R (x, y) ∧ �B (y)], �

R̄(B) (x) =
∧y ∈ U [�R (x, y) ∨ �B (y)], ω

R̄(B) (x) = ∧y ∈ U [ωR (x, y) ∨ ωB (y)]. Then,

the pair
(
R (B) , R̄ (B)

)
is named a SVNRRS of B in terms of SVN

refined approximation space (U, R).
It is noticed that the model of SVNRRSs is an extended form of

NRSs, some researchers have also laid an emphasis on the corre-
sponding model which originates from RNSs. To be specific, Alias
et al. [69,70] explored the model of rough neutrosophic multisets
(RNMSs) and several of its properties.

Definition 9. [69,70]

Suppose U is an arbitrary universe of discourse, an equivalence
relation over U is denoted by R. For a SVNMS B, the two approxi-
mations of B are in mathematical terms of:

Q (B) = {〈x, �iQ (B) (x) , �iQ (B) (x) , ωiQ (B) (x)〉|y ∈ [x]R, x ∈ U}; (17)

Q̄ (B) = {〈x, �iQ (B) (x) , �iQ (B) (x) , ωiQ (B) (x)〉|y ∈ [x]R, x ∈ U}, (18)

where �iQ (B) (x) = ∧y ∈ [x]R�
i
B (y), �iQ (B) (x) = ∨y ∈ [x]R�

i
B (y), ωiQ (B) (x) =

∨y ∈ [x]Rω
i
B (y), �i

Q̄ (B)
(x) = ∨y ∈ [x]R�

i
B (y), �i

Q̄ (B)
(x) = ∧y ∈ [x]R�

i
B (y),

ωi
Q̄ (B)

(x) = ∧y ∈ [x]Rω
i
B (y). It is not difficult to find Q (B) and Q̄ (B)

are both SVMSs over U. Then, we name the pair
(
Q (B) , Q̄ (B)

)
a

RNMS of B.
The notion of PRSs [71] acts as a significant generalization in

rough set society. By introducing the probability theory to calcu-
late lower and upper approximations, PRSs enable rough sets to
own  the ability of error tolerance when coping with noisy infor-
mation, which are more robust compared with other counterparts
[72]. Noticing the superiorities of coping with noisy information,
Zhang et al. [73] combined PRSs with SVNMSs, and initiated two
different hybrid models respectively, i.e., probabilistic rough SVN
multisets (PRSVNMSs) and SVN rough multisets (SVNRMSs) under
two-universe frameworks.

Definition 10. [73]

Suppose U, V are arbitrary universes of discourse, a binary

relation is denoted by R ⊆ U × V, and a probabilistic measure is rep-
resented by P. Then, we name a probabilistic approximation space
(U, V, R, P). For a SVNMS B, x ∈ U, y ∈ V, the conditional probability
is represented by P (B|R (x)) = (

∑
y ∈ R(x)B (y)/|R (x) |). Then for any
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 ≤  ̌ ≤  ̨ ≤ 1, the two approximations of B related to (U, V, R, P) are
n mathematical terms of:

SVNM˛P (B) = {P (B|R (x)) ≥ ˛|x ∈ U, y ∈ V }

=
{∑

y ∈ R(x)B (y)

|R (x) | ≥ ˛|x ∈ U, y ∈ V

}
;

(19)

¯SVNM
ˇ
P (B) = {P (B|R (x)) > ˇ|x ∈ U, y ∈ V }

=
{∑

y ∈ R(x)B (y)

|R (x) | > ˇ|x ∈ U, y ∈ V

}
,

(20)

hen, we name the pair (SVNM˛P (B) , ¯SVNM
ˇ
P (B)) a PRSVNMS over

wo universes of B in terms of (U, V, R, P).
Different from the above model which can be seen as a gener-

lization of RNSs, it is also necessary to develop a similar model by
irtue of RNSs. Hence, the model of SVNRMSs over two  universes
s further studied in detail.

efinition 11. [73]

Suppose U, V are arbitrary finite universes of discourse,
 SVN refined relation is denoted by R, and a probabilis-
ic measure is denoted by P. Then, we name a probabilistic
pproximation space (U, V, R, P). For a SVNMS B, x ∈ U, y ∈
, the conditional probability is represented by P (B|R (x, y)) =∑
y ∈ VB (y)R (x, y)/

∑
y ∈ VR (x, y)). Then for any 0 ≤  ̌ ≤  ̨ ≤ 1, the

wo approximations of B related to (U, V, R, P) are in mathematical
erms of:

SVNMR˛P (B) = {P (B|R (x, y)) ≥ ˛|x ∈ U, y ∈ V }

=
{∑

y ∈ VB (y)R (x, y)∑
y ∈ VR (x, y)

≥ ˛|x ∈ U, y ∈ V

}
;

(21)

¯SVNMR
ˇ
P (B) = {P (B|R (x, y)) > ˇ|x ∈ U, y ∈ V }

=
{∑

y ∈ VB (y)R (x, y)∑
y ∈ VR (x, y)

> ˇ|x ∈ U, y ∈ V

}
,

(22)

hen, we name the pair (SVNMR˛P (B) , ¯SVNMR
ˇ
P (B)) a SVNPRMS over

wo universes of B in terms of (U, V, R, P).
Recently, in order to effectively discover unknown knowledge

rom information systems with regard to INSs, Yang et al. [74]
nvestigated interval neutrosophic rough sets (INRSs) by means of
nterval neutrosophic relations.

efinition 12. [74]

Suppose U is an arbitrary universe of discourse, a relation over
 in terms of INSs is represented by R, where �R, �R, ωR : U × U →

nt [0, 1]. Then for an arbitrary interval neutrosophic relation, we
ame the pair (U, R) an interval neutrosophic approximation space.
or an INS E, the two approximations of E in terms of interval neu-
rosophic approximation space (U, R) are in mathematical terms
f:

(E) = {〈x, �R(E) (x) , �R(E) (x) , ωR(E) (x)〉|x ∈ U}; (23)

¯ (E) = {〈x, �R̄(E) (x) , �R̄(E) (x) , ωR̄(E) (x)〉|x ∈ U}, (24)

here �R(E)(x) = ∧y ∈ U[ωR(x, y) ∨ �E(y)], �R(E)(x) =
y ∈ U[([1, 1] − �R(x, y)) ∧ �E(y)], ωR(E)(x) = ∨y ∈ U[�R(x, y) ∧

E(y)], �R̄(E)(x) = ∨y ∈ U[�R(x, y) ∧ �E(y)], �R̄(E)(x) =
y ∈ U[�R(x, y) ∨ �E(y)], ωR̄(E)(x) = ∧y ∈ U[ωR(x, y) ∨ ωE(y)]. Then,

e name the pair (R(E), R̄(E)) an INRS of E in terms of interval
eutrosophic approximation space (U, R).
s in Industry 115 (2020) 103117 7

Following the idea of SVNRSs [64], Guo et al. [75] further
explored a generalized SVN rough set (GSVNRS) model by utiliz-
ing the concept of cut relations. In specific, for any ˛, ˇ, � ∈ (0,
1], the ˛, ˇ, �-cut relation is denoted by R̃{(˛,ˇ,�)} = {〈�R̃(x, y) ≥
˛, �R̃(x, y) ≤ ˇ, ωR̃(x, y) ≤ �〉|(x, y) ∈ U × V }. Furthermore, in order
to extend RNSs and NRSs to a more generalized form, Thao and
Smarandache [76] and Thao et al. [77] put forward standard NRSs
(SNRSs) and rough standard NSs (RSNSs) by virtue of a t-norm T
and an implicator J  over [0, 1].

Definition 13. [76]

Suppose U is an arbitrary universe of discourse, R is a stan-
dard neutrosophic (SN) relation over U, where �R, �R, ωR : U × U →
[0, 1], G =

{〈
x, �G (x) , �G (x) , ωG (x)

〉
|x ∈ U

}
is a standard neutro-

sophic set (SNS), where �, �, ω : U → [0, 1]. Then, we  name the pair
(U, R) a SN approximation space. For T,  J  and G, the two approx-
imations of G in terms of SN approximation space (U, R) are in
mathematical terms of:

RT (G) (x) = ∨
y ∈ U

T (R (x, y) , G (y)) , ∀x ∈ U; (25)

R̄J (G) (x) = ∧
y ∈ U

J (R (x, y) , G (y)) , ∀x ∈ U, (26)

where T  and J  can be represented by TM (x, y) =
(x1 ∧ y1, x2 ∧ y2, x3 ∨ y3) and J (x, y) = (x3 ∨ y1, x2 ∧ y2, x1 ∧ y3)
for two  SN numbers x = (x1, x2, x3) and y = (y1, y2, y3). In light of
the above statements, we name the pair

(
RT (G) , R̄J (G)

)
a SNRS of

G in terms of SN approximation space (U, R).

Definition 14. [77]

Suppose U is an arbitrary universe of discourse, an equivalence
relation over U is denoted by R. Then, we name the pair (U, R) a crisp
neutrosophic approximation space. For a SNS G, the two  approxi-
mations of G in terms of crisp neutrosophic approximation space
(U, R) are given as the following form:

N (G) = {〈x, �N(G) (x) , �N(G) (x) , ωN(G) (x)〉|x ∈ U}; (27)

N̄ (G) = {〈x, �N̄(G) (x) , �N̄(G) (x) , ωN̄(G) (x)〉|x ∈ U}, (28)

where �N(G) (x) = ∧y ∈ [x]R�G (y), �N(G) (x) = ∧y ∈ [x]R�G (y),
ωN(G) (x) = ∨y ∈ [x]RωG (y), �N̄(G) (x) = ∨y ∈ [x]R�G (y), �N̄(G) (x) =
∧y ∈ [x]R�G (y), ωN̄(G) (x) = ∧y ∈ [x]RωG (y). Then, the pair

(
N (G) , N̄ (G)

)
is named a RSNS of G in terms of crisp neutrosophic approximation
space (U, R).

In addition, the related works in terms of them are summed up
in Table 2.

According to the above-mentioned various forms of generalized
RNSs and NRSs, we  can know that most of them put more emphasis
on theoretical models and corresponding applications at the same
time, which have largely enriched neutrosophic fusion of RST. In
the future, several study directions are listed as follows:

(1) Investigate uncertainty measures of generalized RNSs and NRSs
from the perspective of roughness measures, accuracy mea-
sures, granularity structures, etc.

(2) Put forward efficient attribute reduction algorithms for gener-
alized RNSs and NRSs.
(3) Explore applications of generalized RNSs and NRSs for knowl-
edge discovery by virtue of other common soft computing
tools, such as three-way decisions, formal concept analysis,
Dempster–Shafer (D–S) evidence theory, etc.
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Table 2
Distribution papers in the field of generalized RNSs and NRSs.

Definition Reference Representation Study category

Definition 5 Pramanik and Mondal [63] BNSs RBNSs
Definition 6 Yang et al. [64] SVNSs SVNRSs
Definition 8 Bao and Yang [68] SVN refined sets SVNRRSs
Definition 9 Alias et al. [69,70] SVNMSs RNMSs
Definition 10 Zhang et al. [73] SVNMSs PRSVNMSs
Definition 11 Zhang et al. [73] SVNMSs SVNPRMSs
Definition 12 Yang et al. [74] INSs INRSs
Definition 13 Thao and Smarandache [76] SNSs SNRSs
Definition 14 Thao et al. [77] SNSs RSNSs

Table 3
Distribution papers in the field of CRSVNSs.

Definition Reference Representation Study category

SVNS
SVNS
SVNS
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Definition 15 Ma  et al. [79] 

Definition 16 Ma  et al. [79]
Definition 17 Ma  et al. [79] 

.3. Extensions of RNSs and NRSs from the aspect of
overing-based rough sets (CRSs)

The notion of CRSs [49,78] is an influential rough set represen-
ative which generalizes classical rough sets to wider application
copes by replacing a division of the universe with a covering. Tak-
ng advantages of CRSs, Ma  et al. [79] explored several different
overing-based rough SVN sets (CRSVNSs) along with their prop-
rties. In what follows, we list different types of definitions for
RSVNSs.

efinition 15. [79]

Suppose U is an arbitrary universe of discourse, D is a covering
f U, where MdD (x) =

{
K ∈ D ∧ x ∈ T ∧ T ⊆ K ⇒ K = T

}
is named

he minimal expression of x, and the lowercase D is omitted when
he covering is clear. Then, we name the pair (U, D) a covering
pproximation space. For a SVNS H, the first type of two  approx-
mations of H in terms of covering approximation space (U, D) is
iven as the following form:

(H) = {〈u, �F(H) (u) , �F(H) (u) , ωF(H) (u)〉|u ∈ U}; (29)

¯ (H) = {〈u, �F̄(H) (u) , �F̄(H) (u) , ωF̄(H) (u)〉|u ∈ U}, (30)

here �F(H) (u) = ∧u ∈ U

{
�H (v) |v ∈ ∪Md (u)

}
,

F(H) (u) = ∨u ∈ U

{
�H (v) |v ∈ ∪Md (u)

}
, ωF(H) (u) =

u ∈ U

{
ωH (v) |v ∈ ∪Md (u)

}
, �F̄(H) (u) =

u ∈ U

{
�H (v) |v ∈ ∪Md (u)

}
, �F̄(H) (u) =

u ∈ U

{
�H (v) |v ∈ ∪Md (u)

}
, ωF̄(H) (u) =

u ∈ U

{
ωH (v) |v ∈ ∪Md (u)

}
. Then, we name the pair

(
F (H) , F̄ (H)

)
he first type of CRSVNSs of H in terms of (U, D).

efinition 16. [79]

Suppose U is an arbitrary universe of discourse, D is a covering of
. For a SVNS H, the second type of two approximations of H in terms
f covering approximation space (U, D) is given as the following
orm:

(H) = {〈u, �S(H) (u) , �S(H) (u) , ωS(H) (u)〉|u ∈ U}; (31)

¯ (H) = {〈u, �S̄(H) (u) , �S̄(H) (u) , ωS̄(H) (u)〉|u ∈ U}, (32)

here � (u) = ∧
{
� (v) |v ∈ ∩Md (u)

}
,
S(H) u ∈ U H

S(H) (u) = ∨u ∈ U

{
�H (v) |v ∈ ∩Md (u)

}
, ωS(H) (u) =

u ∈ U

{
ωH (v) |v ∈ ∩Md (u)

}
, �S̄(H) (u) =

u ∈ U

{
�H (v) |v ∈ ∩Md (u)

}
, �S̄(H) (u) =
s The first type of CRSVNSs
s The second type of CRSVNSs
s The third type of CRSVNSs

∧u ∈ U

{
�H (v) |v ∈ ∩Md (u)

}
, ωS̄(H) (u) =

∧u ∈ U

{
ωH (v) |v ∈ ∩Md (u)

}
. Then, we  name the pair

(
S (H) , S̄ (H)

)
the second type of CRSVNSs of H in terms of (U, D).

Definition 17. [79]

Suppose U is an arbitrary universe of discourse, D is a covering of
U. For a SVNS H, the third type of two approximations of H in terms
of covering approximation space (U, D) is given as the following
form:

T (H) = {〈u, �T(H) (u) , �T(H) (u) , ωT(H) (u)〉|u ∈ U}; (33)

T̄ (H) = {〈u, �T̄(H) (u) , �T̄(H) (u) , ωT̄(H) (u)〉|u ∈ U}, (34)

where �T(H) (u) = ∨K ∈ Md(u){∧v ∈ K�H (v)}, �T(H) (u) =
∧K ∈ Md(u){∨v ∈ K�H (v)}, ωT(H) (u) = ∧K ∈ Md(u){∨v ∈  KωH (v)},
�T̄(H) (u) = ∧K ∈ Md(u){∨v ∈ K�H (v)}, �T̄(H) (u) = ∨K ∈ Md(u){∧v ∈ K�H (v)},
ωT̄(H) (u) = ∨K ∈ Md(u){∧v ∈ KωH (v)}. Then, we  name the pair(
T (H) , T̄ (H)

)
the third type of CRSVNSs of H in terms of (U, D).

In addition, the related works in terms of CRSVNSs are summed
up in Table 3.

In light of the above three different definitions of CRSVNSs, we
can know that Literature [79] mainly focuses on some theoretical
aspects of the presented models. Recently, a series of application-
oriented works by means of CRSs were proposed by Zhan’s research
team [80–83], both some generalized CRSs models and their related
decision making methods were put forward. Inspired by literatures
[80–83], some future trends of CRSVNSs are listed as follows:

(1) Develop theoretical conclusions of CRSVNSs in depth from the
aspect of attribute reduction algorithms, matroidal structures,
topological properties, and so forth.

(2) Extend CRSVNSs to more generalized fuzzy contexts to con-
struct complicated hybrid RST models.

(3) Propose decision making approaches of CRSVNSs and utilize
them in plenty of real-world situations.

3.4. Extensions of RNSs and NRSs from the aspect of
multigranulation rough sets (MGRSs)

From the above generalized rough set models, it is not difficult
to see that lower and upper approximations are designed based

on a single relation on one or two  universes, which may  lead to a
difficulty when solving some practical multigranulation contexts,
such as group decision making situations. Thus, Qian et al. [51,52]
extended single granulations to multiple granulations by consid-
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ring several binary relations simultaneously, and then proposed
he model of MGRSs. The merits of MGRSs are mainly reflected in
wo aspects, one is enhancing the computational efficiency of dis-
overing unknown knowledge for multi-dimension or multi-source
nformation systems, the other one is adding the analysis of deci-
ion risks from risk-seeking and risk-averse tactics. Hence, MGRSs
lay a key role in handling various complex multigranulation prob-

ems [53,54]. Recently, Zhang et al. [84,85] introduced MGRSs to the
ontext of SVNSs and INSs respectively, and further developed SVN
GRSs (SVNMGRSs) and interval neutrosophic MGRSs (INMGRSs)

nder two-universe frameworks. The mathematical formulation of
imilar models on a single universe [86] can be seen as reduced
orms of the above models over two universes. In what follows, we
ist the mathematical formulation of SVNMGRSs and INMGRSs over
wo universes respectively.

efinition 18. [84]

Suppose U, V are arbitrary universes of discourse, a SVN relation
ver U × V is denoted by Ri (i = 1, 2, . . .,  m).  Then, we name the pair
U, V, Ri) a SVN multigranulation approximation space. For a SVNS
, the optimistic and pessimistic two approximations of H related

o SVN multigranulation approximation space (U, V, Ri) are given
s the following form:

m

i=1

Ri

O

(H) = {〈x, �
m∑
i=1

Ri

O

(H)

(x) , �
m∑
i=1

Ri

O

(H)

(x) , ω
m∑
i=1

Ri

O

(H)

(x)〉|x ∈ U} (35)

¯m

i=1

Ri

O

(H) = {〈x, � ¯m∑
i=1

Ri

O

(H)

(x) , � ¯m∑
i=1

Ri

O

(H)

(x) , ω ¯m∑
i=1

Ri

O

(H)

(x)〉|x ∈ U} (36)

m

i=1

Ri

P

(H) = {〈x, �
m∑
i=1

Ri

P

(H)

(x) , �
m∑
i=1

Ri

P

(H)

(x) , ω
m∑
i=1

Ri

P

(H)

(x)〉|x ∈ U} (37)

¯m

i=1

Ri

P

(H) = {〈x, � ¯m∑
i=1

Ri

P

(H)

(x) , � ¯m∑
i=1

Ri

P

(H)

(x) , ω ¯m∑
i=1

Ri

P

(H)

(x)〉|x ∈ U}, (38)

here �∑m

i=1
Ri
O

(H)
(x) = ∨m

i=1∧y ∈ V

[
ωRi (x, y) ∨ �H (y)

]
,

∑m

i=1
Ri
O

(H)
(x) = ∧m

i=1∨y ∈ V

[(
1 − �Ri (x, y)

)
∧ �H (y)

]
,

∑m

i=1
Ri
O

(H)
(x) = ∧m

i=1∨y ∈ V

[
�Ri (x, y) ∧ ωH (y)

]
, � ¯∑m

i=1
Ri

O
(H)

(x) =

m
i=1∨y ∈ V

[
�Ri (x, y) ∧ �H (y)

]
, � ¯∑m

i=1
Ri

O
(H)

(x) =
m
i=1∧y ∈ V

[
�Ri (x, y) ∨ �H (y)

]
, ω ¯∑m

i=1
Ri

O
(H)

(x) =
m
i=1∧y ∈ V

[
ωRi (x, y) ∨ ωH (y)

]
, �∑m

i=1
Ri
P

(H)
(x) =

m
i=1∧y ∈ V

[
ωRi (x, y) ∨ �H (y)

]
, �∑m

i=1
Ri
P

(H)
(x) =

m
i=1∨y ∈ V

[(
1 − �Ri (x, y)

)
∧ �H (y)

]
, ω∑m

i=1
Ri
P

(H)
(x) =

m
i=1∨y ∈ V

[
�Ri (x, y) ∧ ωH (y)

]
, � ¯∑m

i=1
Ri

P
(H)

(x) =
m ∨y ∈ V

[
�R (x, y) ∧ �H (y)

]
, �∑ P (x) =
i=1 i m̄

i=1
Ri (H)

m
i=1∧y ∈ V

[
�Ri (x, y) ∨ �H (y)

]
, ω ¯∑m

i=1
Ri

P
(H)

(x) =
m
i=1∧y ∈ V

[
ωRi (x, y) ∨ ωH (y)

]
. Then, the pair
s in Industry 115 (2020) 103117 9

(
∑m

i=1Ri
O

(H) , ¯∑m
i=1Ri

O
(H)) is named an optimistic SVNMGRS

of H in terms of SVN multigranulation approximation space

(U, V, Ri), whereas the pair (
∑m

i=1Ri
P

(H) , ¯∑m
i=1Ri

P
(H)) is named

a pessimistic SVNMGRS of H in terms of SVN multigranulation
approximation space (U, V, Ri).

Definition 19. [85]

Suppose U, V are arbitrary universes of discourse, an interval
neutrosophic relation over U × V is denoted by Ri (i = 1, 2, . . .,  m).
Then, we name the pair (U, V, Ri) an interval neutrosophic multi-
granulation approximation space. For an INS E, the optimistic and
pessimistic two  approximations of E related to interval neutro-
sophic multigranulation approximation space (U, V, Ri) are given
as the following form:
m∑
i=1

Ri

O

(E) = {〈x, �
m∑
i=1

Ri

O

(E)

(x) , �
m∑
i=1

Ri

O

(E)

(x) , ω
m∑
i=1

Ri

O

(E)

(x)〉|x ∈ U}; (39)

¯m∑
i=1

Ri

O

(E) = {〈x, � ¯m∑
i=1

Ri

O

(E)

(x) , � ¯m∑
i=1

Ri

O

(E)

(x) , ω ¯m∑
i=1

Ri

O

(E)

(x)〉|x ∈ U}; (40)

m∑
i=1

Ri

P

(E) = {〈x, �
m∑
i=1

Ri

P

(E)

(x) , �
m∑
i=1

Ri

P

(E)

(x) , ω
m∑
i=1

Ri

P

(E)

(x)〉|x ∈ U}; (41)

¯m∑
i=1

Ri

P

(E) = {〈x, � ¯m∑
i=1

Ri

P

(E)

(x) , � ¯m∑
i=1

Ri

P

(E)

(x) , ω ¯m∑
i=1

Ri

P

(E)

(x)〉|x ∈ U}, (42)

where �∑m

i=1
Ri
O

(E)
(x) = ∨m

i=1∧y ∈ V

[
ωRi (x, y) ∨ �E (y)

]
,

�∑m

i=1
Ri
O

(E)
(x) = ∧m

i=1∨y ∈ V

[(
[1, 1] − �Ri (x, y)

)
∧ �E (y)

]
,

ω∑m

i=1
Ri
O

(E)
(x) = ∧m

i=1∨y ∈ V

[
�Ri (x, y) ∧ ωE (y)

]
, � ¯∑m

i=1
Ri

O
(E)

(x) =

∧m
i=1∨y ∈ V

[
�Ri (x, y) ∧ �E (y)

]
, � ¯∑m

i=1
Ri

O
(E)

(x) =

∨m
i=1∧y ∈ V

[
�Ri (x, y) ∨ �E (y)

]
, ω ¯∑m

i=1
Ri

O
(E)

(x) =

∨m
i=1∧y ∈ V

[
ωRi (x, y) ∨ ωE (y)

]
, �∑m

i=1
Ri
P

(E)
(x) =

∧m
i=1∧y ∈ V

[
ωRi (x, y) ∨ �E (y)

]
, �∑m

i=1
Ri
P

(E)
(x) =

∨m
i=1∨y ∈ V

[(
1 − �Ri (x, y)

)
∧ �E (y)

]
, ω∑m

i=1
Ri
P

(E)
(x) =

∨m
i=1∨y ∈ V

[
�Ri (x, y) ∧ ωE (y)

]
, � ¯∑m

i=1
Ri

P
(E)

(x) =

∨m
i=1∨y ∈ V

[
�Ri (x, y) ∧ �E (y)

]
, � ¯∑m

i=1
Ri

P
(E)

(x) =

∧m
i=1∧y ∈ V

[
�Ri (x, y) ∨ �E (y)

]
, ω ¯∑m

i=1
Ri

P
(E)

(x) =

∧m
i=1∧y ∈ V

[
ωRi (x, y) ∨ ωE (y)

]
. Then, the pair

(
∑m

i=1Ri
O

(E) , ¯∑m
i=1Ri

O
(E)) is named an optimistic INMGRS of

E in terms of interval neutrosophic multigranulation approxima-

tion space (U, V, Ri), whereas the pair (
∑m

i=1Ri
P

(E) , ¯∑m
i=1Ri

P
(E)) is
named a pessimistic INMGRS of E in terms of interval neutrosophic
multigranulation approximation space (U, V, Ri).

In addition, the related works in terms of SVNMGRSs and INM-
GRSs over two universes are summed up in Table 4.
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Table 4
Distribution papers in the field of SVNMGRSs and INMGRSs over two universes.

Definition Reference Representation Study category

Definition 18 Zhang et al. [84] SV
Definition 19 Zhang et al. [85] IN
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ig. 3. Flow chart of the survey on neutrosophic fusion of RST from the aspect of
oft sets.

Literatures [84,85] provide detailed mathematical structures of
VNMGRSs over two universes and INMGRSs over two universes,
nd further establish related decision making algorithms for real-
stic scenarios. In the future, there still exist several challenging
ssues to be considered:

1) Extend SVNMGRSs over two universes and INMGRSs over two
universes to multi-scale information systems [87] to model spe-
cific granular information transformations. Both corresponding
rough approximations and some main properties are worth
studying.

2) Construct viable and efficient algorithms for large-scale of
alternatives, high-dimensional attributes and dynamic decision
making problems.

3) Explore existing theoretical models within the context of
neutrosophic duplets, neutrosophic triplets and neutrosophic
multisets.

. Neutrosophic fusion of RST from the aspect of soft sets

By introducing the scheme of parameterization, soft sets [55] act
s a reasonable and effective soft computing tool for addressing the
imitations triggered by randomness, hence studies about soft sets
ave been grown rapidly in many realistic areas [88]. Moreover, we
resent the flowchart of this section in Fig. 3.

.1. Fusion of rough sets and soft sets under the NSs background

Akram et al. [89] put forward the model of SRNSs and NSRSs
y fusing NSs, rough sets and soft sets, and then they further gen-
ralized NSRSs and SRNSs to graphs. In what follows, we  list the
oncept of NSRSs and SRNSs.

efinition 20. [89]

Suppose C is a Boolean set, D is an attribute set. For an arbi-
rary full soft set S over C such that SS (a) ⊂ C and a ∈ D. For all{ }
 ∈ D, we define SS : D → P (C) where SS (a) = b ∈ C| (a, b) ∈ S .
hen, we name the pair (C, S) a full soft approximation space. For

 NS N =
{

〈b, �N (b) , �N (b) , ωN (b)〉|b ∈ C
}

∈ N (C), where N (C)
enotes the neutrosophic power set of C, the two soft approxima-
NSs SVNMGRSs over two universes
Ss INMGRSs over two universes

tions of N in terms of full soft approximation space (C, S) are given
as the following form:

S (N) = {〈b, �S(N) (b) , �S(N) (b) , ωS(N) (b)〉|b ∈ C}; (43)

S̄ (N) = {〈b, �S̄(N) (b) , �S̄(N) (b) , ωS̄(N) (b)〉|b ∈ C}, (44)

where �S(N) (b) = ∨a ∈ D(S (a, b) ∧ (∧t ∈ C ((1 − S (a, t)) ∨ �N (t)))),
�S̄(N) (b) = ∧a ∈ D((1 − S (a, b)) ∨ (∨t ∈ C (S (a, t) ∧ �N (t)))),
�S(N)(b) = ∧a ∈ D((1 − S(a, b)) ∨ (∨t ∈ C (S(a, t) ∧ �N(t)))), �S̄(N)(b) =
∨a ∈ D(S(a, b) ∧ (∧t ∈ C ((1 − S(a, t)) ∨ �N(t)))), ωS(N)(b) = ∧a ∈ D((1 −
S(a, b)) ∨ (∨t ∈ C (S(a, t) ∧ ωN(t)))), ωS̄(N)(b) = ∨a ∈ D(S(a, b) ∧
(∧t ∈ C ((1 − S(a, t)) ∨ ωN(t)))). Then, the pair (S(N), S̄(N)) is named
a SRNS of N in terms of (C, S).

According to the model of SRNSs, the mathematical formula-
tion of soft rough neutrosophic graphs (SRNGs) is further explored
below.

Definition 21. [90]

Suppose V is an arbitrary universe of discourse, then a SRNG on
V is represented by a 5-ordered tuple G = (D, S, SN, R, RM),  where D
is an attribute set, S is an arbitrary full soft set on V, R is an arbitrary
full soft set over E ⊆ V, SN =

(
S (N) , S̄ (N)

)
is a NSRS on V, RM =(

R (M) , R̄ (M)
)

is a NSRS on E ⊂ V.

Definition 22. [89]

Suppose Y is an arbitrary finite universe of discourse, P is a
universal set of parameters, and we have M ⊆ P. For an arbitrary
neutrosophic soft relation W over Y × M,  we name the pair (Y, M,  W)
a neutrosophic soft approximation space. For a NS A ∈ N (M),
where N (M) denotes the neutrosophic power set of M, the two  neu-
trosophic soft rough approximations of A in terms of neutrosophic
soft approximation space (Y, M, W) are given as the following form:

W (A) = {〈u, �W(A) (u) , �W(A) (u) , ωW(A) (u)〉|u ∈ Y}; (45)

W̄ (A) = {〈u, �W̄(A) (u) , �W̄(A) (u) , ωW̄(A) (u)〉|u ∈ Y}, (46)

where �W(A) (u) = ∧e ∈ M

(
ωW(A) (u, e) ∨ �A (e)

)
,

�W(A) (u) = ∨e ∈ M

((
1 − �W(A) (u, e)

)
∧ �A (e)

)
,

ωW(A) (u) = ∨e ∈ M

(
�W(A) (u, e) ∧ ωA (e)

)
, �W̄(A) (u) =

∨e ∈ M

(
�W(A) (u, e) ∧ �A (e)

)
, �W̄(A) (u) =

∧e ∈ M

(
�W(A) (u, e) ∨ �A (e)

)
, ωW̄(A) (u) =

∧e ∈ M

(
ωW(A) (u, e) ∨ ωA (e)

)
. Then, we name the pair(

W (A) , W̄ (A)
)

a NSRS of A in terms of (Y,  M, W).
According to the model of NSRSs, the notion of neutrosophic soft

rough graphs (NSRGs) is further explored below.

Definition 23. [91]

Suppose V is an arbitrary universe of discourse, then a NSRG
on V is represented by a 4-ordered tuple G = (V, M,  W (A) , S(Ã)),
where M is a parameter set, W and S are arbitrary neutrosophic
soft relations over V × M,  W (A) =

(
W (A) , W̄ (A)

)
is a NSRS of A,

S(Ã) = (S(Ã), S̄(Ã)) is a NSRS on V.
4.2. Fusion of rough sets and soft sets under the INSs background

Considering the significance of INSs when dealing with incom-
plete information systems, Broumi and Smarandache [92–94]
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Table  5
Distribution papers in the field of NSRSs, SRNSs, SINRSs and INSRSs.

Definition Reference Representation Study category

Definitions 20 and 22 Akram et al. [89] NSs NSRSs and SRNSs
Definition 21 Malik et al. [90] NSs SRNGs

NSs NSRGs
INSs SINRSs
INSs INSRSs
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Definition 23 Akram et al. [91] 

Definition 24 Broumi and Smarandache [93] 

Definition 25 Broumi and Smarandache [94] 

ntegrated INSs, soft sets and rough sets for establishing a novel
omprehensive model named soft INRSs (SINRSs) and interval neu-
rosophic soft rough sets (INSRSs). In what follows, we list specific
efinitions of SINRSs and INSRSs.

efinition 24. [93]

Suppose a soft set in terms of INSs over U is represented
y � = (f, C), and we  name the pair

(
U, �

)
the soft approx-

mation space in terms of INSs, where for each b ∈ C, we
efine a function f (b) =

{
〈x, �f (b) (x) , �f (b) (x) , ωf (b) (x)〉|x ∈ U

}
,

f (b), �f (b), ωf (b) : C → int [0, 1]. Then for an INS �, the two soft
nterval neutrosophic rough approximations of � in terms of soft
nterval neutrosophic approximation space

(
U, �

)
are in mathe-

atical terms of:

 AprSIVN (�) =

⎧⎪⎪⎨
⎪⎪⎩

x, ∧
b ∈ C

(
�f (b) (x) ∧ �� (x)

)
,

∧
b ∈ C

(
�f (b) (x) ∨ �� (x)

)
,

∧
b ∈ C

(
ωf (b) (x) ∨ ω� (x)

)
|x ∈ U

⎫⎪⎪⎬
⎪⎪⎭

; (47)

 AprSIVN (�) =

⎧⎪⎪⎨
⎪⎪⎩

x, ∧
b ∈ C

(
�f (b) (x) ∨ �� (x)

)
,

∧
b ∈ C

(
�f (b) (x) ∧ �� (x)

)
,

∧
b ∈ C

(
ωf (b) (x) ∧ ω� (x)

)
|x ∈ U

⎫⎪⎪⎬
⎪⎪⎭
, (48)

hen, the pair (↓ AprSIVN (�) , ↑ AprSIVN (�)) is named a SINRS of � in
erms of

(
U, �

)
.

efinition 25. [94]

Suppose a full soft set on U is denoted by � = (f, C), and we
ame the pair S =

(
U, �

)
the soft approximation space. For an

NS �, the two soft rough approximations of � in terms of S are
n mathematical terms of:

S (�) =

⎧⎪⎨
⎪⎩
x, ∧

{
�� (y) |∃b ∈ C ({x, y} ⊆ f (b))

}
,

∨
{
�� (y) |∃b ∈ C ({x, y} ⊆ f (b))

}
,

∨
{
ω� (y) |∃b ∈ C ({x, y} ⊆ f (b))

}
|x ∈ U

⎫⎪⎬
⎪⎭ ; (49)

¯ S (�) =

⎧⎪⎨
⎪⎩
x, ∨

{
�� (y) |∃b ∈ C ({x, y} ⊆ f (b))

}
,

∧
{
�� (y) |∃b ∈ C ({x, y} ⊆ f (b))

}
,

∧
{
ω� (y) |∃b ∈ C ({x, y} ⊆ f (b))

}
|x ∈ U

⎫⎪⎬
⎪⎭ , (50)

hen, the pair
(
NS (�) , N̄S (�)

)
is named an INSRS of � in terms of

U, �
)

.
In addition, the related works in terms of NSRSs, SRNSs, SINRSs

nd INSRSs are shown in Table 5.
This section mainly presents the fusion of rough sets and soft

ets under the NSs and INSs background, which includes both fun-
amental definitions and related graphs. In the future, some study
irections are summarized below:
1) Establish several extended models for NSRSs, SRNSs, SINRSs and
INSRSs from the aspect of generalized fuzzy sets, such as type-2
fuzzy sets, hesitant fuzzy sets, pythagorean fuzzy sets, etc.
Fig. 4. Flow chart of the survey on neutrosophic fusion of RST from the aspect of
mathematical foundations.

(2) Extend NSRSs, SRNSs, SINRSs and INSRSs to multi-granularity
and multi-scale frameworks.

(3) Design more convincing decision making methods for the
above-stated models and apply them to various complicated
situations.

5. Neutrosophic fusion of RST from the aspect of
mathematical foundations

The exploration of mathematical foundations is significant in
rough set society, which is conducive to discovering more inter-
esting theoretical results and utilizing them in various real-world
situations. This section plans to sum up neutrosophic fusion of RST
from the aspect of mathematical foundations [95–100], i.e., rela-
tions, lattices, topologies, graphs, etc. Moreover, we present the
flowchart of this section in Fig. 4.

5.1. Relation analysis of hybrid models

Arockiarani and Sweety [95] studied the composition of rough
neutrosophic relations and inverse rough neutrosophic relations
respectively. In what follows, we list some main results of the rela-
tion analysis of hybrid models.

Definition 26. [95]

Suppose U, V, W are three arbitrary universes of discourse, rough
neutrosophic relations over U × V and V × W related to X × Y and
Y × Z are denoted by R1 and R2. Then, the composition of R1 and
R2, represented by R1 ◦ R2, which is expressed on U × W in terms of
X × Z, where

�R1◦R2 (x, y) = ∨
y ∈ V

{∧
(
�R1 (x, y) , �R2 (y, z)

)
}; (51)

�R1◦R2 (x, y) = ∨
y ∈ V

{∧
(
�R1 (x, y) , �R2 (y, z)

)
}; (52)

ωR1◦R2 (x, y) = ∧
y ∈ V

{∨
(
ωR1 (x, y) , ωR2 (y, z)

)
}. (53)
Definition 27. [95]

Suppose X and Y are two  RNSs over U and V, a rough neutrosophic
relation over U × V in terms of X × Y is denoted by R ⊂ U × V. Next,
we name R−1 ⊂ V × U a rough neutrosophic relation over V × U in
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erms of Y × X, where for every (x, y) ∈ V × U, we have �R−1 (y, x) =
R (x, y), �R−1 (y, x) = �R (x, y), ωR−1 (y, x) = ωR (x, y). In light of the

bove statements, the relation R−1 is named an inverse rough neu-
rosophic relation of R.

.2. Lattice analysis of hybrid models

Recently, many scholars have put their emphasis on studying
Ss from the perspective of lattice theory. In what follows, we  list

ome main results of the lattice analysis of hybrid models.

efinition 28. [96,97]

Suppose L is a lattice, A is a NS. Then, A is named a neutrosophic
ublattice of L if the following requirements exist

1) �A (u ∨ v) ≥  min
{
�A (u) , �A (v)

}
; �A (u ∧ v) ≥

max
{
�A (u) , �A (v)

}
;

2) �A (u ∨ v) ≥ min
{
�A (u) , �A (v)

}
; �A (u ∧ v) ≥

max
{
�A (u) , �A (v)

}
;

3) ωA (u ∨ v) ≤ max
{
�A (u) , �A (v)

}
; ωA (u ∧ v) ≤

min
{
ωA (u) , ωA (v)

}
.

The set of all neutrosophic lattices of L is denoted by NL (L). More-
ver, a RNS of L is named a rough neutrosophic lattice, and both
(A) and Q̄ (A) are neutrosophic lattices of L.

efinition 29. [96,97]

Suppose Q (U) is a rough lattice, a NRS in Q (U) is denoted by
(A) =

(
Q (A) , Q̄ (A)

)
. Then, we name Q (A) a neutrosophic rough

ublattice if the followings are true

1) �A (u ∨ v) ≥  min
{
�A (u) , �A (v)

}
; �A (u ∧ v) ≥

min
{
�A (u) , �A (v)

}
;

2) �A (u ∨ v) ≥ min
{
�A (u) , �A (v)

}
; �A (u ∧ v) ≥

min
{
�A (u) , �A (v)

}
;

3) ωA (u ∨ v) ≥ max
{
�A (u) , �A (v)

}
; ωA (u ∧ v) ≥

max
{
ωA (u) , ωA (v)

}
.

.3. Topology analysis of hybrid models

The study of properties of topological frameworks and rough
ets are significant issues in RST. Liu and Yang [98] constructed the
otion of SVN topologies. In what follows, we list some main results
f the topology analysis of hybrid models.

efinition 30. [98]

Suppose V is an arbitrary universe of discourse, a SVN topology
ver V is a family ς of SVNSs if the following requirements exist

1) ∅, V ∈ ς;
2) F ∩ G ∈ ς for any F, G ∈ ς;
3) ∪j ∈ JFi ∈ ς for each Fj ∈ ς, j ∈ J, J denotes an index set.

Then, we name (V, ς) a  SVN topological space, and every SVNS
 in ς is named a SVN open set in (V, ς). In light of the above state-
ents, for any SVNS F, the SVN interior and closure of F are given

s the following form:
nt (F) = ∪{P|P ∈ ς and P ⊆ F}; (54)

lo (F) = ∩{Q |Qc ∈ ς and F ⊆ Q }. (55)
s in Industry 115 (2020) 103117

5.4. Graph analysis of hybrid models

The graph theory is a powerful tool to express information
involving relations between elements, and relations are denoted
by edges and elements are denoted by vertices. In order to han-
dle diverse fuzzy information systems, Rosenfeld [101] generalized
classical graph theory to fuzzy contexts, and put forward the notion
of fuzzy graphs. Recently, Sayed et al. [99] established the con-
cept of rough neutrosophic digraphs (RNDs). Then, Ishfaq et al.
[100] further explored some properties and applications by virtue
of RNDs. Afterwards, Akram et al. [102] developed the concept of
neutrosophic rough digraphs (NRDs) along with some important
properties. In what follows, we  list some main results of RNDs and
NRDs.

Definition 31. [99]

Suppose X is an arbitrary universe of discourse, a RND on X is a 4-
ordered tuple G = (R, RX, S, SY), where R is an equivalence relation
over X, S is an equivalence relation on Y ⊆ X × X, RX =

(
R (X) , R̄ (X)

)
is a RNS on X, SY =

(
S (Y) , S̄ (Y)

)
is a rough neutrosophic relation on

X, (RX, SY) is a RND where G = (R (X) , S (Y)) and Ḡ =
(
R̄ (X) , S̄ (Y)

)
are two approximations of G such that

�S(Y) (xy) ≤  min{�R(X) (x) , �R(X) (y)};
�S(Y) (xy) ≤  min{�R(X) (x) , �R(X) (y)};
ωS(Y) (xy) ≤  max{ωR(X) (x) , ωR(X) (y)};
�S̄(Y) (xy) ≤  min{�R̄(X) (x) , �R̄(X) (y)};
�S̄(Y) (xy) ≤  min{�R̄(X) (x) , �R̄(X) (y)};
ωS̄(Y) (xy) ≤  max{ωR̄(X) (x) , ωR̄(X) (y)}.

Definition 32. [102]

Suppose U is an arbitrary universe of discourse, a NRD on U is
a 4-ordered tuple G = (R, RU, S, SV), where R is a neutrosophic tol-
erance relation over U, S is a neutrosophic tolerance relation over
V ⊆ U × U, RU =

(
R (U) , R̄ (U)

)
is a NRS over U, (RU, SV) is a NRD

where G = (R (U) , S (V)) and Ḡ =
(
R̄ (U) , S̄ (V)

)
are two approxima-

tions of G such that

�S(V) (xy) ≤  min{�R(U) (x) , �R(U) (y)};
�S(V) (xy) ≤  min{�R(U) (x) , �R(U) (y)};
ωS(V) (xy) ≤  max{ωR(U) (x) , ωR(U) (y)};
�S̄(V) (xy) ≤  min{�R̄(U) (x) , �R̄(U) (y)};
�S̄(V) (xy) ≤  min{�R̄(U) (x) , �R̄(U) (y)};
ωS̄(V) (xy) ≤  max{ωR̄(U) (x) , ωR̄(U) (y)}.

In addition, the related works in terms of mathematical founda-
tions of hybrid models are shown in Table 6.

This section mainly presents neutrosophic fusion of RST from
the aspect of mathematical foundations i.e., relations, lattices,
topologies, graphs, etc. Future works need to be done by combin-
ing with other application fields, such as complex networks, formal
concept analysis, feature selections, knowledge acquisitions, and so
forth.

6. Neutrosophic fusion of RST from the aspect of decision
making
It is acknowledged that RST can be regarded as a powerful
approach to handle plenty of decision making situations. By means
of lower approximations which correspond to affirmatory decision
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Table  6
Distribution papers in the field of mathematical foundations of hybrid models.

Definition Reference Representation Study category

Definitions 26 and 27 Arockiarani and Sweety [95] NSs Rough neutrosophic relations
Definitions 28 and 29 Arockiarani and Sweety [96,97] NSs Rough neutrosophic lattices
Definition 30 Liu and Yang [98] 

Definition 31 Sayed et al. [99] 

Definition 32 Akram et al. [102] 

F
d

t
b
d
s
t
o
b
t

h

o
s
t

(

(

(

(

7
a

r
m
o
m
a
c
s

(

ig. 5. Flow chart of the survey on neutrosophic fusion of RST from the aspect of
ecision making.

actics and upper approximations which correspond to proba-
ilistic decision tactics, many scholars have designed numerous
ecision making models from the perspective of information mea-
ures, risk decision making principle, three-way decisions, graph
heory, etc. Moreover, NSs and their extensions provide preferences
f decision makers over attribute sets and alternatives under the
ackground of diverse applications. In what follows, we  present
he flowchart of this section in Fig. 5.

In addition, the related works in terms of decision making of
ybrid models are shown in Table 7.

According to Table 7, neutrosophic fusion of RST from the aspect
f decision making has been developed and enriched by lots of
cholars during the past five years. In the future, scholars may  need
o resolve the following challenges:

1) Identify practical decision making scenarios in which neutros-
ophy produces uncertainties and apply them to neutrosophic
models.

2) Explore viable schemes to prove that results outperform the
ones obtained with other decision making approaches.

3) Put forward decision making algorithms that combine multiple
types of uncertainties including neutrosophy in order to obtain
reasonable and better decision conclusions.

4) New decision making algorithms should be more creative than
simple and direct extensions of existing ones by using NSs and
RST.

. Neutrosophic fusion of RST from the aspect of other
pplications

In previous sections, we have revisited the notion of NSs and
ough sets, neutrosophic fusion of RST from the aspect of basic

odels, soft sets, mathematical foundations, and decision making,
ur goal in the current section is to present other applications by
eans of RNSs and NRSs. In general, there are three kinds of typical

pplications by means of RNSs and NRSs, i.e., three-way decisions,
lustering and smart cities, some detailed illustrations of them are

hown in Fig. 6. Moreover, we also list them as follows:

1) Three-way decisions: three-way decisions, proposed by Yao
[50,111–115], aim to split a universal set into three different
SVNSs Rough neutrosophic topologies
NSs RNDs
NSs NRDs

disjointed parts by using the semantics of acceptance, noncom-
mitment and rejection in ternary classifications. Recently, Yao
[116] further expressed three-way decisions as a trisecting-
acting-outcome (TAO) model, which plays a significant role
in the process of granular computing-based human thinking.
In recent years, some researchers have introduced three-way
decisions to the background of NSs. Abdel-Basset et al. [117]
investigated three-way decisions based on NSs and analytic
hierarchy process (AHP)-quality function deployment (QFD)
paradigm, and then applied the presented three-way decisions
framework to supplier selection problems. Singh [118,119]
studied three-way neutrosophic concept lattice representa-
tions in detail. Zhang et al. [73] put forward the notion
of SVNRMSs and further constructed a three-way decisions
approach for medical diagnosis. In the future, neutrosophic
fusion of RST from the aspect of three-way decisions should
be further enriched.

(2) Clustering: according to the characteristics of the data, cluster-
ing generally means the procedure of combining a set of objects
into clusters [120]. Since it is well known that data used for
clustering may  be neutrosophic, it is meaningful to develop
related clustering algorithms for better handling this type of
data. Thao et al. [121] extended the notion of fuzzy equiva-
lences to the standard RNSs and NRSs, then a clustering analysis
based on the datasets of NSs was conducted by utilizing these
definitions. In the future, efficient clustering algorithms based
on other generalized NSs and RST are worth looking into.

(3) Smart cities: a smart city is a modern urban area that combines
diverse electronic data collection sensors to provide informa-
tion which is used to efficiently make use of all aspects of assets
and resources, and maximize the quality of citizen’s services
[122,123]. In order to reasonably handle incomplete informa-
tion systems existed in smart cities by virtue of SVNSs and rough
sets, Abdel-Basset and Mohamed [124] integrated the two  soft
computing tools for processing all aspects of incompleteness in
smart city information systems, this integration aimed to pro-
mote the quality of various creative services from smart cities
to their citizens. Afterwards, in order to cope with incomplete
information systems in healthcare fields, a realistic experiment
was performed to test the validation of the proposed method.
In the future, it is necessary to apply existing tools in numer-
ous fields such as industry and waste management for serving
smart cities.

8. A bibliometric overview of current works

The notion of bibliometric, first originated by Pritchard [125]
in 1969, generally aims to process the cross-science of all knowl-
edge carriers quantitatively by utilizing some proposed statistical
approaches [126–128]. Nowadays, bibliometric has been paying
an increasing number of attentions from scholars and practition-
ers, and it has been utilized in diverse areas such as fuzzy sets

[129], rough sets [130], decision making [131], etc. Considering
the significance of neutrosophic fusion of RST, it is necessary to
perform a bibliometric overview of current works related to neu-
trosophic fusion of RST. In what follows, a bibliometric overview
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Table 7
Distribution papers in the field of RNSs and NRSs-based decision making.

Reference Representation Study category Application field Study contribution

Broumi and
Smarandache [93]

INSs SIVNRSs Staff selections Designed a multiple attribute group decision making approach
by using the model of SIVNRSs

Broumi and
Smarandache [94]

INSs IVNSRSs Staff selections Presented a multiple attribute group decision making
approach by using the model of IVNSRSs

Akram et al. [89] NSs NSRSs Selection of generic
version of brand
name medicine

Developed a multiple attribute decision making approach by
using the model of NSRSs

Pramanik and
Mondal [103]

NSs RNSs Medical diagnosis Constructed a multiple attribute decision making approach by
virtue of cosine similarity measures

Pramanik and
Mondal [104]

NSs RNSs Medical diagnosis Put forward a multiple attribute decision making approach by
virtue of cotangent similarity measures

Pramanik and
Mondal [105]

NSs RNSs Medical diagnosis Proposed a multiple attribute decision making approach by
virtue of dice and Jaccard similarity measures

Mondal and
Pramanik [106]

NSs RNSs Select schools Studied a multiple attribute decision making approach by
virtue of grey relational analysis

Mondal and
Pramanik [107]

NSs RNSs Purchase SIM
(Subscriber
Identification
Module) cards

Designed a multiple attribute decision making approach by
virtue of rough accuracy score functions

Mondal et al. [108] NSs RNSs Investment
problems

Presented a multiple attribute decision making approach by
virtue of rough variation coefficient similarity measures

Pramanik et al.
[109]

NSs RNSs Medical diagnosis Explored a multiple attribute group decision making approach
by virtue of correlation coefficient measures

Mondal  et al. [110] NSs RNSs Logistic center
location selection
problems

Put forward a multiple attribute group decision making
approach by virtue of TOPSIS methods

Yang  et al. [64] SVNSs SVNRSs Medical diagnosis Constructed a multiple attribute decision making approach by
virtue of risk decision making principle

Bao  and Yang [68] SVN refined sets SVNRRSs Medical diagnosis Established a multiple attribute decision making approach by
virtue of risk decision making principle

Alias  et al. [70] SVNMSs RNMSs Marketing strategy
problems

Discussed a multiple attribute decision making approach by
virtue of risk decision making principle

Yang  et al. [74] INSs INRSs Medical diagnosis Investigated a multiple attribute decision making approach by
virtue of risk decision making principle

Guo  et al. [75] SVNSs GSVNRSs Medical diagnosis Proposed a multiple attribute decision making approach by
virtue of three-way decisions

Zhang et al. [84] SVNSs SVNMGRSs Steam turbine fault
diagnosis

Designed a multiple attribute group decision making approach
by virtue of risk decision making principle

Zhang et al. [85] INSs INMGRSs Selection of merger
and acquisition
targets

Studied a multiple attribute group decision making approach
by virtue of risk decision making principle

Bo  et al. [86] SVNSs SVNMGRSs Selection of houses Researched a multiple attribute group decision making
approach by virtue of risk decision making principle

Zhang et al. [73] SVNMSs SVNRMSs Medical diagnosis Presented a multiple attribute decision making approach by
virtue of three-way decisions

Sayed et al. [99] NSs RNSs Investment
problems

Constructed a multiple attribute decision making approach by
virtue of RNDs

Akram et al. [102] NSs NRSs Online ratings and
recruitment
problems

Developed a multiple attribute decision making approach by
virtue of NRDs

Malik et al. [90] NSs SRNSs Selection of the
right path for
transferring goods

Studied a multiple attribute decision making approach by
virtue of SRNGs
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f current works will be shown from the aspect of the most pro-
uctive authors, annual trends, main research topics, country level,
nd publishing journals or conferences.

.1. The most productive authors

According to the collected papers related to neutrosophic fusion
f RST, over 35 authors have published works by combining NSs
ith rough sets from different areas. We  list the summary of top 6
ost productive scholars below, which is shown in Fig. 7.
It is noted that the most productive author is Florentin Smaran-
ache, who founded the theory of NSs and logic. Then followed by
urapati Pramanik, Kalyan Mondal, Said Broumi, Hailong Yang and
uhammad Akram.
 of generic
f brand

edicine

Put forward a multiple attribute decision making approach by
virtue of NSRGs

8.2. Annual trends

The pioneering papers for the integration of RST with NSs and
logic were put forward formally in 2014, Broumi and Smarandache
[44,92] established the model of RNSs and IVNSRSs respectively.
In light of the above works originated by Broumi and Smaran-
dache, the fusion research shows a rapid growth trend. According to
Fig. 8, 5% of total works were published in 2014. In 2015 and 2016,
the percentage increased to 15%. Then 23% of the fusion studies
were proposed in 2017. Finally in 2018, this year witnessed 42% of
all publications. With the high growth rate, it is believed that an

increasing number of fusion works will be further explored in the
coming years.
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Fig. 6. Flow chart of the survey on neutrosophic fusion of RST from the aspect of
other applications.

Fig. 7. The top 6 most productive authors.
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Fig. 9. Main research topics.

braic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or
Fig. 8. Annual trends.

.3. Main research topics

One of the primary tasks in the paper is to sum up differ-
nt aspects of neutrosophic fusion of RST. To facilitate the whole
verview procedure, we roughly divide the main research topics

nto several aspects, i.e., rough sets, soft sets, relations, lattices,
opologies, graphs, similarity measures, grey sets, decision mak-
ng, clustering analysis, etc., and we just list top 5 research topics
elow. According to Fig. 9, it is noticed that 46% of total fusion works
re located in the field of rough sets. Next 29% of the fusion stud-

es focus on decision making. Then followed by soft sets, similarity

easures and clustering analysis. With the trend of main research
opics, rough sets and decision making still exert a significant influ-
Fig. 10. Country level.

ence on neutrosophic fusion of RST, and other research topics are
also suggested to be further discussed in the future.

8.4. Country level

After introducing the fusion research from the most productive
authors, annual trends and main research topics, we  further inves-
tigate the fusion works from the country level (top 5 countries).
According to Fig. 10, Indian scholars act as the largest contributor
of neutrosophic fusion of RST with a share of 32%. Then China is the
second contributor in the same area with 22% of the total publica-
tions. Following India and China, USA, Pakistan and Vietnam also
contribute plenty of excellent fusion works. In light of the scenario,
it is hoped that more international scholars can participate in the
field actively and publish more meaningful works.

8.5. Publishing journals or conferences

Our data shows over 20 journals or conferences have published
papers with respect to neutrosophic fusion of RST. We  summa-
rize the top 5 publication outlets for the above topics in Fig. 11.
According to Fig. 11, a professional NS periodical titled Neutrosophic
Sets and Systems, founded by Smarandache, is the largest outlet for
the fusion works. Then followed by Symmetry,  two  special issues
named “Neutrosophic Theories Applied in Engineering” and “Alge-
Neutrosophic Multisets” provide the second largest outlet for the
fusion works. In addition, there are only 2 science citation index
expanded (SCIE) journals in the top 5 list, i.e., Symmetry and Jour-
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al of Intelligent & Fuzzy Systems. In the future, we  believe that
eutrosophic Sets and Systems can be included by SCIE in every neu-

rosophic scholar’s efforts, and it is meaningful to publish more
usion studies in top journals or conferences.

. Conclusions

NSs and logic act as a powerful tool for handling indeterminate
nformation existed widely in lots of practical scenarios, and RST
ffers a powerful scheme to the exploitation of complicated neu-
rosophic information systems. In order to make a comprehensive
verview for neutrosophic fusion of RST, the work concentrates on
ve perspectives of the existing fusion works, i.e., basic models, soft
ets, mathematical foundations, decision making and other applica-
ions. Then on the basis of the above review aspects, a bibliometric
verview of current works in terms of neutrosophic fusion of RST

s also conducted from the aspect of the most productive authors,
nnual trends, main research topics, country level, and publishing
ournals or conferences. In light of the presented discussions, neu-
rosophic fusion of RST has achieved a considerable development
n different research areas.

In the future, there is still much work to be further considered to
nrich the analysis of neutrosophic information systems by virtue
f RST. To be specific, it is desirable to explore other significant
spects of RNSs and NRSs-based models, such as attribute reduc-
ions, rule acquisitions, uncertainty measures, etc. Moreover, the
evelopment of novel neutrosophic fusion approaches by means of
ST is also worthy for attention, such as the fusion from the aspect
f D–S evidence theory, the fusion from the aspect of formal con-
ept analysis, the fusion under the background of other uncertain
nformation systems, the fusion under the background of big data
ituations. Besides, it is meaningful to expand the current applica-
ion scope of the fusion models, and it is hoped that more real-world
pplications such as intelligent business and urban computing can
e studied in depth by utilizing the proposed fusion models.
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